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Abstract Interval methods is one option for managing

uncertainty in optimization problems and in decision

management. The precise numerical estimation of coeffi-

cients may be meaningless in real-world applications,

because data sources are often uncertain, vague and

incomplete. In this paper we introduce a comparison index

for interval ordering based on the generalized Hukuhara

difference; we show that the new index includes the

commonly used order relations proposed in literature. The

definition of a risk measure guarantees the possibility to

quantify a worst-case loss when solving maximization or

minimization problems with intervals.
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1 Introduction

In the history of mathematical programming, the model

coefficients have mostly been treated as constant values;

however, an optimization problem is often defined in a

real-world framework and the values of the coefficients,

both in the objective function and the constraints, are

imprecise and uncertain, so they have to be modelled in a

proper way when approaching a decision problem.

Two main approaches can be identified in order to

model uncertainty. Stochastic programming was intro-

duced with Dantzig’s book published in the early 1960s

(Dantzig 1963) as the extension of linear and nonlinear

programming to decision models when coefficients behave

as random variables with known probability distributions.

A second approach is fuzzy programming, where the

constraints and objective function are modelled as fuzzy

sets, supposed that their membership functions are speci-

fied. Dubois analyzes the involved uncertainty theories in

Dubois (2010), where he underlines that fuzzy set theory

was not introduced by Zadeh (1965) in order to replace

probability theory, but rather to be engaged synergistically

in order to model the information in natural language.

Optimal decision making under fuzzy and possibilistic

uncertainty has over forty years of research starting in 1970

with the paper by Bellman and Zadeh (1970) and developed

with the paper of Tanaka et al. (1974) with a presentation by

Zimmermann (1987). Inuiguchi and Ramik (2000) contri-

bute this field with seminal papers, for example, the authors

review some fuzzy mathematical programming methods and

compare them with stochastic programming in portfolio

selection problems.

A well-established setting to model uncertainty and

imprecision is based on interval analysis, introduced by

Moore (1979) and further developed by many papers and

books. Furthermore, interval analysis is a step in handling

fuzzy arithmetic, via the well known LU representation of

Negoita and Ralescu (1975). A real (compact) interval A

consists of a nonempty set of real numbers (eventually a

single value) and is represented either by a lower-upper

notation A = [a-, a?], where a- = min A and a? = max

A, or by a midpoint-radius notation A ¼ ðba; aÞ in terms of
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its center (or midpoint) ba ¼ a�þaþ

2
and spread (or radius)

a ¼ aþ�a�

2
� 0:

A starting point in interval optimization is the ranking of

intervals and there exists an extended literature on this

topic [see e.g. the presentation in chapter 2 of Sengupta and

Pal (2009) and Wang and Kerre (2001a, b) for the fuzzy

case]. Our work will start with the order relations proposed

and analyzed by Ishibuchi and Tanaka (1990); they con-

sider the coefficients in mathematical programming prob-

lems as intervals and introduce five order relations for

ranking two intervals A and B (in minimization and in

maximization problems), based on the comparison of the

lower and upper values a-, a?, b-, b? and of the midpoint

and radius values ba; a and bb; b:

Optimization problems in which the coefficients of the

objective function and the constraints are interval numbers

have been investigated in a seminal paper by Tong (1994);

the interval of the solution is deduced by taking the max-

imum value range and minimum value range inequalities as

constraint conditions. Sengupta and Pal (2000), studied the

same problem and proposed the concept of the accept-

ability index; see also Sengupta and Pal (2009), an exten-

ded presentation of many contributions around the main

theme.

In Jiang et al. (2008), a nonlinear interval programming

problem is studied when coefficients are uncertain and the

key methodology adopted to solve it is to convert the

interval single-objective problem into a two-objective

problem, which considers both of the average value and the

robustness of the design. Ramik extensively worked on the

topic and in Ramik (2007) he introduces a class of fuzzy

optimization problems with objective function depending

on fuzzy parameters.

A recent extended overview of the different approaches

reported in the literature to deal with uncertainty in mul-

tiple objective linear models through interval program-

ming, can be found in Oliveira and Henggeler Antunes

(2007).

In optimization problems, the ordering of intervals is a

central aspect and the contribution of the paper goes into

the direction to define an appropriate comparison index that

indicates the possible relative positions of the two intervals

A, B; the proposed index is based on the so called gen-

eralized Hukuhara difference for intervals, introduced in

Markov (1977, 1979) (called the inner difference) and in

other papers and authors from different settings [the p-

difference in Plotnikova ( 2005) and Chalco-Cano et al.

(2011); the gH-difference in Stefanini (2010)]. As we will

see, the ratio cA;B ¼ a�b

ba�bb
(a real number when ba 6¼ bb and

possibly þ1 or �1 when ba ¼ bb) characterizes the five

order relations proposed in Ishibuchi and Tanaka (1990)

and is useful to define a measure of risk connected with the

choice of one of two intervals A and B when they are

partially overlapping.

The paper is organized as follows: in Sect. 2 the basic

elements of interval mathematics are introduced. The

comparison index based on the gH-difference is defined in

Sect. 3 and its basic properties are illustrated. Its applica-

tion to optimization problems with interval coefficients are

shown In Sect. 4, we show that the comparison index

allows the definition of a risk measure and some examples

are given. In Sect. 5, we discuss the use of the comparison

index in the context of interval inequalities and we intro-

duce a new partial order for intervals in terms of two

parameters that control two kinds of possible risks when

the intervals overlap. Conclusions and some challenging

ideas are collected in the final section.

2 Interval arithmetic

In the mathematics of intervals (see Dubois and Prade

1980, 2000; Zadeh 1965; Moore 1979; Moore et al. 2009),

the ranking of intervals is deduced with an order relation.

