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The Good, the Bad, the Well-Connected
Michael Wegener & Evla Mutlu

Abstract—In this paper, we analyse a variation of truel competi-
tions in which each prospective player is represented by a node
in a scale-free network. Without the inclusion of any particular
spatial arrangement of players, traditional game theory suggests
that in many truel settings the strongest player often has the
lowest probability of survival, a result which has been popularised
by the term survival of the unfittest. However, both our single
run and the Monte-Carlo simulations suggest that this particular
notion does not hold in scale-free networks. The spatial structure
and arrangement of players are crucial for the outcome of truels,
as in scale-free networks the number of players surviving the
competition positively depends on their marksmanship (i.e. the
strongest players indeed have the highest probability of survival).

Index Terms—Truels, Evolutionary Game Theory, Scale-Free
Networks, Survival of the Fittest

I. INTRODUCTION

Truels, the three player extension of a duel, are well known
from the 1966 Italian western ’The Good, the Bad, the Ugly’,
in which the three main characters team up to find a bounty of
200.000 USD in buried gold coins. After having successfully
tracked down the location of the gold, no one is willing to share
the reward, and so the three finally meet in a great showdown,
in which each one is eager to shoot his opponents to get his
hands on the bounty as the only survivor.
Game theory loosely defines truels in less martial words as a
series of one-to-one competitions in which each player aims to
either eliminate or overtake his two opponents in the game. The
basic mechanics of the game are simple and can be summarised
as follows: Once the shooting order is determined, the first
player decides which of the other two players will be his target.
He then aims a shot at the targeted player, with a certain
probability (marksmanship) that the shot will be successful,
and the targeted player will be removed from the game. Given
the shooting order, a new player is then chosen among the
surviving players, who will target one of his opponents for his
shot. These steps repeat until only one winning player remains
in the game.
Various alterations of these basic rules exist. The shooting order
may be fixed or random, players can fire shots simultaneously
or sequentially one after another, the number of shots available
to each player may be limited, and players may be allowed
to misfire into the air on purpose. However, in all variations
players are unmistakably rational (i.e. each player will apply a
strategy which maximises his own probability of staying alive
and winning the game).
Truels differ from other one-to-one competitive games, such as
Paper, Rock, Scissors, due to their non-cyclical marksmanships
(i.e. no player is superior to one player but inferior to the other
competitor in the field). Marksmanships in truels are intrinsic
and can be ordered from weakest to strongest and vice versa.

Surprisingly, the player with the poorest marksmanship has the
highest probability to win the game in many settings.
The latter outcome, being so at odds with the conventional
notion of the survival of the fittest, makes truels an interesting
subject to study for both game theorists and evolutionary
biologists. In the literature, truels were first described as an
entertaining mathematical puzzle by Kinnaird (1946) and later
by Larson and Moser (1948) and Gardner (1966). In the 1970s,
Kilgour was among the first to analyse truels theoretically and
to present the mutual best responses and Nash equilibria for
simultaneous (Kilgour, 1972) and (infinite) sequential truels
(Kilgour, 1975, 1978).1 His results show that in many of these
settings there exists a unique equilibrium point at which the
optimal winning strategy of a rational player is to fire a shot at
the strongest opponent in the field. It is due to this dominant
strategy that the two inferior shooters in a truel have a combined
interest to eliminate the strongest shooter as soon as possible,
which leads to the above-cited paradoxical outcome: in many
settings, the strongest player has the lowest probability of
survival. Apart from being a puzzling but purely theoretical
case, a better understanding of this paradox is also crucial to
evolutionary biology because it indicates that competitive skills
can only be improved by mutation and not by interactions
among more than two individuals in the process of natural
selection (Archetti, 2012).
More recent analyses of truels include Toral and Amengual
(2005), who use Markov Chain theory to confirm Kilgour’s
previous results, and Xu (2012), who examines the conditions
under which the weakest player should deliberately pass his
first shot into the air. More related to our paper, however, is
the framework of Amengual and Toral (2006), in which the
truel players reside on a simple n-dimensional grid. Although
adding such a spatial structure reflects the fact that individual
players have a higher propensity to interact with those players
in close vicinity, in most real-world networks, the number of
connections one particular node has can vary greatly. Hence, we
believe that small-world networks (Watts and Strogatz, 1998)
or scale-free networks (Barabási and Albert, 1999) are a more
natural and realistic fit to study the evolutionary interaction of
truel players.
Accordingly, the remainder of this paper is organised as follows.
Section II reconsiders the basic features of scale-free networks,
in which each node represents one player in a truel and outlines
the evolutionary competition in a single simulation run. Section
III then further explores the population of surviving truel
players in a so-called Monte-Carlo study for a broader range
of simulation runs with different initial starting conditions. The
last section concludes the paper.

