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Abstract

In this paper, we study the effects of future constraints on current investment decisions. Unlike the standard literature on this

optimizing problem, we present a model in which firms are neither always constrained nor always unconstrained. We are

concerned with those cases where a firm is free from constraints at the current time but expects to face an upper bound at some later

date. Using the ‘no arbitrage principle’ in the constrained scenario, we show how to explicitly calculate the optimal investment path

switching between regimes. The analytical result shows that the effects of future financing constraints are included in the market

value of the firm, and thus are captured by marginal q.

q 2006 Published by Elsevier Ltd on behalf of University of Venice.

Keywords: Investment; Financing constraints; Firm value; Euler equation

JEL classification: E22; E51

1. Introduction

Economic debate has had much to say about the relationship between financing constraints and investment

decisions. Mainly, this literature has studied the binary case of constrained versus unconstrained firms. It has often

produced ambiguous results: some economists point out the ability of the q model to capture the value of constraints;

others stress its inadequacy. Given this ambiguity, it is surprising that recently there has been little theoretical effort

aimed at focusing on the conditions under which this constrained behavior arises and still less at focusing on the

effects of future constraints on current investment decisions.

The purpose of this paper is to study these latter effects. Unlike the previous literature on investments and financing

constraints, we present a theoretical model in which firms are neither always constrained nor always unconstrained.

We are primarily concerned with those cases where a firm is free from constraints at the current time but expects to

face an upper bound on financing resources at some future date. The focus of attention is on the validity of the Euler

equation which drives the optimal investment path through these two alternative regimes. We explain why the

optimal investment path describing the switching between regimes cannot be obtained by simply pasting together

the unconstrained and the constrained parts of the trajectories. Rather, it is the result of the firm’s optimal behavior.
Research in Economics xx (xxxx) 1–12
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This approach to the constrained optimization problem extends the idea of rational expectation to the case in which

restrictions will become binding at some future date: with forward-looking behavior, the firm anticipates the final

outcome, implying that its optimal policy will change at the outset. We show how to calculate explicitly the

investment trajectory for a firm, which will become constrained at some later date. Our main result is that the marginal

value of the firm captures the effects of present and future constraints.

The difficulties encountered in studying the correlation between investment and financing constraints have

prompted researchers to develop different models. Many authors have used the q framework to investigate issues

deriving from models of investment with constraints. But different are the strategies followed to study this

relationship. The path-breaking paper by Fazzari et al. (1988) initiates this field exploring a constrained version of the

q model. It shows that financing constraints do affect investment decisions, but concludes that ‘to the extent that

managers control sufficient internal funds to finance all profitable investment projects, investment demand models

based on a representative firm in a perfect capital market apply’ (p. 150). The drawback of this kind of investigation is

that the analysis of the correlation between financial resources and investment is restricted exclusively to periods when

the constraints are binding: there is no attempt to characterize the intermediate phases when constraints are slack.

The same critique applies to models, which focus on the property of the Euler equation in presence of constraints

(see for instance Whited (1992); Hubbard and Kashyap (1992); Bond and Meghir (1994), and Hubbard et al. (1995)).

This kind of model assumes that so long as the firm does not come up against the constraint, it will be able to satisfy

the Euler equation. In other words, constraints binding in future periods (or which have some probability of binding)

have no effect on the intertemporal first order condition. Consequently, the Euler equation relating current and future

marginal q value fails to hold in some periods.

This point of view has been recently challenged. Many scholars now agree that future constraints can affect current

investment. Gomes (2001) argues that the value of the firm—as summarized by q—does not simply depend on the

discounted value of real variables but also includes the impact of future financial constraints on current decisions.

Further, Erickson and Whited (2000) using an innovative approach to the measurement error problem show that the

marginal q value is a sufficient statistic to explain the investment decisions of firms even in presence of financing

constraints. Unfortunately, this ‘new view’ is mainly to be found in empirical analyses where the optimization

problem has not been solved explicitly. Indeed, very few efforts have been devoted to the investigation of these

theoretical foundations.