Given an interval A ¼ a�; aþ½ � with a- B a?, it is possible

to represent A in terms of the following values:

ba ¼ aþ þ a�

2
; a ¼ aþ � a�

2
ð1Þ

and we obtain the so called midpoint-radius representation

A ¼ ba; að Þ: It holds a� 0 and we have that the following

equalities are true:

a� ¼ ba � a; aþ ¼ ba þ a: ð2Þ

In the paper, the two notations A ¼ a�; aþ½ � or A ¼ ðba; aÞ
are used for the same interval A. The set of real compact

intervals is usually denoted by IR or simply by I:

The fundamentals of interval arithmetic are given for

A ¼ a�; aþ½ � ¼ ðba; aÞ and B ¼ b�; bþ½ � ¼ ðbb; bÞ:

Aþ B ¼ a� þ b�; aþ þ bþ½ � ¼ ðba þ bb; aþ bÞ
A� B ¼ a� � bþ; aþ � b�½ � ¼ ðba � bb; a� bÞ

If k is a scalar then:

kA ¼ min ka�; kaþf g;max ka�; kaþf g½ � ¼ ðkba; kj jaÞ:

The central notion in the paper is the generalized

Hukuhara difference, introduced by several authors

with different names [inner difference in Markov (1977,

1979); gH-difference in Stefanini (2010); p-difference in

Plotnikova (2005), Chalco-Cano et al. (2011)] and defined

as
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A�gH B ¼ min a� � b�; aþ � bþf g;½
max a� � b�; aþ � bþf g� ¼ ðba � bb; a� b

�

�

�

�Þ:

The gH-difference satisfies several properties:

1. A�gH A ¼ 0f g;
2. ðiÞ Aþ Bð Þ �gH B ¼ A; ðiiÞ A�gH ðA� BÞ ¼ B; ðiiiÞ

A�gH ðAþ BÞ ¼ �B;

3. A�gH B exists if and only if B�gH A and ð�BÞ �gH

ð�AÞ exist and A�gH B ¼ ð�BÞ �gH ð�AÞ ¼
�ðB�gH AÞ;

4. In general, B - A = A - B does not imply A = B;

but A�gH B ¼ B�gH A ¼ C if and only if C = -C

and C ¼ 0f g if and only if A = B;

5. If B�gH A exists then either Aþ B�gH A
� �

¼ B or

B� ðB�gH AÞ ¼ A and both equalities hold if and

only if B�gH A is a singleton set;

6. If B�gH A ¼ C exists, then for all D either ðBþ
DÞ �gH A ¼ C þ D or B�gH ðAþ DÞ ¼ C � D:

Given an interval A ¼ a�; aþ½ � ¼ ba; að Þ; we define the

(modified) p-norm Ak kp¼ baj jpþapð Þ
1
p; Ak k1¼ maxfjbaj; ag

and dH A;Bð Þ ¼ A�gH B
�

�

�

�

1:

In order to compare intervals, several (partial) orders

have been introduced for intervals A ¼ a�; aþ½ � ¼ ba; að Þ
and B ¼ b�; bþ½ � ¼ ðbb; bÞ [see Ishibuchi and Tanaka (1990)

and, e.g., Jiang et al. (2008); Sengupta and Pal (2009)]:

– Upper versus Lower BUL order:

A� UL B() aþ � b�;

this order relation requires that A and B be essentially

separated, i.e. a B b for all a 2 A and all b 2 B; clearly,

the BUL order does not present problems in its interpreta-

tion: in minimization any possible value in A is preferred to

all values of B and, in maximization any value of B is

preferred to all values of A.

Some attention is required if the (internal parts of the)

intervals overlap: in this situation, the comparison is not

immediate and several order relations may be considered.

– Lower and Upper BLU order:

A� LU B() a� � b� and aþ � bþ ð3Þ

– Center and Max-Width � CWM
order:

A� CWM
B() ba� bb and a� b ð4Þ

– Center and min-Width � CWm
order:

A� CWm
B() ba� bb and a� b ð5Þ

– Lower and Center BLC order:

A� LCB() ba� bb and a� � b� ð6Þ

– Upper and Center BUC order:

A� UCB() ba� bb and aþ � bþ: ð7Þ

When the five inequalities are strict then they can be

defined by adding the condition A = B (i.e. ba 6¼ bb or

a 6¼ b).

The following properties hold.

Proposition 1 Let A ¼ a�; aþ½ � ¼ ba; að Þ and B ¼
b�; bþ½ � ¼ ðbb; bÞ be two intervals. Then

1. (A BLU B and B BCWm A) if and only if A = B;

2. (A BLU B and B BCWM A) if and only if A = B;

3. A BLC B if and only if (A BLU B or A BCWM B);

4. A BUC B if and only if (A BLU B or A BCWm B);

5. If A � CWM
then A BLCB;

6. If A � CWm
then A BUC B;

7. A BLU B if and only if (A BLC B and A BUC B).

Remark 2 If ba ¼ bb then it is impossible to have A \LU B.

If ba\bb and a ¼ b; then A \LU B.

It is well known that the partial order relations above

(3)–(7), each define a complete lattice structure ðI; � OÞ
on the space of real intervals I; where O 2
fLU; LC;UC;CWM;CWmg (see e.g. Kaburlasos 2006;

Kehagia 2011; Papadakis and Kaburlasos 2010) (Fig. 1).

Several authors have introduced interval-based comparison

indices to help in decision making with interval impreci-

sion or uncertainty; a comparison index is designed as a

tool to help in choosing one of two or more intervals,

representing the uncertain or imprecisely defined outcome

of a decision problem. For a recent presentation and an

extended overview of this topic, see Sengupta and Pal

(2009, in particular, chapters 1 and 2).

3 A comparison index based on the gH-difference

A promising feature for a new comparison index for

intervals is that it includes the commonly used order rela-

tions. We suggest a comparison index (a preliminary study

is in Guerra and Stefanini 2011) based on the generalized

Hukuhara difference, where the notation for the corre-

sponding interval A�gH B is

½ A�gH B
� ��

; A�gH B
� �þ�

in the standard interval notation, or

dA�gH B
� �

; A�gH B
� �

� �

in the midpoint-radius notation.

A good property for the gH-difference is that it always

exists for any pairs of intervals A, B and is useful to
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analyze the basic order relations in terms of arithmetic

interval operations. Some properties relating the orders and

the gH-difference are immediate to prove.

