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abstract
Computational systems are useful in neuroscience in many ways. For instance, they may be used

to construct maps of brain structure and activation, or to describe brain processes mathematically.
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Furthermore, they inspired a powerful theory of brain function, in which the brain is viewed as a
system characterized by intrinsic computational activities or as a “computational information proces-
sor.” Although many neuroscientists believe that neural systems really perform computations, some are
more cautious about computationalism or reject it. Thus, does the brain really compute? Answering
this question requires getting clear on a definition of computation that is able to draw a line between
physical systems that compute and systems that do not, so that we can discern on which side of the line
the brain (or parts of it) could fall. In order to shed some light on the role of computational processes
in brain function, available neurobiological data will be summarized from the standpoint of a recently
proposed taxonomy of notions of computation, with the aim of identifying which brain processes can
be considered computational. The emerging picture shows the brain as a very peculiar system, in which
genuine computational features act in concert with noncomputational dynamical processes, leading
to continuous self-organization and remodeling under the action of external stimuli from the
environment and from the rest of the organism.

Introduction

WE ARE IN the midst of what is popu-
larly called the digital revolution, a rev-

olution that was born in the 1940s, leading to
the development of the first electronic pro-
grammable computational systems (see God-
frey and Hendry 1993). In the last 30
years, a huge development of this technol-
ogy occurred, with a significant impact on
a great many aspects of everyday life and an
unprecedented opportunity for scientists
to devise new experimental and data anal-
ysis approaches. Brain imaging techniques
(see Filler 2009) and computer-assisted im-
age analysis methods (see Dragunow 2008)
are examples of this advancement in neu-
roscience research. In addition, the digi-
tal revolution provided us with a new class
of computer-based information technolo-
gies, in which informational contents of
different types (including text, numbers,
sounds, images, and video) are repre-
sented by discrete numerical values that
can be easily stored, processed, and/or an-
alyzed by numerical methods, combined and
disseminated through local networks and
the internet, allowing for a more efficient
communication of resources and data. It
has to be observed that these communica-
tion tools are also qualitatively new, since
they support our natural multidimensional
and multisensory approach to cognition
(Leroi-Gourhan 1956; Lewkowicz and Ghazan-
far 2009) more than any other technology in
the past.

The relationship between computational
systems and neuroscience is, however, more
complex than the simple use of computers

to construct maps of brain structure and ac-
tivation, or to exploit new ways for sharing
data and information. In fact, the rise of
computational systems and the theoretical
ground on which their development was
based (see Cooper 2004) inspired a powerful
theory of brain function, historically known
as the “digital brain” (Werner 2001, 2007),
and based on an analogy between the brain
and machines computing a logical calculus
of symbolically represented information.
The landmark paper by McCulloch and Pitts
(1943), which established that networks of
abstract models of neurons as switching de-
vices can represent all of propositional logic,
can be considered the birthplace of this ho-
rizon for conceptualizing the central ner-
vous system (CNS). Single neurons and
nerve axons that deliver a sort of binary code
seemed just ready made for computing and
transmitting digital information in circuits
and neural nets. These concepts found fur-
ther development in a series of annual con-
ferences sponsored by the Josiah Macy, Jr.
Foundation, beginning 1943 and extending
for the next ten years (see Heims 1991 for
a historical review, and Werner 2007 for
thoughtful analysis and discussion), leading
to the view of the brain as a system charac-
terized by intrinsic computational activities,
or as a “computational information proces-
sor” (Marr 1982).

The claim that brains compute, therefore,
was introduced in neuroscience as an empiri-
cal hypothesis to explain cognition by analogy
with digital computers. Some neuroscientists
were quite cautious about this view or re-
jected it (Perkel 1990; Edelman 1992; Free-
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man 1997, 2001; Werner 2004, 2007), mainly
objecting that it seeks to fit Nature into the
idealized and unrealistic constraint of an algo-
rithmic programmable machine (see Freeman
1997), and may obscure the proper task of
neurophysiology, which is the study of the
brain’s inner workings in terms of its in-
trinsic biological and biophysical processes
(Werner 2004). Others, on the contrary, be-
lieve that computations are genuinely part of
CNS functions (Churchland et al. 1990).
Thus, does the brain really compute? There
are two ways to address such a question:
• Some authors argued that the brain is

a computational system because every-
thing is computational, since everything
can be described that way (Churchland
and Sejnowski 1992; Putnam 1999). This
answer is not well founded and appears
quite unsatisfactory. In fact, in general
physical terms, each process in Nature
occurs as a dynamical system moving (by
the effect of the interactions between
the system components and with the ex-
ternal environment) through a set of
available states (the state space) from an
initial to a final state. Starting from Gal-
ileo’s and Newton’s time, we also know
that a physical description of the Nature
can be associated with a mathematical
one. The laws of physics are, however,
generally formulated in terms of con-
tinuum mathematics, which is not ma-
terially executable, requiring unlimited
sequences of operations (Landauer 1991,
1999). Thus, for practical purposes,
continuous processes are mapped onto
recursive, computational processes in or-
der to calculate approximate estimates
of the properties of the physical system
under investigation and predict its evolu-
tion. Such a “convenient artifact” (Werner
2001) can lead to the misleading impression
that every natural process is intrinsically
computational. Thus, as well outlined by(P-
iccinini (2006, 2007a,b), being able to use
a computational description to model the
behavior of a system (such as meteorol-
ogists do to predict the weather using
computers) does not necessary mean
that the simulated behavior is a compu-
tation. This point will be developed in

some more detail in the first part of the
present review. Since they currently rep-
resent important tools in neuroscience
research, the main strategies used to
model and simulate brain processes will
be also briefly reviewed.