As far as we know, few theoretical contributions have succeeded in explaining the relationship between current

investment and future financing constraints. D’Autume and Michel (1985) show that if a firm expects a constraint on

the quantity of capital goods it can buy at some future date, it will invest less in the intervening period than in the

unconstrained case. However, they focus exclusively on the characteristics of the value function, without analyzing

the formal conditions that guarantee the optimality of the constrained investment trajectories. To avoid these

problems, Chirinko (1997) focuses on identifying a set of conditions which is sufficient to ensure that optimal

behavior generates a q equation resembling the equation used in econometric work. He considers different types of

financing problem, but only some of these problems imply a significant coefficient on cash flow. In several of the

cases he studies, financial frictions are capitalized as part of the q value; in others, constraints affect the coefficient on

cash flow. However, the paper provides few insights into the effects of future constraints on current decisions.

Chatelain (1998) attempts to fill the gap between standard neoclassical investment behavior and credit constrained

investment, by following a line of argument, first suggested by Whited (1992). He constructs a formal model of the

way switching between financing regimes affects current investment policy. The model assumes that the regime with

rationing will never be the ‘final’ one. Hence, it is unable to describe the behavior of a firm, which face rationing in the

future but is currently unconstrained. Finally, Saltari and Travaglini (2001, 2003) have studied the behavior of a firm,

which makes its investment decisions while facing a constraint that will become binding in the future. Saltari and

Travaglini (2001) investigate the effects of constraints and (the output price) uncertainty on investment. They show

that future liquidity constraints affect the equilibrium value of the firm, which becomes a non-monotonic functional

form of the fundamental. However, the paper does not consider the consequences of these changes on current

investment policy. Then, Saltari and Travaglini (2003) show that future constraints can affect a firm’s investment

policy, even when constraints are currently slack. But, the authors illustrate their point with a parametric example and

do not provide an explicit analytical solution for the dynamic path of the potentially constrained firm: conditions

under which the optimal policy leads the firm to anticipate his financing constraint have not been thoroughly explored.

All this suggests a need for explicit modeling.
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In the present paper we present two main results.

1. We fully characterize the problem of the potentially constrained firm deriving analytical solutions for the dynamic

paths of the investment, the q value of the firm, and the Lagrange multiplier.

2. To obtain these optimal trajectories we employ the ‘no arbitrage principle’ even when the constraints are binding.

The analytical consequence of this condition is that the optimal investment path for a firm switching between

regimes must be continuous and smooth at all times, including the point where the constrained and the

unconstrained trajectories meet. This results in two boundary conditions, which allow us to construct the new

optimal path.

Of course, this formalization of the constrained optimization problem has also economic implications for empirical

papers. First of all, note that in our model the Euler equation provides us with relatively little information. Euler

equation test cannot discriminate between the presence and absence of latent constraints: given that anticipated

constraints can affect current investment, empirical analysis of investment with constraints is likely to give spurious

results. As second point, we derive an explicit expression for the Lagrange multiplier, which can be used to check for

misspecification in empirical analyses. Tins is a step forward in quantitative investigation because often the multiplier

associated with financing constraints is parametrized in an ad hoc manner in order to proxy the role of financial

resources in the q investment equation.

From a methodological point of view, we study the investment decision problem in the presence of certainty. This

means that in this deterministic model rational expectations imply perfect foresight. This makes it possible to separate

the effects of constraints from those of uncertainty. We show that the firm ‘overinvests’ at the current time when

constraints are still slack. In our framework this initial ‘overinvestment’ is exclusively the result of the optimal

investment behavior for a forward-looking firm.

The paper proceeds as follows. In Section 2 we solve the benchmark case of the unconstrained firm. In Section 3,

we treat the equivalent problem for the constrained firm. Section 4 studies the behavior of the firm during switching

between different financing regimes, and explains how to calculate the accumulation path for a firm, which is free

from constraints at the current time, but will meet constraints at some future date. Section 5 uses this same argument

to show how future constraints affect the current value of the firm, deriving expressions for the Lagrange multiplier

and the firm’s investment policy. Section 6 concludes.
 E
UNCORRECT2. The unconstrained firm with an infinite horizon

As a starting point, we briefly analyze the standard case with an infinite horizon and no constraints.

