
Scuola Normale Superiore, Pisa
Classe di Scienze

Probing the Standard Model through radiative
corrections

Thesis submitted in partial fullfillment of the requirements
for the Ph. D. degree in Physics

Advisor:
Prof. Giuseppe Curci

Referees:
Prof. Riccardo Barbieri

Prof. Peter Weisz

Candidate:
Dr. Andrea Viceré
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Chapter 1

Introduction

In this thesis we are going to report on some of the topics investigated during the years at
Scuola Normale Superiore, namely weak radiative decays, exemplified by the study of the so
called Flavor Changing Neutral Current (FCNC) decays of the b quark, and weak radiative
corrections to LEP observables, discussing the computation of the two-loop heavy top effects
to the ρ parameter and to the Z → bb̄ decay width.

1.1 Motivations

These investigations contribute to a general research activity, aimed at testing the Standard
Model at the quantum level.

The Standard Model of electroweak interactions is a very successful theory, in the sense
that when a process is considered which can be predicted with a good theoretical accuracy,
there is full agreement with the experiment1. It appears that every known high energy
process can be described at least qualitatively in the context of the SM; the common belief is
that where a quantitative analysis lacks, the reason is the inadequacy of our computational
techniques, not of the theory in itself.

Nevertheless there are good reasons of principle to believe that the Standard Model is
just an effective theory: for instance there is compelling evidence that ϕ4 models, and conse-
quently the very Higgs sector of the Standard Model, is trivial. This means that these models
cannot be renormalized unless the interaction term is put to zero: even if this result has been
rigorously proven only for d > 4, the existing partial results speak in favour of an extension
to d = 4.

Leaving aside the theoretical motivations, there are aspects of the theory which are still
essentially not verified. For instance the symmetry breaking mechanism is not clarified, and
the Higgs sector itself lacks completely the experimental confirmation.

These facts have motivated in the last years a considerable effort aimed at devising ex-
tensions of the SM which may cure its theoretical shortcomings, without altering the “low
energy” behavior. May be the most promising of these extensions is the Minimal Supersym-
metric Standard Model.

Every extended model predicts the existence of some new particles, but it is quite possible
that none of these states will be detected directly in the near future: hence one has to look

1With some possible exceptions, for instance Rb, which is found at LEP two standard deviations higher than
the SM expectation, a fact however that is not a serious problem at the present level of statistical accuracy.
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for confirmations through indirect effects. The very success of the SM implies that we cannot
expect discrepancies with the experiment at the tree level, but any SM extension may reflect
itself in small corrections to the observables that are already being measured.

It goes without saying that in order to disentangle new physics effects it is first necessary
to improve the SM predictions at the level of the present experimental accuracy. In this thesis
we shall see in two explicit examples how this program is accomplished in practice.

The examples chosen, the b→ sγ decay and the heavy top electroweak corrections, are
good representatives of a class of studies which are expected to be particularly apt to improve
our understanding of the SM structure: the reason is that perturbative methods appear in
these cases well suited to extract accurate theoretical predictions.

1.2 Plan of the Work

The thesis is divided in two parts: in the first part we shall deal with the rare B → Xsγ decay,
while in the second part we shall consider the heavy top corrections to LEP parameters.

We shall try to be self contained and to follow a pedagogical approach. The physical
framework and the computational techniques are discussed on general grounds, as long as it
is possible from first principles.

In Chapter 2 we introduce from a general point of view the study of the rare B → Xsγ
decay, which is going to be detailed in the following Chapters. We recall the recent results of
the CLEO collaboration, which has measured both the inclusive decay and one of the exclusive
modes, B → K⋆γ. We show how such a process is described by the Standard Model in the
context of the Operator Product Expansion, separating the short distance contributions which
can be computed by perturbative techniques and essentially non perturbative quantities. The
b → sγ decay is unique in this respect, because the perturbative corrections are very large
and enhance the decay rate by a factor ∼ 4 ! This is not a sign of failure of perturbation
theory: it only reflects the fact that the operator mixing induced by QCD corrections alters
the pattern of GIM suppression. We shall see that despite these large corrections the inclusive
process can be predicted accurately: terms left out in the perturbative computation are not
expected to change the result by more than 20%. We shall briefly discuss why this process
is interesting as a “probe for New Physics”, by comparing the predictions in the SM, in an
extended Higgs model, and in SUSY. We shall see that one cannot expect too much from the
comparison with experiment, unless the theoretical predictions are made more accurate.

In Chapter 3 we start the analysis by showing how the techniques of Wilson is used in
practice to build an Effective Hamiltonian Heff for rare B decays. We compute the coefficients
of the Operator Product Expansion in the context of the Standard Model, and we start
discussing the effect of QCD corrections on the accuracy of the matching between “full” and
effective theory. The use of the effective theory at a mass scale much lower than the scale
of the matching results in large perturbative logarithms, which need to be resummed (at
least in part) to all orders in perturbation theory: this is equivalent to evolve the effective
hamiltonian, as a renormalized operator, from the matching scale to the scale of the decay
process in consideration.

The techniques of “renormalization group improved” perturbation theory are briefly re-
viewed in Chapter 4. We work in the context of dimensionally regularized field theories, and
we derive the RG equation using an approach which in our opinion is more transparent than
the usual “bare” formulation. In particular, we review some subtleties, like the so called
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“evanescent” operators, which need to be taken into account for a consistent treatment of
QCD corrections to weak decays. We discuss the resummation of large logarithms and we
introduce the analysis of scheme and scale dependence: in particular we discuss how the scale
dependence is the reflection of the error in the theoretical computation due to the left-out
terms in the perturbative expansion.

In Chapter 5 these tools are applied to the computation of the leading logarithmic cor-
rections to b→ sγ decay. We compute the anomalous dimension matrix and use it to evolve
the effective hamiltonian from the matching scale µ ≃MW to the scale of the decay µ ≃ mb.
We use a technique which has been developed to simplify the computation and which is ex-
pected to be of help in evaluating the next to leading corrections. We argue why one should
perform the next to leading computation, and how the accuracy of the existing results would
be improved.

In the second part of the thesis we discuss the heavy top corrections to LEP observables.
It is known from some time that a large mass splitting in the t, b doublet results in relatively
large O

(

m2
t

)

corrections to “oblique” and “non oblique” LEP observables, that is, related to
self energies and vertices. Our contribution has been the evaluation of the O

(

m4
t

)

corrections.
This computation can be regarded as an estimate of the theoretical error implied by the lack
of knowledge of the full two loop electroweak corrections.

In Chapter 6 we set up the renormalization framework, recalling on general grounds how
it is possible to parameterize the quantum corrections to electroweak parameters. We discuss
the basic and derived observables, and we introduce the ρ parameter as a way to compactly
take into account the self energy corrections common to all the observables. We argue why
an heavy top alters the value of the ρ parameter, and we also discuss the effect of an heavy
top through vertex corrections. We briefly recall how such computations have been used to
derive bounds on the top mass, which are in agreement with the recent result of the CDF
collaboration (mt ≃ 170GeV).