• An answer to the question whether the
brain could be explained computationally
(such as when computer scientists explain
what computers do) requires getting clear
on a definition of computation that is able
to draw a line between physical systems
that compute and systems that do not, so
that we can discern on which side of the
line the brain (or part of it) could fall (see
Piccinini 2006, 2007a,b). Thus, in the sec-
ond part of the present review a very re-
cently proposed taxonomy of notions of
computations (Piccinini and Scarantino
2011) will be briefly illustrated and avail-
able neurobiological data will be summa-
rized and discussed within this reference
framework with the aim of shedding some
light on the possible role of computational
processes in brain function.

Computational Modeling
Models play many roles in science. They

are used to make precise and accurate pre-
dictions and to summarize data. They are
used as heuristic approaches for designing
experiments or to demonstrate surprising
and counterintuitive consequences of partic-
ular forms of systematic organization.

In computational modeling (Figure 1), the
outputs of a computing system are used to
describe some behavior of a physical system
under certain conditions. In the first type of
computational modeling (see Piccinini 2007a
for details), the computing system computes
representations of the physical system’s states
at different times or for different values of an
independent variable. To perform such a
task, the computing system needs two types
of inputs: (i) an input specifying some initial
state, and (ii) an input specifying how the
physical system’s states change as a function
of time or of some other variable. Usually,
the latter input (i.e., the dynamical evolution
of the modeled system) is given by a mathe-
matical description, typically a set of differ-
ential equations, expressing what we know
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about the system properties. If the solution
of the equations is known, then the comput-
ing system can use it to estimate a represen-
tation of the physical system at any given
condition. Most equations are, however, not
solvable analytically, and this situation is
where the present type of computational
modeling proves most useful. In fact, math-
ematicians have devised numerical methods
to approximate the solutions of these equa-
tions. Thus, they can be applied by a comput-
ing system to provide us with a representation
of the physical system’s states. The just de-
scribed procedure is the most common type of
computational modeling, which has become
ubiquitous in many sciences (Rohrlich 1990;
Humphreys 2004).

In a second type of computational
modeling, the states of a physical system
are represented directly by the discrete

states of a suitable computing system.
Thus, when the computing system goes into
its internal states it generates outputs repre-
senting the states that the modeled system
goes into. Obviously, not everything is de-
scribable with an approach of this type, since
most things do not seem to have discrete
internal states like ordinary computing sys-
tems do. Often, however, the possibility ex-
ists to apply an approximation, involving the
partitioning of the states of the physical sys-
tem of interest into a discrete number of
representative states. This kind of approxi-
mation is behind the increasingly popular
use of cellular automata as a modeling tool
(Rohrlich 1990; Hughes 1999; Agnati et al.
2002, 2007a; Guidolin et al. 2011).

A simple example of the application of the
two abovementioned modeling schemes is
illustrated in Figure 2. It concerns the bind-
ing properties of a tetrameric receptor. Ac-
cording to the first approach to modeling,
the theoretical binding curve of this struc-
ture was derived (see Agnati et al. 2010a)
from the thermodynamics of the system in
the framework of a sequential scheme for
the binding of a ligand to a multisubunit
protein, where the free energy changes in-
volved depend on the binding of the ligand,
on subunit conformation changes, and on
subunit-subunit interactions. The result is a
typical sigmoid dose-response curve express-
ing the cooperativity existing in the modeled
system. A consistent result can also be ob-
tained by following the second modeling
scheme. In this case, however, the set of the
possible conformations a receptor subunit
can assume is organized in two broad classes:
(i) inactive conformations, characterized by a
“low affinity” for the macromolecular effectors,
and (ii) active conformations, characterized by
a “high affinity” for the macromolecular effec-
tors. Thus, as a first approximation, the state of
each subunit can be simply described by a bi-
nary variable and the behavior of the system
estimated by using a suitable Boolean network
(see Agnati et al. 2007a).

As far as computational modeling is con-
cerned, it is important to emphasize (Craver
2006; Piccinini 2007a) that what explains the
behavior of the modeled physical system has
to do with the properties of the system and

Figure 1. Schematic Representation of the
Procedures to MODEL a Physical
System

According to a first strategy (upper panel), the
states of the system S for different values of a state
variable x are calculated by a computational system C
based on some initial state and a mathematical de-
scription M of S’s dynamical evolution, expressing
what is known about the properties of S. A second
strategy (lower panel) involves the direct representa-
tion of the S’s states by the discrete states of a suitable
computing system C (such as a specific Turing ma-
chine or a cellular automaton). Such discrete compu-
tational models require the partitioning of S’s states
into a discrete set of states (see text).
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the whole theory about it used to build the
simulation, not with the computation per-
formed by the model. In other words, none

of the computations used to predict what a
system would do under specified conditions
of necessity constitute computations per-
formed by the modeled system. As a matter
of fact, the same system can be described by
many different computational models (as in
the example illustrated in Figure 2), some of
which approximating its behavior and esti-
mating its properties better than others.

modeling the cns
Almost all of the physical systems are ame-

nable to computational modeling and simula-
tion. Computational modeling applies equally
well to paradigmatic computing systems (e.g.,
digital computers can be approximated by
other computers) and to paradigmatic non-
computing systems (e.g., the dynamics of
atmosphere can be approximated by meteo-
rological computer programs). In this sense,
the CNS, just like any other physical system,
can be modeled and its functions simulated
computationally. The modern approach to
modeling the brain and its intricate, interre-
lated network of subsystems is carried out
through the mathematical computational
field of “complex system science” (Sporns et al.
2000; Siegelmann 2010), which, following
Siegelmann (2010), is the combination of
two ingredients:
• Complex architectures that are the basis for

computational simulations aimed at de-
scribing the emergent behavior of inter-
acting elements. In this context, neural
networks (see Churchland et al. 1990;
Elman 1999) and cellular automata (see
Chopard and Droz 1998; Elman 1999)
are the two most followed modeling
strategies. Quite a large number of neu-
ral networks-based models and simula-
tions of brain functions were proposed
(see Arbib 2003). Examples include the rep-
resentation and processing of visual (Marr
1982; Piepenbrock 2002) and of other (see
Mountain and Hubbard 2001) sensory in-
formation, the coding of force for move-
ments (Lukashin et al. 1996), memory
storage and retrieval (McNaughton and
Morris 1987; Blumenfeld et al. 2006), the
mechanisms of rewarding (Montague et
al. 1996; Agnati et al. 2007b), and correla-
tion learning (Gally et al. 1990). On the

