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Abstract. In this paper, we propose a bioeconomic model which de-
scribes a fishery in which each of two noninteracting species is harvested
by a given group of fishers during a defined time period. Then the Fishing
Regulatory Authority allows each fisher to reconsider the harvesting decision
at fixed (discrete) periods of time. The model derives from an Italian fish-
eries management experience in the Northern Adriatic Sea, where this kind
of “self-adjusting” fishing policy has been proposed to regulate harvesting
of two shellfish species. The proposed dynamic model assumes the form of a
hybrid system, as the natural growth functions of the two species (in contin-
uous time) are coupled with a discrete time adaptive system that regulates
how agents switch from one harvesting strategy to the other period by pe-
riod according to an evolutionary mechanism based on profit comparison.
In order to obtain some insights into the basic mechanisms of the system,
some relevant benchmark cases are analyzed before tackling (mainly numer-
ically) the complete hybrid model. Our results suggest that, for proper sets
of parameters, this kind of myopic and adaptive self-regulation may ensure
a virtuous trade-off between profit maximization and resource conservation,
driven by cost externalities and market pressure.

Key Words: Fisheries management, mathematical bioeconomics, het-
erogeneous agents, evolutionary game theory, hybrid dynamical systems.

1. Introduction. In order to avoid the overexploitation of some fisheries, man-
agement institutions usually enforce forms of regulation, either by imposing har-
vesting restrictions, such as constant efforts, individual fishing quotas, taxation,
etc., or by limiting the kinds of fish to be caught or the regions where exploitation
is allowed (see e.g., Clark [1990], Fischer and Mirman [1992], Fischer and Mirman
[1996], Anderson [2002], Bischi and Lamantia [2009], Bischi et al. [2009b]). Usually,
optimal policies are established by solving suitable long-run optimization problems,
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for instance estimating the maximum sustainable yield (MSY) for fisheries and as-
sessing the relative social impact. Any miscomputation of the total catch can easily
lead the resource to the verge of collapse. Moreover, fishers have to accept the
adopted fishing restriction and there is the problem of controlling compliance to
the prescribed catch. To make things more complicated, the strategic interaction be-
tween fishers usually gives an incentive to free-ride and overexploit to single agents,
according to the well-known problem of the “tragedy of the commons” (see Hardin
[1968]), as documented by empirical fisheries data in McWhinnie [2009].

However, even economic externalities may have an indirect impact on harvesting
pressure and can be employed in regulation. For instance, increasing harvesting (and
thus quantity of the resource on the market) usually leads to price reductions and so
to lower profits. Similarly cost externalities come into play, as stock depletion leads
to increments of landing costs and so again to lower profits. Some experiments
on endogenous regulatory policies of common pool resources have been recently
performed on the basis of these self-regulating economic externalities. In particu-
lar, fishing institutions only establish general rules, and then fishers are allowed to
decide fishing strategies on their own. Along these lines, it is more reasonable to
assume that exploiters decide their catches in order to maximize their short-term
profit instead of solving optimal control problems. In fact, the long-run sustainabil-
ity of exploitation is more an objective for the farsighted regulator, whereas it is
more likely that fishers behave myopically.

For example, a recent law proposed in Italy to regulate the harvesting of two
noninteracting shellfishes (Venerupis aurea and Callista chione) in the Adriatic
Sea, requires that each agent can harvest only one species in any three-year period,
possibly revising his/her choice in predefined successive periods, but no limits on
individual quotas are set. In other words, instead of imposing a difficult-to-control
policy (e.g., imposed effort, total allowable catch, etc.), the fishing institution only
establishes that each vessel can harvest just one species in each period and has to
stick to this choice for a given time interval. In the revision of their strategy, agents
compare their average profits with the ones obtained by the agents who made a
different choice over the last fishing period. These average profits are taken as a
proxy of the fitness of a strategy, according to the paradigms of evolutionary game
theory (see Weibull [1995], Hofbauer and Sigmund [1998]).

The aim of the paper is to use analytical and numerical methods to analyze
the economic consequences of this kind of self-regulating fishery, as well as to
shed some light on the sustainability of this form of exploitation in comparison to
other policies. Indeed, our analysis gives evidence of possible advantages of profit-
driven self-regulated harvesting strategy choices over other practices, both from the
point of view of biomass levels (i.e., biological sustainability) and wealth (economic
profitability). Moreover, the simulation results suggest that this kind of myopic
evolutionary regulation in certain cases can ensure a virtuous trade-off between
profit maximization and resource conservation.
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We develop a standard model for each of two species, then allow fishers to switch
between the two fisheries at prespecified time periods. We consider four manage-
ment strategies: (1) unrestricted harvesting; (2) splitting the fishers between the
two fisheries equally; (3) allowing the fishers to choose continuously; and (4) only
allowing switching at prespecified periods. Case 4 gives rise to a hybrid dynamic
model, which is the nearest to a real-world application but quite difficult to study
analytically, so the other cases mainly serve as benchmarks. Even if far from the
real system we want to describe, particularly cases 2 and 3 can give useful sugges-
tions about the directions of investigation of the more realistic hybrid system, as
well as some intuitive interpretations of the properties observed through numerical
simulations.

The structure of the paper is as follows. The bioeconomic model is introduced in
Section 2, where agents’ harvesting functions are defined under various assumptions
about fishing restrictions. Section 3 defines the switching mechanism exploiters
employ to decide the species to harvest from period to period. The main properties
of the model with switching in continuous time are also studied in this section. Some
numerical simulations are proposed in Section 4 in order to understand peculiar
features of the proposed hybrid system. Section 5 concludes that allowing switching
between separate fisheries may have a long-term positive effect on stocks and profits
under certain conditions.

2. The bioeconomic models. Let us consider a simple marine ecosystem
with two noninteracting species, indexed by 1 and 2, each with its own habitat, and
biomass (or density) measures X1 and X2 , respectively, both subject to commercial
harvesting. We assume that their time evolution is described by a dynamical system
of the form:

Ẋ1 = X1G1(X1) − H1 (X1 ,X2)

Ẋ2 = X2G2(X2) − H2 (X1 ,X2) ,
(1)

where Ẋi denotes the derivatives of biomass with respect to time, Gi specifies the
natural growth function, and Hi represents the instantaneous harvesting of species
i = 1, 2.