In Chapter 7 we show how the heavy top corrections can be evaluated by using a reduced
model, the so called “gaugeless” limit of the Standard Model. Indeed, in the limit of gauge
couplings much smaller than Yukawa couplings, we can forget the propagation of gauge fields,
and the model needs only to include the “would be” Goldstone bosons, which are coupled to
fermions through the Yukawa term. We show how this limit is well defined starting from the
Standard Model formulated in the background field gauge, and we show how the self energy
and vertex corrections needed to evaluate the ρ parameter and the Z → bb̄ decay width are
related by Ward Identities to correlation functions evaluated in the reduced “Yukawa” model.
We show how this Ward Identities reflect the conservation, in the reduced model, of the
currents coupled to the Z and W± fields.

In Chapter 8 the computation of the heavy top effects is detailed: we define the renormal-
ized model by introducing the subtractions needed to make all the results finite, and we clarify
the connection with the basic observables. We compute the one and two loop corrections and
we discuss their numerical significance. Then we consider the effect of the corrections on
some of the LEP observables. We discuss the validity of the approximation and we argue
why one should not consider the heavy top effects as the major source of correction to LEP
observables.

The conclusions (Chapter 9) will be devoted to resume the results obtained and to discuss
further possibilities, in particular the computation of the Next to Leading Corrections to B
decays we are currently involved with.

In the Appendixes we have collected some useful formulas. In particular, in App. A we
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fix the notations, relating pseudo-euclidean and minkowskian metrics. In App. B we give
definitions and identities for the Dirac algebra in d dimensional space. In App. C we briefly
recall the Standard Model formulation, its quantization and the relevant Feynman rules.
Finally in App. D we briefly recall the background field gauge method and its application to
the Standard Model.



Part I

The B → Xsγ decay



Chapter 2

Overview

2.1 The CLEO results

The CLEO collaboration, at the Cornell Electron Storage Ring (CESR), has reported the first
observation of rare B decays connected at the quark level to the b→ sγ process [88, 105].

At Cornell B, B̄ mesons are produced at the Υ− 4S resonance, a J = 1 unstable state of
mass m = 10.5800 ± 0.0035GeV and total width Γ = 23.8 ± 2.2MeV. Both neutral B0, B̄0

and charged B−, B+ pairs are produced, accompainied by light quark pairs, uū, dd̄, ss̄, cc̄,
whose background can be rejected by subtracting measures taken about 50MeV below the
resonance.

The B mesons are produced with a cross section ratio to the continuum roughly of 1 to 2.5,
and decay mainly in charmed mesons, through Charged Currents interactions. These modes
are used to determine the mass of the B meson and the results show the good resolution

MB0 = 5280.3 ± 0.2 ± 2.0

MB− = 5279.9 ± 0.2 ± 2.0 . (2.1)

The CLEO collaboration has collected [105] 2.15 million B meson pairs at the resonance,
and about 6.6 million below resonance. Already in a smaller sample, (1.2 million pairs)
the collaboration has reported [88] the observation of 13 events corresponding to the rare
B0 → K⋆(892)0γ, B− → K⋆(892)−γ, resulting in a branching fraction

BR (B → K⋆γ) = (4.5 ± .5 ± 0.9) × 10−5 . (2.2)

These exclusive decay modes were already expected to be dominant among the channels
relevant for the b→ sγ transitions, since the Kγ decay was excluded by angular momentum
conservation, and the K⋆(892) is the lightest vector meson resonance allowed in the final
state.

The two body nature of the decay permits a rather clean reconstruction: the experimental
signature is an hard photon (2.6GeV) recoiling against the decay products of the excited K⋆

state, a K π pair. The K π pair mass is reconstructed and required in a range 821 < MKπ <
971MeV, and various cuts are imposed to reject continuum [88].

It has also been possible to measure the inclusive decay rate, BR (B → Xsγ), by looking
for an hard photon without reconstructing the accompaining hadronic state but requiring its
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W W

Figure 2.1: One loop diagrams for b→ sγ in the SM

mass in the typical strange meson region, 0.5− 2GeV. The signature is a photon with energy
between 2.2 and 2.7 GeV, this spread resulting from the Fermi motion of the b quark inside
B meson. Referring to [105] for a discussion of the identification and background rejection
techniques, we can quote the experimental result

BR (b→ sγ) = (2.32 ± 0.57 ± 0.35) × 10−4 ; (2.3)

we shall see that this observation is quite consistent with the Standard Model predictions.
It is also useful to observe that the following inequalities are true at 95% confidence level

1.0 × 10−4 < BR (b→ sγ) < 4.2 × 10−4, (2.4)

a range of variation important in order to constrain all the non-standard model contribu-
tions to the decay.

To size the importance of this rare decays and of the hard experimental effort needed to
detect them, let us consider their theoretical interpretation.

2.2 The structure of the B → Xsγ decays

The b→ sγ decay, a Flavor Changing Neutral Current process, is not generated in the Stan-
dard Model classically, that is, at the tree level. This feature is “protected” at the quantum
level by the GIM mechanism: in the limit of equal masses for the up-quarks, the diagrams in
Fig. 2.1 cancel exactly, and the flavor diagonal structure of the Neutral Current interactions
is preserved from receiving quantum corrections.

As soon as it was recognized that the t quark mass had to be rather large [11], it became
apparent the violation of the GIM mechanism, and the generation of FCNC effective inter-
actions, which can be accounted for in an effective low energy theory which incorporates the
contributions resulting by the virtual effect of the heavy top.

We shall discuss in the next chapter how the effective theory is generated, for the time
being it suffices to observe that thanks to the large mass of the W boson, in analogy to the
Fermi theory, decays like B → K⋆γ can be described at short distances, by a local magnetic
momentum operator

Cm.m. (mb)
e

(4π)2
mbVtbV

⋆
tss̄σµνbRF

µν , (2.5)
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with a coefficient C, which depends on the scale of the process and on the short distance
physics details. This parameterization is specific to the SM only in the fact that the unitarity
of the CKM has been assumed, and the VubV

⋆
us have been dropped, but in any effective

low-energy theory the essential characteristics do not change.
Note the explicit mb factor: in the limit of mb → 0 the b helicity would be conserved and

there would be no way to emit a real vector particle. The amplitude for B → K⋆γ is given
by the on-shell matrix element [82]

A =
eGFmb

2
√

2π2
Cm.m. (mb)VtbV

⋆
tsη

µ〈K⋆ |s̄σµνq
νbR|B〉 (2.6)

where q, η are momentum and polarization of the outgoing photon. The matrix element
contains the long distance physics, the details of the hadronization, and can be parameterized
as follows [64]

〈K⋆ (k, ε) |s̄σµνq
νbR|B(p)〉 = C1

µT1

(

q2
)

+ C2
µT2

(

q2
)

+ terms zero on-shell (2.7)

where q = p− k and

C1
µ = ǫµνλρε

νpλkρ

C2
µ = εµ

(

m2
B −m2

K⋆

)

− ε · q (p+ k)µ . (2.8)

On shell T2

(

q2 = 0
) ∝ T1

(

q2 = 0
)

, and after proper phase space integration and sum over
polarizations one gets

Γ (B → K⋆γ) =
α

32π4
m2

bG
2
Fm

4
B

(

1 − m2
K⋆

m2
B

)3

|VtbV
⋆
ts|2 |C (mb)|2

∣

∣

∣T1

(

q2 = 0
)∣

∣

∣

2
. (2.9)

This expression deserves a few comments:

• the rate is proportional to αQEDG
2
F , while most other FCNC processes involving leptons

(like b→ Xse
+e−) or photons are of order α2

QEDG
2
F .

