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a b s t r a c t

This paper introduces computationally efficient NLMS and RLS adaptive algorithms for

identifying non-recursive, linear-in-the-parameters (LIP) nonlinear systems using peri-

odic input sequences. The algorithms presented in the paper are exact and require a real-

time computational effort of a single multiplication, an addition and a subtraction per

input sample. The transient, steady state, and tracking behavior of the algorithms as well

as the effect of model mismatch is studied in the paper. The low computational

complexity, good performance and broad applicability make the approach of this paper

a valuable alternative to the current techniques for nonlinear system identification.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

This paper considers the problem of identifying or track-
ing non-recursive linear-in-the-parameters (LIP) nonlinear
systems. This class of nonlinear systems and filters is
composed of all systems whose input–output relationships
depend linearly on the system parameters [1]. The class
includes, in addition to linear filters, truncated Volterra filters
[2,3], extended Volterra filters [4], FLANN filters [5] based on
trigonometric, polynomial, and piece-wise linear expansions
[6–9], radial basis function networks [10,11], interpolated
Volterra filters [12–14], generalized memory polynomial
filters [15], and many other nonlinear structures [1]. Different
approaches have been proposed in the literature to identify
these systems. A fundamental difficulty with the identifica-
tion of these nonlinear systems is the complexity of the
system model and the correspondingly large computational
complexity of the identification algorithm. For example, a
generic pth order truncated Volterra system model with N

sample memory has OðNp
Þ coefficients. The lowest

computational complexity for adaptive identification and
tracking available today is OðNp

Þ arithmetical operations
per input signal sample. Another fundamental problem is
the relatively slow learning speed of the identification algo-
rithm. Even when the input signal is white Gaussian, the
autocorrelation matrix of the input data is often non-diagonal
and ill-conditioned [3].

Recently, the first author of this paper presented an
algorithm for the identification and tracking of linear FIR
systems using periodic input sequences [16]. The algo-
rithm was derived on the basis of the early work of
Antweiler on the NLMS algorithm with perfect periodic
inputs1 [17–19]. In [16], efficient NLMS and RLS algo-
rithms that have a real-time computational effort of a
single multiplication, an addition and a subtraction per
input sample were discussed. These algorithms do not
evaluate the coefficients of the underlying system
directly. Instead, they determine the coefficients of an
equivalent representation, from which the impulse
response can be easily computed. The paper also showed
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that the algorithms have convergence and tracking prop-
erties that can be better than or comparable to the NLMS
algorithm for white noise input.

In this paper, we extend the approach of [16] to the
identification and tracking of nonrecursive LIP nonlinear
systems (some preliminary results were presented in [20]).
The resulting systems preserve the low computational com-
plexity as well as the good convergence and tracking proper-
ties exhibited by their linear counterparts. The derivation of
the algorithms as well as the analysis techniques shares some
similarity with those for linear systems. However, there are
substantial differences in the influence of the input signal as
well as its design for the nonlinear case. Similarly, there are
differences in the transient, steady-state and tracking ana-
lyses as well as model mismatch analyses between the linear
and nonlinear cases. We will refer to the derivations in [16]
in cases they are similar to the linear case and concentrate
our attention on aspects that are novel with respect to the
linear case. Of particular interest is the discussion of the
characteristics and design of an ideal periodic sequence
suitable for nonlinear system identification.

The properties of pseudorandom multilevel sequences,
i.e., of periodic sequences, used to identify Volterra and
extended Volterra filters were studied in [4]. It was shown
that a pseudorandom multilevel sequence of degree D [4] can
persistently excite an extended Volterra filter of order P and
memory length N if and only if it has at least Pþ1 distinct
levels and DZN. An efficient algorithm for the least-square
parameter estimation was also proposed in [4]. In [21], a
Wiener model was estimated using a multilevel sequence.
The approach of this paper differs from those of [4,21] in two
ways: (1) our derivations are applicable to the broader class
of LIP nonlinear filters and (2) this paper deals with the
adaptive NLMS and RLS algorithms.

The paper is organized as follows. In Section 2 the class
of LIP nonlinear filters is reviewed and a representation
using periodic inputs is introduced. In Section 3 the
efficient NLMS and RLS algorithms are derived. The tran-
sient, steady-state and tracking behaviors of the algorithms
are analyzed in Section 4. The effect of a model mismatch
between the unknown system and the adaptive filter is
discussed in Section 5. Simulation results are presented in
Section 6. Concluding remarks are given in Section 7.

Throughout the paper, lowercase boldface letters
denote vectors, uppercase boldface letters denote matrices,
the symbol � indicates the Kronecker product, E½�� denotes
the statistical expectation, J � J denotes the Euclidean
norm, J � JF represents the Frobenius norm, b�c is the largest
integer smaller than or equal to the argument, a mod b is
the remainder of the division of a by b, Cond2ðXÞ is the
condition number in the 2-norm of matrix X, CondFðXÞ is
the condition number in the Frobenius norm of X, X�T is
the transposed inverse of X, and I is an identity matrix.

