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Abstract—Algorithmic approaches to the estimation of pair-
wise distances between the nodes of a wireless sensor network
are highly attractive to provide information for routing and
localization without requiring specific hardware to be added to
cost/resource-constrained nodes. This paper exploits statistical
geometry to derive robust estimators of the pairwise Euclidean
distances from topological information typically available in
any network. Extensive Monte Carlo experiments conducted on
synthetic benchmarks demonstrate the improved quality of the
proposed estimators with respect to the state of the art.

I. INTRODUCTION

Distance estimation is a key computational primitive in
many algorithms for wireless sensor networks (WSN). Lo-
calization algorithms are in fact crucial for many applica-
tions, ranging from routing to data delivery and management
[1]. Moreover, localization algorithms heavily depend on the
availability of (possibly approximated) euclidean distances
between sensor nodes [1], [2], [3], [4]. These distances can
be obtained by means of special-purpose hardware which
exploits, for instance, the Received Signal Strenght Indication
(RSSI) of radio signals [5] or integrates radio and ultrasound
signals [6], [7]. While these systems often provide accurate
distance and positioning information, they have the inherent
drawback of being dependent from more sophisticated and
costly sensor equipment. This has motivated the growth of a
line of research aimed at designing algorithmic approaches for
distance estimation between nodes of sensor networks, only
assuming minimal node hardware requirements. A common
feature to many of these works is the use of the number of
shared neighboring nodes between two given nodes to derive
an estimate of the true distance between them [8].

An empirical method for deriving the distance from the
ratio between the number of common neighbors between two
nodes and the total number of nodes in their neighborhoods
has been proposed by Villafuerte et al. [9], while an analytical
evaluation for this mapping has been obtained by means of
a first order Taylor series expansion [10]. Finally, Merkel et
al. proposed an alternative derivation of the distance from the
above mentioned ratio using regression [11]. In general, these
methods restrict distance estimation to couples of neighboring
nodes. Distances among nodes that do not directly communi-
cate with each other can be obtained using the connectivity
graph. For instance, Merkel et al. proposed a distributed
algorithm for extending the computation to non-neighboring
(i.e. out of radio-range) nodes [11]. The algorithm essentially
works by firstly computing estimates among communicating
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Fig. 1. Example of a random geometric graph: (a) circles of radius R

represent the communication range of the nodes, (b) the UDG has undirected
edges between any pair of nodes with distance lower than R, (c) the log-normal
shadowing model introduces a further variation allowing pairs of nodes with
distance greater than R to be connected (dark edges) and pairs of nodes with
shorter distance to be not (dashed edges).

nodes and then by propagating this information along shortest
paths.

In this work we present two algorithmic methods to es-
timate the Euclidean distance between any pair of nodes in
a graph based only on the connectivity matrix and on the
transmission range of the nodes. Simulation experiments show
that the proposed algorithms improve the quality of the most
recent approach [11].

II. PROPOSED APPROACH

A. Network model

We consider a static WSN composed of nodes randomly
and uniformly distributed on a planar surface according to
a homogeneous Poisson process with average density λ, so
that the probability of finding n nodes in an area A of the
deployment region can be expressed as:

Pr(n,A) =
(λA)n

n!
e−λA (1)

In other words, the number of nodes in a region of area A
is a Poisson random variable with mean λA.

Hereafter we consider a square deployment region with
edges of unit length. This is in contrast with the infinite
plane assumption which is typically adopted to avoid boundary
effects, but it adds to the realism of the model.

Two nodes are connected by an undirected edge if and only
if their Euclidean distance is below a fixed threshold R, so
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that the resulting graph is a random geometric graph (RGG),
or unit disk graph (UDG), of parameters λ and R drawn
on a square region with unitary edges [12]. Such undirected
edges provide a suitable representation of the wireless links
that could be established in a WSN composed of nodes with
the same transmit power, under the assumption of isotropic
propagation without shadowing effects. An example of RGG
graph is provided in Figures 1.a and 1.b.

Although the UDG model will be used throughout this
section for the sake of explanation, the effect of the additional
uncertainty introduced by a more realistic log-normal shadow-
ing model (LNSG) will be discussed in Section III [13]. An
example is provided in Figure 1.c.

We use G to denote the RGG under analsys, N to denote
the total number of nodes, and E to denote the number of edges
among them. The topology of the graph is fully represented
by its connectivity matrix C, which is a N × N symmetric
matrix with entries C(i, j) taking value 1 iff there is an edge
between node i and node j in G.

In this paper we are interested in estimating the Euclidean
distance between any pair of nodes of G starting only from
topological information. Hence, we assume matrix C to be
known, together with the length of the edge of the deployment
region and with the (average value of the) communication
range of the nodes. The problem of building matrix C for
a randomly deployed WSN is out of the scope of this work.