According to Melià and Gatto [2005], we assume that the two populations of
(shell)fish follow a logistic natural growth of the form

Gi = ρi

(
1 − Xi

ki

)
; i = 1, 2,(2)

where ρi and ki are, respectively, the intrinsic rate of growth and the carrying
capacity of species i.
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These two species are harvested by N agents. We assume that Hi , the current total
harvesting of species i, is wholly supplied to the market, and prices are determined
according to the following horizontal differentiated linear inverse demand system
(see Singh and Vives [1984], Häckner [2000]):

p1 = f1(H1 ,H2) = a1 − b1(H1 + σH2)

p2 = f2(H1 ,H2) = a2 − b2(σH1 + H2),
(3)

where ai is the reservation price for species i, bi represents the slope of the demand
for fish i and σ ∈ [0, 1] is the symmetric degree of substitutability between the
two fish varieties. In particular, if σ = 0 then the two varieties are independent in
demand. On the other hand, for σ = 1 they are perfect substitutes.1 In addition,
we also assume quadratic harvesting costs for both species, i.e., for harvesting hi

units of species i an agent incurs a cost given by

Ci (Xi, hi) = γi
h2

i

Xi
,(4)

where γi is the cost parameter for catching species i. This cost function is obtained
and employed in Clark [1990] and Szidarovszki and Okuguchi [1998] and used by
several authors (see e.g., Conrad and Smith [2012]). As shown in the Appendix,
equation (4) can be derived from a Cobb–Douglas type “production function” with
fishing effort (labor) and fish biomass (capital) as production inputs. This pro-
duction function exhibits decreasing marginal returns to both input factors: for
the biomass they are a consequence of gear saturation, which occurs whenever
the fishing nets have a maximum capacity, whereas decreasing catch-per-unit-effort
(CPUE) captures the problem of congestion among fishing vessels. In particular,
the Cobb–Douglas production function is based on the assumption that gear sat-
uration and congestion reduce the mortality rate of one unit of biomass and the
CPUE in a smooth manner. Other mathematical forms of the production function
can capture similar effects, as suggested in Clark [1990].

2.1. Unrestricted harvesting. Although rarely observed in real-world exam-
ples of fisheries, the case of unrestricted harvesting developed in this section serves
as a benchmark case for comparison purposes. By unrestricted harvesting we mean
that a generic fisher has no constraint on quantity and kind of fish to harvest. The
current profit of a generic agent that harvests the quantities hF

1 and hF
2 of species

1 and 2 reads:

πF = p1h
F
1 + p2h

F
2 − γ1

(
hF

1
)2

X1
− γ2

(
hF

2
)2

X2
.
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If fisher q, q = 1, . . . , N is allowed to catch without constraints and tries to max-
imize current profits, his/her problem is given by maxhF

1 ,q ;hF
2 ,q

πF
q , where

πF
q =

⎧⎨⎩a1 − b1

⎡⎣hF
1,q + σhF

2,q +
N∑

u=1;u �=q

(
hF

1,u + σhF
2,u

)⎤⎦⎫⎬⎭ hF
1,q

+

⎧⎨⎩a2 − b2

⎡⎣hF
2,q + σhF

1,q +
N∑

u=1;u �=q

(
hF

2,u + σhF
1,u

)⎤⎦⎫⎬⎭ h2,q

− γ1

(
hF

1,q

)2

X1
− γ2

(
hF

2,q

)2

X2
,

the hF
i,q , i = 1, 2; q = 1, . . . , N , denotes the harvesting of species i by fisher q in case

of unrestricted harvesting.

Instantaneous optimal harvesting can be obtained by solving the system of first-
order conditions2 ∂πF

q

∂h1 ,q
= 0 and ∂πF

q

∂h2 ,q
= 0. Note that, since all agents face the same

optimization problem, we can solve the system of first-order conditions by letting
hF

i,q = hF
i,u , i = 1, 2; q, u = 1, . . . , N . Hence, in the case of unrestricted harvesting,

the equilibrium harvesting quantities hF,∗
i by a representative player for catching

species i reads

hF,∗
i (Xi,Xj ) =

aj (bj + Nbi)XiXjσ − aiXi(bj (1 + N)Xj + 2γj )
(bi + Nbj )(bj + Nbi)XiXjσ2 − (bi(1 + N)Xi + 2γi)(bj (1 + N)Xj + 2γj )

;

i, j = 1, 2; i �= j

In the particular case b1 = b2 = b = 0, i.e., perfectly elastic demands for both
species, the individual optimal harvesting of species i and the resulting total in-
stantaneous profit can be written in the following simplified form:

hF,∗
i =

aiXi

2γi
, πF,∗

i =
2∑

i=1

ai

2
hF,∗

i ; i = 1, 2.(5)

In fisheries models, prices are often assumed to be constant as fish is considered
a staple food for the majority of consumers, there are many substitutes for each
species and many fish are internationally traded (see Clark [1990] and Conrad and
Smith [2012]).
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2.2. Restricted harvesting. In this subsection, we obtain the harvesting
function under the assumption that an authority restricts each agent to catch only
one species at a time. Let us assume that, in a given time period, agents are parti-
tioned into two groups, with m1 = m agents in group 1 (harvesting species 1 only)
and m2 = N − m agents in group 2 (harvesting species 2 only).

Given the specifications of cost functions and prices as above, the profit of fisher
q in group i(= 1, 2) when harvesting hi,q reads

πi,q = pihi,q − γi

h2
i,q

Xi
, i = 1, 2.(6)

Therefore, in deciding his/her instantaneous harvesting of species i, the represen-
tative fisher q in group i solves the problem maxhi,q

πi,q , where

πi,q =

⎧⎨⎩ai − bi

⎡⎣hi,q +
∑

u∈mi ;u �=q

hi,u + σ
∑

u∈mj
hj,u

⎤⎦⎫⎬⎭hi,q

− γi

h2
i,q

Xi
; i, j = 1, 2, i �= j.

By taking the first-order conditions and employing the symmetry property that
players within each group are homogeneous (i.e., hi,q = hi,u , i = 1, 2; q, u ∈ mi), we
obtain the following harvesting quantities at a Nash equilibrium

h∗
i (Xi,Xj ) =

aiXi(bjXj (1 + Nrj ) + 2γj ) − aj biNrjXiXjσ

(biXi(1 + Nr) + 2γi)(bjXj (1 + N(1 − r)) + 2γj ) − bibjN 2(1 − r)rXiXjσ2 ;

i, j = 1, 2, i �= j,(7)

where r1 = r = m 1
N and r2 = (1 − r) = m 2

N represent, respectively, the fractions of
agents in group 1 and 2.

By inserting (7) into (6), we get optimal individual profits

π∗
i =

(
bi +

γi

Xi

)
(h∗

i )
2(8)

which shows that profits are non-negative. Of course, if profits are positive (or at
least non-negative), then also optimal harvesting (7) is positive.