2. LIP nonlinear filters with periodic input signals

2.1. A review of LIP nonlinear filters

The algorithms described in the next section apply to
non-recursive LIP models with a finite memory of N

samples. The input–output relationship of such models

can be expressed in the vector form as

yðnÞ ¼ hT
ðnÞxF ðnÞ, ð1Þ

where hðnÞ is a length M coefficient vector and xF ðnÞ is an
input data vector of the same length. Let us assume that
the vector

xF ðnÞ ¼ ½xF1ðnÞ,xF2ðnÞ, . . . ,xFMðnÞ� ð2Þ

is composed of M terms formed with any linear or non-
linear combination and/or nonlinear expansion of the N

most recent samples of the input signal

xðnÞ ¼ ½xðnÞ,xðn�1Þ, . . . ,xðn�Nþ1Þ�: ð3Þ

More specifically, each term xF rðnÞ in (2), with r¼ 1, . . . ,M,
is a nonlinear function f rðxrðnÞÞ of vector xrðnÞ and xrðnÞ a
vector formed by a subset of the elements of (3). The class
of filters in (1) is broad and includes many common
nonlinear models [1]. In Section 6, simulation results are
provided for a second order FLANN filter based on
trigonometric expansions [7], where

xF ðnÞ ¼ ½xðnÞ, . . . ,xðn�Nþ1Þ,sinðpxðnÞÞ, . . . ,sinðpxðn�Nþ1ÞÞ,

cosðpxðnÞÞ, . . . ,cosðpxðn�Nþ1ÞÞ,sinð2pxðnÞÞ, . . . ,

sinð2pxðn�Nþ1ÞÞ,cosð2pxðnÞÞ, . . . ,cosð2pxðn�Nþ1ÞÞ�T ,

ð4Þ

the truncated second-order Volterra filters [3], where

xF ðnÞ ¼ ½xðnÞ, . . . ,xðn�Nþ1Þ,x2ðnÞ, . . . ,x2ðn�Nþ1Þ,

xðnÞxðn�1Þ, . . . ,xðn�Nþ2Þxðn�Nþ1Þ, . . . ,xðnÞxðn�Nþ1Þ�T ,

ð5Þ

and the extended second-order Volterra filter [4], where

xF ðnÞ ¼

1

xðnÞ

x2ðnÞ

2
64

3
75�

1

xðn�1Þ

x2ðn�1Þ

2
64

3
75� � � � �

1

xðn�Nþ1Þ

x2ðn�Nþ1Þ

2
64

3
75: ð6Þ

2.2. LIP nonlinear filters with periodic inputs

Assume that the input sequence x(n) is periodic with
period M. Then, the data vector xF ðnÞ can take only one of
M different values, say x0, x1, . . . ,xM�1, i.e.

xF ðnÞ ¼ xi for i¼ n mod M: ð7Þ

If the M�M matrix

XF ¼ ½x0, . . . ,xM�1� ð8Þ

is invertible, we can define an M�M matrix W such that

WXT
F ¼ I: ð9Þ

Since W is invertible, we can find a vector cðnÞ ¼ ½c0ðnÞ,
. . . ,cM�1ðnÞ�

T such that

hðnÞ ¼WcðnÞ: ð10Þ

Let w0, . . . ,wM�1 represent the M columns of W. These
vectors are in general not orthogonal (even when the
input sequence is a perfect periodic sequence [19]) but
they are linearly independent (for the invertibility of XF ).
Therefore, the expression in (1) can be equivalently
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rewritten as

yðnÞ ¼ cT ðnÞWT xF ðnÞ ¼
XM�1

i ¼ 0

ciðnÞw
T
i xF ðnÞ, ð11Þ

where the vectors wi are known once the periodic
sequence is chosen.

According to (11) the nonlinear filter can be decom-
posed in a parallel structure formed by M nonlinear filters
with fixed coefficients wi. The output signal y(n) is the
linear combination with coefficients ci(n) of the outputs of
these nonlinear filters, as described in Fig. 1.

The coefficient vector cðnÞ characterizes the nonlinear
filter in (1) as well as the coefficient vector hðnÞ, and hðnÞ can
be easily estimated from the knowledge of cðnÞ as in (10).
Taking into account (7) and since according to (9)

wT
i xj ¼

1 when i¼ j,

0 when iaj,

(
ð12Þ

we have

yðnÞ ¼ ciðnÞ with i¼ n mod M: ð13Þ

Thus, the periodic output signal for the nonlinear system is
identical to one of the coefficients ci(n) of the equivalent filter
cðnÞ in (10). This is the same property exploited in [16] to
derive the efficient NLMS and RLS algorithms for identifying
linear FIR systems.

The nonlinear filter representation in (11) is mean-
ingful (and the adaptive filters of the next section can
identify the nonlinear filter in (1)) only when the matrix
XF is invertible. Design of periodic sequences for which
XF is invertible and has good condition number is
discussed in Section 4.3.

3. Efficient NLMS and RLS algorithms

To derive the NLMS algorithm, we apply the standard
procedure used to develop the LMS algorithm and we
show that it results in a normalized LMS algorithm for the
filter structure of this paper.

We want to find the coefficients ci(n) that minimize
the following minimum-mean-square cost function:

JðnÞ ¼ E½ðdðnÞ�yðnÞÞ2�, ð14Þ

where d(n) is the desired signal and y(n) is as given in
(11).