Our set up uses all the standard hypotheses for the q model. We assume that the firm has a constant returns to

scale technology with decreasing marginal products. We further assume that labor, output and financial markets

are all perfectly competitive, and that the labor supply is perfectly elastic. This allows us to write operating profit

as a linear function of capital stock, aKt, where a is the (constant) marginal profit and Kt is the capital stock at

time t.

We assume that the adjustment costs function is quadratic in the rate of investment. Thus, cðItÞZ ItC ð1=2uÞI2t ,

where u is the reciprocal of the speed at which adjustment costs react to investment, and It is the investment rate.

Under these hypotheses the intertemporal problem for the firm can be written as

VðKtÞZmax
It

ðN
0

eKrt aKtKItK
1

2u
I2t

� �
dt (1)

where r is the interest rate (a constant), dKtZ(ItKdKt)dt is the accumulation constraint and d the depreciation rate. In

other words, the value of the firm is given by the present value of future net profits. In turn, these are determined by the

difference between operating profit aKt and adjustment costs ItC ð1=2uÞI2t .
1

1 The operating profit aKt measures the instantaneous profit obtained by the firm optimizing its value with respect to the labor input Lt, with Kt

assumed constant. More formally, we can write maxLt
½Lb

t K1Kb
t KwLt�ZaKt where aZ ð1KbÞðb=wÞb=1Kb:
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The firm’s objective is to select an admissible trajectory for the control variable It that maximizes the value of the

firm, as indicated in (1). Admissible paths are defined as trajectories which guarantee the continuity of It and Kt,

satisfying the initial condition on capital K0 and the transversality condition.

In the standard case, it is straightforward to show that the value function is linear in Kt. To see this, write the

corresponding Bellman equation for problem (1)2:

rVðKtÞdt Zmax
It

aKtKItK
1

2u
I2t

� �
dtCdV

� �
(2)

The first order conditions for this problem are

It ZuðqtK1Þ (3)

qt Z
a

r Cd
C

_qt

r Cd
(4)

where Vkt
hqt. Eq. (3) provides the optimal intertemporal condition for the control variable It, while the differential

Eq. (4) is obtained applying the envelop condition—with respect to the state variable Kt—to the Bellman Eq. (2).

Eq. (4) is the Euler equation and has a simple economic interpretation. It is an arbitrage condition: the value of the

firm, qt, is given by the sum of the present value of future marginal profits, a, discounted at rate rCd, and the potential
capital gain, _qt, from reselling the capital on the secondary market. Note that the dynamics of qt are necessarily

continuous. Otherwise, it would be impossible to define _qt. It is intuitively clear that this would represent a violation

of the ‘no arbitrage principle’. In the presence of such a violation the firm would be incorrectly priced and the

investment would not be optimal.

The differential Eq. (4) has the solution:

qt ZAeðrCdÞt C
a

r Cd

where A is a constant to be determined. Making use of the transversality condition:

lim
t/N

eKrtqtKt Z 0

we note that we have to set A equal to zero in order to avoid speculative bubbles and to reach the stable arm of the

saddle path, i.e. the one converging to the steady state.

As a consequence, qZVk hvV =vK is a constant (qZa/rCd does not depend on t). Integrating with respect to

capital, we obtain the value function for the firm

VðKtÞZat CqKt

which is a linear function of capital stock. Substituting this expression in the Bellman equation, one can verify that

atZ ð1=ð2uÞÞðI2t =rÞ. That is, the additive term inV(Kt) is due to adjustment costswhen—thefirm investsmore, it has higher

adjustment costs, but increases its value–while marginal q is the present value of the future marginal product of capital.
UNCOR
2.1. Finite horizon and perfect capital markets

Let us now assume a finite time horizon T (for an analysis of dynamic optimization problems with finite horizons,

see Arrow and Kurz (1970); Leonard and Long (1993)). We will assume that, in addition to the starting level of the

capital stock K0, we also know the final level. If T is not literally the end of the world, the capital stock left over at the

terminal time will have some value in the future. We denote this value by K(T)ZKT.