The geodetic distance between two nodes i and j of G, also
called hop distance (HD), is defined as the minimum number
of edges to be traversed to go from i to j or vice versa. The
hop distance matrix (DH ) for G can be easily determined from
connection matrix C in O(N3) by solving an instance of the
all-pairs shortest path problem [14]. Hence, for our purposes
we can also assume that a N × N symmetric matrix DH is
available with entries DH(i, j) representing the hop distance
between i and j.

B. Correlation between hop distance and Euclidean distance

The strong correlation between HD and Euclidean distance
(ED) in RGG is a well known empirical result which has
been widely exploited to develop distance estimators and
localization algorithms. In order to make it possible to use
such a correlation in our setting, we need to determine the
ED/HD ratio starting from the only measures available, which
are the edge of the deployment region and the communication
range of the nodes.

We discuss in this section the suitability of four different
estimators of the ED/HD ratio:

• the communication range R, which is an inherent
upper bound of the actual distance covered at each
hop

c1 =
R

1

• the average radial distance of points within the com-
munication range R of a given node, which provides
an estimate of the average length of each link in the
graph

c2 =
2R/3

1

Fig. 2. Performance of coefficients estimators of ED/HD ratio. Upper side,
from left to right: c1, c2. Lower side, from left to right: c3, c4.

• the diagonal of the unit square, which is the upper
bound of the Euclidean distance between nodes, di-
vided by the maximum value in DH

c3 =

√
2

max(DH)

• the average distance between points in a unit square,
which provides an estimate of the average Euclidean
distance between any pair of nodes in the graph,
divided by the mean of DH entries

c4 =
(2 +

√
2 + 5 log(1 +

√
2))/15

mean(DH)

The expressions of the average radial distance of points
in range R (used to compute c2) and of the average distance
between nodes randomly distributed in a unit square (used to
compute c4) come from known results in statistical geometry.
All the coefficients are expressed as a ratio between the esti-
mator of the Euclidean distance and that of the correspoding
HD. Notice however that c1 and c2 are apparent fractions since
the Euclidean distances at the numerator refer to a single hop,
so that the corresponding hop distance at the denominator is
1.

Figure 2 compares the performance of the four coefficients
by means of scatter plots the points of which are associated
with pairs of nodes of a given RGG (with N = 200 and
R = 0.15) and represent the relation between their ED (x
coordinate) and the estimates (y coordinate) provided by the
coefficient under test multiplied by the corresponding HD. The
bisector lines, representing ideal estimators, are reported for
comparison. As expected, coefficient c1 tends to overestimate
the actual ED, since it assumes that each hop covers the max-
imum range. Coefficient c2, on the contrary, underestimates
the value of ED because of the net effect of two systematic
errors: first, links along the path with the minimum number
of hops are usually longer than average, so that the mean
distance between two neighboring nodes underestimates the
mean distance between two nodes along the shortest path;
second, the shortest path between two nodes in a RGG is
a broken line, the overall length of which overestimates the
Euclidean distance between the end points. In spite of their
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Fig. 3. Intersection between two circles of radius r centered in two of the
inner nodes (namely, i and j) of a RGG, with distance d < 2r.

opposite effects, the two systematic errors are not guaranteed
to compensate each other, since they depend on density and
range. For the case of Figure 2 underestimation dominates.
Coefficient c3 leads to an overestimate of EDs since it makes
use of the diagonal of the square region, which is an upper
bound for the maximum distance between node pairs. Finally,
coefficient c4 provides an unbiased estimator built by taking
into account all the node pairs. The higher number of data used
to compute c4 adds both to the accuracy and to the statistical
significance of the estimator.

Table I reports the mean value and the standard deviation of
the estimation errors made by the ED/HD coefficients (namely,
c1, c2, c3, and c4) computed on a sample of 100 RGGs of
400 nodes with communication range R = 0.15. Coefficient
c0 is the slope of the best fitting line that can be found by
having a complete knowledge of all ED, HD pairs. Hence,
it represent a lower bound for the errors made by any linear
estimator. Data on the first 4 rows are stratified on the basis
of the value of HD compared with the maximum value of HD
for that particular RGG: ”very short” means less than 25%,
”short” means between 25% and 50%, ”long” means between
50% and 75%, ”very long” means greater than 75%. The last
two rows show the correlation of the average error with the
parameters of the RGG, namely, λ and R. Results are based on
Monte Carlo simulations performed in a ±10% range around
the (λ = 400, R = 0.15) point in the design space.