Figure 2. Modeling the Binding Properties of a
Tetrameric Receptor

A first strategy (path A) involves the use of thermo-
dynamic concepts. The model, for instance, can be
based on a sequential scheme for the binding to a
multisubunit protein (see Agnati et al. 2010a). For
each binding step we have an equilibrium condition
of the illustrated form, where L denotes the ligand,
Ri the protein complex with i occupied sites and �G0 is
the change in free energy involved in the process. The
multiplicity factor ni accounts for the number of ways to
achieve i occupied sites. From such a condition the
theoretical binding curve can be derived. It estimates
the amount of bound sites as a function of the ligand
concentration. A consistent result can be obtained with
a second modeling strategy (path B), in which the pos-
sible conformational states of each subunit are parti-
tioned into two broad classes, “active” and “inactive”
with respect to the macromolecular effectors (see text).
With such an approximation the system corresponds to
a network of interacting binary elements, and a suitable
“boolean network” (see Kauffman 1993) can be used to
estimate its properties (Agnati et al. 2007a). As illus-
trated, each element of this computing system receives
inputs from itself and from the two nearest neighbors.
Furthermore, the state of each unit can change accord-
ing to a binary rule derived from a Hamiltonian taking
into account the action of the ligand and the interac-
tions between the network elements (see Agnati et al.
2007a for details).
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other end, examples of the use of cellular
automata-based modeling include the sim-
ulation of the cooperative dynamics of in-
teracting receptor systems (Shi and Duke
1998; Duke and Bray 1999; Agnati et al.
2007a), and the engram formation (Zoli et
al. 1996; Guidolin et al. 2007).

• Systems of equations governing the temporal
evolution of values of interacting sets of
variables and parameters (Alligood et al.
1997). In biology, this fundamental math-
ematical tool proved useful to model com-
plex phenomena such as physiological
processes and diseases (Rapatski et al.
2005; Villanueva et al. 2008).
Complex system science is a rapidly matur-

ing approach, probably allowing us to de-
scribe connections between lower-level brain
functions and the higher-level of perception
and behavior. In fact, this strategy is at the
basis of sophisticated and realistic modeling
efforts (see Markram 2006), such as simula-
tions of networks of spiking neurons (see
Brette et al. 2007 for a review), large-scale
models of thalamocortical systems (Izhikevich
and Edelman 2008) and of their dynamics in
sleep and wakefulness (Hill and Tononi 2005;
Olcese et al. 2010), circadian intersystem syn-
chronization (Leise and Siegelmann 2006),
memory reconsolidation (Siegelmann 2008),
and cerebellar motor control (McKinstry et al.
2006).

Thus, modern computational neurosci-
ence is providing us with growing possibili-
ties and tools to integrate what we know
about the properties of the nervous system
and its components in order to explore its
complex dynamics and functions. As dis-
cussed previously, however, being able to
computationally model a system does not
mean that the modeled system computes. If
the CNS computes, this needs to be estab-
lished by more than the existence of compu-
tational neuroscience.

Computational Explanation
Addressing the question whether the brain

computes or not obviously depends on a
suitable definition of “computation.” Com-
putational processes may be defined both
abstractly (i.e., based on a mathematical the-
ory) and concretely. Here, we are interested

primarily in concrete or physical processes of
computation. In this respect, a useful taxon-
omy of notions of computation was very re-
cently proposed by Piccinini and Scarantino
(2011) and will be briefly summarized in the
section that follows.

on computation
The most restrictive notion of computa-

tion that we will consider here is “digital com-
putation.” Since it is well established from the
mathematical point of view (Davis et al.
1994) and inspired the “digital brain” theory
of cerebral function, it is a particularly rele-
vant notion for present purposes. As sche-
matically illustrated in Figure 3A, a physical
system is a digital computing system when
the laws of physics governing it allow the
generation of internal objects (also called
“vehicles” in the specialized literature) having
the structure of a “string of digits,” i.e., real-
ized as an ordered (concatenated) set of sys-
tem’s components, each in a specific state
from a finite and discrete set of states, which
can be transformed by the system into a new
“string of digits” in accordance with a gen-
eral rule, which depends on the input string
(and perhaps internal state of the system) for
its application, and which is implemented in
the system by exploiting specific properties
and an appropriate functional organization
of its parts (see Piccinini 2007b for a discus-
sion). Examples of physical systems fitting
the provided definition of “digital computa-
tion” include digital computers and related
devices, calculators, and machines realizing
finite state automata (Piccinini 2008), cellu-
lar automata (Wang and Lieberman 2004),
or artificial neural networks (see Cabestany
et al. 2005).

The definition of “digital computation”
can be generalized by allowing for a broader
range of vehicles (e.g., continuous variables
as well as discrete digits). Thus, the term
“generic computation” (Piccinini and Scaran-
tino 2011) was proposed to designate pro-
cesses in which a generic vehicle is transformed
into another vehicle of the same type by rules
that are specifically sensitive to differences be-
tween different portions of the vehicle.