However, economists are often interested in a slightly different formulation of end-of-period conditions. For a firm

that intends to continue its existence beyond the planning period [0, T], it may be reasonable to stipulate some

minimum acceptable level for the terminal capital instead of a scrap value.
2 For Bellman recursive methods in continuous time, see Dixit and Pindyck (1994); Dixit (1993); Kamien and Schwartz (1991); Turnovsky

(2000), and Leonard and Long (1993).
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In such a case the transversality condition can be written as3:

qðTÞR0 and ½KðTÞKKT �qðTÞZ 0

If K(T)OKT then the restriction does not bind, and the outcome is the same as if there were no restriction and

condition q(T)Z0 is met. But if the restriction is binding, the amount of terminal capital actually left will correspond

exactly to the minimum required level K(T)ZKT, and the terminal shadow value will be positive q(T)O0.

As before, the problem is to choose the investment trajectory that maximizes the value of the firm:

VðKtÞZmax
It

ðT
0

eKrt aKtKItK
1

2u
I2t

� �
dt with Kð0ÞZK0 and KðTÞZKT (5)

With a finite horizon, the general form of the solution is the same as before

qt ZAeðrCdÞt C
a

r Cd
(6)

but in this case the value of the constant A depends on T, K0 and KT. To see this, substitute the value of the firm (6) in

the investment Eq. (3) to obtain

It Zu AeðrCdÞt C
a

r Cd
K1

� �
or:

_Kt Zu AeðrCdÞt C
a

r Cd
K1

� �
KdKt

The solution of this differential equation is:

Kt ZK0e
Kdt C

uA

r C2d
ðeðrCdÞtKeKdtÞC

u

d

a

r Cd
K1

� �
ð1KeKdtÞ (7)

To determine the value of the constant A, we use the terminal value of the capital stock:

KT ZK0e
KdT C

uA

r C2d
ðeðrCdÞTKeKdT ÞC

u

d

a

r Cd
K1

� �
ð1KeKdT Þ

Solving this equation for A, we obtain:

A Z
r C2d

u

KTK K0e
KdT C u

d
a

rCd
K1

� �
ð1KeKdT Þ

� �
eðrCdÞTKeKdT

(8)

Thus, marginal qt depends on KT and on T. Note that, in this case, constant A is positive, implying that the q value

of the firm is higher than in the steady state.
NCOR
3. Finite horizon with a financing constraint

Assume now that investment decisions are subject to a financing constraint. For example, if capital markets are

imperfect, investment policy could be restricted by a ceiling on available credit. We write the constraint as

_Kt%mKt (9)

where m is an exogenous parameter.4 Eq. (9) says that the constraint affects the maximum rate _Kt=Kt%m at which the

firm can enlarge its initial capital endowment. Of course, the constraint on _Kt also impinges on gross investment. In
U
3 See Chang (1992), chapter 8, for a more thorough exposition of the tranversality condition in finite time.
4 One can endogenize the parameter m, for instance studying the optimal relationship between financial resources and their uses. This clearly

complicates the formal analysis without substantially changing the results here obtained.
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the constrained regime, this is given by the expression:

It Z ðmCdÞKt

It is important to note that the assumption of a finite time horizon is essential for the constrained problem to be

relevant. Expression (9) is an effective constraint only when time is a scarce resource. This is because the constraint

affects the velocity with which the system (It, Kt) converges to its ultimate values.

Simulation runs of our model show that when T is very large, the starting level for investment and the

trajectories followed by the constrained and unconstrained system tend to coincide. That is, as T increases, the

constrained and the unconstrained paths are very similar. Hence, the solution for investment has the following

turnpike property: for T sufficiently large, the system spends most of the time in the neighborhood of the long-run

equilibrium, changing its direction only in proximity to the boundary time T, following either the constrained or

unconstrained trajectory so as to obtain KT at T. Finally, note that the solution for large T implies that the present

value of capital, eKrTqTKT, tends to zero. This means that, for T sufficiently large, the standard transversality

condition applies.