• The CKM coefficients appearing in the expression have not been directly measured, but
in the SM they can be deduced from unitarity, and are known to be

|Vt b| = 0.9987 − 0.9994

|Vt s| ≃ |Vc b| = 0.044 ± 0.006 . (2.10)

If one considers a related FCNC process, the B → Xdγ decay, one immediately deduces
that

BR (B → Xdγ)

BR (B → Xsγ)
≃ |Vt d|2

|Vt s|2
≃ 10−2 , (2.11)

which is a consistent suppression.
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• The separation between short and long distance physics is made, in the context of
OPE, at a scale mb ≃ 5GeV which is well within the perturbative QCD range. We shall
elaborate on this subject in the following chapters, but the essential is that the large mb

mass makes us confident that the factorization of short and long-distance contributions
is reliable.

• The long-distance physics, contained in the T1 form factor, has been considered for a
long time the larger source of uncertainty.

Recently however, as pointed out in [104], a remarkable agreement between Lattice QCD
results and QCD sum rules has shown up.

On the lattice two independent groups have computed the form factor T1
(

q2 = 0
)

; Bernard
et al. [64] obtaining TBernard

1 = 0.20±0.02±0.01, Bowler et al.(UKQCD collab.) [82] obtaining
TUKQCD

1 = 0.30+10
−7 .

From QCD sum rules other results are available: TColangelo et al.
1 = 0.35 ± 0.05, obtained

in [84], TBall
1 = 0.37±0.05 [83], TNarison

1 = 0.31±0.013±0.06 [101], TAli et al.
1 = 0.32±0.05 [97].

This results determine the ratio

RK⋆ =
BR (B → K⋆ (892) γ)

BR (B → Xsγ)
=

(

mB

mb

)3
(

1 − m2
K⋆

m2
B

)3
∣

∣

∣T1

(

q2 = 0
)∣

∣

∣

2
(2.12)

of the esclusive over inclusive process, and while the lower Lattice results gives a value of
the order of 6%, the larger Lattice and the QCD sum rules results give a value larger than
20%: despite the large errors, this result confronts well with the experimental result

Rexp
K⋆ = 0.19 ± 0.09 . (2.13)

The agreement is quite encouraging, and calls for further study in order to improve the
confidence in the long-distance physics analyses, and eventually reduce the difference in the
numerical results.

2.2.1 The inclusive rate

The inclusive rate Γ (B → Xsγ) can be accurately predicted on the basis of perturbative QCD
only. The reason is that in a spectator model the probability of the decay is determined solely
on the basis of the amplitude for the quark process b→ sγ, that is, one assumes that no
interferences are present between short and long distance effects.

This is more than an assumption: the Heavy Quark Effective Theory allows to demonstrate
that the spectator model is a well definite limit of QCD, the leading term in an expansion
in powers of

ΛQCD

mQ
(see for instance [100] and references therein). Moreover it can be shown

that the expansion starts at the Λ2/m2
Q level, hence for the b quark, mb ≃ 5GeV, the non

spectator corrections are expected to amount to less than 1%.
In the spectator model the inclusive rate is therefore given by

Γ (B → Xsγ) =
αQEDG

2
Fm

5
b

32π4
|VtbV

⋆
ts|2 |Cm.m. (mb)|2 ; (2.14)

a more refined discussion of this formula, and of the dependence on the scale used to
separate short and long distance contributions shall be given in the following chapters.
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The predictivity of this formula is enhanced by reducing the strong dependence on the
quark mass mb, normalizing the rate to the semileptonic b decay, Γ (b→ c e ν̄e). The ratio
results

R =
Γ (b→ sγ)

Γ (b→ c e ν̄e)
=

|VtbV
⋆
ts|2

|Vcb|2
6αQED

π
(

1 − f
(

mc

mb

)) |Cm.m. (mb)|2 , (2.15)

where the f function results from the integration over the phase space in the semileptonic
b decay

f (x) = x2
(

8 − 8x4 + x6 + x2 lnx
)

. (2.16)

The ratio in Eq. 2.15, or equivalently the ratio of branching fractions

R =
BR (B → Xsγ)

BR (B → Xcγ)
(2.17)

together with the experimental measure [70]

Γ (B → Xc e ν̄e) = 10.7 ± 0.5 (2.18)

allows to predict the branching fraction, slowly dependent on mt, shown in Fig. 2.2, which
includes the short distance QCD corrections at the level of Leading Logs. The error bars
accompaining the theoretical values have been computed following [81], and more details will
be given in Sec. 5.4.1.

Despite the large errors, the figure shows a remarkable success of the SM and of pertur-
bative QCD. We shall see indeed that the theoretical prediction is strongly influenced by the
aforementioned short distance QCD “corrections”, and it is enhanced by a factor ranging
between 4 and 5 for reasonable values of the t mass. It is worth recalling that even before
the measurement of the inclusive decay rate, the knowledge of the BR (B → K⋆γ) and the
SM prediction for the inclusive rate (including the short distance QCD corrections) allowed
to obtain a value for the ratio defined in Eq. 2.12

RK⋆ = 0.15 ± 0.06 . (2.19)

In absence of the QCD enhancement this ratio would be of the order of 60%, showing
how dramatic is the effect of these corrections. One may wonder if so large corrections can
be reliable, and in which sense they are “perturbative”.

2.2.2 The QCD enhancement

The substantial short distance QCD enhancement makes the b→ sγ process the only known
SM process “dominated by two loop effects” [81].

Let us briefly comment on the reasons of this big enhancement.
As already stated, at short distances the Feynman diagrams in Fig. 2.1 generate the

decay. This graphs give rise to a coefficient Cm.m. for the magnetic momentum operator in
Eq. 2.5, whose value varies between ≃ 0.17−0.21 for a top mass in the interval 140−200GeV.
However, through QCD corrections also the Fermi type operators, like (s̄c)V −A ⊗ (c̄b)V −A,
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Figure 2.2: Theory and experiment: B → Xsγ in the SM

Figure 2.3: Typical two-loop graphs contributing to b→ sγ
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which appear in the Effective Theory below the Electroweak scale, contribute to the process
via two-loop Feynman graphs, as in Fig. 2.3.