An important characteristic of this defini-
tion of a concrete computational process is
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that the rules (i.e., the input-output maps)
defining a computation are sensitive only to
the general structure (i.e., to the relationship
between different portions) of the vehicle
they manipulate, not to its specific physical
nature. This feature, also called “medium in-
dependence” (see Piccinini and Scarantino
2011 for more details) implies that a concrete
computational process can be implemented in
multiple physical media. For instance, it is well
known that a digital computation (manipulat-
ing “strings of digits”) can be equally imple-
mented in electronic, electromechanical, or
mechanical devices.

It has also to be observed that the inputs
and outputs may be interpreted (i.e., as-
signed semantic content). If they are inter-
preted, they may be called representations (or
“symbols”) of such a content. Computations,

however, can be defined independently of
any semantic interpretation of the computa-
tional inputs and outputs (Machtey and
Young 1978; Piccinini 2006). In fact, there
are plenty of paradigmatic computations
that lack representational content. Examples
include parsers, compilers, and assemblers.

The provided broader definition of com-
putation includes as a special case not only
the above described “digital computation,”
but also the so called “analog computation”
(Pour-El 1974), in which the vehicles are
continuous variables instead of discrete
strings of digits. Analog computers can be
physically implemented and since some au-
thors claimed that neural processes may be
more similar to analog computations (see
Rubel 1985), this type of computational pro-
cess is also relevant for our purposes. The

Figure 3. Types of Computation
A. Schematic representation of a digital computing system. It is designed in a way that allows for the

manipulation of special types of inputs, which are called string of digits. A “digit” is any state (from a finite
and discrete set of states) of some system’s component (such as a memory cell in digital computers), and
a “string of digits” is realized as a concatenated set of system’s components, each in a specific state (Greek
letter in the figure). Thus, it is individuated by the digits that compose it, and the format according to
which they are assembled. Among systems that manipulate “strings of digits,” some of them do so in a
special way (i.e., following a general rule R, implemented by properly designing the organization of the
system’s parts, and which apply to any string entering the system, and depends on such an input for its
application). B. Types of computation and their relations of class inclusion (simplified from Piccinini and
Scarantino (2011)). The more restrictive notion of “digital computation” shown is “algorithmic compu-
tation.” Any algorithmic computation, in turn, is “Turing computable,” but the computation of Turing
computable functions need not be carried out by following an algorithm. For instance, it can be performed
by a suitable neuronal network.
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relationship between the different types of
generic computation is schematically illus-
trated in Figure 3B.

Physical systems implementing computa-
tional processes in some of the abovemen-
tioned sense and performing this kind of
activity can, therefore, be considered com-
puting systems properly so called, whose
function is to perform that computation. It
follows that they can be not only computa-
tionally modeled, but also computationally
explained. Thus, computational explanation
is a special form of mechanistic explanation
(i.e., an explanation in terms of a system’s
components, functions, and organization),
which applies only to systems with pecu-
liar structural and functional characteris-
tics. They include a format out of which
internal objects can be constructed, a set of
components that are functionally organized
to manipulate these objects, and a rule spec-
ifying which output objects are generated. It
should go without saying that when we em-
ploy computational explanation in the pres-
ent sense, a great many natural systems are
not computing systems (see Piccinini 2007b
for a detailed discussion). For example, plan-
etary systems and the weather are not collec-
tions of functional components organized to
exhibit specific capacities. Furthermore, they
do not translate the inputs from an external
environment into formatted internal objects,
process them, and return outputs distinct
from themselves. Other systems (e.g., diges-
tive systems) operate according to a rule, and
yet they do not perform computations,
because they perform the same opera-
tions regardless the properties of the in-
puts they process, and the outputs are in
general of a kind so different from the
inputs that they cannot be fed back into
the system for further computational pro-
cessing. Thus, whether the brain (or part of
it) behaves as a computing system according
to some of the provided definitions remains
an empirical question open to research and
analysis: to find out whether some computa-
tional process is operating within the brain,
the only effective way is to look at all levels of
organization of the CNS and find out how
they operate. In the next section, neurobio-

logical data will be reviewed from this spe-
cific standpoint.

computational explanation in
neuroscience

According to the criteria described in the
foregoing section, genuine computational
properties of the CNS are possible only in
the presence of peculiar morphofunctional
features. In particular, it has to be assessed
whether brain anatomy and physiology would
allow:
• the generation, as a consequence of the

interaction with the external world, of
internal objects in a suitable format (and
eventually of “representations”) and

• their transformation by the system accord-
ing to rules (i.e., input-output maps).

Computational Processes in the Brain
A striking morphofunctional characteristic
of the CNS is its hierarchical organization as
a complex system of “networks of networks”
(Csete and Doyle 2002; see also Werner
2009, 2010) nested within each other. This
view has been put forward already by Agnati
and Fuxe (1984), who suggested that the
“Russian doll” analogy proposed by Jacob
(1970) for living beings could be extended
to the CNS as a single organ. In particular, it
has been suggested (Varela et al. 2001; Ag-
nati et al. 2004) that at least macro-, meso-
and micro-scale levels can be recognized in
the CNS (see Figure 4):
• The macro-scale level, in which it is possi-

ble to recognize neuronal networks and
complex cellular networks (Agnati and
Fuxe 2000).

• The meso-scale level is the level of single
neurons and synaptic aggregates (see Gold-
ing et al. 2002) in which multiple synapses
act cooperatively to modulate their strength.