In this set up the first order condition (3) becomes

It ZuðqtK1KltÞ (10)

where lt is the Lagrange multiplier, the shadow value of the constraint (9), and the corresponding Euler equation is:

_qt Z ðr CdÞqtKaKltðmCdÞ (11)

with ltR0; mKtK _KtR0; ltðmKtK _KtÞZ 0 (12)
UNCORRECTED P
R4. Switching between regimes: constraints and absence of arbitrage

The following analysis draws attention to the possibility of regime switching. We have two cases. It may happen

that a firm, which is financing constrained at the current time will become unconstrained and remain so. As said above

this problem has already been studied (Chatelain (1998)) and it has no implication for the value of the firm because it

finally falls in the standard neoclassical investment regime. The second and more interesting case is when the firm is

initially unconstrained but it will find itself facing a constraint at some later date. In this scenario, a forward looking

firm anticipates this outcome and its investment policy changes at the outset. It is with this effect that we are

concerned.

Solving this problem poses a methodological question: the new optimal investment path cannot be obtained by

simply pasting together the unconstrained and the constrained parts of the trajectory. It is likely that, along the

constrained trajectory, the accumulation rate m, over the time interval [0, T] will be too low for the firm to reach KT.

As we will see in a moment, pasting the two paths together does not yield the desirable features required of an optimal

solution. This means that to calculate the optimal trajectory we have to compute not only a new value for A—the

starting point for the new trajectory—but also t*, the time at which the unconstrained and the constrained trajectories

should meet. In other words, t* is an endogenous variable: when the firm chooses how much to accumulate now, it

determines its future capital stock, and the time at which the constraint will become binding. These considerations are

reflected in the analytical method used to solve the optimal control problem, when the firm switches from the

unconstrained to the constrained regime.

To deal with this problem, note that, as Arrow and Kurz (1970) have shown, in the unconstrained model the

investment policy has to ensure that the accumulation paths for Kt and qt are continuous and smooth for any period t.

The first derivative _qt exists and it is continuous only when Kt and qt are continuously differentiable. One

interpretation of this condition, which involves the Euler equation, is that the no arbitrage condition is satisfied.

But, for the same reason, the optimal paths of Kt and qt in the constrained scenario must also be continuously

differentiable. Along the optimal path the investment dynamics are driven by the marginal value of the firm. In our set

up, the value of the firm summarizes the effects of all factors relevant to the investment decision. It follows that a

future financing constraint will cause an upward jump in the current value of qt because future restrictions lead to an

immediate increase in the marginal value of the firm. In these conditions, the optimal decision for the owners of the

firm will be to start off with a higher level of investment.
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The main analytical problem is how to characterize this optimal behavior. We impose two boundary conditions,

ensuring the continuity and smoothness of the new trajectories describing the changes of Kt and qt for the switch from

the unconstrained to the constrained status. These allow us to draw a new path which is optimal in the intermediate

phase when the constraint is slack. It should be observed that, if these two conditions were violated, qt would be

mispriced and investors could obtain arbitrage profits at the current time by buying the shares of the firm at a price

lower that their true value, determined by qt.
ROOF

4.1. The boundary conditions

To solve our problem, we impose the following two boundary conditions

KNC
t� ZKC

t� (13)

_KNC
t� Z _KC

t� (14)

where KNC
t and KC

t indicate the capital stock, respectively, in the unconstrained and in the constrained states. These

conditions require that Kt should be continuous and smooth along the optimal trajectory at the optimal switching

time.5 Note that this is coherent with Arrow and Kurz’s theorem of continuity of the state variables (1970, p.57,

Proposition 12).

These conditions identify new admissible paths for the intermediate phase, when constraints are still slack, based

on the consideration that investment dynamics along the optimal path investment do not simply reflect profits but also

anticipate the discounted value of future constraints.