The coefficients are adapted with the gradient method

ciðnþ1Þ ¼ ciðnÞ�
m
2

@JðnÞ

@ciðnÞ
: ð15Þ

By approximating J(n) with ðdðnÞ�yðnÞÞ2 and taking into
account (13), it can be verified that

@JðnÞ

@ciðnÞ
C
�2½dðnÞ�ciðnÞ� when i¼ n mod M,

0 otherwise:

(
ð16Þ

Thus

ciðnþ1Þ ¼
ciðnÞþm½dðnÞ�ciðnÞ� when i¼ n mod M,

ciðnÞ otherwise:

(

ð17Þ

This adaptation equation can also be written in the vector
form as follows:

cðnþ1Þ ¼ cðnÞþm½dðnÞ�cT ðnÞei�ei, ð18Þ

where i¼ n mod M and ei is the iþ1-th column of the M �

M element identity matrix. For ma1, this adaptive filter
requires only a multiplication, an addition and a subtrac-
tion per input sample. When m is an integer-power of two,
this is a multiplication-free adaptive filter.

The vector expression in (18) proves that the adaptive
algorithm is an NLMS algorithm because ei has unit norm.
The algorithm is also an affine projection algorithm of
order M [22]. It is shown in Section 4 that, for m¼ 1,
½dðn�kÞ�ciðnþ1Þ� ¼ 0 with i¼ ðn�kÞmod M and 0rkoM.
Thus, the algorithm provides the minimum coefficient
variation that set to zero the last M a posteriori estimation
errors.

Similarly, in the exponentially weighted RLS algorithm
we want to find the coefficients ci(n) that minimize the
cost function

JðnÞ ¼
Xn

j ¼ 0

ln�j
½dðjÞ�yðjÞ�2, ð19Þ

where y(n) is as given in (11) and l is a forgetting factor,
05lr1. By following arguments similar to those in [16],
it can be proved that

ciðnþ1Þ ¼
ciðnÞþr

n

M

j k� �
½dðnÞ�ciðnÞ� for i¼ n mod M,

ciðnÞ otherwise,

8<
:

ð20Þ

or in vector form (with i¼ n mod M)

cðnþ1Þ ¼ cðnÞþr n

M

j k� �
½dðnÞ�cT ðnÞei�ei: ð21Þ

For lo1, rðmÞ ¼ ð1�lM
Þ=ð1�lMðmþ1Þ

Þ, and for l¼ 1,
rðmÞ ¼ 1=ðmþ1Þ. Since rðnÞ is computed only once every
M samples, Eq. (20) requires only a multiplication, an
addition and a subtraction per input sample.

Fig. 1. Block diagram of the nonlinear filter structure of Eq. (11).
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By comparing the adaptation rules of (17) and (20), we
see that the RLS algorithms with a periodic sequence
excitation can be interpreted as variable step-size NLMS
algorithms. In particular, for lo1

lim
n-þ1

rðnÞ ¼ 1�lM : ð22Þ

Thus, as was the case for linear FIR systems in [16], for
n-þ1, the RLS algorithm in (20) with lo1 exhibits
similar tracking and steady-state performances as the
NLMS algorithm of (17) with m¼ 1�lM .

A substantial advantage of the algorithms in (17) and
(20) is their reduced computational complexity. Further-
more, from (18) and (21) we have that the input data
autocorrelation matrix for both algorithms is given by

R¼
1

M

XM
i ¼ 0

eie
T
i ¼

1

M
I, ð23Þ

independently from the choice of the periodic input
sequence. Since R is a diagonal matrix, the algorithms
should exhibit good transient, steady-state and tracking
properties. These issues are explored next.

4. Transient, steady-state, and tracking analyses

In this section, we first study the transient and steady-
state behavior of the algorithms in the identification of
time-invariant LIP systems. Later we study the algorithms’
tracking properties in the case of time-varying LIP sys-
tems. Finally, we discuss the design of periodic sequences
suitable for identification and tracking of LIP nonlinear
systems. We consider algorithms of the form (20), noting
that replacing rðmÞ by m in (20) leads to the NLMS
algorithm, and when rðmÞ varies as defined after (21),
we get the RLS algorithm.

4.1. Transient and steady-state analysis

Assume that we wish to identify a time-invariant
nonlinear system with memory length N and input–out-
put relationship

dðnÞ ¼ ~h
T
xF ðnÞþnðnÞ

¼
XM�1

k ¼ 0

~ckwT
k xF ðnÞþnðnÞ

¼ ~ciþnðnÞ for i¼ n mod M, ð24Þ

where ~h and ~c ¼ ½~c0, ~c1, . . . , ~cM�1�
T are the fixed coefficient

vectors of the nonlinear system to be identified related by
(10), and nðnÞ is a zero-mean stationary additive measure-
ment noise uncorrelated with x(n) and with power s2

n .
To simplify the analysis and avoid any transient effect on
d(n), we assume that the unknown system has operated
on the periodic input signal for at least N samples before
the algorithm was activated.