Proposition 3 Consider two intervals A and B; then

1. A� LU B() A�gH B
� �þ � 0;

2. If (A � CWM
B, or A � CWm

B, or A BLC B, or A BUC

B) then A�gH B
� �� � 0 and dA�gH B� 0:

We suggest the following comparison index, based on

gH-difference:

Definition 4 Given two distinct intervals A = B, the gH-

comparison index of order p [ 0 is defined as

CIpðA;BÞ ¼
dA�gH B

A�gH B
�

�

�

�

p

ð8Þ

where A�gH B is the gH-difference, V A, B.

The main properties of the index are the following.

Proposition 5 Given two distinct intervals A = B, we

have V p [ 0

1. CIpðA;BÞ 2 �1; 1½ �;
2. CIpðA;BÞ ¼ �CIpðB;AÞ;
3. CIpðA;BÞ ¼ 0() ba ¼ bb;

4. CIpðA;BÞ
�

�

�

� ¼ 1() ða ¼ b and ba 6¼ bbÞ,
5. CIpðA;BÞ� 0() ba� bb;
6. An invariance of scale holds:

CIpðkA; kBÞ ¼ CIpðA;BÞ if k [ 0

�CIpðA;BÞ if k\0;

�

7. CIp(A ? C, B ? C) = CIp(A, B).

Proof Properties from (1) to (6) are immediate. For (7) it

is sufficient to consider that the following equality holds:

Aþ Cð Þ �gH Bþ Cð Þ ¼ A�gH B
� �

(see Stefanin 2010).h

In this paper, we will investigate the comparison index

with p = 2; we denote it by CI(A, B), and we write, from

Definition 4,

CIðA;BÞ ¼
dA�gH B

A�gH B
�

�

�

�

2

¼ ba � bb
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðba � bbÞ2 þ ða� bÞ2
q :

Assuming that ba 6¼ bb; we can define the ratio

cA;B ¼
a� b

ba � bb
ð9Þ

and write the following expression for CI(A, B):

CIðA;BÞ ¼

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þðcA;BÞ2
p if ba [ bb

0 if ba ¼ bb
�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þðcA;BÞ2
p if ba\bb

*

: ð10Þ

Remark 6 We can define the parameter cA,B also in the

case where ba ¼ bb; by assuming cA;B ¼ þ1 if a [ b and

cA;B ¼ �1 if a\b; finally, if A = B, we define cA,B = 0.

Remark 7 For the parameter c A,B the following properties

are immediate:

1. an invariance of scale holds:

ckA;kB ¼
cA;B if k [ 0

�cA;B if k\0;

�

2. cAþC;BþC ¼ cA;B:

The parameter cA,B can be determined for all the pos-

sible positions of two intervals A ¼ ba; að Þ ¼ a�; aþ½ � and

B ¼ ðbb; bÞ ¼ b�; bþ½ � (see figure 2.1 in Sengupta and Pal

2009) and in particular it characterizes how the two inter-

vals A and B overlap (Fig. 2).

Case 1 is an unambiguous one and the strict dominance

is verified: B BLU A and ba � bb� aþ b: Here we have

cA;B

�

�

�

�� 1:

BA LU≤
AB LU≤

AB
mC W≤

AB
MC W≤

BA
mC W≤

BA LC≤

AB UC≤

BA UC≤

BA
MC W≤ AB LC≤

ba ˆˆ −

ba −

Fig. 1 Representation of the five (partial) order relations in terms of

the mid-point and radius of the intervals. The horizontal axis

represents the midpoint difference ba � bb; while the vertical axis

represents the radius difference a� b: In the ðba � bb; a� bÞ plane, the

regions where the five orders A BO B are valid, with O 2
fLU; LC;UC;CWM ;CWmg are bounded by the axes ba � bb and

a� b and the bissectrices a� b ¼ ba � bb and a� b ¼ �ðba � bbÞ:
Consider that, in all cases, A BO B requires that ba � bb� 0 (left of
vertical axis). In the figure, also the inverse (dual) orders

A� O B() B� O A are represented (right of the vertical axis)
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In cases from 2 to 5 the role of uncertainty is crucial. In

case 2 we have b- B a- and b? B a? or equivalently

B BLU A.

Case 3 has to be split up into the two sub-cases 30 and 300

depending on the relative positions of the midpoints. In

case 30 we have ba [ bb and 1 ? cA,B B 0. In case 300 we

have ba\bb and 1 - cA,B B 0.

Also the case 4 has to be split up into the two sub-cases

40 and 400 depending on the relative positions of the mid-

points. In case 40 we have ba [ bb and 1 ? cA,B B 0. In case

400 we have ba\bb and 1 - cA,B B 0.

In case 5 we have a- B b- and a? B b? or equivalently

A BLU B.

Case 6 is again an unambiguous case and the strict

dominance is verified: A BLU B and bb � ba� aþ b: Here

we have again, as in case 1, cA;B

�

�

�

�� 1:

In conclusion we state then when ba 6¼ bb and cj j � 1 then

the decision can be based on the values ba and bb because no

risk is produced; on the other hand, when cj j[ 1 then a

more careful analysis has to be carried out because a risky

situation arises.

In terms of cA,B, the five order relations of Sect. 2 can be

characterized as follows:

Proposition 8 Let A ¼ a�; aþ½ � ¼ ba; að Þ and B ¼
b�; bþ½ � ¼ ðbb; bÞ be two intervals and suppose that ba\bb:

Then it holds that

1. A\LU B() cA;B 2 �1; 1½ �;
2. A\CWM

B() cA;B� 0;

3. A\CWm
B() cA;B� 0;

4. A\LC B() cA;B� 1;

5. A\UC B () cA;B� � 1:

Proof For (1) we have A BLU B if and only if ba �
a� bb � b; ba þ a� bb þ b; i.e. ba � bb� a� b; a� b� bb �
ba; considering that ba � bb\0; we obtain a�b

ba�bb
� 1;

� a�b

ba�bb
� 1: On the other hand, if �1� a�b

ba�bb
� 1 and ba �

bb\0; we have a� b� bb � ba; a� b� ba � bb and we

obtain a? B b?, b- C a-.