These operators give rise, order by order in the loop expansion, to contributions propor-
tional to powers of αS (MW ) log µ≃MW

mb
≃ 0.33, where the value of the µ scale has been fixed by

matching the effective theory and the underlying complete theory (say, the SM). This correc-
tions can be summed in part to all orders of the perturbative expansion, and can be included
in a redefinition of the coefficient of the magnetic momentum operator1 (schematically)

Cm.m. (m) = fm

(

αs (m)

αs (MW )

)

Cm.m. (MW ) + . . .+ fF

(

αs (m)

αs (MW )

)

CFermi (2.20)

where the m argument of the coefficient means that the renormalization scale appropriate
to compute the matrix element in Eq. 2.6 has been “scaled down” to m, and the f functions
contain the QCD corrections, which can be expressed in terms of the ratio of the QCD
couplings at different scales.

We shall see that the additive renormalization schematically addressed by the “Fermi”
coefficient in Eq. 2.20 is responsible for the consistent improvement, while the multiplicative
renormalization tends to suppress the rate.

The physical origin can be traced back to the evasion of the GIM mechanism. If the t and
c masses where equal, the diagrams in Fig. 2.3 would have been canceled by corresponding
graphs with a virtual t quark.

2.3 The b → sγ as a probe of new physics

To be definite, in Sec 2.2 we have briefly addressed the origin of this rare decay in the context
of SM. A more complete discussion will be given in the following chapter, but it should
be stressed that the b→ sγ process is not only a test of the SM but more importantly is
a window in the higher energy structure of the theory. The reason is that non standard
contributions resulting from the exchange of undiscovered particles are comparable in size to
the SM contributions, which are suppressed by the symmetry mechanism preventing large
FCNC effects. Hence on general grounds one expects that even if it will be not possible for
some time to extend the investigation of the spectrum of elementary particles, the indirect
effects will be accessible through the combined study of the different rare decays.

Fixing the attention to b→ sγ, many detailed analyses exist, in the context of the Minimal
Supersymmetric Standard Model (MSSM) [59, 63, 86, 99], the Two Higgs Doublet extension
of the scalar sector [79, 80, 81] and in other models, as in the SU(2)L × SU(2)R × U(1)
extension of the electroweak gauge group [89].

The lack of space and direct experience prevents us from adequately reviewing the many
interesting contributions to the argument, but a few general considerations are possible.

2.3.1 Two Higgs doublet models

The two Higgs doublet models can be seen as the mildest extension of the electroweak sim-
metry breaking sector of the SM, and the resulting charged Higgs fields in the spectrum
naturally induce FCNC transitions. There are two versions of the model, the so called Type
I in which one of the doublets “gives mass” to all the fermions while the other decouples, and

1In the leading log approximation
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Figure 2.4: Charged Higgs contribution to b→ sγ.

the Type II model in which one Higgs doublet (ϕ2) couples to up-quarks, while the other (ϕ1)
to down-quarks. The Type II model is more popular because it may possibly give a “natural”
explaination of the large mass splitting in the t, b doublets, in terms of a large ratio of the
vacuum expectation values, commonly parameterized as

tan β =
v2
v1

; (2.21)

moreover, this model appears as the minimal extension of the Higgs sector when consid-
ering SUSY theories.

In either models there are new contributions to b→ sγ through the diagrams in Fig. 2.4,
with the general form [80]

ASM

(

m2
t

M2
W

)

+ λA1
H

(

m2
t

M2
H±

)

+
1

tan2 β
A2

H

(

m2
t

M2
H±

)

(2.22)

where ASM and A1, 2
H are the SM and charged-Higgs contributions respectively; in model

I one has λ = −1/ tan2 β, while in model II λ = 1. For small values of tanβ both the models
give an enhancement of the amplitude, and in model II the term A1

H gives an amplitude
always larger than in the SM. However in model II large tanβ values are more appealing, as
discussed above.

In Fig. 2.5 we show the prediction for two values of MH± , already considered in [81].
For a large MH± the SM and the 2HDM become undistinguishable, at the present level of
theoretical accuracy.

2.3.2 b → sγ in the MSSM

Good reviews on the subject exist, and we shall limit to a brief account, mainly following [59,
78, 99]. Even restricting the attention to the so called N = 1 models, that is, the SUSY
models which are derived as low energy theories from a N = 1 supergravity model, a large
number of parameters exists. The MSSM is obtained with some additional constraints

• a new symmetry, the R parity, is imposed in order to avoid large baryon-lepton number
violations.

• Only the minimal number of fields needed to “supersymmetrize” the known spectrum
are introduced.
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Figure 2.5: B → Xsγ in the 2HDM

• Canonical kinetics terms are chosen for all the scalar fields.

While the particle content is fixed, with these choices there are essentially 4 new parameters
with respect to SM (5 if one relaxes the assumption of a flat Kälher metric which underlies the
choice of canonical kinetic terms), which determine the low-energy theory. By requiring also
that the correct scale of electroweak symmetry breaking is reproduced, and not introducing
a third Higgs doublet, the parameters reduce to 3; of these, one is again commonly chosen as
tan β, while the other two can be for instance chosen as two mass scales characterizing the
pattern of SUSY breaking.

The enlargement of the spectrum, with respect to the SM, brings naturally new sources
of FCNC contributions: apart the extension of the Higgs sector, discussed in the preceding
section, one has an immediate new contribution coming from the supersymmetrization of the
W and charged Higgs contributions. The fermion mass eigenstates resulting from W̃ and
H̃± mixing, the so called charginos χ̃±, are exchanged in loops where the up squarks also
circulate.

Other peculiar contributions result from the Flavor Changing vertices connecting quarks
and squarks through the exchange of neutralinos χ̃0 and gluinos. In summary one has con-
tributions resulting from the following virtual particles

1. W− and up quarks,

2. charged Higgs fields H− and up quarks,

3. charginos, χ̃−, and up squarks,
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4. neutralinos, χ̃0 and down squarks,

5. gluinos, g̃, and down squarks

where the last three are peculiar of SUSY. In some of the older analyses the first two
contributions were considered dominant, thus giving bounds analogous to the one considered
in the SM. However more complete studies [59, 86] show that only the neutralino and gluino
contributions can be numerically neglected. On the other hand, while as in the 2HDM the
charged Higgs contributions interfere constructively with the SM contribution, there exist
large portions of the parameter space in which the chargino amplitude interferes destructively,
and it can also become the dominant contribution for a large tan β value.

It is not possible even to account for the exploration of the parameter space needed to
make these statements quantitative, so we refer to a recent analysis [99].

We can expect in a near future an improvement of the accuracy of the experimental results,
however we see that the possible interference effect among different SUSY contributions makes
difficult a clear distinction from the SM. This is even more true in presence of the rather large
theoretical uncertainties, mainly originated by the lack of knowledge of higher order QCD
corrections.