Let us define the system errors ciðnÞ ¼ ciðnÞ� ~ci .
By subtracting ~ci from both sides of (20) and taking into

account (24), we obtain

ciðnþ1Þ ¼
ciðnÞþr

n

M

j k� �
ðnðnÞ�ciðnÞÞ for i¼ n mod M,

ciðnÞ otherwise:

8<
:

ð25Þ

Recall that rðbn=McÞ ¼ 1 for 0rnoM in the RLS
algorithm. It immediately follows that, for the noiseless
case (vðnÞ ¼ 0), ciðnÞ ¼ 0 for nZM for the RLS algorithm
and the NLMS algorithm with m¼ 1. Thus, both systems
converge within M samples in the noiseless case.

We now study the mean-square error (MSE)

MSEðnÞ ¼ E½JdðnÞ�yðnÞJ2
�, ð26Þ

the mean-square deviation (MSD) of cðnÞ

MSDcðnÞ ¼ E½JcðnÞ� ~cJ2
� ¼ E½JcðnÞJ2

�, ð27Þ

with cðnÞ ¼ ½c0ðnÞ, . . . ,cM�1ðnÞ�
T , and the MSD of hðnÞ ¼PM�1

i ¼ 0 ciðnÞwi

MSDhðnÞ ¼ E½JhðnÞ� ~hJ2
� ¼ E

XM�1

i ¼ 0

ciðnÞwi

�����
�����

2
2
4

3
5: ð28Þ

The derivations and the expressions of MSEðnÞ and
MSDcðnÞ are identical to the linear case studied in [16],
and we provide here only the final expressions. The result
for MSDhðnÞ is different from that of the linear case, and
thus we discuss its derivation in more detail.

For n¼mMþ j, with 0r joM, we can prove that for all j

MSE½ðmþ1ÞMþ j� ¼ ½1�rðmÞ�2MSEðmMþ jÞþ2rðmÞs2
n :

ð29Þ

Similarly, when rðmÞ ¼ m, the following holds:

MSDcððmþ1ÞMþ jÞ ¼ ½1�rðmÞ�2MSDcðmMþ jÞþr2ðmÞMs2
n :

ð30Þ

This equation approximately holds also for a variable rðmÞ
provided rðmþ1ÞCrðmÞ, which is true in RLS algorithms
for n-þ1.

For MSDhðnÞ, we work under the hypothesis that nðnÞ
and ciðnÞ are independent and that the ciðnÞ’s are uncor-
related. With the latter hypothesis, we have from (28)

MSDhðnÞ ¼
XM�1

i ¼ 0

E½c2
i ðnÞ�JwiJ

2: ð31Þ

Since only ciðnÞ with i¼ n mod M varies at each time n

MSDhðnþ1Þ ¼MSDhðnÞþE½c2
i ðnþ1Þ�c2

i ðnÞ�JwiJ
2: ð32Þ

From (25) we have

E½c2
i ðnþ1Þ� ¼ E½c2

i ðnÞ� 1�r n

M

j k� �� �2

þr2 n

M

j k� �
snu2,

ð33Þ

with i¼ n mod M. Substituting (33) into (32) gives

MSDhðnþ1Þ ¼MSDhðnÞ� 2r n

M

j k� �h

�r2 n

M

j k� �i
E½c2

i ðnÞ�JwiJ
2
þr2 n

M

j k� �
s2
nJwiJ

2: ð34Þ
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Since, under our assumptions

MSDhðnÞ ¼
XM�1

i ¼ 0

E½c2
i ðnÞ�JwiJ

2, ð35Þ

we can iterate (34) from n¼mM to n¼ ðmþ1ÞM�1 to get

MSDh½ðmþ1ÞM� ¼MSDhðmMÞ�½2rðmÞ�r2ðmÞ�MSDhðmMÞ

þr2ðmÞs2
n

XM�1

i ¼ 0

JwiJ
2

¼ ½1�rðmÞ�2MSDhðmMÞ

þr2ðmÞs2
n

XM�1

i ¼ 0

JwiJ
2: ð36Þ

In the case of the NLMS algorithm with constant step-size
m, we can prove in a similar way that for all j

MSDh½ðmþ1ÞMþ j� ¼ ½1�rðmÞ�2MSDhðmMþ jÞ

þr2ðmÞs2
n

XM�1

i ¼ 0

JwiJ
2, ð37Þ

where rðmÞ is assumed equal to m. This result holds
approximately for the RLS algorithm also for n-þ1.

The expression of (37) differs from the linear case since
the Euclidean norms of the vectors wi are in general
different from each other. The transient and steady-state
properties of the algorithms depend only on the step-size
rðmÞ and the noise power s2

n . In particular, MSEðnÞ and
MSDcðnÞ do not depend on the input periodic sequence.
Only MSDhðnÞ depends on the choice of the periodic
sequence through

PM�1
i ¼ 0 JwiJ

2. The algorithms are numeri-
cally stable and exponentially converge to the unknown
system coefficients for 0oEorðmÞo 2�Eo2 8m and for
some small positive constant E.

The steady-state values of MSEðnÞ, MSDcðnÞ, and
MSDhðnÞ for n-þ1 are tabulated in Table 1 for the three
cases of rðmÞ with m¼ bn=Mc.