For (2) we have A BCWM B if and only if ba� bb; a� b;

considering that ba � bb\0; this is equivalent to a�b

ba�bb
� 0:

For (3) we have A BCWm B if and only if ba� bb; a� b;

considering that ba � bb\0; this is equivalent to a�b

ba�bb
� 0:

For (4) we have A BLC B if and only if ba � a� bb �
b; ba� bb; considering that ba � bb\0; we obtain a�b

ba�bb
� 1:

On the other hand, if a�b

ba�bb
� 1 and ba � bb\0; we have a�

b� ba � bb and we obtain b- C a-.

For (5) we have A BUC B if and only if ba� bb; ba þ
a� bb þ b; considering that ba � bb\0;we obtain a�b

ba�bb
� � 1:

On the other hand, if�1� a�b

ba�bb
and ba � bb\0; we also have

a� b� bb � ba; i.e., a? B b?. h

In the case p = 2 and assuming ba 6¼ bb; the comparison

index in (8) is such that

CI2 A;Bð Þ ¼ 1

1þ ðcA;BÞ2
2 0; 1½ �

and, for any interval A and B,

ð1þ c2
A;BÞCI2 A;Bð Þ ¼ 1:

Remark 9 It is possible to define a comparison index for

fuzzy intervals, using the a-cut representation. If u and v are

two fuzzy intervals with a-cuts (with the obvious meaning

of the symbols applied level-wise) ½u�a ¼ u�a ; u
þ
a


 �

¼
bua; uað Þ and ½v�a ¼ v�a ; v

þ
a


 �

¼ bva; vað Þ; respectively, we

consider

CIp;aðu; vÞ ¼ CIpð½u�a; ½v�aÞ p [ 0; a 2 ½0; 1�

and, e.g., any possibilistic average

CIpðu; vÞ ¼
Z

1

0

uðaÞCIp;aðu; vÞda; p [ 0

can be used with a weighting function u : ½0; 1� �! ½0; 1�
such that

Z
1

0

uðaÞda ¼ 1:

B

A
1.

B

A
2.

B

A
3’. â

B

A
3’’. â

b̂

b̂

A

B

B

4’. â

A
4’’. â

b̂

b̂

B

A
5.

A

B

6.

Fig. 2 The eight possible positions of two real intervals A and B. In

the extreme cases 1 and 6, the two intervals do not overlap; cases 2
and 5 present a partial overlapping; cases 3 and 4 present full

inclusion (A � B in case 3 and B � A in case 4). Cases 3 and 4 are

divided into two subcases to distinguish when ba is less than bb or ba is

greater than bb
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Remark 10 It is interesting to observe that the squared

comparison index CI2 A;Bð Þ is a Cauchy type function. If

ba � bb and a� b are uncorrelated random variables from a

normal distribution N(0, r2), then the marginal probability

density function of the ratio cA;B ¼ a�b

ba�bb
is a Cauchy

probability density function with median equal to zero and

shape factor equal to one, i.e., 1
p CI2

2 A;Bð Þ ¼ pðcA;B; 1Þ
where

pðx; aÞ ¼ a

p a2 þ x2ð Þ

is the Cauchy density function. Using the properties of

p(x; a), it follows that 1
2

is the marginal probability to

obtain a�b

ba�bb
2 ½�1; 1�; i.e., the probability to have A BLU

B, when ba � bb; a� b 2 N 0; r2ð Þ are randomly generated;

analogously, the probability to have A BLC B is 3
4
;

the probability to have A BUC B is 3
4
; the probability to

have A� CWM
B is 1

2
and the probability to have A� CWm

B

is 1
2
:

4 Comparison index and optimization

We consider the choice between two intervals A ¼
a�; aþ½ � ¼ ba; að Þ and B ¼ b�; bþ½ � ¼ ðbb; bÞ and we will

prefer to choose A instead of B if ‘‘A is smaller than B’’ (for

a minimization) or if ‘‘A is greater than B’’ (for a

maximization).

The notions of ‘‘smaller than’’ and ‘‘greater than’’ are

strictly related to the order relation we have in mind to rank

intervals; in particular, with respect to the (partial) order

we have selected, two intervals may not be comparable and

in such situations it is not immediate to chose what interval

will be the best one.

This is true, in particular, if the internal parts of the

intervals overlap. In fact, if we are minimizing and

a? B b-, then interval A (as a whole) is smaller than

interval B because a B b for all possible values a 2 A and

b 2 B; in this case, A is commonly chosen for the mini-

mum, or B for the maximum. If the intervals overlap then

the choice will depend on their relative position and the

availability of some criterion is necessary to help for a final

decision.

The comparison index CI A;Bð Þ; and in particular the

ratio cA;B ¼ a�b

ba�bb
; can be helpful in the framework of a

typical optimization problem with interval-valued objec-

tive function.

In the rest of the paper, we make use of the following

simple equalities (if ba 6¼ bb):

a� � b� ¼ ðba � bbÞ � ða� bÞ

¼ ðba � bbÞ 1� a� b

ba � bb

� 

¼ ðba � bbÞð1� cA;BÞ

and

aþ � bþ ¼ ðba � bbÞ þ ða� bÞ
¼ ðba � bbÞð1þ cA;BÞ:

4.1 The case of minimization

Using the interval orders described above and generally

adopted in interval minimization, we will in advance choose

A with respect to B if ba\bb; as we have discussed, possible

ambiguities appear when the two intervals overlap.

We can use the ratio cA;B ¼ a�b

ba�bb
to define a ‘‘risk’’

measure, when we choose A instead of B only on the basis

of ba\bb: With respect to the midpoint values ba and bb; the

quantity bb � ba [ 0 is called the mid-gain associated to the

choice of A. If the difference bb � ba is high, then we

‘‘expect’’ a good choice, but clearly all depends on how the

two intervals eventually overlap.