The assumption b1 = b2 = b = 0 allows us to obtain a simpler expression for in-
dividual optimal harvesting profit, which constitutes a useful benchmark in the
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following:

h∗
i =

aiXi

2γi
, π∗

i =
ai

2
h∗

i ; i = 1, 2.(9)

Although harvesting expressions in (5) and (9) are the same because there is no
interaction via the demand curve, in the case of restricted harvesting each agent
can not access both stocks. In fact, profits for each fisher in (5) are the sum of
profits from both species, whereas in 9 profits to each agent come from the only
species caught.

3. Switching mechanism. In this section we explain the basic dynamic mech-
anism that regulates how the fraction r(t) of exploiters of species 1 (or, equivalently,
the fraction 1 − r(t) of exploiters of species 2) is updated over time in the case of
restricted harvesting. In this case, recall that an authority imposes that fishers have
to stick to the decided strategy for a given period of time s > 0, after which they
can reconsider their decisions on the basis of observed profits. This period-by-period
adaptive mechanism can be described by an endogenous evolutionary dynamic, for
instance through a replicator equation in discrete time (see Weibull [1995], Hof-
bauer and Sigmund [1998], Bischi et al. [2009a]). More specifically, let us assume
that at the end of each time period of length s, a representative agent in group i
assesses his/her average profit π∗

i over that period, given by

π∗
i (t) =

∫ t

t−sπ
∗
i (τ) dτ

s
; i = 1, 2.(10)

If the magnitude of π∗
i (t) can be estimated by all agents, i.e., it is a common

knowledge, it can be employed as a shared fitness measure for playing strategy i.
This leads to the following dynamic model, expressed by continuous time growth
and harvesting of the fish species and discrete (or pulse) fishing strategy switching
(a discrete decision-driven time)3

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Ẋ1 (t) = X1(t)G1(X1(t)) − Nr(t)h∗
1(X1(t),X2(t))

Ẋ2 (t) = X2(t)G2(X2(t)) − N(1 − r(t))h∗
2(X1(t),X2(t))

r(t) =

⎧⎪⎪⎨⎪⎪⎩
r(t − s)

π∗
1 (t)

r(t − s)π∗
1 (t) + [1 − r(t − s)] π∗

2 (t)
if

t

s
=

⌊
t

s

⌋
r

(⌊
t

s

⌋
s

)
otherwise

,(11)

where �x� is the largest integer not greater than x (i.e., the floor of x), and
h∗

i (X1(t),X2(t)), π∗
i (t), i = 1, 2 are given, respectively, in (7) and (10). The third

equation states that at each switching time, each representative fisher is assumed
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to know the average profits during the previous period both of fishers of the same
group and also of fishers of the other group. If we observe π∗

1 (t) > π∗
2 (t) then r (t)

increases, i.e., a fraction of fishers harvesting species 2 switches to harvest species
1, otherwise r (t) decreases.

Given X1(0), X2(0), and r(0), for each t ≥ 0 the time evolution of Xi(t), i = 1, 2,
and r(t) is thus regulated by the hybrid dynamical system (11). The term hybrid
indicates that X1(t) and X2(t) evolve in continuous time, whereas r(t) is updated
according to a discrete time scale.

In the limiting case s → 0, i.e., with fishers changing their strategy continuously
(i.e., the species to harvest), π∗

i (t) = π∗
i (t) and the last equation in (11) can be

replaced with

ṙ (t) = r(t) [π∗
1 (t) − (r(t)π∗

1 (t) + (1 − r(t))π∗
2 (t))]

= r(t)(1 − r(t)) [π∗
1 (t) − π∗

2 (t)]
(12)

which is the well-known replicator equation in continuous time (see again Weibull
[1995] and Hofbauer and Sigmund [1998]), stating that ṙ(t) > 0 if π∗

1(t) > π∗
2 (t). In

this case, the model assumes the simpler form of a nonlinear three-dimensional sys-
tem of ordinary differential equations (ODEs). This simpler specification constitutes
a useful benchmark. In fact, an equilibrium point for the system with continuous
replicator (12) is also a fixed point for the hybrid system (11), although the con-
verse is not necessarily true. This follows from the fact that the first and the second
dynamic equations in the two specifications are identical, and the replicator dynam-
ics in discrete time have the same equilibrium conditions: r(t) = r(t − s) for r = 0,
r = 1 or π∗

1 (t) = π∗
2 (t). In fact, if instantaneous profits are identical in equilibrium,

then the average profits of the two strategies over the nonswitching time interval
of length s are also identical. Nonetheless, we can have an equilibrium point such
that the average profits of the two strategies over the interval s are equal, even
though instantaneous profits are not equal over the interval. As we shall see, in
case (11), r(t) becomes a piecewise-constant function, like an endogenously driven
bang–bang parameter whose discontinuous jumps occur at discrete times and lead
to sudden switching among different dynamic scenarios, which is typical behavior
of hybrid systems (see e.g., Aubin et al. [2002], Haddad et al. [2006], Goebel et al.
[2009]).

3.1. Equilibria and stability analysis with continuous switching. In
order to obtain analytical results, let us consider the system (1) with replica-
tor dynamics in continuous time (12) and constant prices (i.e., b1 = b2 = 0). The
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dynamical model assumes the form of the following system of ODEs:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Ẋ1 = X1ρ1

(
1 − X1

k1

)
− Nr

a1X1

2γ1

Ẋ2 = X2ρ2

(
1 − X2

k2

)
− N(1 − r)

a2X2

2γ2

ṙ = r(1 − r)
[
a2

1X1

4γ1
− a2

2X2

4γ2

] ,(13)

where we omitted the dependence on t, as no confusion arises. Note that in
the invariant subspaces defined by r = 0 and 1, the first two differential equa-
tions in (13) are uncoupled. The following propositions (proved in the Appendix)
describe the steady states of the model and their local stability properties. To
keep the notation short, in these propositions it is useful to define the aggregate
parameters

α1(r) = ρ1 − a1Nr

2γ1
and α2(r) = ρ2 − a2N(1 − r)

2γ2
.(14)

Proposition 1. (Boundary equilibria and their stability).