4.2. Tracking analysis

Assume that we want to track an LIP nonlinear system of
memory length N and M parameters, whose vector
~cðnÞ ¼ ½~c0ðnÞ, . . . , ~cM�1ðnÞ�

T varies according to the random

walk model [23],2

~ciðnþ1Þ ¼ ~ciðnÞþqiðnÞ, ð38Þ

for 0r ioM, where qi(n) are zero mean, independent,
identically distributed sequences with E½q2

i ðnÞ� ¼ s
2
q , and

independent from the noise nðnÞ.
By subtracting (38) from both sides of (20), we have

ciðnþ1Þ ¼
ciðnÞ�qiðnÞþr

n

M

j k� �
½nðnÞ�ciðnÞ� when i¼ n mod M,

ciðnÞ�qiðnÞ otherwise:

8<
:

ð39Þ

By iteratively applying this equation from n¼mM to
n¼ ðmþ1ÞM�1, it can be proved similarly as in [16] that

MSDc½ðmþ1ÞM� ¼ ½1�rðmÞ�2MSDcðmMÞ

þ
MðMþ1Þ

2
s2

qþ
MðM�1Þ

2
½1�rðmÞ�2s2

q

þr2ðmÞMs2
n : ð40Þ

The MSEðnÞ and MSDhðnÞ can be computed similarly.
Table 2 provides the steady-state values of MSEðnÞ,

MSDcðnÞ, and MSDhðnÞ for the NLMS algorithm and the

Table 1
MSEðþ1Þ, MSDcðþ1Þ, MSDhðþ1Þ of the efficient NLMS and RLS algorithms.

rðmÞ ¼ m
rðmÞ ¼ 1�lM

1�lMðmþ1Þ
rðmÞ ¼ 1

mþ1

MSEðþ1Þ 2

2�ms
2
n

2

1þlM
s2
n

s2
n

MSDcðþ1Þ m
2�mMs2

n 1�lM

1þlM
Ms2

n

0

MSDhðþ1Þ m
2�ms

2
n
PM�1

i ¼ 0

JwiJ
2 1�lM

1þlM
s2
n
PM�1

i ¼ 0

JwiJ
2

0

Table 2
MSEðþ1Þ, MSDcðþ1Þ, and MSDhðþ1Þ of the NLMS and RLS algorithms

for the random walk model.

rðmÞ ¼ m
MSEðþ1Þ 1

2m�m2
Ms2

qþ
2

2�ms
2
n

MSDcðþ1Þ 1

2m�m2

MðMþ1Þ

2
s2

qþ
ð1�mÞ2

2m�m2

MðM�1Þ

2
s2

qþ
m

2�mMs2
n

MSDhðþ1Þ
MSDcðþ1Þ

1

M

PM�1

i ¼ 0

JwiJ
2

rðmÞ ¼ 1�lM

1�lMðmþ1Þ

MSEðþ1Þ 1

1�l2M
Ms2

qþ
2

1þlM
s2
n

MSDcðþ1Þ 1

1�l2M

MðMþ1Þ

2
s2

qþ
l2M

1�l2M

MðM�1Þ

2
s2

qþ
1�lM

1þlM
Ms2

n

MSDhðþ1Þ
MSDcðþ1Þ

1

M

PM�1

i ¼ 0

JwiJ
2

2 While many authors consider ~h changing according to the random

walk model, we prefer to apply the model to ~c for the sake of simplicity.

Note that in our model ~h also changes according to a random walk

model, but with correlated increments.
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RLS algorithm with la1. (The algorithm for l¼ 1 is not
suitable for tracking.)

4.3. Design of periodic sequences for nonlinear system

identification

It is clear from the above analyses that the learning
speed, the tracking speed and the asymptotic values of
MSEðnÞ and of MSDcðnÞ are independent of the properties
of the input sequence. Contrary to this, the asymptotic
value of MSDhðnÞ is proportional to

PM�1
i ¼ 0 JwiJ

2
¼ JWJ2

F ,
i.e. the Frobenius norm of matrix W. When perfect
periodic sequences are used for linear system identifica-
tion, the Frobenius norm of the matrix W is

JWJF ¼M=JXF JF, ð41Þ

and thus it depends only on the power of the periodic
sequence. In the nonlinear case, even for perfect periodic
sequences with fixed power, JWJF can vary considerably.
Consequently it is important to design periodic sequences
for which JWJF is as low as possible.

Table 3 provides details of an ad hoc iterative dichoto-
mic search algorithm that has been used to find periodic
sequences with low JWJF. Starting from an initial random
sequence with specified power, the algorithm chooses
a random direction and moves in that direction until
a segment (SeqL, SeqR) where there is a minimum of JWJF

is found. It then improves the minimum estimation by
iteratively halving the segment (SeqL, SeqR). The proce-
dure of choosing a random direction and optimizing the
segment is iteratively repeated to optimize the sequence.
While this algorithm provides only a suboptimal solution
to the problem of finding the periodic sequence with the
smallest JWJF and could end up in local minima, the
values of JWJF obtained are much lower than those that

can be found with a random choice of the periodic
sequence or with perfect periodic sequences.