• At the micro-scale level are the molec-
ular networks, made by molecules that
function as a metabolic and/or regula-
tory signaling pathway in a cell (Bhalla
and Iyengar 1999). Of particular interest
are the “receptor mosaics” (RM), i.e., mac-
romolecular complexes formed at the
membrane level by G protein-coupled
receptors (see Fuxe et al. 2010 for a
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review) as a consequence of direct al-
losteric receptor-receptor interactions
(Fuxe et al. 1983; Kenakin et al. 2010).
This morphofunctional feature is of par-

ticular relevance for our discussion since, as
demonstrated by the connectionist para-
digm to computation (Hebb 1949; Rosen-
blatt 1958; Rumelhart et al. 1986a), networks
of interacting elements can implement rules
and computable functions in their own struc-
ture (see Figure 5). The class of architectures
falling under the connectionist umbrella is
very large and diverse, but almost all of them
share certain characteristics. Processing is
carried out by a usually large number of sim-
ple processing elements (called nodes or
units), having a nonlinear response function
(Hopfield 1984). Each node receives input
(excitatory or inhibitory) from some num-
ber of other nodes, responds to that input
according to the response function, and in
turn excites or inhibits other nodes to which

it is connected. There are some key charac-
teristics worth noting. First, what the system
“knows” is essentially captured by the pattern
of connections and the efficiency associated
with each of them (Knoblauch et al. 2010).
Second, rather than using symbolic repre-
sentations, the “vocabulary” of a connection-
ist system consists of patterns of activation
across different units. Furthermore, what
made connectionism so attractive to many
was the possibility to develop “learning algo-
rithms” (Rumelhart et al. 1986b), by which
the network would adjust the connection
efficiencies in small incremental steps (for
instance, based on examples of a target be-
havior) in such a way that over time the
network’s response accuracy would improve.
Thus, the structural similarity between con-
nectionist systems and the networks in the
CNS legitimates the hypothesis of a compu-
tational interpretation in the form of execut-
ing rules on some distributed architecture.

Figure 4. Schematic View of the CNS as an Organized System Where Networks of Networks can be
Described

These can be nested within each other according to some hierarchical principle (Agnati et al. 2007b).
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The brain, of course, can generate algorithms
(i.e., ordered sequences of operations)
and classic examples include the process
of speaking (Fodor 1975) and the voluntary
control of movements (Fan et al. 2008). It
has also been proposed that algorithms
could be generated in the cerebellum (see
Yeo 2004) and the visual system (Schyns et al.
2009). However, it is widely acknowledged
that the main way the brain can exploit to
implement computational rules is in the
form of suitable network architectures.

As discussed before, the possibility to exe-
cute computational rules is only one feature
of physical computational systems. To fully
characterize whether computational pro-
cesses are in operation within the brain we
also need to identify if vehicles of computa-
tion are generated and their characteristics.
To this end we have to explore in some more
detail the abovementioned main levels of the
hierarchical organization of the CNS:
• The cellular networks. In the late 1980s, Wolf

Singer and colleagues (Gray et al. 1989,
1990) found specific, phase-synchronized
EEG in the visual cortex of cats that was

strongly correlated to a particular visual
stimulation. The phase synchrony they
found in the gamma frequency band
(from 30 to 90 Hz) of the EEG became
known as “coherent 40 Hz,” and has been
regarded as the electrophysiological marker
of a highly specific coordinating link
among distributed neurons leading to the
formation of a dynamically assembled pat-
tern of neuronal activity as a response to
the applied stimulus. This finding, to-
gether with the increasing evidence of a
high structural plasticity of synapses and
neuron connections (see Bennett et al.
1964; Holtmaat and Svoboda 2009), in-
dicated in dynamically self-organized
aggregates of neurons the basic vehicle
for computation in neural networks.
The “Darwinian brain” by Edelman (1987)
and the “dynamical cell assembly hypoth-
esis” (Fujii et al. 1996) are outstanding
examples of this concept. Possible mecha-
nisms responsible for the formation of
these neuron assemblies were also recently
investigated and discussed by Buzsáki
(2010). Since these neuronal populations

Figure 5. The Core Logic Functions that can be Realized by a Connectionist Network (see Penrose
and Gardner 1989)

In the illustrated schemes each “neuron” is assumed to have activation threshold of 1.0 and each “synapse”
has some degree of excitatory or inhibitory effect on the target “neuron” (inhibitory units are highlighted in
grey). Combining these kinds of circuits all of the functions necessary for any definable logical operation can
be realized.
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are a discrete set of system components,
each in a firing or notfiring state, it has
been suggested (Pereira and Furlan 2010)
that processes of digital computation are
realized by the neuronal networks.
A broadened view on the cellular networks

in the CNS came with the proposal (Agnati
et al. 1986) of the existence in the brain of
two main modes of intercellular communi-
cation, called wiring transmission (WT) and
volume transmission (VT), respectively (see
Agnati et al. 2010b for a detailed review). WT
is characterized by a structurally well-defined
channel (a “wire,” i.e., a private communica-
tion channel), connecting a source with its
targets. The synaptic transmission between
neurons is the most important example of
WT in the CNS. VT, on the other side, takes
place by using the extracellular space as a
nonprivate communication channel, and
represents the three-dimensional diffusion
of signals for a distance greater than the
synaptic cleft (see also Fuxe et al. 2007a).
Nicholson’s (1988) work provided strong ex-
perimental support for VT in the brain and
also characterized the physical features of
the process (Nicholson 2001). Different
classes of VT signals have been identified
and include chemicals (see Table 3 in Agnati
et al. 2010b), such as neurotransmitters,
ions, gases, and enzymes, as well as physical
signals such as electrotonic currents (Holt
and Koch 1999; Kamermans and Fahrenfort
2004), temperature gradients (Yablonskiy et
al. 2000; Fuxe et al. 2005; Rivera et al. 2006),
and pressure waves generated by arterial
pulses (Agnati et al. 2005a). VT is also char-
acterized by a very high divergence, since
one source usually gives signals to a great
many targets, including not only neurons,
but also other types of cells in the CNS, such
as astrocytes (Syková and Chvátal 2000) and
microglial cells (Färber and Kettenmann
2005). This leads to the formation of “com-
plex cellular networks,” exchanging signals
in a certain volume of brain tissue and, due
to this cross-talk, integrating their activity
(Agnati and Fuxe 2000).