For the system of ODEs (13) the following statements hold:

(1) the total extinction fixed points E0= (0, 0, r), where r = [0, 1], are unstable non-
hyperbolic nodes provided that αi(r) > 0, i = 1,2;

(2) the equilibria with harvesting of only one species are given by:
(i) E0

1 = (k1 , 0, 0) and E0
2 = (0, k2 , 1)[extinction of the harvested species], which

are saddle points;
(ii) E1

1 = (0, k2(1 − N a2
2γ2 ρ2

), 0), if Na2 < 2γ2ρ2 , and E1
2 = (k1(1 −

N a1
2γ1 ρ1

), 0, 1), if Na1 < 2γ1ρ1 [extinction of the nonharvested species],
which are saddle points;

(iii) E2
1 = (k1 , k2(1 − N a2

2γ2 ρ2
), 0) if Na2 < 2γ2ρ2 [both viable species with no

harvesting of species 1], which is a stable node provided that

a1 <

√
a2

2k2γ1(2γ2ρ2 − Na2)
2k1γ2

2ρ2
(15)

and a saddle point if the reverse inequality in (15) holds;
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(iv) E2
2 = (k1(1 − N a1

2γ1 ρ1
), k2 , 1) if Na1 < 2γ1ρ1 [both viable species with no

harvesting of species 2] which is a stable node provided that

a2 <

√
a2

1k1γ2(2γ1ρ1 − Na1)
2k2γ2

1ρ1
(16)

and a saddle point if the reverse inequality in (16) holds.

The next proposition characterizes an equilibrium with r∗ ∈ (0, 1), which is the
case in which each species is always harvested by some fishers, of course with the
restriction that each agent is allowed to fish just one species.

Proposition 2. (Inner equilibrium and its stability).

For the system of ODEs (13) the following statements hold:

(i) There exists a unique inner equilibrium E∗ = (X∗
1 ,X∗

2 , r∗) with r∗ ∈ (0, 1),
where

X∗
i =

a2
j k1k2γi(2a2γ1ρ1 + 2a1γ2ρ 2 − a1a2N)

2
(
a3

2k2γ2
1ρ1 + a3

1k1γ2
2ρ2

) , i = 1, 2; i �= j

r∗ =
γ1ρ1

(
a3

2k2Nγ1 − 2a2
2k2γ1γ2ρ2 + 2a2

1k1γ
2
2 ρ2

)
N (a3

2k2γ2
1ρ1 + a3

1k1γ2
2 ρ2)

.

(17)

(ii) Equilibrium biomass levels X∗
i > 0, i = 1, 2 iff αi(r∗) > 0, with 0 < r∗ < 1;

this occurs in the following cases:

Case 1: If α1(1) > 0 and α2(0) > 0 then the carrying capacity k1 must satisfy

k̂1 =
a2

2k2γ1(2γ2ρ2 − Na2)
2a2

1γ
2
2 ρ2

< k1 <
2a2

2k
2
2γ2

1 ρ1

2a2
1γ1γ2ρ1 − Na3

1γ 2
= k1 ;

Case 2: If α1(1) > 0 and α2(0) < 0 then the carrying capacity k1 must satisfy
0 < k1 < k1 ;

Case 3: If α1(1) < 0 and α2(0) > 0 then the carrying capacity k1 must satisfy
k1 > k̂1 ;

Case 4: If α1(1) < 0 and α2(0) < 0 then it must be 2γ1 ρ1
N < a1 < 2a2 γ1 ρ1

N a2−2γ2 ρ2
, and

at a1 = 2a2 γ1 ρ1
N a2−2γ2 ρ2

it is X∗
1 = X∗

2 = 0;
Case 5: Finally, if k1 = k̂1 then it is r∗ = 0 and E∗ = E2

1 = (k1 , k2(1 − N a2
2γ2 ρ2

), 0)
whereas if k1 = k1 then it is r∗ = 1 and E∗ = E2

2 = (k1(1 − N a1
2γ1 ρ1

), k2 , 1).

(iii) If the equilibrium E∗ = (X∗
1 ,X∗

2 , r∗) involves positive biomasses, then it is
stable under the replicator dynamics in continuous time.
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The cases discussed in the previous proposition help to understand through which
contacts (with border equilibria) the inner equilibrium appears or disappears. In
particular, the last two cases indicate that the inner equilibrium can have a contact
with extinction equilibrium E0 or with the border equilibria E2

1 and E2
2 .

It is also interesting to notice that, by Proposition 1, a single species, say species
1, does not become extinct provided that 2γ1 ρ1

a1 N > r, whereas by Proposition 2, the

condition r∗ < 1 leads to 2γ1 ρ1
a1 N < 1 + 2a2

2 k2 γ 2
1 ρ1

N a3
1 k1 γ2

. Therefore, if

2γ1ρ1

a1N
∈

(
r, 1 +

2a2
2k2γ

2
1 ρ1

Na3
1k1γ2

)
(18)

then species 1 will survive both with an exogenous fixed r or with a r∗ to which the
continuous time switching mechanism converges. However, if the fixed r = r ∈ (0, 1)
is such that

2γ1ρ1

a1N
∈ (0, r) ,(19)

i.e., too much harvesting pressure is imposed on species 1, then this fixed r will lead
the resource to extinction, whereas an endogenous r could avoid the occurrence of
extinction for species 1 (the same reasoning applies, of course, to species 2).

For the sake of comparison, the analytical results on the coexistence of both
species can be synthesized as follows:

Corollary 1. If k1 , k2 > 0 and 2ρ1 γ1
N a1

+ 2ρ2 γ2
N a2

> 1, the model with continuous repli-
cator dynamics (13) converges to one of the following fixed points with coexistence
of the two species:

� E2
1 if 2γ2 ρ2

a2 N ∈
(
1 + 2a2

1 k1 γ 2
2 ρ2

N a3
2 k2 γ1

,+∞
)
;

� E2
2 if 2γ1 ρ1

a1 N ∈
(
1 + 2a2

2 k2 γ 2
1 ρ1

N a3
1 k1 γ2

,+∞
)
;

� E∗ whenever 2γ1 ρ1
a1 N < 1 + 2a2

2 k2 γ 2
1 ρ1

N a3
1 k1 γ2

and 2γ2 ρ2
a2 N < 1 + 2a2

1 k1 γ 2
2 ρ2

N a3
2 k2 γ1

.

In the model (13) with the last differential equation dropped and the fraction rex-
ogenously fixed to r, if k1 , k2 > 0 and 2ρ1 γ1

N a1
+ 2ρ2 γ2

N a2
> 1, any r ∈ (1 − 2ρ2 γ2

N a2
, 2ρ1 γ1

N a1
)

ensures the coexistence of both species.