5. Model mismatch analysis

Here we analyze the behavior of the algorithms when
there is a model mismatch between the adaptive filter
and the unknown nonlinear system. This analysis is
performed under the simplifying assumption that there
is no measurement noise, i.e., nðnÞ ¼ 0. Under this condi-
tion, the NLMS algorithm with m¼ 1 and the RLS algo-
rithm converge in just M samples. Since

cðMÞ ¼ ½dð0Þ,dð1Þ, . . . ,dðM�1Þ�T ¼ d, ð42Þ

we have from (10) that the adaptive filter converges to

hðMÞ ¼Wd: ð43Þ

We proceed by considering four different cases.

Case 1. The system is perfectly matched: In this case, it is
straightforward to show that the algorithm is able to
identify the unknown system.

Case 2. The system is overdetermined: In this case, the
adaptive filter has more coefficients than needed. If ~h0, y,
~hL�1 are the coefficients of the unknown model, with
LoM, we have

dðiÞ ¼ ½ ~h0, . . . , ~hL�1,0, . . . ,0�xi, ð44Þ

d¼XT
F ½
~h0, . . . , ~hL�1,0, . . . ,0�T , ð45Þ

hðMÞ ¼WXT
F ½
~h0, . . . , ~hL,0, . . . ,0�T

¼ ½ ~h0, . . . , ~hL,0, . . . ,0�T : ð46Þ

Thus, in the adaptive filter model some coefficients are
redundant and converge to zero, but the algorithm is still
able to identify the unknown system.

Case 3. The system is underdetermined by memory, i.e.,
some terms are missing in xF ðnÞ and the missing terms
are delayed version of those present in xF ðnÞ. For simpli-
city, let us assume without loss of generality that

dðnÞ ¼ ~h
T

1xF ðnÞþ ~h
T

2xF ðn�1Þ, ð47Þ

where some of the coefficients of ~h2 could be zero. Then

dðiÞ ¼ ~h
T

1xiðnÞþ
~h

T

2xi�1ðnÞ, ð48Þ

d¼XT
F
~h1þXT

FU ~h2, ð49Þ

where U is a permutation matrix that rotate upward by
one position the rows of XT

F ðnÞ. In these conditions, the
adaptive filter converges to

hðMÞ ¼WXT
F ðnÞ

~h1þWXT
F ðnÞU

~h2

¼ ~h1þU ~h2: ð50Þ

Thus, the unknown system estimation is affected by an
aliasing error that depends on ~h2.

Case 4. The system is underdetermined by order, i.e., in the
input data vector xF ðnÞ some terms are missing and the
missing terms are not delayed versions of those present in

Table 3
Algorithm for JWJF sequence optimization.

Normalize(): function that normalizes the sequence power

Start from a random sequence with unit power: SeqC

Compute JWJF(SeqC)

For jj¼1: Number of Iterations

Step¼Step Initial

Choose a random direction Dir

Compute Seq¼Normalize(SeqC 7 Step * Dir)

until three consecutive sequences: SeqL, SeqC, SeqR with

JWJF(SeqL) rJWJF(SeqC) rJWJF(SeqR) are formed

For ii¼1: Number of Refinements

Step¼Step/2

SeqCl¼Normalize(SeqC�Step*Dir)

SeqCr¼Normalize(SeqCþStep*Dir)

SeqCo¼SeqC

SeqC¼min
JWJF

{SeqCL, SeqCo, SeqCR}

If (SeqC¼¼SeqCo)

SeqL¼SeqCl

SeqR¼SeqCR

Elseif (SeqC¼¼SeqCl)

SeqR¼SeqCo

Else (SeqC¼¼SeqCR)

SeqL¼SeqCo

End If

End For ii

End For jj

Output SeqC
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xF ðnÞ. Let us assume that

dðnÞ ¼ ~h
T

1xF ðnÞþ ~h
T

2xEðnÞ, ð51Þ

with xEðnÞ being a nonlinear vector function of the input
samples xðnÞ, . . . ,xðn�Nþ1Þ. Since XF is invertible, by
introducing the matrix V such that

XT
FV¼ ½xEð0Þ, . . . ,xEðM�1Þ�T , ð52Þ

we have

d¼XT
F
~h1þXT

FV ~h2: ð53Þ

Thus, the adaptive filters converge to

hðMÞ ¼WXT
F ðnÞ

~h1þWXT
F ðnÞV

~h2 ð54Þ

hðMÞ ¼ ~h1þV ~h2: ð55Þ

In this case also we have an aliasing error that depends
on ~h2. We refer to it as an aliasing error even though the
matrix V spreads the coefficients of ~h2 over all the
coefficients of the adaptive filter.

The results presented in this section are interesting not
only from a theoretical point of view, but also useful
because they determine which adaptive filter coefficients
are affected by an underestimated model.