In this context, the relationship between
neurons and astrocytes is the best studied
(see Fellin and Carmignoto 2004) and re-
cent findings highlighted the involvement of

“neuron-astroglial interactions” in the higher
brain functions. Astrocytes can play an impor-
tant role in the functional organization of
the cerebral cortex from specific interactions
with single synaptic contacts to modulatory
interactions with entire neuronal networks
(Schipke et al. 2008; Pereira and Furlan
2010). As a matter of fact, it has been intro-
duced the concept of tripartite synapse, since
in most glutamatergic central synapses, the
extremity of a protoplasmic astrocyte process
wraps the synaptic cleft. It should be noted
that astrocytes express membrane receptors
to neurotransmitters and can release their
own chemical messengers (gliotransmitters).
Thus, they establish a cross-talk with both
pre- and postsynaptic neurons. What is of
particular importance for our discussion is
that several astrocytes participate in this func-
tional organization, coupled with each other
by gap junctions to form a network (see Car-
mignoto 2000). Gap junction channels are
regulated by extra- and intracellular signals,
suggesting that also in astrocyte networks
computational rules could be implemented
(Giaume 2010). As discussed by Pereira and
Furlan (2010), however, astrocytic networks
seem to differ from neuronal networks for
what it concerns the vehicle of computation
they use, namely “calcium waves,” suggesting
that analog-like computational processes are
realized by this type of cellular network.
Thus, neuroastroglial networks do exist con-
trolling not only dynamic glucose delivery
(Rouach et al. 2008), but also participating
in cognitive functions (Robertson 2002). It
follows that such a complex network appears
to integrate and exploit both “digital” and
“analog” computational processes.
• The single neuron. Current evidence indi-

cates that the vehicles of neural processes
are neuronal spikes and the processing of
neural spike trains by neurons is often
called “neural computation.” Many neurosci-
entists see in the sequence of spikes a sort
of binary string (see Rieke et al. 1997 for a
detailed review), others (see Churchland
and Sejnowski 1992) argue that the input
to a neuron is analog (continuous values
between 0 and 1). Thus, whether neural
computation is best regarded as a form of
digital computation, analog computation,
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or something else is a debated question.
However, since the functionally relevant
aspects of neural process are medium-
independent aspects of the spikes (see Pic-
cinini and Scarantino 2011 for a discus-
sion), primarily spike rates, spike trains
appear as proper vehicles for computa-
tion. It follows that we can certainly con-
sider the single neuron as performing
computation in the generic sense. Fur-
thermore, as suggested by some authors
(Koch and Segev 2000; Cook 2011), spa-
tially distributed physical variables (such as
calcium distribution throughout the den-
dritic tree and the cell body) also play an
important role in the function of single
neurons, indicating that neurons are likely
sophisticated processors in which the
abovementioned “neural computation”
could act in concert with some form of ana-
log computation.

• The receptor mosaics. In recent years, in-
creasing experimental evidence sup-
ported the hypothesis (put forward in
Agnati et al. 1980) that G protein-
coupled receptors (GPCRs) can form
high-order receptor oligomers at the
cell membrane. In particular, by using
sequential resonance energy transfer
(SRET) approaches it has been possi-
ble to demonstrate the existence of tri-
valent GPCR complexes in living cells.
For instance, the existence of higher-
order A2A-CB1-D2 (Carriba et al. 2008)
and A2A-D2-mGlu5 (Cabello et al. 2009)
heteromers has been shown. Recently,
another set of studies supported the exis-
tence of higher-order receptor oligomers.
In the case of the �2-adrenergic receptor
(�2-AR), the research by Kobilka and col-
leagues has demonstrated that the recep-
tor is predominantly tetrameric following
reconstitution into phospholipid vesicles
(Fung et al. 2009). The existence of these
supramolecular complexes is considered
of particular importance because it allows
the emergence of integrative functions
performed by a protein aggregate as a
whole. In fact, owing to receptor–receptor
interactions a configuration change of a
given receptor will transform the probabil-
ity of changing the configuration for the

adjacent receptors in the RM and the ef-
fect will propagate throughout the cluster,
leading to a complex collective behavior
and to an integrated regulation of multi-
ple effectors (see Fuxe et al. 2007b for a
review). It was suggested that this molecu-
lar mechanism may also lead to a transient
and/or permanent change of the synaptic
efficacy and then contribute to memory
storage and engram formation (see
Guidolin et al. 2007 for a review). Some
authors (Agnati et al. 2002) argued that
the RMs could be considered computa-
tional devices and their behavior could be
explained as a computation. In this re-
spect, it is worth noting that when formed
a RM is a system manipulating sets of pro-
tein conformations. In fact, the conforma-
tional state each component unit assumes
is conditioned by the conformations of the
other receptors in the mosaic according to
a rule defined by the topology of the in-
teractions (i.e., by the spatial arrangement
of the receptors forming the assembly)
and by the efficacy of the allosteric recep-
tor-receptor interactions interconnecting
the receptors with each other (Agnati et al.
2010a). Since this mechanism also appears
to be medium-independent (see Conrad
and Zauner 1997), RM can be considered to
perform computations at least in the generic
sense.