In short, if there is a coexistence equilibrium for the model (13) then there is
at least an r such that also the model with r exogenously fixed converges to a
coexistence equilibrium. On the contrary, if there exists an r such that the model
with r exogenous converges to a coexistence equilibrium then also the model with
continuous replicator dynamics converges to a coexistence equilibrium.
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4. Numerical simulations. Numerical simulations are important for shed-
ding some light on the dynamics of the more realistic model of discrete time switch-
ing of fishing strategy. This section is mainly devoted to investigating cyclical or
more complex behaviors dictated by the hybrid structure of the model, which are
impossible to observe in the benchmark case of continuous switching. In fact, as-
suming discrete time strategy switching is more realistic than continuous time ad-
justments, but analytical results can be obtained under continuous adjustments
(as in the previous section) and so comparisons between continuous and discrete
switching are insightful. In particular, we compare here the dynamics of the system
with discrete and continuous replicator equations and these cases with two simpler
management strategies, namely unrestricted harvesting and splitting the fishers be-
tween the two fisheries equally. Moreover, we investigate the role played by s (the
switching time) as well as the effects of nonconstant prices, i.e., demand functions
(3) with slope bi �= 0, i = 1, 2.

Before describing and discussing the simulations, we recall that, in general, the
set of fixed points of the system with a continuous time replicator is a subset of the
set of fixed points of the hybrid model. Moreover, even though a fixed point under
a continuous time replicator is also a fixed point in the hybrid system, its stability
properties can be different, as clearly shown below.

Let us begin the numerical investigation with a complete symmetric setting of
the parameter values except for the instantaneous growth rates of the two species.
For illustrative purposes only, the values are chosen at the following level:

ρ1 = 90; ρ2 = 140; k1 = k2 = 80; a1 = a2 = 50; γ1 = γ2 = 9;
b1 = b2 = 0; N = 40; σ = 0.5; s = 3.

(20)

Both species are assumed to have the same carrying capacity, the same (constant)
price in the market and the same cost to catch; the different intrinsic growth rates
satisfy the relations α1(1) < 0, α2(0) > 0 and k1 > k̂1 , so that an inner equilibrium
with harvesting of both species exists and it is stable in the case of continuous time
switching according to the proposition in the previous section. All the numerical
simulations are obtained starting from the initial condition X1(0) = X2(0) = 10
and r(0) = 0.5 (which remains the same in the cases without evolutionary switch-
ing). Of course, as also shown in the first row of Figure 1, in the absence of
harvesting the two noninteracting species always settle on the respective carry-
ing capacities in the long run. Under this parameter constellation, if unrestricted
oligopolistic harvesting takes place, then the first species becomes extinct (see Fig-
ure 1, row 2). On the other hand, if the exploiter is split equally in the two groups
(r = 0.5), the trajectory converges to an equilibrium, say E+ = (X+

1 ,X+
2 ), with

X+
2 > X+

1 (Figure 1, row 3). Instead, in the case of continuous and discrete repli-
cator dynamics the trajectories converge to the unique (globally stable) inner equi-
librium E∗ = (X∗

1 ,X∗
2 , r∗) with X∗

1 = X∗
2 and r∗ = 0.3913 (Figure 1, rows 4 and 5).
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FIGURE 1. With parameters ρ1 = 90; ρ2 = 140; k1 = k2 = 80; a1 = a2 = 50; γ1 = γ2 = 9;
b1 = b2 = 0; N = 40; r(0) = 0.5; σ = 0.5; s = 3 and initial condition X1 (0) = 10, X2 (0) = 10
the trajectories in the space (X1 , X2 ) are represented in the first column, profits π(t) (black
line for π1 (t) and gray line for π2 (t)) in the second column and the fraction r(t) of fishers
that harvest species 1 third column. Different rows represent different policies for harvesting
constraints. Row 1: biological independent species with logistic growth and without harvest-
ing. Row 2: unrestricted oligopolistic harvesting. Row 3: two groups of fishers each harvesting
only one species with imposed fraction r = 0.5. Row 4: endogenously adjusting r(t) according
to a continuous time replicator dynamics. Row 5: hybrid model with r(t) evolving according
to discrete time replicator dynamics.
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In the case of continuous time replicator dynamics, this confirms the analytical
results of the previous section. Moreover, the numerical simulation shows that the
same asymptotic dynamics occur in the case of impulsive adjustment in discrete
time as well, even if a difference can be seen in the initial transient part of the
trajectory. Since by assumption it is α1(1) < 0, it is not sustainable to let all agents
harvest species 1, so that E2

2 = (k1(1 − N a1
2γ1 ρ1

), k2 , 1) is not a feasible equilibrium
of the model under replicator dynamics. On the other hand, all the other border
equilibria described in the proposition “boundary equilibria and their stability”
exist and are unstable, as shown in Figure 1. This means that under replicator
dynamics the system is able to adjust endogenously the two fractions of fishers
that harvest species one or two, putting less fishing pressure on the species with
lower growth rate (species one in this specific example). This avoids the overex-
ploitation of the species with respect to the other. In other words, this is a clear
example of an autonomous self-regulating system. Moreover, even from an economic
point of view, in this case the evolutionary mechanism represents a good solution
ensuring a higher level of average profits, as shown in the second column of Fig-
ure 1 depicting the corresponding profits versus time. As well, the distribution of
profits between fishers in the two groups also appears fairer in the case of evolu-
tionary strategy switching (in both continuous and discrete time) than in the other
cases.

It is interesting to observe, from the analytical expression of the inner equilibrium
X∗

i in (17), that only asymmetries in the values of the economic parameters ai and
γi , i = 1, 2, can create differences in the long-run levels of biomass of the two species.
For this reason, Figure 2 is obtained under the same parameters of Figure 1 but
with a decreased value of the cost parameter γ1 = 5, i.e., catching fish 1 becomes
less expensive. The trajectory of the dynamical system with continuous replicator
converges to the inner equilibrium E∗ = (X∗

1 ,X∗
2 , r∗) for which X∗

1 < X∗
2 , while the

trajectory of the dynamical system with a discrete replicator converges to a closed
invariant orbit surrounding the equilibrium E∗, suggesting its instability under
discrete switching, see the last row of Figure 2. Here the dynamics are cyclic around
the unstable fixed point, and this is due to the hybrid nature of the dynamical
system with discrete replicator equations and can not be observed in the other
dynamical models here considered.