Assume a positive mid-gain bb � ba [ 0 and consider the

whole intervals; we distinguish the following cases:

1. a- B b-; in this case, we have both A \LC B and

A \CWM B and for any value b 2 B there exist

elements a 2 A such that a \ b, i.e. any element in B

is worse than some elements of A. In this case, we have

a� � b�

ba � bb
¼ 1� cA;B [ 0:

2. a- [ b-; in this case, the relations A \LC B and

A� CWM
are not valid and some values b 2 B are better

than all elements of A; the positive difference a- - b-

measures the possible worst-case loss, and it is

interesting to compare it with the mid-gain. The ratio

of worst-case loss to mid-gain is given by

a� � b�

ba � bb
¼ 1� cA;B\0:

3. a? B b?; in this case, we have both A \UC B and

A� CWm
and some value b 2 B is greater than all

elements a 2 A: In this case, we have

aþ � bþ

ba � bb
¼ 1þ cA;B [ 0:

4. a? [ b?; in this case, the relations A \UC B and

A� CWm
are not valid and some values a 2 A are worse

than all elements of B; the positive difference a? - b?
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measures the possible worst-case loss, and we compare

it with the mid-gain. The ratio worst-case loss to mid-

gain is now given by

aþ � bþ

ba � bb
¼ 1þ cA;B\0:

Considering all the possible situations, we deduce that a

positive worst-case loss appears in cases 2 and 4, i.e., when

1 - cA,B \ 0 or when 1 ? cA,B \ 0.

If 1 - cA,B \ 0, as soon as a- - b- becomes more

negative, the term 1 - cA,B gives the relative amount of the

possible loss with respect to the mid-gain; for example, if

1 - cA,B = - 1 (i.e. cA,B = 2) the possible loss equals the

mid-gain. If the parameter cA,B increases then the possible

relative loss increases.

If 1 ? cA,B \ 0, as soon as a? - b? becomes more

positive, the term 1 ? cA,B gives the relative amount of the

possible loss with respect to the mid-gain; for example, if

1 ? cA,B = -1 (i.e. cA,B = -2) the possible loss equals

the mid-gain.

In conclusion, we have the following interpretation of

the parameter cA,B, and consequently of the comparison

index CI A;Bð Þ:

• If ba\bb and -1 B cA,B B 1, no worst-case loss appears

and we have A \LU B.

• If ba\bb and cA,B [ 1, a worst-case loss appears on the

left side of the intervals (i.e. some values of B are better

than all values of A); the quantity 1 - cA,B \ 0 gives a

measure of this first kind of risk.

• If ba\bb and cA,B \ -1, a worst-case loss appears on

the right side of the intervals (i.e. some values of A are

worse than all values of B); the quantity 1 ? cA,B \ 0

gives a measure of this second kind of risk.

4.2 The case of maximization

In an analogous way as in minimization, we will essentially

choose A with respect to B if ba [ bb and the ratio cA;B ¼
a�b

ba�bb
can be used to define a ‘‘risk’’ measure, when we

choose A instead of B on the basis of the inequality ba [ bb:

The results for a maximization problem can be

rephrased; with respect to the midpoint values ba and bb; the

quantity ba � bb [ 0 is called the mid-gain associated to the

choice of A. In some sense, the results are dual with respect

to the ones obtained in the case of minimization.

Assuming a positive mid-gain ba � bb [ 0 we distinguish

the following cases:

1. a- \ b-; in this case, there are possible values a 2 A

that are worse than all values b 2 B; i.e., there exists a

worst-case loss a- - b- \ 0. The ratio of worst-case

loss to mid-gain is

a� � b�

ba � bb
¼ 1� cA;B\0:

2. a- C b-; in this case, some values b 2 B are worse

than all elements of A; there is no worst-case loss and

a� � b�

ba � bb
¼ 1� cA;B [ 0:

3. a? \ b?; in this case, all elements a 2 A are worse

than some elements of B; the negative difference

a? - b? measures the possible worst-case loss, and

the ratio of worst-case loss to mid-gain is given by

aþ � bþ

ba � bb
¼ 1þ cA;B\0:

4. a? C b?; in this case, there are elements a 2 A that are

better than all values in B and there is no worst-case

loss; we have

aþ � bþ

ba � bb
¼ 1þ cA;B [ 0:

We deduce that a positive worst-case loss appears

in cases 1 and 3, i.e., when 1 - cA,B \ 0 or when

1 ? cA,B \ 0. We have the following interpretation of the

term cA,B:

• If ba [ bb and -1 B cA,B B 1, no worst-case loss

appears.

• If ba [ bb and cA,B [ 1, a worst-case loss appears on the

left side of the intervals (i.e. some values of A are worse

than all values of B); the quantity 1 - cA,B \ 0 gives a

measure of this kind of risk.

• If ba [ bb and cA,B \ -1, a worst-case loss appears on

the right side of the intervals (i.e. some values of B are

better than all values of A); the quantity 1 ? cA,B \ 0

gives a measure of this kind of risk.

4.3 Definition of a risk measure and some examples

The discussion for the minimization and maximization

problems brings out some considerations: we may possibly

face two kinds of risk, due to the possibility of a worst-

case loss if we choose on the basis of the midpoint values

ba and bb:

Definition 11 A type I risk is defined to be the possible

worst-case loss when we choose A instead of B, and there exist

elements in B which are better than all elements of A; this

happens in a minimization problem, when 1 - cA,B \ 0; and

happens in a maximization problem when 1 ? cA,B \ 0.
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Definition 12 A type II risk is defined to be the possible

worst-case loss when we choose A instead of B, and there

exist elements in A which are worse than all elements of

B; this happens in a minimization problem, when 1 ?

cA,B \ 0; and happens in a maximization problem when

1 - cA,B \ 0.

The two definitions are illustrated in Fig. 3: the two

types of risk for optimization problems are represented

from top to bottom.

