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In this paper we study the existence of three distinct solutions for the following problem

−ü + A(t)u = ∇ F (t, u) + λ∇G(t, u) a.e. in [0, T ],
u(T ) − u(0) = u̇(T ) − u̇(0) = 0,

where λ ∈ R, T is a real positive number, A : [0, T ] → R
N×N is a continuous map from the

interval [0, T ] to the set of N-order symmetric matrices. We propose sufficient conditions
only on the potential F . More precisely, we assume that G satisfies only a usual growth
condition which allows us to use a variational approach.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Consider the following problem

−ü + A(t)u = ∇ F (t, u) + λ∇G(t, u) a.e. in [0, T ],
u(T ) − u(0) = u̇(T ) − u̇(0) = 0,

(Pλ)

where λ ∈ R, T is a real positive number, A : [0, T ] → R
N×N is a continuous map from the interval [0, T ] to the set

of N-order symmetric matrices, F , G : [0, T ] × RN → R are measurable with respect to t , for every x ∈ R
N , continuously

differentiable in x, for almost every t ∈ [0, T ] and satisfy the following standard summability condition:

sup
|x|�c

(
max

{∣∣F (·, x)
∣∣, ∣∣G(·, x)

∣∣, ∣∣∇ F (·, x)
∣∣, ∣∣∇G(·, x)

∣∣}) ∈ L1([0, T ]) (1.1)

for all c > 0.
Note that the above condition is satisfied, for instance, simply assuming ∇ F and ∇G continuous in [0, T ] × R

N .
Moreover, without loss of generality, it is supposed that

F (t,0) = G(t,0) = 0
(
for a.e. t ∈ [0, T ]).

Then consider the space of functions

H1
T = {

u : [0, T ] → R
N

∣∣ u is absolutely continuous, u(0) = u(T ) and u̇ ∈ L2(0, T ;R
N)}

endowed with the norm
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‖u‖ =
( T∫

0

∣∣u(t)
∣∣2

dt +
T∫

0

∣∣u̇(t)
∣∣2

dt

) 1
2

= (‖u‖2
2 + ‖u̇‖2

2

) 1
2 ,

where ‖ · ‖2 = (
∫ T

0 | · |2) 1
2 is the canonical norm of L2(0, T ;R

N ).
H1

T is a Hilbert space and, by embedding theorems, it is compactly embedded into C0(0, T ;R
N ).

We recall that u ∈ H1
T is said to be a solution of (Pλ) if

T∫
0

(
u̇(t), v̇(t)

)
dt +

T∫
0

((
A(t)u(t) − ∇ F

(
t, u(t)

) − λ∇G
(
t, u(t)

))
, v(t)

)
dt = 0,

for all v ∈ H1
T , where (·,·) is the standard scalar product in R

N .
Then we consider the functionals Ψ,Φ : H1

T → R defined as follows

Ψ (u) = 1

2

( T∫
0

(∣∣u̇(t)
∣∣2

dt + (
A(t)u(t), u(t)

))
dt

)
−

T∫
0

F
(
t, u(t)

)
dt,

and

Φ(u) = −
T∫

0

G
(
t, u(t)

)
dt.

Condition (1.1) implies that Ψ and Φ are well-defined, continuously Gâteaux differentiable and sequentially weakly lower
semicontinuous in H1

T . By Corollary 1.1 in [7], the solutions to (Pλ) in H1
T are exactly the critical points of Ψ + λΦ .

By spectral theorem for compact self-adjoint operators on a Hilbert space (see [7, p. 89]), the differential operator
u → −ü + Au, with (−ü + Au)(t) = −ü(t) + A(t)u(t), has a sequence of eigenfunctions which is an orthogonal basis for H1

T
and the following decomposition holds:

H1
T = H+ ⊕ H− ⊕ H0,

where

H+ = span
{

u ∈ H1
T : −ü + Au = λu with λ > 0

}
,

H− = span
{

u ∈ H1
T : −ü + Au = λu with λ < 0

}
,

H0 = ker{−ü + Au},
and one has dim(H−) < +∞ and dim(H0) < +∞.

Denote by λ1(A) the lowest eigenvalue of −ü + Au, by Proposition VI.9 in [2], it can be characterized by

λ1(A) = inf
u∈H1

T ,‖u‖=1

( T∫
0

(∣∣u̇(t)
∣∣2 + (

A(t)u(t), u(t)
))

dt

)
.