Concerning the profits for the different harvesting strategies, the system with
(continuous or discrete) replicator dynamics is able to ensure higher income for
operators than in the other cases. In fact, with unrestricted oligopolistic harvesting,
the extinction of one species and the depletion of the other occur due to overfishing,
which sharply reduces total average profits, see again Figure 2, second column. Note
that fixing the fraction of exploiters (recall that here we assumed r = 0.5) can even
lead to higher profits, but at the cost of the extinction of the first species, so
that half of the fishers (the ones who are exogenously assigned to harvest species
one only) are forced to abandon their activity because there is no longer stock
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FIGURE 2. Initial condition and parameters as in Figure 1, except parameter γ1 = 5. The
explanation of the panels is the same as in Figure 1.

to harvest for them (see Figure 2, row 3). It follows that, despite the high level
of total profits generated with the fixed fraction, this is not a desirable situation
indeed.

For the sake of comparison between the cases in Figures 1 and 2, it is interesting
to investigate the reasons why the extinction of species 1 occurs only in the case
of Figure 2, when r is exogenously determined. From the analytical results, every
time the evolutionary mechanism settles endogenously to the level r∗ ensuring the
coexistence of the two species, it is possible to fix exogenously an r that ensures
the coexistence and vice versa. However, to fix exogenously an r requires correctly
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estimating the parameters of the model and their possible changes over time and
to adjust r accordingly and immediately in case of relevant changes in these val-
ues. On the contrary, the evolutionary mechanism is able to react endogenously to
changes in the economical and biological parameters without requiring any external
intervention, thus ensuring the coexistence of the two species (whenever the condi-
tions stated in the previous section hold). This represents an important advantage
of the evolutionary model that justifies its use. This aspect can be better appre-
ciated by a cross simulation analysis. Starting from the simulation represented in
Figure 1, fixing exogenously r = 0.5 is enough to ensure the coexistence of the two
species, as condition 2γ1 ρ1

a1 N = 0.81 ∈ (0.5, 1.81) is fulfilled, see 18. However, if the
cost parameter γ1 decreases from 9 to 5 as in Figure 2 (e.g., because a new fishing
technique has been introduced), then it is 2γ1 ρ1

a1 N = 0.45 ∈ (0, 0.5) so that species 1
goes extinct, see (19). Therefore, in the case of a fixed r, if this value is not reduced
exogenously by the authority, the risk of extinction of one of the two shellfish species
is high, as happens in Figure 2 second row. In this specific case, the fixed value of
r should be in the range (0, 0.45) in order to avoid the extinction of species 1. As it
is clear from this example, this requires continuous monitoring of the system (bio-
logical and economical parameters). On the contrary, the evolutionary mechanism
is able to adjust r autonomously avoiding the risk of extinction of species.

Another key aspect that deserves to be deepened is the different dynamics of the
models with continuous and discrete replicator dynamics, i.e., the effects of s on the
dynamics of the model. It is worth noticing that s, the time interval after which
the fishers can choose to change their fishing strategy, influences the amplitude of
the oscillations. When s → 0 the amplitude tends to zero, and the hybrid dynamical
system has a behavior similar to the one obtained with a continuous replicator
dynamic. However, when s increases, the presence of cycles of greater amplitude
can be detected, see Figure 3. From the two pictures in Figure 3, it is easy to see
that the orbits surrounding the inner equilibrium are characterized by two switching
times, i.e., they are of period 2s. Along these orbits the biomass levels of the two
species always move in opposite directions, one increases and one decreases, this
opposite relationship of growth changes at each switching time according to r (t),
which takes two values {rs, rs} along the orbits depending on s.

Let us now consider the same values for parameters as in Figures 2 and 3
changing the level of the carrying capacity of species 2 only, namely k2 = 10. For
the dynamical system with continuous replicator dynamics, the inner equilibrium
E∗ = (X∗

1 ,X∗
2 , r∗) is positive, hence it is stable according to Proposition 2 in the

previous section. More precisely, this is the situation described in case 3 of Propo-
sition 2. Regarding the system with discrete replicator equations, Figure 4 shows
some dynamical behaviors of the hybrid model for different values of the switching
time s. Numerical evidence shows that the inner equilibrium is unstable under the
adaptive discrete dynamics. For s = 1 the trajectory passes very close to the inner
equilibrium and draws a quite erratic path around it. For s = 3 and 10 more regular
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FIGURE 3. Two trajectories in the space (X1 , X2 ) with initial condition and parameters
as in Figure 2 for the dynamical model with discrete replicator equation. The picture gives
evidence of how the amplitude of the closed orbits changes by changing the switching time
interval s, with s = 1 in the left panel and s = 3 in the right panel.

orbits can be observed. The time series of the individual and total profits are quite
irregular as well, see the last column of Figure 4. It is worth noticing that profits
arising from fishing species 1 (black lines) are quite regular along their time se-
ries. Instead, the profits arising from fishing species 2 (gray lines) exhibit a quite
irregular pattern with long periods characterized by high profits and short periods
characterized by low profits.

Numerical simulations are also useful for obtaining some insights on how decreas-
ing inverse demand functions can influence the dynamic behaviors of the models
studied here. If we repeat all the numerical simulations performed in the previous
examples with bi �= 0, i = 1, 2, we see that the total harvesting and profits decrease,
but in general the positive effects of the switching mechanism on reducing overex-
ploitation of the two fish species can still be appreciated. In order to give an idea
of the difference between the dynamics of the models with negative slopes of the
inverse demand functions (3), i.e., decreased prices with increased total harvest-
ing, Figure 5 shows the dynamics of the models with bi = 0.05, i = 1, 2 and the
other parameters values as in Figure 1. As for the case with zero slope demand,
the model with unrestricted harvesting leads to the extinction of species 1. On
the other hand, when r is defined exogenously or endogenously by fishers under a
profit-driven adaptive process, it is possible to prevent species one from extinction
and increase the general level of profits (see Figure 5).

The positive effect of the switching mechanism can be appreciated even for larger
values of bi , i = 1, 2. In order to avoid too much harvesting reduction due to demand
effects, in Figure 6 we modify the parameter values as follows:
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FIGURE 4. For the hybrid dynamic model with initial condition and parameters as in Figure
2 but k2 = 10. In the first column the trajectories are projected in the space (X1 , X2 ); in the
second column the same trajectories are represented in the phase space (X1 , X2 , r) and in the
third columns the versus-time representation of profits along the trajectories are represented
for both fishers harvesting species 1 (black line) and 2 (gray line), respectively. The different
rows are obtained for different values of the discrete switching time s, given by s = 1, 3, and
10, respectively.

ρ1 = 80; ρ2 = 140; k1 = 50; k2 = 80; a1 = 220; a2 = 200; γ1 = γ2 = 9;

b1 = b2 = 0.1; N = 40; σ = 0.5; s = 3.