Definition 13 Given two intervals A ¼ a�; aþ½ � ¼ ba; að Þ
and B ¼ b�; bþ½ � ¼ ðbb; bÞ with ba 6¼ bb; we define the fol-

lowing risk measure R(A, B) relative to the comparison of

A and B:

RðA;BÞ ¼ minf 1� cA;B

� �

�; 1þ cA;B

� �

�g ð11Þ

where (x)- is the negative part of x 2 R; defined by

ðxÞ� ¼
�x if x\0

0 if x� 0:

�

We always have R(A, B) = R(B, A) C 0. As a

function of cA,B, the risk measure R(A, B) is null if and

only if cA;B 2 ½�1; 1�; and increases as soon as cA,B goes far

from [-1,1].

Proposition 14 Consider two intervals A and B such that

ba 6¼ bb: With reference to the defined comparison index

CI(A, B), we have

RðA;BÞ ¼ 0 if and only if CIðA;BÞ 2 � 1
ffiffiffi

2
p ;

1
ffiffiffi

2
p

� �

:

Proof We have seen that CI2ðA;BÞ ¼ 1
1þc2

A;B

so that cA;B 2

½�1; 1� if and only if CI2ðA;BÞ 2 ½1
2
; 1� and the conclusion

follows immediately. h

Remark 15 It is important to remark that, for the same

minimization (or maximization) problem, the two types of

risk cannot coexist; in fact, it is impossible that both

1 ? cA,B \ 0 and 1 - cA,B \ 0 hold simultaneously for the

same intervals A and B.

With the definition of the risk measure R(A, B) and

taking into account that only one of the two values

1 ? cA,B or 1 - cA,B can be negative, we have the fol-

lowing result for the total worst-case loss, when we choose

A or B in terms of the values ba and bb:

For a minimization, we choose A if ba\bb and, if

R(A, B) [ 0, the worst case loss is

LminðA;BÞ ¼ ðbb � baÞRðA;BÞ[ 0 ð12Þ

resulting from one of two possible worst-cases losses

– a type-I loss, if 1 - cA,B \ 0;

– a type-II loss, if 1 ? cA,B \ 0.

For a maximization, we choose A if ba [ bb and, if

R(A, B) [ 0, the worst case loss is

LmaxðA;BÞ ¼ ðba � bbÞRðA;BÞ[ 0 ð13Þ

resulting from one of two possible worst-cases losses

– a type-I loss, if 1 ? cA,B \ 0;

– a type-II loss, if 1 - cA,B \ 0.

Given then two intervals A and B, it is preliminary

possible to state from the value of cA,B how relevant may be

the risk connected with the choice.

A possible meaningful interpretation of the worst case

loss LminðA;BÞ ¼ ðbb � baÞRðA;BÞ[ 0 can be given in a

problem of a investment choice between two stocks that

have different uncertainties. As usual, in financial markets,

the favorable source of uncertainty is the volatility. Sup-

pose A is a stock and the analysis of the last two years time

series of prices enable us to say that its returns move in the

interval �3 %; 15 %½ �: The same analysis for a stock B

shows that the returns move in a range �8 %; 24 %½ �
revealing uncertainty in the period under consideration. A

decision between the two stocks has to be taken. The mid-

point forms are A = (6;9), B = (8;16).

The following value can be computed: 1� cA;B ¼ 1�

a�b

ba�bb
¼ ba�bb�a�b

ba�bb
¼ a��b�

ba�bb
¼ �3þ8

6�8
¼ �5

2
\0 and it can be

MINIMIZATION MAXIMIZATION

B

A
risk type-I

B

A
risk type-I

B

A
risk type-II

B

A
risk type-II

Fig. 3 In a decision process we

indicate the interval values that

produce risk type-I or risk
type-II in a minimization or

maximization problem
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interpreted as the possibility to choose A instead B loosing

2 % in the midpoint value of the returns in order to avoid a

worst case risk type-I loss of -5 %. In fact, all values of B

between -8 % and -3 % are returns that we prefer to

avoid also if the mid-point ba is smaller than bb:

The value of cA,B contributes in the possibility to take a

good decision, depending on my personal aversion or

propensity to risk or on my actual believes or feelings.

4.4 The case of intervals with equal midpoint values

As we have seen, the parameter cA,B is not well defined when

we have ba ¼ bb and a 6¼ b; i.e., when we have to compare A

and B on the basis of the uncertainty induced by the differ-

ence in the radius. In the following discussion, we will see

that the parameter cA,B may help in the analysis of this critical

case. We will see the risk associated to the choice of A

against B, when it is supposed we have a preference for A.

In a minimization problem, the choice of A can be

viewed as the result of the comparison of B with a (small)

modification A0e ¼ ðba � e; aÞ obtained by reducing the

midpoint value of A with a small e [ 0: For all values of

e [ 0, the ratio

c0e ¼ cA0e;B
¼ a� b

�e

is well defined and we have the following risk factors

1� c0e ¼
a� bþ e

e
; 1þ c0e ¼

b� aþ e
e

It follows that, for small e [ 0;

ð1� c0e\0 and 1þ c0e [ 0Þ if and only if a\b

ð1� c0e [ 0 and 1þ c0e\0Þ if and only if a [ b

and we conclude that, if we choose A in minimization, then

a risk of type I appears if a\b and a risk of type II appears

if a [ b:

In a maximization problem, the choice of A can be

viewed as the result of the comparison of B with a (small)

modification A00e ¼ ðba þ e; aÞ obtained by increasing the

midpoint value of A with a small e [ 0: The ratio c00e ¼
cA00e ;B

¼ a�b
e is well defined and, for small e [ 0; we obtain

ð1� c00e [ 0 and 1þ c00e \0Þ if and only if a\b

ð1� c00e \0 and 1þ c00e [ 0Þ if and only if a [ b

and we conclude that, if we choose A in maximization, then

a risk of type I appears if a\b and a risk of type II appears

if a [ b:

The following example is taken from Sengupta and Pal

(2009).