Simulation results reported in Table I show that the errors
made by c4 for any class of distances are very close to the
minimum errors achievable by any linear estimator using only
HD as independent variable, which is around 5%. One of the
main limitations of such an estimator comes from the discrete
nature of HD, which is in contrast with the continous nature of
ED. This explains the strong positive correlation between the
communication range R and the estimation error for all the
coefficient but c1, which benefits from the reduction of the
average number of hops caused by the increased hop length.

C. Disk intersection

Figure 3 shows two overlapping circles with the same
radius r, centered in i and j, which are inner nodes of an
RGG. The area A of the intersection between the two circles
can be expressed as a function of two independent variables:
the radius r and the distance d between the centers.

A(d, r) = r2(q − sin q) with q = 2 arccos

(

d

2r

)

(2)

Equation 2 is directly derived by observing the area of the
sum of the areas of the two segments of circle which share
the same chord with central angle q. For a given value of
d, Equation 2 holds for any value of r ≥ d/2. When r =
d/2 the intersection is empty, while for r >> d the area of
the intersection approaches πr2 since the two circles tend to
overlap completely.

Since A grows monotonically with r and decreses mono-
tonically with d, function A(d, r) can be inverted to obtain d
from A and r. In the context of RGGs, this provides a way
for estimating di,j , i.e., the ED between nodes i and j, from
the estimates of A and r.

According to the model discussed in Section II-A, the
number of nodes found in a region of area A is a Poisson
random variable with mean λA. Hence the ratio between the
number of nodes in A (hereafter dented by NA) and the density
of the underlying homogeneous Poisson process λ can be
used as an area estimator. Moreover, as long as the nodes are
deployed over a unitary square region, node density is equal to
the overall number of nodes in the network (N ). In symbols:

Ã =
NA

λ
=

NA

N
(3)

In order to exploit such an estimator in our setting, we
need to find a way of counting the number of nodes in the
intersection of the two circles centered in i and j using only
the pairwise hop distances provided by matrix DH . Given a
RGG G, we call geodetic circle of radius K centered in i the
subset of the nodes of G which have geodetic distance from i
less or equal an K:

C(K)
i = {j ∈ G|DH(i, j) ≤ K} (4)

The number of nodes in the intersection between two
geodetic circles of radius K centered in i and j is then defined
as:

N
(K)
i,j = |C(K)

i ∩ C(K)
j | (5)

where |X | denotes the cardinality of X .

Even if we don’t know the actual position of the nodes of
G, from Equations 3 and 5 we can estimate the area of the
region which contains the nodes in the intersection between
the two geodetic circles, as:

Ã
(K)
i,j =

N
(K)
i,j

N
(6)

Referring to Figure 3, if we take Ã
(K)
i,j as an area estimator,

we need to know the corresponding value of r̃(K), defined as
the radius of the circle in the Euclidean plane which contains
the points of a geodetic circle of radius K .

While for K = 1 such a value is directly provided, by
construction, by the communication range of the nodes (r1 =
R), for k > 1 it needs to be estimated in its turn. There are
two methods that can be adopted to this purpose. The first
estimator, derived from the area of a circle, can be expressed
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c0 c1 c2 c3 c4
mean std mean std mean std mean std mean std

very short 0.0414 0.0004 0.0822 0.0004 0.0397 0.0004 0.0549 0.067 0.0416 0.0017

short 0.0450 0.0009 0.1401 0.0054 0.0811 0.0051 0.0712 0.0141 0.0458 0.0015

long 0.0510 0.0015 0.1993 0.0096 0.1428 0.0082 0.0822 0.0240 0.0522 0.0048

very long 0.0561 0.0045 0.2669 0.0153 0.1948 0.0121 0.1005 0.0357 0.0579 0.0093

all distances 0.0466 0.0008 0.1566 0.0053 0.1028 0.0022 0.0740 0.0198 0.0476 0.0020

corr with λ -0.3513 -0.6326 0.6931 -0.0931 -0.3156

corr with R 0.8829 -0.5146 0.7722 0.2023 0.6405

TABLE I. MEAN VALUE AND STANDARD DEVIATION OF THE ESTIMATION ERRORS MADE BY THE ED/HD COEFFICIENTS ON A SMAPLE OF 100 RGGS

MADE OF 400 NODES WITH COMMUNICATION RANGE R = 0.15.

as square root of the ratio between the average number of
nodes in C(K) and πN .

r̃(K) =

√

|C(K)|
πN

(7)

The second estimator can be obtained by using the most
accurate scaling factor introduced in Section II-B to convert
from HD to ED the value of K which eccedes the first hop:

r̃(K) = R + c4 · (K − 1) (8)

At this point, the ED between i and j can be numerically
computed as the value of d which satisfies equation 2 for r =

r̃(K) and A = Ã
(K)
i,j . Such an estimator is hereafter denoted by

d̃
(K)
i,j to retain the information about the size of the geodetic

circles used in the computation.