Noncomputational Processes in the Brain
In addition to the above described computa-
tional processes, at each scale of the morpho-
functional organization of the brain other
processes also important for the higher brain
functions have to be considered. They are
summarized in Table 1 and will be briefly
discussed here:
• A number of global signals (originating

from the rest of the body and from the
metabolism) significantly influence the
activity of the complex cellular networks.
They include signals of a chemical,
such as circulating hormones (McEwen
et al. 1968; Gillies and McArthur 2010;
McEwen 2010), and/or physical nature,
such as the abovementioned pressure
waves (Agnati et al. 2005a; Linninger et
al. 2009), thermal gradients (Yablonskiy
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et al. 2000; Kiyatkin 2010), and field po-
tentials (Shepherd 1998). It is notewor-
thy that some of these VT signals, such as
thermal gradients and pressure waves,
are “pervasive signals” (see Agnati et al.
2007b) that affect quite large brain areas
and possibly make their activity coherent
with (or at least informed of) the activity
of other brain areas. In the case of pres-
sure waves generated by arterial pulses,
for instance, they may globally inform
the CNS on the state of the cardiovascu-
lar system. As a consequence, the orches-
tration of activity among cell pools can
change according to the situational con-
text (also involving the organism in
which the brain is embedded). The
structure of the cell networks can also be
remodeled in an experience-based way
by processes of glial cell proliferation

(Bennett et al. 1964) and, in particular
conditions, neuron replacement by neu-
rogenesis (Stranahan et al. 2006).

• Processes of adaptive structural remodel-
ing are well known at the level of neurons
and local circuits. Examples include
changes in dendritic branches (Bennett
et al. 1964), in synaptic connectivity (Ad-
ams et al. 2006; Kerchner and Nicoll 2008;
Holtmaat and Svoboda 2009), and mito-
chondrial biogenesis as an adaptive mecha-
nism that protects brain metabolism during
hypoxia (Gutsaeva et al. 2008). Emerging
evidence also indicates that the cross-talk
between perisynaptic astrocytes and neurons
mediates synaptogenesis, synapse elimina-
tion, and structural plasticity through a vari-
ety of secreted and contact-dependent sig-
nals (Stevens 2008; Theodosis et al. 2008).
It is noteworthy that by expressing several

TABLE 1
Noncomputational processes at different levels of the hierarchical organization of the brain

Level Process References

Complex cellular networks (macro-scale) Systemic chemical signaling McEwen et al. 1968
Gillies and McArthur 2010
McEwen 2010
Russo et al. 2010

Pressure waves Greitz 1993, 2006
Agnati et al. 2005a
Ostrow and Sachs 2005
Linninger et al. 2009

Temperature macrogradients Yablonskyi et al. 2000
Kiyatkin 2010

Glial cell proliferation Bennett et al. 1964
Neurogenesis Stranahan et al. 2006

Onténiente 2009
Local circuits (meso-scale) Changes in dendtritic branches Bennett et al. 1964

Structural synaptic plasticity Adams et al. 2006
Kerchner and Nicoll 2008
Stevens 2008
Theodosis et al. 2008
Holtmaat and Svoboda 2009

Extracellular matrix changes Dityatev and Fellin 2008
Temperature microgradients via uncoupling

protein
Fuxe et al. 2005
Rivera et al. 2006

Mitochondrial biogenesis Gutsaeva et al. 2008
Molecular networks (micro-scale) Changes in membrane lipids Botelho et al. 2006

Electric fields Frölich 1968
Rochlin and Peng 1989
Vos et al. 1993
Agnati et al. 2005b

Intracellular signaling pathways Bhalla and Iyengar 1999
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forms of synaptic plasticity, a single neu-
ron can convey an array of different signals
to the neural circuit in which it operates
(Abbott and Regehr 2004).

• As far as receptor mosaics are concerned,
it is important to underline that each re-
ceptor molecule can span three distinct
microenvironments: the extracellular fluid,
the membrane, and the intracellular fluid.
Thus, the relevant chemical–physical char-
acteristics of the three microenvironments
in which it is embedded can significantly
influence its conformation as well as the
possibility to form macromolecular com-
plexes and their topology (Agnati et al.
2002, 2005b). Experimental data (see Bo-
telho et al. 2006) indicate, for instance,
that changes in the composition of the
lipid environment in which receptors are
embedded (and in particular lipid rafts)
may modulate the conformational state of
receptor heteromers and homomers, likely
leading to altered receptor–receptor in-
teractions and thus altered integrative
signaling. Other mechanisms for the
rapid reshuffling of protein interactions
at the membrane levels involve changes in
the electric field across the membrane
(see Fröhlich 1968; Vos et al. 1993) and
the action of the abovementioned field
potentials (Shepherd 1998). Extracellular
field potentials result from the activity in a
large number of nearby cells and have an
action at molecular level (Rochlin and
Peng 1989). In fact, field potentials even at
distances of many microns from the
sources still have an intensity of some tens
of �V (Bédard et al. 2004). Therefore,
they can affect electrostatic interactions
within and between membrane molecules.
Finally, it should always to be remembered

that RMs work as specialized input units (Ag-
nati et al. 2008) for the intracellular signal
transduction pathways. These biochemical
processes (see Bhalla and Iyengar 1999) are
interacting chains of chemical reactions in-
volving low-molecular weight G proteins,
effector enzymes, second messenger mech-
anisms, and ion channels. It is such a com-
plex biochemical machinery that allows the
cell to process and respond to external sig-
nals.

The just outlined processes can hardly be
considered as computational. In fact, they do
not appear to occur by organizing specific
functional components into formatted inter-
nal vehicles that are manipulated according
to a rule. Nevertheless, they play a significant
part in the higher functions of the brain. As
discussed above, many of them carry infor-
mation on the overall activity of the brain
and/or on the body in which the brain is
embedded. Moreover, the brain networks,
seat of genuine computational functions, are
constantly reshaped and their activity modu-
lated by most of the mechanisms here con-
sidered.