1For a later summary of his results, also see Kilgour and Brams (1997).



WORKING PAPER 2

II. TRUELS IN SCALE-FREE NETWORKS: A NUMERICAL
EXAMPLE

Many interactions in complex biological (Almaas et al., 2013,
Barabási and Oltvai, 2004) or social (Albert et al., 1999, Ebel
et al., 2002, Wang and Chen, 2003) systems take place in
so-called scale-free networks. Scale-free networks have a very
uneven distribution of connections according to a power law:
few nodes have many connections, while the majority of nodes
exhibit few connections. Due to this property it is obvious
that the behaviour of scale-free networks in terms of diffusion
and interaction between nodes is fundamentally different from
that of other more simple networks, such as grids or random
networks, and hence scale-free networks are a better and more
natural fit for studying the evolutionary interaction of truel
players in a numerical simulation.
Accordingly, we start our simulation by creating an undirected
scale-free network along the lines of the preferential-attachment
algorithm proposed by Barabási and Albert (1999), which can
briefly be described as follows:

1) Create an initial network with 2 connected nodes.
2) Create a new node m and randomly select one existing

node i.
3) Connect m to i with probability p = ki

ktot
, where ki is

the number of connections to node i and ktot is twice
the number of existing connections in the entire network.

4) Repeat steps 2 and 3 until the network contains N
connected nodes.

Fig. 1: A scale-free network with N = 300 nodes. Each node
represents one potential player with marksmanship a = 1 (red),
b = 0.8 (blue), c = 0.5 (black). Connections among nodes are
undirected.

Please note that due to the probability of preferential attachment
in step 3, each new node is more likely to connect to a
more connected node in the existing network than to those
nodes only having a few connections. Fig. 1 depicts a scale-
free network for N = 300 nodes created with the above-
described algorithm. Each node in the network represents
one possible player in our simulation, the colour denoting
the player’s respective type, which can take on one of the
three possible values of marksmanship: a = 1 (red nodes),
b = 0.8 (blue nodes) or c = 0.5 (black nodes). Marksmanships
are randomly distributed in the network with equal initial
proportions xA = xB = xC = 1

3 . In our simulation, players
obey the standard rules of a sequential truel, as outlined by
Amengual and Toral (2006). That is, at each step in the game,
one node is chosen randomly. This chosen player, in turn,
randomly selects two opponents among his neighbour nodes,
and the three players play a sequential truel with a fixed
shooting order. If the chosen player has only one neighbour
node, a duel is played. Players are assumed to be rational (i.e.
they strictly follow the strongest opponent strategy but never
aim at a player of the same type). Finally, the losers of either
a truel or a duel are removed from the network, and if a node
has no neighbours it will be reattached to the network along
the lines of the preferential-attachment algorithm.
Fig. 2 illustrates the further evolution of the simulation
run. At each step, the number of nodes decreases, and the
simulation stops after 634 iteration steps, with 44 red players,
12 blue players and 11 black players surviving the evolutionary
competition. Interestingly, and at odds with the previously cited
literature on truels, the players with the highest marksmanship
have the highest likelihood of surviving: 44 out of the initial
red players with marksmanship a = 1 survive while only 23 of
the initial 200 weaker blue and black players are still alive at
the end of the simulation run. At first glance, this result may
be puzzling, but it can be explained by the structural nature
of scale-free networks. Recall that in scale-free networks the
distribution of connections follows a power law (i.e. many
players are connected to only one or two other players while
only a few highly connected players have many neighbours).
For any randomly selected player, the chances of having only
one neighbour are thus much higher than having two or more
neighbours. Accordingly, in scale-free networks the number
of duels played will exceed the number of truels. In duels,
however, the player with the highest marksmanship is more
likely to win. The spatial arrangement and connectedness of
players do indeed matter in the sense that the evolutionary
mechanism leading to the survival of the fittest does, in fact,
hold for truel competitions played in scale-free networks.

III. TRUELS IN SCALE-FREE NETWORKS: A
MONTE-CARLO SIMULATION

Monte-Carlo simulations are a popular numerical technique
for assessing the probabilities of outcomes in systems that
cannot be predicted easily due to their stochastic nature or
high dependency on initial conditions. Rather than relying on
the results of a single simulation run, the central idea of a
Monte-Carlo experiment is to simulate many different scenarios
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(a) Network structure after 100 iteration steps. (b) Network structure after 634 iteration steps.