Even if, in principle, the estimate should work properly
for any value of K ≥ dH(i, j)/2, the value of K impacts
the accuracy of the estimator because of the combination of
two effects: the statistical significance (i.e., the confidence) of
the estimator increases for larger values of K thanks to the
larger number of nodes which fall into the intersection, the
risk of errors caused by boundary effects increases with the
value of K because of the higher probability of including in
te intersection regions which are outside the deployment area.

In order to reduce the incidence of boundary effects,
we take the minimum value of K which provides a non-
empty intersection between the circles centered in i and i:
K = ⌈dH(i, j)/2⌉.

III. EXPERIMENTAL RESULTS

This section provides comparative results obtained on a
representative set of RGGs by three different estimators of ED:
Algorithm 1) a linear estimator directly obtained as the product
between the GD and coefficient c4 introduced in Section II-B,
dH · c4, Algorithm 2) the estimator derived in Equation (8)

from the intersection of geodetic circles with radius K , d̃(K),
and Algorithm 3) the estimator proposed by Merkel et al.
[11] based on the shortest-path propagation of the distances
computed from the intersections between geodetic circles of
radius 1.

The three methods were implemented in Matlab and tested
by means of Monte Carlo simulations. Each experimental trial
entailed: the generation of a RGG with given parameters,
the application of the three methods to estimate all pairwise
distances, and the computation of the errors made by each

Fig. 4. Comparative results showing the mean absolute error (MAE) and
the mean absolute percentage error (MAPE) of the proposed estimators for
different values of the parameters used to generate the graphs.

method with respect to the actual values of the ED between
each pair of nodes. Estimation accuracy was evaluated both in
terms of mean absolute error (MAE) and in terms of mean
absolute percentage error (MAPE), as defined by Merkel et
al. [11].

Three parameters were used to generate the benchmarks:
the overall number of nodes (N ) which corresponds to the
density of the Poisson process λ, the communication range
(R), and the parameter ξ used to control the shadowing effect
according to Equation (2) in [13]. Hereafter we denote by ξ =
0 the ideal case of a UDG. For all other cases (ξ > 0) the
comunication range R has to be regarded as the distance at
which the probability of having an edge is 50%, while ξ is
proportional to the standard deviation of shadowing.

Figure 4 reports the results obtained by the three estimation
algorithms for different configurations of the parameters used
to generate the graphs. For each configuration (annotated on
the x axis) three bars are used to denote the performance
of the estimators. The first set of results, composed of 4
configurations, refer to the ideal case of UDG (shadowing =
0) with different number of nodes (N ) and communications
ranges (R). The second and third sets refer to incremental
values of shadowing corresponding to ξ = 0.5 and ξ = 1.0.

Both the proposed algorithms (namely, algorithms 1 and
2) outperform the previous approach (algorithm 3) for all
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Fig. 5. Comparative results obtained by taking into account only the central
nodes of the graphs used as benchmarks.

the configurations and according to both metrics (namely,
the MAE reported in the upper bar graph and the MAPE
reported in the lower one). While algorithms 1 and 2 are almost
equivalent in terms of MAE, Algorithm 2 is consistently more
accurate in terms of relative errors (MAPE). This is mainly due
to the discrete nature of Algorithm 1, which makes it inherently
unable to cope with the continuous distribution of Euclidean
distance. As expected, al the algorithms are less accurate when
applied to graphs affected by higher levels of shadowing.

In order to evaluate the impact of boundary effects, the
same metrics were computed considering, for each graph, only
the pairwise distances between nodes falling within a central
square of edge 0.5, while all the nodes (including those falling
in the outer frame) were considered to compute the intersection
areas in Algorithms 2 and 3. The results, reported in Figure
5, confirm the advantage of the proposed approaches. By
comparing Figures 5 with 4 we can observe that the restriction
to the central nodes is always beneficial in terms of absolute
errors, while sometimes the MAPE increases because of the
average reduction of the distances under estimation, which
appear at the denominator in the computation of percentage
errors.

IV. CONCLUSION

Statistical geometry provides a suitable framework for al-
gorithmic distance estimation in that it enables the exploitation
of all available information to minimize the effects of noise
and measurement errors. In this paper we applied statistical
geometry to derive new estimators of the pairwise distance
between the nodes of a graph from the topological information
contained in the connectivity matrix.

The experimental results achieved on a representative set of
synthetic benchmarks, including boundary effects and shadow-
ing, have shown that the proposed algorithms are consistently
more accurate than existing ones. The superior quality comes
from two statistical arguments. First, we make use of as
much data as possible to estimate each distance value, thus

compensating the inaccuracy of the original data (consisting
of hop distances in our setting). Second, we avoid error
propagation, by adopting a direct method to compute distances
between out-of-range nodes.
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