Example 16 Compare A = (7;5) to B1 = (13;1), B2 =

(10;1), B3 = (7;1), B4 = (4;1), B5 = (1;1) for minimiza-

tion or maximization. Denoting cA,B_i = ci; we obtain c1 ¼
� 2

3
; c2 ¼ � 4

3
; c3 ¼ 9= ; c4 ¼ 4

3
; c5 ¼ 2

3
so that the risk fac-

tors are 1� c1 ¼ 5
3

[ 0; 1þ c1 ¼ 1
3

[ 0; 1� c2 ¼ 7
3

[ 0;

1þ c2 ¼ � 1
3
\0; 1� c4 ¼ � 1

3
[ 0; 1þ c4 ¼ 7

3
[ 0; 1�

c5 ¼ 1
3

[ 0; 1þ c5 ¼ 5
3

[ 0 and the comparisons are in the

following Table 1.

Remark 17 In the case ba ¼ bb (and a 6¼ b) any choice A or

B for minimization or maximization has a risk. A risk of

type I appears if we choose the smallest interval (and some

elements in the biggest interval are better); a risk of type II

appears if we choose the biggest interval.

5 The comparison index for interval inequalities

The comparison index can be used also in situations where

a variable interval of the form Ax is compared with a fixed

interval B.

Example 18 We consider x C 0 and we compare

Ax = [10x, 20x] = (15x; 5x) to B = [5, 35] = (20; 15);

the risk factors are

1� cAx;B ¼
2x� 1

3x� 4
and 1þ cAx;B ¼

4x� 7

3x� 4
;

If we are minimizing, we have bax\bb when 3x - 4 \ 0,

i.e., when x 2 ½0; 4
3
½; if 0� x\ 1

2
we have 1 - cAx,B [ 0; if

Table 1 Comparison of intervals for the selection of minimum and maximum
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1
2
\x\ 4

3
we have 1 - cAx,B \ 0; and 1 ? cAx,B [ 0 for all

x 2 ½0; 4
3
½. It follows that a risk of type I appears for values

of x 2 1
2
; 4

3

� 


with Lmin = 10x - 5; and there is no risk for

all x 2 ½0; 1
2
½: If we are maximizing, we have bax [ bb when

3x - 4 [ 0, i.e., when x 2 � 4
3
;þ1½; if 4

3
\x\ 7

4
we have

1 ? c Ax,B \ 0; if x [ 7
4

we have 1 ? c Ax,B [ 0; and 1 - c

Ax,B [ 0 for all x 2� 4
3
;þ1½: It follows that a risk of type I

appears for values of x 2� 4
3
; 7

4
½ with Lmax = 10x - 5; and

there is no risk for all x 2� 7
4
;þ1½:

Example 19 We consider x1,x2 C 0 and we are interested to

analyze the risk of the inequality ‘‘A(x1,x2) \ B’’ (minimi-

zation), where A(x1, x2) = (500x1 ? 100x2, 20x1 ? 15x2)

and B = (220;10). We have baðx1; x2Þ ¼ 500x1 þ 100x2 and

bb ¼ 220; in terms of midpoints, the inequality requires

500x1 ? 100x2 \ 220. We have cAðx1;x2Þ; B¼ 20x1þ15x2�10
500x1þ100x2�220

,

so that 1� cAðx1;x2Þ; B¼ 480x1þ85x2�210
500x1þ100x2�220

and 1þ cAðx1;x2Þ; B ¼
520x1þ115x2�230
500x1þ100x2�220

: It follows that there is a risk of type I with

Lmin = 480x1 ? 85x2 - 210 if x1,x2 C 0 belong to the

polytope defined by the inequalities

500x1 þ 100x2\220

480x1 þ 85x2 [ 210;

�

there is a risk of type II with Lmin = 520x1 ? 115x2 - 230

if x1,x2 C 0 belong to the polytope defined by inequalities

500x1 þ 100x2\220

520x1 þ 115x2 [ 230;

�

there is no risk if x1, x2 C 0 belong to the polytope defined

by inequalities

500x1 þ 100x2\220

480x1 þ 85x2� 210

520x1 þ 115x2� 230:

8

<

:

As we have seen, the two possible worst case losses are

related to the value of c. Considering for simplicity x C 0,

the value of c for the inequality Ax \ B is:

cAx;B ¼
ax� b

bax� bb
:

In order to control the extent of the possible worst case loss

for the two types of risk, we can require that the value cAx,B be

controlled for the type I risk and/or for the type II risk. To do

this, we fix two values cm \ 0 and cM [ 0 and we require that

valid values of x satisfy bax\bb and cm B cAx,B B cM.

The two types of risk are eliminated as soon as cm 2
�1; 0½ � and cM 2 0; 1½ �: The values 1 - cM and 1 ? cm, if

negative, give the relative worst case loss with respect to

bax� bb (see Eqs. 12, 13).

Definition 20 Given two intervals A ¼ a�; aþ½ � ¼ ba; að Þ
and B ¼ b�; bþ½ � ¼ ðbb; bÞ and cm \ 0, cM [ 0 we define

the following (strict) order relation, denoted \cm, cM,

A\cm;cM
B() ba\bb

cm� cA;B� cM

�

ð14Þ

i.e.

A\cm;cM
B()

ba\bb
cM ba � bb
� �

� a� b

cm ba � bb
� �

� a� b

8

>

>

<

>

>

:

It is immediate to see that the relation \cm, cM with

cm \ 0, cM [ 0 is antisymmetric and transitive;

furthermore, there are specific values of cm and cM which

make the order relation (14) equivalent to each order

relations LU, LC, UC, CWM, CWm.