Fig. 2: Evolution of the network in the course of the simulation. The simulation stops after 634 iteration steps, with 45 red
players (marksmanship a = 1), 12 blue players (marksmanship b = 0.8) and 11 black players (marksmanship c = 0.5) surviving
the competition.

with slightly different initial starting conditions hundreds or
thousands of times. Each scenario generates a set of hundreds
or thousands of samples, and for each set, the average outcome
will be recorded and visualised to get a comprehensive idea of
the underlying probability distribution of all possible outcomes.
Hence, Monte-Carlo experiments can tell us not only which
outcomes can happen in our truel competitions but also how
likely they are to occur. Our Monte-Carlo analysis aims to
answer the following simple question: how robust are the
results we obtained in the previous section against changes
in the initial network structure? For this purpose, we will
create 1000 independent samples by repeating the single-run
simulation presented in the last section 1000 times. In each
repeated sample, we will keep the initial proportion of players
constant but change the initial network structure and, hence,
the relationships among players in the scale-free network. Once
the competition has come to an end in each repeated run, we
will record the number of surviving red, blue and black players,
with the compiled data summarised by the box and whisker
plots presented in Fig. 3. Comparing these plots, it becomes
evident that there is a striking difference among the surviving
players in each group. On average, more strong players with
the highest marksmanship a = 1 survive the competition than
weaker players with lower marksmanships b = 0.8 and c = 0.5.
Please note that the spreads of the boxes do not overlap, which
in combination with the relatively large sample size of 1000
repetitions indicates that this difference is likely to be highly
statistically significant, a fact which is further supported by
the quite narrow, non-overlapping confidence intervals for the
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Fig. 3: Box and whisker plots summarising the sample data
generated in a Monte-Carlo experiment with 1000 repeated
simulations. In each repetition, we keep the initial proportion
of red, blue and black players constant but change the initial
structure of the network. The plots show that there is a
striking difference among the numbers of players in each group
surviving the competition.

means. With 99% confidence, the mean number of surviving
red players lies between 38.61 and 39.81, the mean number
of surviving blue players lies between 22.35 and 23.49 and
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(a) Red players with marksmanship a = 1
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(b) Blue players with marksmanship b = 0.8
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(c) Black players with marksmanship c = 0.5

Fig. 4: Ternary heat maps illustrating the average number of surviving players for different initial proportions of marksmanships.
Each average is calculated for a sample of 10 simulations. The average number of surviving red players (a), blue players (b)
and black players (c).

the mean number of surviving black players lies between 9.58
and 10.41, respectively.
Fig. 4 summarises how the initial proportions of marksman-
ships affect the final population of surviving players. Again,
the average numbers were calculated from a Monte-Carlo
simulation run with 10 repetitions. The figure shows that
ceteris paribus, the average number of red players surviving
the truel competition is highest compared to the same initial
proportion of the weaker blue or black players. For instance,
in a simulation run with an initial proportion of xA = 0.67 red
and xB + xC = 0.33 blue and black players, about 160 red
players with marksmanship a = 1 will survive the competition.
In contrast, if we start the simulation with an initial proportion
of xC = 0.67 black players and xA + xC = 0.33 red and blue
players, on average only about 100 black players will survive.
Overall, these numbers corroborate our previous result showing
that the traditional notion of the survival of the fittest indeed
holds and that in a scale-free network the strongest players
have a higher probability of surviving truel competitions.

IV. CONCLUSIONS

In this paper, we analysed, how the spatial arrangement of
players in scale-free networks affects the final population of
surviving players. Without the inclusion of any particular spatial
arrangement, traditional game-theoretic analysis concludes that
in many truel settings the strongest player most often has
the lowest probability of survival, a paradox which has been
disseminated through the popular notion of the survival of
the unfittest. However, both our single-run and Monte-Carlo
simulations suggest that this notion does not hold if the
potential players are arranged in scale-free networks, as, on
average, the surviving stronger players outnumber the weaker
players in many settings. This result may be explained by
the characteristic structure of scale-free networks, in which
the distribution of connections follows a power law. As many
nodes have few neighbours and truel players randomly select
their potential opponents from their immediate neighbourhood,
the number of duels played may exceed the number of truels
in a scale-free network. In duels, however, stronger players are

more likely to win and survive the competition.
Possible interesting extensions of our analysis include more
complex and dynamic algorithms to create scale-free networks
in which players either tend to cluster in marksmanship
communities based on similarity (Mele, 2018) or prefer to
connect to the immediate neighbours of a parent node (Jackson
and Rogers, 2007). However, we will leave these extensions
for further research.
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