Under these settings, our main result, Theorem 3.1, assures that problem (Pλ) admits at least three distinct solutions, for λ

in a suitable neighbourhood of zero, provided that the following further assumptions, only on the potential F , are satisfied:

(F1) lim|x|→+∞( 1
2 λ1(A)|x|2 − F (t, x)) = +∞, uniformly in [0, T ].

(F2) There exists δ > 0 such that 1
2 λ1(A)|x|2 − F (t, x) > 0, for all x ∈ R

N \ {0} with |x| < δ and a.e. t ∈ [0, T ].
(F3) There exists x0 ∈ R

N such that
∫ T

0 (A(t)x0, x0)dt <
∫ T

0 F (t, x0)dt .

It is worth stressing out that such solutions belong to a ball of H1
T centered in the origin and with suitable radius which

does not depend on λ.
When λ1(A) is positive, in order to verify (F1) and (F2) it is sufficient to suppose F (t, ·) superquadratic at 0 and

subquadratic at +∞ uniformly with respect to t ∈ [0, T ].
Many authors dealt with multiplicity results for second order Hamiltonian systems. Focusing our attention on those

ones which carried out their studies about the three periodic solutions, we cite Tang and Wu [9–11]. More recently other
contributions to this topic has been given by Cordaro in [3] and Faraci in [5,6]. However, at our best knowledge, there are
not many results of the type of Theorem 3.1 proposed here. All of the papers quoted above consider the problem without
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the perturbation term ∇G . We also note that, instead of [3,5], our multiplicity result is proved without assuming the positive
definiteness of the matrix A(·) in [0, T ].

In order to prove Theorem 3.1, we use a recent result, proved by Fan and Deng in [4], which shows a more convenient
way to apply Theorem 1 of [8] in some concrete cases. It is also worth of stressing out that our proof relies on a gen-
eral mountain pass lemma without (P.S.) condition, Theorem 2.8 of [12], which allows us to consider perturbations only
satisfying the usual growth conditions.

2. Preliminary results

In this section we give some preliminary lemmas. The first concerns with the component H0 of the space H1
T . We omit

the rather technical proof which can be found in [1] (see proof of Lemma 3.2).

Lemma 2.1. For each ε > 0 there exists a constant M(ε) > 0 such that

m
({

t ∈ [0, T ]: ∣∣u0(t)
∣∣ < M(ε)

∥∥u0
∥∥})

< ε ∀u0 ∈ H0,

where m(·) denotes the Lebesgue measure.

Lemma 2.2. There exists λ̃ > 0 such that

Ψ1(u) =
T∫

0

∣∣u̇(t)
∣∣2

dt +
T∫

0

(
A(t)u(t), u(t)

)
dt � λ̃‖u‖2

for every u ∈ H+ .

Proof. We argue by contradiction. Suppose that there exists a sequence {un}n∈N ⊆ H+ , with ‖un‖ = 1, such that
limn→+∞ Ψ1(un) � 0. Up to a subsequence which is denoted by {un} again, there exists u∗ ∈ H+ such that un → u∗ weakly
as n → +∞. Exploiting the weakly sequentially lower semicontinuity of Ψ1, one has

Ψ1
(
u∗) � lim inf

n→+∞ Ψ1(un) � 0.

Consequently, being Ψ (u∗) � 0 since u∗ ∈ H+ , it results that Ψ (u∗) = 0 hence u∗ = 0. Now the compact embedding of H1
T

into C0(0, T ;R) assures us that un → 0 strongly in C0(0, T ;R), as n → +∞. Then

lim
n→+∞‖u̇n‖2

2 = lim
n→+∞

(
Ψ1(un) −

T∫
0

(
A(t)un(t), un(t)

)
dt

)
= 0.

So {un} strongly converges to 0 in H1
T which is absurd since by hypothesis ‖un‖ = 1, for every n ∈ N. �

Lemma 2.3. If hypothesis (F1) holds then Ψ is coercive.

Proof. We first assume that λ1(A) = 0.
So, let {un}n∈N ⊆ H1

T be a sequence such that limn→+∞ ‖un‖ = +∞. We have un = u+
n + u0

n , with u+
n ∈ H+ and u0

n ∈ H0,
because, by definition, λ1(A) = 0 implies that dim(H−) = 0. Hence, one has

Ψ (un) = 1

2

( T∫
0

(∣∣u̇n(t)
∣∣2

dt + (
A(t)un(t), un(t)

))
dt

)
−

T∫
0

F
(
t, un(t)

)
dt

= 1

2

( T∫
0

(∣∣u̇+
n (t)