Chapter 3

Effective theories

3.1 Generalities

In this thesis we consider physical processes which are strongly influenced by quantum cor-
rections. A direct consequence, relevant both for weak decay processes, and the electroweak
corrections to LEP observables, is the dependence of the theoretical predictions on widely
different mass scales.

The reason is that the SM1 has the ambition to account, on quantitative grounds, for
phenomena occurring at largely different energies, starting from a common fundamental de-
scription. For instance, in many weak decays the typical energy scale, the Q value of the
reaction, is of the order of 1GeV, while the fundamental interactions result from the exchange
of virtual particles with masses of the order of 100GeV. On the other hand, observables
determined with experiments at energies of the order of the Z resonance, must be related to
low-energy experiments, like the β decay or the ν N scattering.

A better understanding of the phenomena, as well as a practical way to properly ac-
count for the different scales involved, can be obtained by using the effective field theory
formalism [26].

3.1.1 What is an Effective Theory?

A number of useful reviews exist (see for instance [27]), so we shall limit ourselves to a very
general discussion, and then proceed through the study of a practical case.

The idea is quite simple: we start from an high energy theory, say the SM, described by
a local lagrangian2. Suppose it involves light fields, φ, and heavy fields, Φ.

We are going to study a process which can be described in terms of correlations of light
fields

〈0 |φ(x1)φ(x2) . . . φ(xn)| 0〉 =

∫

dφ dΦe−S0(φ,Φ)φ(x1)φ(x2) . . . φ(xn) . (3.1)

We can perform the functional integration over the heavy field, and have an equally good
description of the light fields interactions. The same Green function will be obtained from a

1Or any sensible extension of it.
2In some sense, this is the definition of a fundamental theory, at least for the majority of physicists.
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functional integral

∫

dφe−S1(φ)φ(x1)φ(x2) . . . φ(xn) (3.2)

involving an effective action S1, which is not, at least in general, local. If we try to express
the action in terms of local interactions, we find that an infinite tower of composite operators,
involving more and more elementary fields, is required in order to match the two descriptions.

Technically this procedure, which allows to go from an effective non local action to a local
theory is the Wilson’s Operator Product Expansion: in presence of an heavy mass-scale, it
allows to organize the infinite tower of non-renormalizable interactions as a Taylor series in
inverse powers of the heavy field mass. The short distance physics is then “buried” in the
coefficients of the resulting local operators, while the long distance physics remains explicit.

It is worth noting the similarity with the description of critical phenomena and the exis-
tence of universality classes: long distance physics is described by an entire class of different
theories, differing on the amount of short distance physics which is left explicit.

3.1.2 Matching

In all the practical cases the non-local effective action cannot be determined: instead, one
builds a local effective lagrangian, or more generally an effective Hamiltonian, up to some
power p of the inverse mass (for instance some order in GF ), which will involve a finite
number of operators and coefficients.

For instance, in the case of weak decays, for any initial and final state, which can be
written in terms of “light” fields, it must be imposed the indentity

〈f |i〉full (µ) = 〈f |Heff | i〉 (µ) +O

(

1

Mp

)

(3.3)

where Heff is a sum of local renormalized operators N [O],

Heff =
∑

j

Cj (M, µ)N [Oj] (3.4)

built of light fields, and depending on M through the coefficients C. The bracket on the
left hand side addresses an amplitude i → f evaluated in the “full” theory, while on the
right hand side the expectation value of the effective hamiltonian between the same states is
evaluated, as specified by the lagrangian of the light theory3.

A matching scale µ is therefore introduced, as the scale where coefficients of the low-energy
theory are tuned to reproduce the results of the high energy theory, on the basis of a finite
number of test processes.

On physical grounds, the matching scale can be regarded as separating short distance from
long distance physics. In fact, through the expansion in loops both theories generate loga-
rithmic corrections, depending on the typical momenta and masses involved and an arbitrary
renormalization scale. This means, as well known from QCD, that choosing the renormaliza-
tion scale of the same order as the typical scale of the process, the higher order corrections
are minimized.

3Also the parameters of the light theory undergo finite renormalizations in the matching procedure, but we
shall see that they are unobservable, and therefore irrelevant.
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In the matching procedure, one is guided by the “complete” theory to set the µ scale in
order to have theoretical predictions for the test processes as accurate as possible: so the
effective theory is determined at a large scale, while it is to be applied at processes at a lower
scale.

3.1.3 Renormalization Group

The coefficients of the effective theory, determined at the matching scale, say µ ≃ M , act as
the experiments setting the parameters of a renormalizable field theory. As in a renormalizable
field theory, one determines the fundamental parameters, the “couplings” of the theory, at
some scale, and then the theory is used at a possibly largely different scale.

Now, at a fixed order in the 1
M expansion the effective theory is renormalizable, and the

coefficients can be scaled using the renormalization group evolution, in order to improve the
convergence of the perturbative expansion.

It is worth then reporting the observation of Georgi [48], “the renormalization group is
simply the matching of the theory at the scale µ to the theory at the scale µ − dµ, without
changing the particle content”. In other words one integrates out the effect of the energy
modes higher than the process in consideration.

The RG evolution results then from the integration of this differential matching procedure,
and allows to use in a optimal way the informations coming from perturbation theory.

The Effective Hamiltonian is scaled down from the matching scale µ ≃ M to the charac-
teristic low energy scale of the physical amplitude

∑

j

C (µ ≃M, M) 〈f |N [Oj ]| i〉 (µ ≃M) →
∑

j

C (µ ≃ m, M) 〈f |N [Oj ]| i〉 (µ ≃ m)(3.5)

which means that one determines the coefficients appropriate to the operators renormal-
ized at the scale µ ≃ m.

In this way, the large logarithms that would appear in the matrix elements as a conse-
quence of the QCD corrections in presence of two widely different scales, the renormalization
scale of the operators and the typical scale m of the low energy process, are transferred in
the coefficients.

In the rest of the Chapter we shall give more details on this procedure, illustrating the
matching procedure for the Effective Hamiltonian which describes the rare b decays.

3.2 The FCNC Effective Hamiltonian

In the Standard Model, our “fundamental” theory, the rare b decays are mediated by the
graphs in Fig. 3.1, where in the loop circulate the c and t quarks4, and the virtual dashed
lines are the W boson or the charged component of the Higgs multiplet.

A particular gauge is chosen, the so called Rξ gauge, described in Appendix C: in this
gauge the theory is renormalizable by power-counting, and the nonlinear form of the gauge
fixing term cancels trilinear vertices A, W, φ, reducing the number of graphs to be computed.
Most importantly, thanks to the covariant derivative in the gauge fixing term, the electromag-
netic Ward-Takahashi identities are unbroken, and there is no need of finite renormalizations
to reinforce them.