6. Simulation results

6.1. Identification of nonlinear systems

In this subsection we provide some simulation results
for the identification of a second order FLANN filter of
memory length 50 samples, a second order truncated
Volterra filter of memory length 20 samples, and a second
order extended Volterra filter of memory length 5 sam-
ples without the constant term.3 All filters have approxi-
mately the same number of coefficients, i.e. 250 for the
FLANN filter, 230 for the truncated Volterra filter, and 242
for the extended Volterra filter. The input signal was
designed using the algorithm of Table 3, with period
equal to the number of coefficients of the unknown
system. Table 4 provides the condition number in the
2-norm and in the Frobenius norm of XF , and the squared
Frobenius norm of W of the three periodic sequences. The
coefficients of the system to be identified were randomly
generated using the additional constraint that the output
power of the nonlinear part of the system was 10 dB
below the output power of the linear part. The adaptive
filter was perfectly matched to the unknown nonlinear
system.

To compare the capabilities of the algorithms of this
paper with the traditional NLMS algorithm, we first
computed the ensemble averages over 200 simulations,
shown in Figs. 2–4, of the MSEðnÞ, and the MSDhðnÞ for
different output signal SNRs of the FLANN filter, the
truncated Volterra filter, and the extended Volterra filter,
respectively, for the standard NLMS algorithm with a unit

power white noise input and with step-size m¼ 0:2.
In this algorithm the filter was adapted as follows:

hðnþ1Þ ¼ hðnÞþm dðnÞ�yðnÞ

xT
F ðnÞxF ðnÞþd

xF ðnÞ, ð56Þ

with d being a small positive constant used to avoid
instabilities. Then, using the equations of MSDhð1Þ of
Table 1, we estimated parameters of the algorithms in
(17) and (20), that provide the same MSDhð1Þ as the
NLMS algorithm in (56) for m¼ 0:2, obtaining m¼ 1�lM

¼

0:1116 for the FLANN filter, 0.0675 for the truncated
Volterra filter, and 0.0445 for the extended Volterra filter,
respectively. These parameters were used in the simula-
tions employing periodic signals.

Figs. 5–7 display the ensemble averages over 200
simulations of MSEðnÞ (plots (a) and (d)), MSDcðnÞ (plots
(b) and (e)), and MSDhðnÞ (plots (c) and (f)) for different
output signal SNRs of the FLANN filter, the truncated
Volterra filter, the extended Volterra filter, respectively.
Plots (a)–(c) show the results when the filter was adapted
with the NLMS algorithm in (17) and plots (c)–(e) display
the corresponding results for the filter adapted with the
RLS algorithm in (20). In the figures, the dashed lines
represent the theoretical values of MSEðþ1Þ, MSDcðþ1Þ,
or MSDhðþ1Þ as appropriate, and as given in Table 1. In
all simulations, the theoretical values of MSEðþ1Þ,
MSDcðþ1Þ, and MSDhðþ1Þ of Table 1 match the results
of the simulations accurately. As predicted in Section 4,
the RLS algorithm in (20) with lo1 provides the same
asymptotic values as the NLMS algorithm of (17) and with
m¼ 1�lM . Given the faster convergence speed, the RLS
algorithm should be preferred for system identification.

Comparing Figs. 2–7, we can see that differently from
the linear case, for the same value of MSDhð1Þ the NLMS
algorithm in (17) can have a learning speed that is lower
than the NLMS algorithm in (56) with a white noise input.
This is the case for the FLANN filter and the truncated
Volterra filter. The learning speed could be improved by
finding periodic sequences with lower JWJ2

F . On the other
hand, for the extended Volterra filter, the NLMS algorithm
in (56) has a lower convergence speed and a larger excess
MSE than the NLMS algorithm in (17), so that it is almost
impossible to distinguish the different learning curves of
Fig. 4(a). To understand the good performance for the
filter of this paper in this example, it is worth noting that
the parameters in Table 4 depend on the filter complexity,
and thus their values are specific of each system structure.
In spite of the fact that the value of the squared Frobenius
norm of W is greater than for the other two filters, the
designed periodic sequence is already sufficiently good in
this case.

Table 4
Condition number in the 2-norm and in the Frobenius norm of XF , and

squared Frobenius norm of W for the input sequences.

Filter Cond2ðXF Þ CondF ðXF Þ JWJ2
F

FLANN 7.03 3:44� 102 3.15

Truncated Volterra 28.9 4:72� 102 3.97

Extended Volterra 1:76� 102 2:06� 103 56.7

3 This extended Volterra filter is also a particular case of truncated

Volterra filter of the 10th order.
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Fig. 3. Second order truncated Volterra filter: evolution of (a) MSEðnÞ, (b) MSDhðnÞ, of the NLMS algorithm in (56) for m¼ 0:2, for different output SNRs.
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Fig. 4. Second order extended Volterra filter: evolution of (a) MSEðnÞ, (b) MSDhðnÞ, of the NLMS algorithm in (56) for m¼ 0:2, for different output SNRs.