∣∣2
dt + (

A(t)u+
n (t), u+

n (t)
))

dt

)
−

T∫
0

F
(
t, un(t)

)
dt

� λ̃

2

∥∥u+
n

∥∥2 −
T∫

0

F
(
t, un(t)

)
dt, (2.2)

where the last inequality follows by Lemma 2.2.
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Fix L > 0 arbitrarily, by (F1), there exists K = K (L) > 0 such that

F (t, x) � −L, for a.e. t ∈ [0, T ] and all |x| > K . (2.3)

Denote by {|u| � K } the set {t ∈ [0, T ]: |u(t)| � K } and by {|u| > K } its complement in [0, T ]. Moreover, put bK (t) =
sup|x|�K |F (t, x)| for all t ∈ [0, T ]. By assumption (1.1) we know that bK ∈ L1([0, T ]). One has

Ψ (un) � λ̃

2

∥∥u+
n

∥∥2 −
∫

{|un|�K }
F
(
t, un(t)

)
dt −

∫
{|un|>K }

F
(
t, un(t)

)
dt by (1.1)

� λ̃

2

∥∥u+
n

∥∥2 −
T∫

0

bK (t)dt −
∫

{|un|>K }
F
(
t, un(t)

)
dt by (2.3)

� λ̃

2

∥∥u+
n

∥∥2 −
T∫

0

bK (t)dt, (2.4)

for every n ∈ N.
So, if limn→+∞ ‖u+

n ‖ = +∞, from (2.4), it follows that

lim
n→+∞Ψ1(un) � lim

n→+∞

(
λ̃

2

∥∥u+
n

∥∥2 −
T∫

0

bK (t)dt

)
= +∞,

and the thesis is proved.
At this point, it remains to consider the possibility that {u+

n } is bounded. In this case, since ‖un‖ → +∞, we must have
‖u0

n‖ → +∞.
Let 0 < ε < T

4 be chosen small enough such that,∫
A

bK (t)dt � LT

2
, (2.5)

for every measurable A ⊆ [0, T ], with m(A) < ε .
By Lemma 2.1, there exists M(ε) > 0 such that, if we set

An = {
t ∈ [0, T ]: ∣∣u0

n(t)
∣∣ � M(ε)

∥∥u0
n

∥∥}
, for every n ∈ N,

it results that m([0, T ] \ An) < ε . Then, we also have∣∣un(t)
∣∣ �

∣∣u0
n(t)

∣∣ − ∣∣u+
n (t)

∣∣ � M(ε)
∥∥u0

n

∥∥ − c, for a.e. t ∈ An,

where c > 0 is a constant such that, maxt∈[0,T ] |u+
n (t)| � c, which exists due to the boundedness of {u+

n } in H1
T . Hence, there

exists ν ∈ N such that

An ⊆ {|un| > K
}
, for every n � ν. (2.6)

Then, for n > ν , one has

Ψ (un) � λ̃

2

∥∥u+
n

∥∥2 −
∫

{|un|�K }
F
(
t, un(t)

)
dt −

∫
{|un|>K }

F
(
t, un(t)

)
dt

� −
∫

{|un|�K }
bK (t)dt + Lm

({|un| > K
})

by (2.5) and (2.6)

� − LT

2
+ L(T − ε) = LT

4
. (2.7)

Owing to the arbitrariness of L > 0, by (2.7), the thesis follows.
When λ1(A) �= 0, we can argue as above by replacing the matrix A with Â(t) = A(t) − λ1(A)I and the potential F with

F̂ (t, x) = F (t, x) − λ1(A)
2 |x|2. In fact, we note that λ1( Â) = 0. �
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3. Main result

Now we can state and prove our main result:

Theorem 3.1. Assume that the potential F satisfies (F1), (F2) and (F3). Then there exist λ∗ > 0 and r > 0 such that, for every λ ∈
]−λ∗, λ∗[, problem (Pλ) admits at least three distinct solutions which belong to B(0, r) ⊆ H1

T .

Proof. By Lemma 2.3, condition (F1) implies that the functional Ψ is coercive.
Now we prove that Ψ has a strict local minimum at 0.
By the compact embedding of H1

T into C0(0, T ;R
N ), there exists a constant c1 > 0 such that

max
t∈[0,T ]

∣∣u(t)
∣∣ � c1‖u‖, for all u ∈ H1

T .

So, chosen rδ < δ
c1

, it results that

B(0, rδ) = {
u ∈ H1

T : ‖u‖ � rδ

} ⊆
{

u ∈ H1
T : max

t∈[0,T ]
∣∣u(t)

∣∣ < δ
}
.