4the u quarks can be completely neglected thanks to the smallness of the corresponding CKM matrix entries
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Figure 3.2: Contribution to Effective Hamiltonian from the t quark

The first step in the determination of the effective hamiltonian is the computation of
the amplitude for a minimal set of relevant processes in the full theory. In the following we
will integrate out the t and W, (φ) fields: graphs with heavy particles t, W give rise, in the
expansion in powers of external momenta, to local interactions which can be reexpressed as
a sum over local operators. This is pictorially expressed in Fig. 3.2

By computing the proper vertex part, one finds easily the following effective hamiltonian,
resulting from the t exchange only5:

Heff:top =
4GF√

2
V ⋆

t sV
t b

8
∑

i=1

Ct
iOi (3.6)

where

5Recall that 4GF√
2

=
(

g√
2

)2
1

M2

W

is the coupling of two weak currents
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O1 =
1

(4π)2
s̄L D̂D̂D̂ bL

O2 =
1

(4π)2
(i eQd)s̄L

{

D̂, Fµν σµν

}

bL

O3 =
1

(4π)2
(− i eQd)s̄L γν bLDµFµν

O4 = − 1

(4π)2
mb s̄L D̂D̂ bR

O5 =
1

(4π)2
(−i eQd)mb s̄L Fµνσµν bR

O6 =
1

(4π)2
(i gs) s̄L

{

D̂, TAGA
µν σµν

}

bL

O7 =
1

(4π)2
(−i gs) s̄L γνT

A bL (DµGµν)A

O8 =
1

(4π)2
(−i gs)mb s̄LT

AGA
µνσµν bR (3.7)

and the computation gives

Ct
1 =

(2 + x)
(

1 − 5x− 2x2
)

6 (−1 + x)3
+
x2 (2 + x) log(x)

(−1 + x)4

Ct
2 =

46 − 141x+ 105x2 + 8x3

24 (−1 + x)3
+

(2 − 5x) x (−2 + 3x) log(x)

4 (−1 + x)4

Ct
3 =

104 − 312x + 237x2 − 47x3

36 (−1 + x)3
+

(

8 − 32x+ 54x2 − 30x3 + 3x4
)

log(x)

6 (−1 + x)4

Ct
4 =

x
(

1 − x2 + 2x log(x)
)

2 (1 − x)3

Ct
5 =

(3 − 5x) x

4 (−1 + x)2
+
x (−2 + 3x) log(x)

2 (−1 + x)3

Ct
6 =

−8 + 12x+ 15x2 − x3

24 (−1 + x)3
+

(2 − 5x) x log(x)

4 (−1 + x)4

Ct
7 =

−4 − 42x+ 21x2 + 7x3

36 (−1 + x)3
+

(−4 + 16x− 9x2
)

log(x)

6 (−1 + x)4

Ct
8 =

(−3 + x) x

4 (−1 + x)2
+

x log(x)

2 (−1 + x)3
(3.8)

with x =
m2

t

M2
W

.

This is not the end of the story, because the graphs with charm exchange cannot be
accounted for in the same manner: in fact, one easily recognizes that coefficients Ct

3 and Ct
7

diverge for x→ 0, hence the limit mc → 0 in the full theory leaves graphs which are infrared
divergent in the limit of zero external momenta and cannot be expanded in series. This is
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Figure 3.3: Contribution to Effective Hamiltonian from the c quark

what we expect, because of the contribution, in the light theory, of the Fermi-type interaction
terms, resulting as the low energy limit of the tree level W-exchange graphs: this interaction
is to be included in the effective hamiltonian as

4GF√
2
V ⋆

t sVt bO10 = − g2

2M2
W

V ⋆
c sVc bs̄αγ

L
µ cβ ⊗ c̄βγ

L
µ bα , (3.9)

where the unitarity of the CKM matrix V has been used; α, β are the color indices, and
the 9 suffix has been reserved for an operator which will be generated by QCD corrections,
having a Fierzed color structure

s̄αγ
L
µ cα ⊗ c̄βγ

L
µ bβ . (3.10)

The 4−fermion operator gives rise to the infamous “penguin” graph, in the right hand
side in Fig. 3.3: the difference between the graphs in the full theory, and this “penguin” graph
is local and can be easily computed. It does not contain IR divergences, because the full and
effective theory have the same long distance behaviour, hence it can be expanded in powers
of the external momenta. It results the “charm” contribution to the coefficients in Eq. 3.8,
again taking into account the unitarity of CKM matrix

Cc
1 =

1

3

Cc
2 =

23

12

Cc
3 =

38

9
− 4

3

(

1

ε
− γE + log

M2
W

4πµ2

)

Cc
6 = −1

3

Cc
7 = −7

9
+

2

3

(

1

ε
− γE + log

M2
W

4πµ2

)

; (3.11)

it is important to note that the coefficients C3, C7 are explicitly dependent on the subtrac-
tion scale µ, as we expected from the general considerations: this dependence is completely
canceled by the corresponding dependence in the matrix element of the operator O10. This
is true, at this level, by construction, but we shall see that the inclusion of QCD corrections
shall make the cancellation only approximate. Moreover, they appear pole parts in the co-
efficients: the reason is that the matrix element of operator O10 is divergent, while the full
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theory amplitude was finite. This divergence is canceled by the coefficients, hence we can
redefine the effective hamiltonian as made of renormalized operators, for instance in the MS
scheme.

Therefore we have the effective hamiltonian

Heff =
4GF√

2
V ⋆

t sV
t b

8
∑

i=1

CiN [Oi] (3.12)

with the corrected coefficients

C1 =
x (1 + 5x)

2 (1 − x)3
+
x2 (2 + x) log(x)

(−1 + x)4
,

C2 =
x
(−1 − 11x + 18x2

)

8 (−1 + x)3
+

(2 − 5x) x (−2 + 3x) log(x)

4 (−1 + x)4
,

C3 =
−16 + 48x− 73x2 + 35x3

12 (−1 + x)3
+

(

8 − 32x + 54x2 − 30x3 + 3x4
)

log(x)

6 (−1 + x)4
,

C4 =
x (1 + x)

2 (−1 + x)2
+
x2 log(x)

(1 − x)3
,

C5 =
(3 − 5x) x

4 (−1 + x)2
+
x (−2 + 3x) log(x)

2 (−1 + x)3
,

C6 =
(4 − x) x (−1 + 3x)

8 (−1 + x)3
+

(2 − 5x) x log(x)

4 (−1 + x)4
,

C7 =
8 − 42x + 35x2 − 7x3

12 (−1 + x)3
+

(−4 + 16x− 9x2
)

log(x)

6 (−1 + x)4
,

C8 =
(−3 + x) x

4 (−1 + x)2
+

x log(x)

2 (−1 + x)3
,

C9 = 0

C10 = 1 . (3.13)

We stress that the results quoted are obtained with operators renormalized in the MS
scheme, and the NDR scheme for the treatment of γ5: when considering QCD corrections we
shall see how to compare different schemes and to ensure the scheme independence of physical
results.



Chapter 4

Renormalization Group improved

perturbation theory

In this somewhat technical Chapter we shall give a brief overview of perturbative renormal-
ization, avoiding the language of “bare” fields and operators; we shall rederive some of the
formulas of Renormalization Group, which shall be used in the following Chapters.