As we will see shortly, firms facing future constraints have a higher qt since future restrictions increase their

current marginal value. This implies that the optimal policy for the owners will be to start off with a higher level of

investment.
 P
ORRECTED 
4.1.1. The continuity condition

Condition (13) states that at the (endogenous) time t*, Kt must have the same value on both the constrained and the

unconstrained trajectories. Condition (14) assures us that, to avoid arbitrage opportunities, both trajectories have to be

smooth at the time they meet.

If there is no constraint, Eq. (7) defines the optimal trajectory for Kt:

KNC
t ZK0e

Kdt C
uA

r C2d
ðeðrCdÞtKeKdtÞC

u

d

a

r Cd
K1

� �
ð1KeKdtÞ (15)

On the other hand, the presence of the constraint (9) forces Kt to follows the restricted trajectory

_Kt ZmKt/KC
t ZCemt

where C is a constant whose value depends on the boundary value KT. We use this piece of information to determine

the value of C:

KT ZCemT/C ZKTe
KmT
UNC5 Condition (13) can be seen as a ‘value matching condition’ because it matches the values of KNC
t to that of KC

t . Note that we have two unknowns,

the switching time t* and the corresponding value of capital at that time, Kt*. This explains why this kind of problem is dubbed a ‘free boundary’

problem, and why we need a second condition in addition to (13). The general mathematical theory is of little help in such a case. The conditions

applicable to free boundaries must come from economic considerations (see Dixit and Pindyck (1994), p. 108–10). In our context, the no arbitrage

principle defines the criterion. We require that at t* the values of KNC
t and KC

t should meet tangentially at the boundary, that is _KNC
t� Z _KC

t� ; which is

condition (14). This is generally called ‘high order contact’ or ‘smooth pasting’ condition because it requires not just the values but also the

derivatives of the two functions to match at the boundary. The intuition is the following. As investment approaches the boundary, the firm realizes

that future investment plans will be limited by the constraint. The firm will anticipate this, so that future constraints will be reflected in the firm’s

current decisions. Thus, it is not surprising that KNC
t smoothly to KC

t , becoming tangent at the trigger value K�
t in t*, in such a way as to satisfy the

no-arbitrage condition.
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By virtue of the continuity condition (13), at the optimal endogenous time t* the unconstrained and constrained

capital stocks must be equal:

KNC
t� ZCemt� (16)

Using this equation together with (15), we obtain an expression for A(t) (where we made explicit the dependence

on time):

AðtÞZ
r C2d

w

CemtK K0e
Kdt C u

d
a

rCd
K1

� �
ð1KeKdtÞ

	 

eðrCdÞtKeKdt

(17)

Note that when tZT, then CemTZKT while the remaining terms in the function have the same value as in the

unconstrained case. In other words, the value of A(T) is the same as in the unconstrained scenario.

A(t) is maximum at t*. This implies that A(t) has a lower value in the unconstrained scenario than in the constrained

case, A(T)!A(t*). Since, A(t) determines the optimal starting level for It, the initial level of investment in the

potentially constrained scenario is higher than the one in the scenario without constraints. Hence, the optimal

behavior for the potentially constrained firm is to ‘overinvest’ at the outset in order to achieve KT at time T.

4.1.2.. The smoothness condition

Let us now consider the second condition. For a firm facing future constraints, t* is the optimal endogenous time

for the unconstrained trajectory to meet the constrained accumulation path. Eq. (14) requires that at t* net investment

should be the same on both the constrained and the unconstrained trajectories. This implies that Kt should be smooth

at time t*: at t* both trajectories should have the same accumulation rate.