With respect to the other examples, the reservation prices have been increased
and the growth rate and the carrying capacity for species one have been decreased.
Having a smaller carrying capacity, species 1 is more rare in nature than species
2 and thus has a higher reservation price. The numerical simulations in Figure 5
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FIGURE 5. Same parameter values and initial conditions as in Figure 1 but b1 = b2 = 0.05.
The meaning of the panels is the same as in Figures 1 and 2.

gives evidence of overexploitation in the cases of unrestricted harvesting and re-
stricted harvesting with a fixed proportion of exploiters. In both cases, the level
of harvesting is not sustainable over time and in the long run the species with the
lower intrinsic growth rate will go extinct. However, when fishers can adjust their
strategy myopically according to past profits, the extinction problem for species
with lower growth rate could be avoided. It is worth noticing that, with these pa-
rameter values, the discrete switching mechanism performs even better than the
instantaneous one. In fact, the first mechanism ensures a level of profits at least as
high as the second one and the biological equilibrium has higher level of biomass
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FIGURE 6. Same initial conditions as in Figure 2 and parameters ρ1 = 80; ρ2 = 140; k1 = 50;
k2 = 80; a1 = 220; a2 = 200; γ1 = γ2 = 9; b1 = b2 = 0.1; N = 40; r (0) = 0.5; σ = 0.5; s = 3.
The meaning of the panels is the same as in Figures 1 and 2.

for both species, so that there is a higher probability of surviving in the long run
even in presence of exogenous shocks, which may temporarily reduce the natural
rate of growth of the two (shell)fish species.

5. Conclusions. This paper proposes a dynamical system to model a fishery
where two noninteracting fish species are harvested by a population of fishers, each
allowed to catch just one species at a time and with the possibility of changing their
fishing choice at specific times, according to a profit-driven replicator dynamic. The
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dynamic model is hybrid, since the growth of fish species as well as harvesting
activities occur in continuous time, whereas decisions about the species to catch
take place in discrete time.

The analytical and numerical results show that this type of evolutionary mech-
anism may lead to a good compromise between total profit maximization, profit
distribution among fishers and resource conservation, thanks to evolutionary self-
regulation mainly based on cost externalities. In fact, the reduction of biomass of
one species leads to its increasing landing cost and, consequently, favors the en-
dogenous switching to the more abundant species. Moreover, severe overfishing of
one species causes decreasing prices and consequently decreasing profits. Of course,
in cases where both fisheries are declining in terms of both stocks and profits, the
evolutionary switching method proposed can at most allow fishers to move to the
least-bad fishery, with the only result of slackening fishery decline.

Some simpler benchmark cases, with fixed prices and/or continuous time switch-
ing, have also been developed here. These benchmarks constitute a useful guide,
even a sort of basic foundation, on which the (mainly numerical) analysis of the
more realistic model can be performed, namely with variable market prices and
discrete strategy switching.

The model studied in this paper offers a glimpse into the interesting properties
of myopic and adaptive harvesting mechanisms driven by endogenous evolutionary
processes. However, this is just a starting point for further and deeper analysis.
There are several aspects of the model that deserve to be explored more deeply. For
example, the variable r, i.e., the fraction of fishers harvesting a given fish stock, is
assumed to unconstrainedly range in the interval [0, 1], where 0 and 1 are always
equilibria. Indeed, when r converges to 0 or 1, one of the two species is no longer
harvested and consequently it is not available in the market. This could be a rea-
sonable practice only if the two species are perfect substitutes in consumer tastes
(corresponding to the case σ = 1 in our model). Otherwise consumers may be heav-
ily penalized by such an outcome. This issue will be addressed in future work, for
example by introducing constraints on the dynamics of r or by assuming that the
fractions of fishers harvesting one of the two species have a fixed component and a
time varying portion, so that the nonswitching portion ensures that both fish species
are always available in the market. The endogenously switching components, on the
other hand, help to regulate the fishing pressure so that the more abundant species
is more harvested due to lower costs. The research can be extended in other differ-
ent directions as well, for example it would be interesting to compare the results
obtained here for the endogenous and myopic adaptive switching process with those
obtained in models where an optimal fraction r is computed according to an opti-
mal control problem, in which a regulator maximizes a social welfare function over
a planning horizon. Another interesting extensions is to formulate the problem in
terms of choosing effort and then include a constraint on total effort in the fishers’
profit maximization problems of restricted and unrestricted harvesting.4 The same
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arguments may be applied to the choice of an optimal length s of the switching in-
terval, since it seems to be an important parameter in our numerical experiments.
Moreover, the stability analysis for the model with continuous evolutionary switch-
ing mechanisms may be extended by using more sophisticated mathematical tools
to provide qualitative indications on the behavior of the hybrid dynamical in the
long run. Finally, the model can also be extended to the case of interacting species.
For example, a similar model has been proposed by the same authors in Bischi et al.
[2012] for the simulation of a fishery where a predator–prey system is exploited in
the presence of the same endogenous evolutionary self-regulating method. Even
if it is quite difficult to harvest only a single species when two fish populations
interact in the same environment, the simulation of such a situation can provide
useful theoretical information on the understanding of the trade-off between species
interactions and endogenous evolutionary processes based on economic forces.

ENDNOTES

1. In the context we are considering, we disregard the case σ < 0, related to varieties that are
demand complementary.

2. Specific conditions can be given for the sufficiency of these conditions, i.e., for the concavity
of profit πF

q with respect to hF
1 , q and hF

2 , q . For instance, in the case b1 = b2 (assumption that will
be considered in the following) it is easy to prove that profits are strictly concave. However, we
can assume by continuity that the same holds for b1 � b2 .

3. Notice that in the hybrid system (11) the time index t has to be explicitated in order to
ensure synchronism between discrete and continuous dynamical variables.

4. We thank an anonymous referee for suggesting this enhancement of the basic model.
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Appendix

Cost function. Following Szidarovszki and Okuguchi [1998], Clark [1990], and
Conrad and Smith [2012], we obtain here the cost function (4) employed in the
profit maximization problems. Let us assume that current harvesting h is obtained
through a Cobb–Douglas production function of the stock X and fishing effort E
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(see e.g., Clark [1990], pp. 222–223.) with total factor productivity ρ

h(X,E) = ρXαEβ

from which E = ρ−1/β X−α/β h1/β . Moreover, assuming that the “production func-
tion” h(X,E) is an homogeneous function of degree 1 with α = β = 1

2 and that
total cost of fishing is proportional to exerted effort, i.e., C = δE, then it is

C = δρ−2X−1h2 = γ
h2

X
.