Concluding Remarks
The rise of the computational paradigm to

conceptualize the CNS deeply influenced
neuroscience and notions such us computa-
tion, representation, and information appeared
as key concepts to characterize and describe
CNS functions. For example, Sejnowski et al.
(1988) introduced “computational neurosci-
ence” with the explicit agenda of explaining
“how electrical and chemical signals are used
in the brain to represent and process infor-
mation” (Sejnowski et al. 1988:1299). This
view supported and encouraged the develop-
ment of an increasing number of computa-
tional approaches to model and simulate
neurophysiological phenomena, which to-
day allow us to integrate what we know about
the CNS and to explore its complex behavior
and properties. As pointed out by Grush
(2001), however, a question remained unan-
swered. Is computation in neuroscience just
a tool for building models, playing a role
analogous to the role it plays in other disci-
plines, or is there something more to it? In
other words, is being computational a genu-
ine property of nervous systems?

In this respect, John Searle, for one, main-
tained that computation is observer-dependent
in the strong sense that we can ascribe any
computation to any process as we please and
there is no fact of the matter as to whether
our ascriptions are correct (Searle 1992).
Under this view, being computational is not
so much false as vacuous. On the other side,
many authors rejected this contention and
have argued that computation may be seen
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as a way of capturing some aspects of the
causal structure of the world (Chalmers
1996; Copeland 1996; Smith 2002). This
raises a further question: which physical pro-
cesses deserve to be described as computa-
tional?

In the present paper, the general account
of computation recently proposed by Piccinini
and Scarantino (2011) was assumed (see
above under the heading Computational Ex-
planation in Neuroscience), which allows a
classification of different forms of concrete
(physical) computational processes, from
the “generic computation” to the more re-
strictive notion of “digital computation.” It
is a mechanistic explanation that can be
applied only to systems able to generate in-
ternal objects with a specific format and ma-
nipulate them according to a general rule,
defined over the inputs for producing out-
puts of the same type. Thus, it is indepen-
dent of any semantic interpretation of the
computational vehicles (inputs and out-
puts), and allows for discrimination between
physical systems that do not compute and
physical systems that can be considered com-
putational systems (at least in the more ge-
neric sense) properly so called.

Looking at available neurobiological data
from this standpoint, the CNS appears char-
acterized by genuine computational possibil-
ities. In fact, its basic architecture as a hier-
archical system of networks of interacting
elements (Agnati et al. 2004, 2007b) allows
the physical realization of different forms of
computational processes at different levels of
its morphofunctional organization. In gen-
eral they can be classified as “generic
computations,” but in some cases (as, for
instance, in the neuroastroglial networks),
both “digital” and “analog” computational
processes seem to contribute to the brain
higher functions by acting in concert (Pe-
reira and Furlan 2010). An often empha-
sized point of difference between ordinary
computational systems (such as the elec-
tronic computers) and the CNS emerges
when the timing of the system’s activities is
taken into consideration: every computa-
tional mechanism properly so called (includ-
ing connectionist systems) assumes, either
explicitly or implicitly, that there are finite

time intervals during which it can be deter-
mined what counts as a system’s inputs and
outputs. However, when the overall brain ac-
tivity is considered it is unclear whether any
fixed time interval of unambiguous physio-
logical significance could be defined. Al-
though this aspect would need deeper and
more specific experimental investigations,
some insight on this topic was recently
proposed by Buzsáki (2010), providing a
thoughtful discussion on possible mech-
anisms that allow for an ordered evolu-
tion in time of cell assemblies that lead to
a sort of “neuronal syntax.”

In this respect, however, it has to be ob-
served that the overall brain activity also in-
cludes many noncomputational processes
(occurring at all the hierarchical levels of the
morphofunctional organization of the CNS)
in addition to the computational ones. They
play significant physiological roles, the most
important being the global delivery of infor-
mation about the external world and, in par-
ticular, the organism in which the brain is
embedded, and the experience based re-
shaping of the brain structures (Bennett et
al. 1964; McEwen 2010), including those
involved in computational processes. The
brain, therefore, appears characterized by a
peculiar combination of computational and
noncomputational processes, and could be
defined as a dynamically morphing system
with computational capabilities of different
types, undergoing genetically and environ-
mentally driven self-organization (and, as a
consequence, a sort of “reprogramming” of
its computational properties) in response to
the external context. For this reason, some
authors (Varela et al. 2001; Werner 2004)
suggested that relevant conceptual frame-
works provided by physics, such as statistical
mechanics (Baszó et al. 1999; Sirovich et al.
2000) and nonlinear dynamics (Abarbanel
and Rabinovich 2001; Haken 2002), could
represent for theoretical neuroscience par-
ticularly suitable tools, likely more helpful
than the simple use of concepts from com-
putability theory. In this respect it is notewor-
thy that, from a mathematical point of
view, the models employed by modern
theoretical neuroscientists (see above
under the heading Modeling the CNS)
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mainly involve mathematical biophysics
instead of concepts and techniques from
computability theory.

Thus, the view of the brain as a pure com-
putational system or as a computational in-
formation processor (as in the “digital brain”
theory based on an analogy between brain
and computers) does not appear to fully fit
with the morphofunctional characteristics of
the CNS as we know them today. As with any
successful analogy, however, it canalized

thought in some directions, foreclosing oth-
ers (Werner 2004). In particular, it empha-
sized the idea of the brain as a machine
storing and manipulating symbols and the
knowledge as a system of logical relation-
ships between them (see Freeman 1997 for a
critical discussion), but sidestepped the brain
as an embodied (Damasio 1999; Carlson et al.
2010), situated (see Dreyfus 1972) agent, con-
tinuously responding to and shaped by the ex-
ternal world (Noe 2004).
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Pecevski D., Ermentrout B., Djurfeldt M., Lansner A.,
Rochel O., Vieville T., Muller E., Davison A. P., El
Boustani S., Destexhe A. 2007. Simulation of networks
of spiking neurons: a review of tools and strategies.
Journal of Computational Neuroscience 23:349–398.
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