Using the first order condition, IZu(qtK1), net investment on the unconstrained trajectory can be written as:

_KNC
t Zu AeðrCdÞt a

r Cd
K1

� �
KdKt

On the other hand, the constraint on the accumulation rate is:

_KC
t ZmKt

Hence, the smoothness condition (14) can be expressed as:

u AeðrCdÞt� C
a

r Cd
K1

� �
KdKt� ZmKt� (18)

where Kt�ZCemt�ZKTe
KmðTKt�Þ. Solving Eq. (18) for A(t), we get:

AðtÞZ
mCd

u
CemtK

a

r Cd
K1

� �� �
KeðrCdÞt (19)

Finally, putting together (17) and (19), we obtain the values of the ‘constant’ and of the optimal switching time,

A(t*) and t*. Fig. 1 illustrates the relationship between the two conditions. As is clear from the figure, t* is optimal

when the value of A(t) is maximum. This is a consequence of the maximization principle underlying the Bellman

equation.
UNCO5. The value of the firm

As we said above the Euler equation must be valid even when the constraint binds. To focus on this crucial

implication note that the continuity of _Kt implies the continuity of It. Hence, given the relationship

It ZuðqtK1KltÞ

both qt and lt must be continuous. Consequently, from (11)—the Euler equation in the presence of a constraint— _qt is

also continuous. In other words, qt must be continuously differentiable. Therefore, the following boundary conditions

must hold at t*:

qNC
t� Z qC

t� (20)
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_qNC
t� Z _qC

t� (21)

As before, these two conditions assure the absence of arbitrage opportunities in the constrained scenario: the

switching between regimes takes place without discontinuity. Eq. (21) allows us to determine the dynamics of the

value of the firm along the constrained trajectory.6

To solve the system formed by Eqs. (20) and (21), write the Euler equation for the unconstrained part of the

trajectory:

_qNC
t Z ðr CdÞqNCKa

The Euler equation for the constrained part of the trajectory is:

_qC
t Z ðr CdÞqtKaKltðmCdÞ (22)

To solve this equation, we have to provide an explicit expression for the Lagrange multiplier lt. Investment along

the constrained trajectory is given by:

It Zw qC
t K1Klt

� �
and ItZ(mCd) Kt, it follows that:

ðmCdÞKt Zu qC
t K1Klt

� �
The Lagrange multiplier can thus be expressed as a function of qC

t :

lt Z qC
t K1K

ðmCdÞKt

u

Substituting this expression in (22), we obtain the Euler equation for the constrained part of the trajectory

_qC
t Z ðr CdÞqC

t KaKðmCdÞ qC
t K1K

ðmCdÞKt

u

� �
U
6 If the firm knows that the future investment will be constrained, it anticipates at the current time that its fundamental value will not grow beyond

an endogenous maximum upper value. This information will affect the investment decisions at the outset changing the firm’s value over time as the

barrier draws closer. As a result future constraint will be reflected in the firm’s current value. In these circumstances, it is not surprising that qNCt

must converge smoothly to qC
t , becoming tangent at t* in such a way as to satisfy the no-arbitrage condition.

YREEC 359—29/4/2006—01:20—ADMINISTRATOR—209461—XML MODEL 3sc+ – pp. 1–12



Y

E. Saltari, G. Travaglini / Research in Economics xx (xxxx) 1–1210

+ model ARTICLE IN PRESS

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520
CTED P
ROOF

that is, using the fact that on the constrained path KtZCemt:

_qC
t Z ðrKmÞqC

t K½aKðmCdÞ�C
ðmCdÞ2

u
Cemt (23)

The dynamics of qC
t is the solution to (23), that is

qC
t ZDeðrKmÞt CE CFemt

where

E Z
aKðmCdÞ

rKm
; F Z

1

rK2m

ðmCdÞ2

u
C

We now examine the continuity condition for qt. Along the unconstrained trajectory we know that:

qNC
t ZAðt�ÞeðrCdÞt C

a

r Cd

Applying the continuity condition (20), we obtain:

Aðt�ÞeðrCdÞt� C
a

r Cd
ZDeðrKmÞt� CE CFemt� (24)

Given the optimal values of A(t*) and t*, this equation determines the constant D and the corresponding optimal

value for qt along the switching trajectory.