Without loss of generality, we assume that ρ = 1, so that γ can be interpreted as
a cost parameter.

Proof of Proposition 1. Any steady state of the dynamical system (13) must
satisfy the algebraic system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

X1

(
ρ1

(
1 − X1

k1

)
− Nr

a1

2γ1

)
= 0

X2

(
ρ2

(
1 − X2

k2

)
− N (1 − r)

a2

2γ2

)
= 0

r(1 − r)
[
a2

1X1

4γ1
− a2

2X2

4γ2

]
= 0

from which we get the equilibria Ek
j , k = 0, 1, 2 and j = r, 1, 2 listed in the Propo-

sition 1. The Jacobian matrix for the dynamical system (13) is given by

J (X1 ,X2 , r) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

α1(r) − 2ρ1X1

k1
0 −N

a1X1

2γ1

0 α2(r) − 2ρ2X2

k2
N

a2X2

2γ2

r(1 − r)
a2

1

4γ1
−r(1 − r)

a2
2

4γ2
(1 − 2r)

[
a2

1X1

4γ1
− a2

2X2

4γ2

]

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Evaluated at the equilibria with extinction of both species E0 = (0, 0, r), the Jaco-
bian is the following triangular matrix:

J
(
E0) =

⎡⎢⎢⎣
α1(r) 0 0

0 α2(r) 0

r(1 − r)
a2

1

4γ1
−r(1 − r)

a2
2

4γ2
0

⎤⎥⎥⎦
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from which it follows that the eigenvalues are the entries in the main di-
agonal, so we get the statement for the nonhyperbolic stability given in the
proposition.

Without loss of generality, in the rest of the proof we assume that only the second
species is harvested (r = 0), as with r = 1 one has just to swap indexes in the first
two coordinates of the equilibria and the stability analysis is the same. Let us
consider the equilibrium where species 1 is at the carrying capacity and species 2
vanishes, i.e., E0

1 = (k1 , 0, 0)

J
(
E0

1
)

=

⎡⎢⎢⎢⎢⎣
−ρ1 0 −N

a1k1

2γ1

0 α2(0) 0

0 0
a2

1k1

4γ1

⎤⎥⎥⎥⎥⎦.

The Jacobian matrix assumes again a triangular structure, with eigenvalues −ρ1 < 0
and a2

1 k1
4γ1

> 0 so E0
1 is always a saddle point. At the fixed point E1

1 = (0, k2(1 −
N a2

2γ2 ρ2
), 0) the Jacobian matrix becomes

J
(
E1

1
)

=

⎡⎢⎢⎢⎢⎣
ρ1 0 0

0 −α2(0) N
a2k2

2γ2ρ2
α2(0)

0 0 − a2
2k

2
2

4γ2ρ2
α2(0)

⎤⎥⎥⎥⎥⎦
whose eigenvalues are ρ1 > 0, whereas the other two are negative provided that
α2(0) > 0, i.e., Na2 < 2γ2ρ2 , whereas if the reverse inequality holds the sec-
ond component of the equilibrium becomes negative. Finally, at E2

1 = (k1 , k2(1 −
N a2

2γ2 ρ2
), 0) we have

J
(
E2

1
)

=

⎡⎢⎢⎢⎢⎢⎢⎣
−ρ1 0 −N

a1k1

2γ1

0 −α2(0)
a2N

2γ2

k2

ρ2
α2(0)

0 0
a2

1k1

4γ1
− a2

2

4γ2

k2

ρ2
α2(0)

⎤⎥⎥⎥⎥⎥⎥⎦.

By the previous discussion, the first two eigenvalues are negative provided that
α2(0) > 0, i.e., Na2 < 2γ2ρ2 . In this case the third eigenvalue is also negative when-
ever α2(0) > ρ2

a2
1 k1 γ2

a2
2 k2 γ1

(> 0), which is equivalent to condition (15).
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Proof of Proposition 2. From the definition of equilibrium we have that
X∗

i = ki

(
1 − Nr∗i

ai
2γi ρi

)
= ki

ρi
αi(r∗i ), where r∗1 = r∗ and r∗2 = 1 − r∗, i.e., X∗

i > 0 ⇔
αi(r∗i ) > 0. By solving inequalities αi(r∗i ) > 0, i = 1, 2 with the condition 1 > r∗ >
0, we get the different cases described in the proposition. Concerning the stability,
the Jacobian matrix evaluated at the inner equilibrium E∗ = (X∗

1 ,X∗
2 , r∗) can be

rewritten as

J (E∗) =

⎡⎢⎢⎢⎢⎢⎢⎣
−α1(r∗) 0 −N

a1X
∗
1

2γ1

0 −α2(r∗) N
a2X

∗
2

2γ2

r∗(1 − r∗)
a2

1

4γ1
−r∗(1 − r∗)

a2
2

4γ2
0

⎤⎥⎥⎥⎥⎥⎥⎦.

Thus, at the equilibrium the Jacobian matrix has the structure

J (E∗) =

⎡⎢⎣J11 0 J13

0 J22 J23

J31 J32 0

⎤⎥⎦,

where the elements J11 , J22 , J13 , and J32 are negative and J23 and J31 are positive.
Therefore, for the characteristic polynomial

λ3 + a1λ
2 + a2λ + a3

with

a1 = J11 + J22 ; a2 = −J23J32 − J31J13 + J11J22 ;
a3 = J13J22J31 + J11J23J32

satisfies the Routh–Hurwitz criterion, as

a1 > 0; a2 > 0; a3 > 0
and
a1a2 − a3 = −J11J22 (J11 + J22) + J11J13J31 + J23J32 (2J11 + J22) > 0.

Therefore, whenever the equilibrium E∗ = (X∗
1 ,X∗

2 , r∗) is feasible (i.e., it involves
positive biomasses), it is also stable.
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J. Häckner [2000], A Note on Price and Quantity Competition in Differentiated Oligopolies, J.
Econ. Theory 93, 233–239.

W. M. Haddad, V. Chellaboina, and S. G. Nersesov [2006], Impulsive and Hybrid Dynamical
Systems: Stability, Dissipativity, and Control, Princeton University Press. Princeton, NJ.

G. Hardin [1968], The Tragedy of the Commons, Science 162, 1243–1248.
J. Hofbauer and K. Sigmund [1998], Evolutionary Games and Population Dynamics. Cambridge

University Press, Beverly Hills, CA.
S. F. McWhinnie [2009], The Tragedy of the Commons in International Fisheries: An Empirical

Examination, J. Environ. Econ. Manag. 57, 321–333.
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