4.1 Notations for the Dimensional Regularization

Let us consider a field theory regularized by continuation in the number of dimensions (d =
4 − 2ε), and described in lagrangian formulation by the action

S =

∫

ddz
(

µ2
)−ε∑

i

(gi + Pi)Li (z) (4.1)

where the lagrangian density is intended as a sum over local operators Li, each multiplied
by a charge gi, and Pi denotes the counterterms needed to render the Green functions finite
in the ε 7→ 0 limit, and also to impose particular renormalization conditions. Note that we
suppose that every operator, including the terms in the quadratic part of the lagrangian,
carries an explicit coupling, which will be very useful to deduce general identities. We shall
also use the abbreviated form

Sl =

∫

ddz
(

µ2
)−ε

Ll .

Further, let us consider a composite operator Gi = EiOi, where Oi is a product of some
of the fields in the lagrangian, and Ei is a product of couplings. The renormalized product is
then defined as

N [Gi] = N [EiOi] =
∑

j

EiMi jOj , (4.2)

where the sum is carried over a number of operators (a complete basis) sufficient to
guarantee that with an appropriate choice of the ”counterterms” matrix M every Green
function with the insertion of the operator Gi is made finite in the ε 7→ 0 limit.
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In this formulation, the mass parameter appears in the lagrangian explicitly to compensate
the change in mass dimensions of the integration measure, and therefore fields and couplings
have their canonical (four dimensional) mass dimensions.

We now want to determine the change in the couplings in order to compensate for a change
in the scale µ.

4.1.1 The renormalization scale dependence

Let us consider for definiteness a Green function, the correlation of fields φ1, . . . φn and of a
local operator O, and take the derivative with respect to µ,

µ
∂

∂µ
〈0 |N [Gi]φ1 . . . φn| 0〉 =

〈

0

∣

∣

∣

∣

∣

N [Gi]2ε
∑

i

(gi + Pi)Si

∣

∣

∣

∣

∣

0

〉

, (4.3)

we insert in the Green function the action, multiplied by a factor of ε. Note that derivatives
with respect to the couplings gi can be expressed as renormalized insertions of operators
present in the action density 1,

− ∂

∂gi
exp (−S) =

∫

ddzN [Li(z)] =

∫

ddz
∑

j

(

δi j +
∂Pj

∂gi

)

Li (z) , (4.4)

and then let us consider also the effect of the derivative

g
∂

∂g
≡
∑

i

gi
∂

∂gi
:

we obtain

g
∂

∂g
〈0 |N [Gi]φ1 . . . φn| 0〉 =

〈

0

∣

∣

∣

∣

∣

∣

g
∂

∂g

∑

j

EiMi jOjφ1 . . . φn

∣

∣

∣

∣

∣

∣

0

〉

−
〈

0

∣

∣

∣

∣

∣

∣

N [Gi]
∑

j

(

gj + g
∂Pj

∂g

)

Ljφ1 . . . φn

∣

∣

∣

∣

∣

∣

0

〉

; (4.5)

hence by taking the sum with the appropriate ≃ ε factor for the second term it is possible
to cancel the “classical” contribution, that is the change in the Green function due solely to
the measure. One has therefore

(

µ
∂

∂µ
+ 2εg

∂

∂g

)

〈0 |N [Gi]φ1 . . . φn| 0〉 =

=

〈

0

∣

∣

∣

∣

2εg
∂

∂g
(EiMi j)Ojφ1 . . . φn

∣

∣

∣

∣

0

〉

+

〈

0

∣

∣

∣

∣

∣

∣

NGi

∑

j

2ε

(

Pj − g
∂Pj

∂g

)

Sjφ1 . . . φn

∣

∣

∣

∣

∣

∣

0

〉

. (4.6)

1in passim, observe that the action density is not a renormalized operator!
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For simplicity, let us limit to minimal subtraction 2, and have then

Pi =
∑

L

L
∑

p=1

1

εp
P p, L

i ;

Eq. 4.6 becomes

(

µ
∂

∂µ
+ 2εg

∂

∂g

)

〈0 |N [Gi]φ1 . . . φn| 0〉 =

= 2εg
∂lnEi

∂g
〈0 |N [Gi]φ1 . . . φn| 0〉

+

〈

0

∣

∣

∣

∣

∣

∣

2εEi

∑

j

g
∂Mi j

∂g
Ojφ1 . . . φn

∣

∣

∣

∣

∣

∣

0

〉

+

〈

0

∣

∣

∣

∣

∣

∣

N [Gi]
∑

j

β̃jSjφ1 . . . φn

∣

∣

∣

∣

∣

∣

0

〉

+

〈

0

∣

∣

∣

∣

∣

∣

N [Gi]
∑

j

2
∞, L
∑

L, p=2

(

1 − g
∂

∂g

) PL, p
j

εp−1
Sjφ1 . . . φn

∣

∣

∣

∣

∣

∣

0

〉

, (4.7)

where the “pre” β functions

β̃i ≡ 2

(

1 − g
∂

∂g

)

PL, 1
j (4.8)

are introduced, the usual definitions of β and γ functions will be recovered only when we
shall specify the interaction part of the action density.

By comparing with Eq. 4.4 we can modify the term multiplying the β̃ in order to interpret
it as a derivative with respect to a coupling:

µ
∂

∂µ
+
(

β̃i + 2εgi

) ∂

∂gi
− 2εg

∂lnEi

∂g
〈0 |N [Gi]φ1 . . . φn| 0〉 =

=

〈

0

∣

∣

∣

∣

2εEig
∂Mi j

∂g
Ojφ1 . . . φn

∣

∣

∣

∣

0

〉

+

〈

0

∣

∣

∣

∣

β̃l
∂

∂gl
(EiMi j)Ojφ1 . . . φn

∣

∣

∣

∣

0

〉

+

〈

0

∣

∣

∣

∣

∣

∣

N [Gi]
∑

k



2
∞, L
∑

L, p=2

(

1 − g
∂

∂g

)

PL, p
k

εp−1



− β̃l
∂Pk

gl
Skφ1 . . . φn

∣

∣

∣

∣

∣

∣

0

〉

. (4.9)

We can now impose that the chosen subtractions make the Green functions finite: as the
derivatives with respect to µ and {g} do not introduce spurious divergences, we can say that

2Modified minimal schemes, like the MS or the G scheme, can be interpreted as a redefinition of the µ
scale and are therefore also minimal, in the sense that the finite subtractions needed to enforce them do not
modify our formulas.
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the l.h.s. in Eq. 4.9 is finite, and so must be for the r.h.s. First of all, in absence of the
operator insertion, we should have then that

r.h.s =
∑

k

〈

0

∣

∣

∣

∣

∣

∣

N [Gi]
∞
∑

p=1

1

εp

[

2

(

1 − g
∂

∂g

)

P p+1
k − β̃l

∂P p
k

gl

]

Skφ1 . . . φn

∣

∣

∣

∣

∣

∣

0

〉

. (4.10)

is finite, and therefore each term multiplying the different pole parts must be zero. It
follows the noteworthy relation