Proposition 21 Let A and B be two intervals with ba\bb;

then it holds that

1. A\LU B() A\cm;cM
B with cm = - 1 and cM = 1,

2. A\CWM
B() A\cm;cM

B with cm ¼ �1 and cM = 0,

3. A\CWm
B() A\cm;cM

B with cm = 0 and

cM ¼ þ1;
4. A\LC B() A\cm;cM

B with cm ¼ �1 and cM = 1,

5. A\UC B() A\cm;cM
B with cm = -1 and

cM ¼ þ1:

By varying the two parameters cm \ 0, cM [ 0, we

obtain a continuum of strict (partial) order relations for

intervals. The set of real intervals I with the order rela-

tion Bcm, cM defined by

A� cm;cM
B() ðA\cm;cM

B or A ¼ BÞ
with cm\0; cM [ 0

is a complete lattice ðI; � cm;cM
Þ:

For a given interval A ¼ ðba; aÞ; consider the set of

intervals

Dcm;cM
ðAÞ ¼ fX 2 IjA� cm;cM

Xg
¼ fðbx; xÞjba\bx and cm� cA;B� cMg [ fðba; aÞg:

Proposition 22 For any real c m \ 0 and c M [ 0 and any

intervals A;B 2 I; we have

1. A� cm;cM
B if and only if Dcm;cM

ðBÞ 	 Dcm;cM
ðAÞ; and

2. A ¼ B if and only if Dcm;cM
ðAÞ ¼ Dcm;cM

ðBÞ:

Proof We can consider Dcm;cM
ðAÞ and Dcm;cM

ðBÞ to be

subsets of R
 ðRþ [ f0gÞ; in the plane ðbx; xÞ; they are

defined, respectively, by the linear inequalities
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Dcm;cM
ðAÞ :

bx� ba
x� aþ cmðbx � baÞ
x� aþ cMðbx � baÞ

x� 0

8

>

>

<

>

>

:

Dcm;cM
ðBÞ :

bx� bb
x� bþ cmðbx � bbÞ
x� bþ cMðbx � bbÞ

x� 0

8

>

>

<

>

>

:

;

the proof follows immediately by considering that cm \ 0

and cM [ 0. h

Given a family A ¼ fAiji 2 Ig of intervals (for any

finite or infinite index set I ) the infimum and the supre-

mum operators with respect to partial order� cm
, cM

respectively C ¼ inffA 2 Ag and D ¼ supfA 2 Ag; are

defined by the two intervals (in mid-point notation) C ¼
ðbc; cÞ and D ¼ ð bd; dÞ

bc ¼ cMc0 � cmc00

cM � cm

; c ¼ cMcmðc0 � c00Þ
cM � cm

� 0

bd ¼ cMd0 � cmd00

cM � cm

; d ¼ cMcmðd0 � d00Þ
cM � cm

� 0

where c0 � c00 are

c0 ¼ inf ba � a

cM

jA 2 A

� �

c00 ¼ inf ba � a

cm

jA 2 A

� �

and d0 � d00 are

d0 ¼ sup ba � a

cM

jA 2 A

� �

d00 ¼ sup ba � a

cm

jA 2 A

� �

:

Example We illustrate the order relation � cm
, cM B by

the following example: 100 intervals Ai ¼ ðbai; aiÞ are

randomly generated near the interval [-1,1] = (0;1) (see

Fig. 4, the values bai are normally distributed around 0 and

the positive values ai are normal around 1).

Then the intervals COrd ¼ infOrdfAig and DOrd ¼
supOrdfAig are computed, for the five lattices ðI;OrdÞ
defined by the order relations Ord 2 fLU; LC, UC, CWM,

CWm} and for the eight lattices defined by the order rela-

tions � cm
, cM, with cm \ 0 and cM [ 0 as in Table 2.

The eight order relations corresponding to Table 2 are

denoted G1, G2,…,G8. According to the theory, the

intervals obtained for the orders � cm
, cM are near to the

intervals obtained for the orders LU, LC, UC, CWM, CWm

when the pairs of parameters cm and cM are near to -1 and

Fig. 4 100 intervals Ai

randomly generated near

interval [-1,1]

Table 2 Combination of values intervals cm \ 0 and cM [ 0

1 2 3 4 5 6 7 8

cm -1.1 -0.1 -8.0 -0.8 -8.0 -0.5 -2.0 -0.5

cM 0.9 8.0 0.1 8.0 0.9 0.5 0.5 2.0
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1, to -BIG and 1, to -1 and BIG, to -BIG and 0 and to 0

and BIG, respectively (in the example, BIG = 8) (Fig. 5).

Remark 23 To focus on the interest for an interval

ordering index, we mention that the acceptability index for

inequality A \ B, introduced by Sengupta and Pal (2000,

2009) and defined by (assuming aþ b [ 0)

AccðA\BÞ ¼
bb � ba
aþ b

;

is successfully used to convert an interval inequality

Ax B B, with x C 0, into a ‘‘crisp equivalent’’ form as

follows

Ax\aB() aþx� bþ

AccðB\AxÞ� a

�

where a 2 �0; 1� is an assumed fixed (optimistic) threshold;

substituting the expression for Acc(B \ Ax) we obtain

Ax\aB() baxþ ax� bb þ b
bax� aax� bb þ ab

�

:

This set of inequalities, being a[ 0, implies that bax� bb þ
abþ aax [ bb and does not imply a control on the possible

worse case losses. In fact we can see that Ax \cm
, cM B is

not equivalent to Ax \a B in the sense that the one can not

be transformed into the other.

In terms of (14), we can write:

Ax\cm;cM
B()

bax\bb
cMbax� ax� cM

bb � b

cmbax� ax� cm
bb � b

8

<

:

:

If we are minimizing and we do not accept a risk of type II,

we may require that 1 ? cAx,B C 0 (we eventually accept

only a risk of type I) and we choose cm = -1,

cM = BIG [ 0; a risk of type II represents the possibility

that we realize values in Ax that are greater than all values

in B. Similarly, if we do not accept a risk of type I, then we

choose cM = 1, cm = -BIG \ 0; a risk of type I represents

the possibility that we realize values in B that are less than

all values in Ax. If cm = -1 and cM = 1 no risk of the two

types is accepted. It follows that the use of the acceptability

index does not avoid the two types of risk that are con-

trolled using the order relationship (14).

6 Conclusion

We have introduced a comparison index CIp(A, B), based

of the gH-difference of two intervals, and we have exam-

ined its properties, including an interesting connection with

a probabilistic interpretation of its square CIp
2(A, B) when

p = 2.

The application of the comparison index in minimiza-

tion (or maximization) problems with interval-valued

objective function is illustrated and two types of risk are

described in terms of the new index. The preliminary

results seem to encourage some additional research due to

the large number of possible applications in many areas,

especially in finance where the presence of uncertainty is

strictly linked to the risk management.
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