Summing up, the value of the firm is:

qt Z
qNC

t ZAðt�ÞeðrCdÞt C
a

r Cd
; for t% t�

qC
t ZDeðrKmÞt CE CFemt; for tO t�

8><
>: (25)

This last equation neatly shows that the effects of future constraints are included in the market value of the firm,

captured by qt. This is clearly true for the constrained component in the qt value of the firm since, as can be seen from

Eq. (24), constant D depends directly on rate m and optimal switching time t*. But it is also true for the unconstrained

part of the qt value since t* and A(t*) both reflect the value of future constraint m (see Eqs. (17) and (19)). Of course,

this is a consequence of the no arbitrage condition, which works analytically through the continuity and the

smoothness conditions. The economic implication is that future constraints immediately affect a firm’s investment

decisions, by increasing its current value. A further consequence is that the existence of financial constraints is per se

not sufficient to establish cash flow as a significant regressor in the standard investment equation. Conversely, future

constraints are not necessary to obtain cash flow effects.
E
UNCORR5.1. The Lagrange multiplier

Another important feature of this model is that it makes it possible to derive an explicit expression for the Lagrange

multiplier lt—which as usual measures the additional cost of external resources when capital markets are imperfect.

Thus, the cost of an additional unit of capital is equal to 1C ð1=uÞItClt:

To derive the expression for the Lagrange multiplier, start with the investment equation for the constrained part of

the trajectory, ItZuðqtK1KltÞ. Solving for qt gives:

qt Z 1Clt C
1

u
ðmCdÞKt

Next, differentiate this expression with respect to time to get:

_qt Z _lt C
1

u
ðmCdÞmKt

Substituting these equations in the Euler equation corresponding to the constrained status, Eq. (23), we obtain the

differential equation for lt:
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_lt C
1

u
ðmCdÞmKt Z ðr CdÞ 1Clt C

1

u
ðmCdÞKt

� �
KðmCdÞltKa

Finally, use the fact that KtZCemt to find the following solution for the Lagrange multiplier

lt ZQeðrKmÞt CPCLemt

where

P Z
aKðr CdÞ

rKm
; L ZC

mCd

uð2mKrÞ
ðr CdKmÞ; Q ZKðPCLemt� ÞeðmKrÞt�

As already stated, lt is continuous. This does not mean, however, that lt has to be smooth. In fact, lt has a ‘kink’ at

the point where the constraint becomes binding. Before t* lt has a value of zero.

5.2. Optimal Investment

Having obtained the path for qt and lt, it is easy to determine optimal investment policy. We already know that in

the absence of constraints the investment trajectory is given by:

It Zu qNC
t K1

� �
We also know that in the constrained regime investment is:

It Zu qC
t K1Klt

� �
Using the expressions previously calculated for lt and qt, we are able to determine the investment path:

It Z
uðqNC

t K1Þ; for t% t�

uðqC
t K1KltÞ; for tO t�

(

Note that, given the continuity of Kt and _Kt; the only condition we can impose on investment is continuity. We

cannot impose smoothness. Investment, like the Lagrange multiplier, has a kink at t*.

6. Conclusions

In this paper, we have shown that the presence of financing constraints affects firms’ behavior even when current

investment is far below the level where the constraint binds: for forward looking firms, marginal qt incorporates the

effects of future financing constraints, and the Euler equation is always valid even when the investment path switches

from the unconstrained to the constrained regime.

To show this result we have employed the no arbitrage principle in the constrained scenario, in order to determine

the optimal value of a firm switching between regimes. By excluding ‘jumps’ in the accumulation rate _Kt and in

capital gains _qt when constraints bind, the principle implies that the paths for capital stock Kt and the qt value must be

continuous and smooth.

Of course, these analytical results depend on the model’s assumptions. It is clear, for instance, that starting levels

for investment and investment trajectories depend on the functional form used to express adjustment costs, the form in

which we express constraints and the absence of uncertainty. A key task for future work is thus to generalize the

model to include uncertainty.

Nonetheless, we would argue that the ‘no arbitrage principle’ is valid in all financing scenarios. Only by respecting

this condition is it possible to ensure correct pricing of firms and optimal investment decisions.
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