Hence, for every u ∈ B(0, rδ) \ {0}, from (F2) it follows that

Ψ (u) = 1

2

( T∫
0

(∣∣u̇(t)
∣∣2

dt + (
A(t)u(t), u(t)

))
dt

)
−

T∫
0

F
(
t, u(t)

)
dt

= 1

2

( T∫
0

(∣∣u̇(t)
∣∣2 + ((

A(t) − λ1(A)I
)
u(t), u(t)

))
dt

)

+
T∫

0

(
1

2
λ1(A)

∣∣u(t)
∣∣2 − F

(
t, u(t)

))
dt since λ1

(
A − λ1(A)I

) = 0

�
T∫

0

(
1

2
λ1(A)

∣∣u(t)
∣∣2 − F

(
t, u(t)

))
dt

> Ψ (0) = 0, (3.8)

that is the function v = 0 is a strict local minimum of Ψ in H1
T .

Condition (F3) assures that 0 is not a global minimum.
At this point, we can apply Theorem 3.8 of [4] taking Φ and −Φ as perturbing terms. Then, for every ρ1,ρ2, ε ∈ R, with

infH1
T
Ψ < ρ1 < 0, ρ2 > 0 and 0 < ε � rδ , there exists λ̃ > 0 such that, for each λ ∈ ]−λ̃, λ̃[, Ψ + λΦ has two distinct local

minima u(λ)
1 ∈ Ψ −1(]−∞,ρ1[) and u(λ)

2 ∈ Ψ −1(]−∞,ρ2[) ∩ B(0, ε).
Since v = 0 is a strict local minimum of Ψ , by Theorem 3.6 of [4], the above ε can be chosen such that γ =

inf‖u‖=ε Ψ (u) > 0.
Now let r1 > 0 be such that

B(0, r1) ⊇ Ψ −1(]−∞,ρ1[
) ∪ B(0, ε),

and put b = sup‖u‖�r1
|Ψ (u)|. Owing to the coerciveness of Ψ , there exists r2 > r1 such that inf‖u‖=r2 Ψ (u) = d > b.

Hence, for every u ∈ H1
T with ‖u‖ = r2, one has

Ψ (u) + λΦ(u) � d − |λ| sup
‖u‖�r2

∣∣Φ(u)
∣∣

>
d + b

2
, (3.9)

and when ‖u‖ � r1

Ψ (u) + λΦ(u) � b + |λ| sup
‖u‖�r2

∣∣Φ(u)
∣∣ < b + d − b

2
= d + b

2
, (3.10)

because λ ∈ R can be chosen with
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|λ| < d − b

2 sup‖u‖�r2
|Φ(u)| ,

due to the sequentially weakly continuity of Φ which implies that

sup
‖u‖�r2

∣∣Φ(u)
∣∣ < +∞.

Hence, it is easily seen that, λ̃ can be chosen small enough that the following conditions

Ψ (u1) + λΦ(u1) < 0,

Ψ (u2) + λΦ(u2) <
γ

2
,

inf‖u‖=ε

(
Ψ (u) + λΦ(u)

)
� γ

2
,

and (3.9), (3.10) hold, for every λ ∈ ]−λ̃, λ̃[.
For a given λ in the interval above, define the set of paths going from u1 to u2

A = {
α ∈ C

([0,1], E
)
: α(0) = u1, α(1) = u2

}
,

and consider the real number c = infα∈A supt∈[0,1](Ψ (α(t)) + λΦ(α(t))). Since u1 �= B(0, ε) and each path α goes through
∂ B(0, ε), one has c � γ

2 .
So, taking into account (3.9) and (3.10), there exists a sequence {αn} ⊂ A, with αn([0,1]) ⊂ B(0, r2) for every n ∈ N, such

that

lim
n→∞ sup

t∈[0,1]
(
Ψ

(
αn(t)

) + λΦ
(
αn(t)

)) = c.

Applying Theorem 2.8 of [12], there exists a sequence {un} ⊂ B(0, r2) which satisfies Ψ (un) + λΦ(un) → c and
Ψ ′(un) + λΦ ′(un) → 0 as n → ∞. Hence {un} is a bounded (PS)c sequence and, taking into account the fact that Ψ ′ + λΦ ′
is an (S+) type mapping, admits a convergent subsequence to some u3. So, such u3 turns to be a critical point of Ψ + λΦ ,
with Ψ (u3) + λΦ(u3) = c, hence different from u1 and u2 and u3 �= 0. �
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