Fig. 5. Second order FLANN filter: evolution of (a) MSEðnÞ, (b) MSDcðnÞ, (c) MSDhðnÞ, of the NLMS algorithm in (17) for m¼ 0:1116, (d) MSEðnÞ, (e) MSDcðnÞ,

(f) MSDhðnÞ, of the RLS algorithm in (20) for lM
¼1�0:1116, for different output SNRs.
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Fig. 2. Second order FLANN filter: evolution of (a) MSEðnÞ, (b) MSDhðnÞ, of the NLMS algorithm in (56) for m¼ 0:2, for different output SNRs.
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Fig. 6. Second order truncated Volterra filter: evolution of (a) MSEðnÞ, (b) MSDcðnÞ, (c) MSDhðnÞ, of the NLMS algorithm in (17) for m¼ 0:0675, (d) MSEðnÞ,

(e) MSDcðnÞ, (f) MSDhðnÞ, of the RLS algorithm in (20) for lM
¼ 1�0:0675, for different output SNRs.
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Fig. 7. Second order extended Volterra filter: evolution of (a) MSEðnÞ, (b) MSDcðnÞ, (c) MSDhðnÞ, of the NLMS algorithm in (17) for m¼ 0:0445, (d) MSEðnÞ,

(e) MSDcðnÞ, (f) MSDhðnÞ, of the RLS algorithm in (20) for lM
¼ 1�0:0445, for different output SNRs.
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Fig. 8. Learning curves of MSDhðnÞ of the NLMS algorithm in (56) for (a) the FLANN filter with m¼ 0:2, (b) the second order Volterra filter with m¼ 0:25

(c) the extended Volterra filter with m¼ 0:6, with a periodic input sequence for different output SNRs.
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Finally, Fig. 8 shows the learning curves of the MSDhðnÞ

of the NLMS algorithm in (56) for the three nonlinear
filters and for different output SNRs with the same
periodic input sequence of Figs. 5–7. In Fig. 8, the step-
sizes have been chosen by trial and error to give the same
MSDhð1Þ of Figs. 2–7. From Fig. 8 we can notice that for
the same input periodic sequence the proposed

algorithms provide a much faster convergence speed than
the NLMS algorithm in (56).

6.2. Tracking nonlinear systems

In the second set of simulations we deal with tracking
a nonlinear time-varying system that varies according to
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Fig. 10. Second order truncated Volterra filter: evolution of (a) MSEðnÞ, (b) MSDhðnÞ, of the NLMS algorithm in (56), for a 40 dB output SNR, for different
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Fig. 11. Extended Volterra filter: learning curve of MSDhðnÞ of (a) the NLMS algorithm in (56) and (b) the NLMS algorithm in (17) for a 40 dB output SNR,
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the random walk of (38), starting from the same model
coefficients of the first set of simulations. We consider a
40 dB output SNR and we repeat the simulations for the
second order truncated Volterra filter using the same
parameters as in Section 6.1.

Fig. 9 displays the ensemble averages over 200 simula-
tions of MSEðnÞ (plots (a) and (d)), MSDcðnÞ (plots (b) and
(e)), and MSDhðnÞ (plots (c) and (f)) for different choices of
s2

q=J ~cð0ÞJ
2. Plots (a)–(c) show the results when the filter is

adapted with the NLMS algorithm in (17). Plots (d)–(f)
display the corresponding results for the RLS algorithm in
(20) with 1�lN equal to the step-size of the NLMS algo-
rithm. In the figures, the dashed lines represent the theore-
tical values of MSEðþ1Þ, MSDcðþ1Þ, or MSDhðþ1Þ as
given in Table 2. In all simulations, the theoretical values of
MSEðþ1Þ, MSDcðþ1Þ, and MSDhðþ1Þ of Table 2 match
the results of the simulations accurately. As predicted, the
NLMS algorithm in (17) and the RLS algorithm in (20) with
1�lN

¼ m have the same asymptotic tracking properties.
Similar results were obtained with the FLANN filter and the
extended Volterra filter of the first set of simulations.

For comparison purposes Fig. 10 displays the ensemble
averages over 200 simulations of MSEðnÞ (plot (a)), and
MSDhðnÞ (plot (b)) for different ratios s2

q=J ~cð0ÞJ
2 for the

standard NLMS algorithm of (56) with step-size m¼ 0:2
and a unit power white noise input. Comparing Figs. 9 and
10 we see that the tracking behavior of the NLMS algo-
rithm in (17) is slightly poorer than the NLMS algorithm
in (56) with a white noise input. The same behavior was
observed in our simulations with the FLANN filter. Even in
this case, a much better tracking behavior was observed
for the extended Volterra filter, as shown in Fig. 11, which
compares the MSDhðnÞ of the standard NLMS algorithm in
(56) and of the NLMS algorithm in (17) for different ratios
s2

q=J ~cð0ÞJ
2 and a unit power white noise input.

7. Concluding remarks

This paper discussed computationally efficient, exact
NLMS and RLS algorithms for identifying and tracking a
class of nonlinear systems that are linear in their para-
meters. The algorithms require a computational effort of
just a multiplication, an addition and a subtraction per
input sample. We analyzed the transient, steady-state,
and tracking behavior of the algorithms and derived exact
expressions for the steady-state values of the MSEðnÞ,
MSDcðnÞ, and MSDhðnÞ. We also studied the behavior of
the algorithms in the case of a model mismatch.
The simulation results presented in the paper demonstrate
the validity of the algorithms as well as the accuracy of the
theoretical results derived in the paper. The low computa-
tional complexity, the good performance, and the generality
of the algorithms make the approach of this paper a valid
alternative to current techniques for identification of a large
class of nonlinear systems.
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