2L̂P p+1
k − β̃l

∂P p
k

gl
= 0

P p
k =

∑

L

PL, p
k

L̂ = 1 −
∑

l

gl
∂

∂gl
Loop counter operator . (4.11)

It will give useful relations between poles at different orders in L. The relation in Eq. 4.11
allows to rewrite Eq. 4.9 as

[

µ
∂

∂µ
+
(

β̃l + 2εgl

) ∂

∂gl

]

〈0 |N [Gi]φ1 . . . φn| 0〉 =

= β̃l
∂ lnEi

gl
〈0 |N [Gi]φ1 . . . φn| 0〉

+

〈

0

∣

∣

∣

∣

Ei

(

β̃l + 2εgl

) ∂Mi, j

∂gl
Ojφ1 . . . φn

∣

∣

∣

∣

0

〉

. (4.12)

Now we can impose that also the Green function with the insertion of the renormalized
operator Gi is finite in the ε 7→ 0 limit. Taking into account that, by definition of minimal
subtraction we have

Mi, j = δi, j +
∑

L,p

1

εp
ML, p

i, j , (4.13)

we can rewrite with a few algebra Eq. 4.9 as3

[

µ
∂

∂µ
+
(

β̃l + 2εgl

) ∂

∂gl

]

〈0 |N [Gi]φ1 . . . φn| 0〉 =

= β̃l
∂ lnEi

∂gl
〈0 |N [Gi]φ1 . . . φn| 0〉

−
〈

0

∣

∣

∣

∣

∣

Ei

∑

L

2LML, 1
i, j N [Gi]φ1 . . . φn

∣

∣

∣

∣

∣

0

〉

3Observe that in presence of the operator insertion, which modifies the number of vertices, the loop counting
operator is L = −g ∂

∂g
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+

〈

0

∣

∣

∣

∣

∣

∣

Ei

∞
∑

L

2L
ML, 1

i, j

Ej
Ej

∞, L′
∑

L′,p=1

1

εp
ML′, p

j k Okφ1 . . . φn

∣

∣

∣

∣

∣

∣

0

〉

+

〈

0

∣

∣

∣

∣

∣

∣

Ei

∞,L
∑

L,p=1

1

εp





∑

l

β̃l

∂ML, p
i, j

gl
− 2LML,p+1

i, j



Okφ1 . . . φn

∣

∣

∣

∣

∣

∣

0

〉

;

(4.14)

by defining

γ̃i, j =
∑

L

2LML, 1
i, j

Ei

Ej
− β̃l

∂ lnEi

∂gl
δi, j (4.15)

we can rewrite the right hand side of Eq. 4.14 as

r.h.s. = −γ̃i, j〈0 |N [Gi]φ1 . . . φn| 0〉

+Ei

〈

0

∣

∣

∣

∣

∣

∑

p

1

εp

[

∑

L

2LML, 1
i, j

∑

L′
ML′,p

j, k

−
∑

L

2LML, p+1
i, k +

∑

L, l

β̃l

∂ML, p
i, k

gl



Ok

∣

∣

∣

∣

∣

∣

0

〉

(4.16)

and the last term has to be zero ∀p, hence the recursive relation

∑

L

2LML, p+1
i, k =

∑

L, L′
2LML, 1

i, j M
L′, p
j, k +

∑

L, l

β̃l

∂ML, p
i, k

∂gl
. (4.17)

In summary we have

{[

µ
∂

∂µ
+
(

β̃l + 2εgl

) ∂

∂gl

]

δi, j + γ̃i, j

}

〈0 |N [Gi]φ1 . . . φn| 0〉 =

β̃l = 2
∑

l

(

1 − g
∂

∂g

)

PL, 1
l

γ̃i, j =
∑

L

2LML, 1
i, j

Ei

Ej
− β̃l

∂ lnEi

∂gl
δi, j ; (4.18)

this form of the RG equation is written directly in terms of the “poles” of the Feynman
graphs (the P and M matrices).

It will be now useful to connect to the common notions of β and γ functions.

4.1.2 The conventional form

Recall that in Eq. 4.1 we have introduced a coupling for each term in the action density,
including for instance the kinetic term. This means that if we now want to set to unity
the normalization of this term, we need to reinterpret the derivative with respect to this
“eliminated” coupling: the usual way is to define a field anomalous dimension.
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Following the constructive approach let us introduce the field anomalous dimension and
proceed to its definition: for simplicity we limit the discussion to a single field φ, as the
generalization is trivial. We rewrite Eq. 4.18 as

[

µ
∂

∂µ
+
(

β̃l + 2εgl

) ∂

∂gl
+ γφ

n

2

]

〈0 |N [Gi]φ1 . . . φn| 0〉 =

=

[

γφ
n

2
δi, j − γ̃i, j

]

〈0 |N [Gj ]φ1 . . . φn| 0〉 , (4.19)

and note that the n factor can be obtained by using the field counting operator4

n̂ =

∫

ddxN

[

φ(x)
δS

δφ(x)

]

apart a correction due to the presence of the composite operator: one has

n〈0 |N [O]φ1 . . . φn| 0〉 = 〈0 |N [O]n̂φ1 . . . φn| 0〉 − n

〈

0

∣

∣

∣

∣

φ
∂

∂φ
N [O]φ1 . . . φn

∣

∣

∣

∣

0

〉

,

hence the r.h.s. of Eq. 4.19 becomes

r.h.s = γφ
1

2

〈

0

∣

∣

∣

∣

∣

N [Gi]
∑

l

glρ
lSlφ1 . . . φn

∣

∣

∣

∣

∣

0

〉

−γφ
1

2

〈

0
∣

∣

∣EiMi, jν
jOjφ1 . . . φn

∣

∣

∣ 0
〉

−γ̃i, j〈0 |N [Gj ]φ1 . . . φn| 0〉

= γφ
1

2

(

−ρlgl
∂

∂gl

)

〈0 |N [Gi]φ1 . . . φn| 0〉

γφ
1

2

〈

0

∣

∣

∣

∣

(

ρlgl
∂

∂gl
− νj

)

EiMi, jφ1 . . . φn

∣

∣

∣

∣

0

〉

−γ̃i, j〈0 |N [Gj ]φ1 . . . φn| 0〉 , (4.20)

where we label with νi the number of fields in the composite operator Gi, and with ρi the
same quantity for a term Li of the lagrangian density. Let it be gφ the coupling associated
with the kinetic term ∂µφ∂µφ, and define γφ such that

β̃φ = −γφgφ

(

νφ = 2
)

;

we obtain from Eq. 4.19, after the rearrangements needed to reassemble the normal prod-
ucts,

4Note that the derivation is particularly simple in dimensional regularization, thanks to the simple form of
the “action principle”
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νj

Oi
νi

Figure 4.1: A contribution to Mi, j

[

µ
∂

∂µ
+ (βl + 2εgl)

∂

∂gl
+ γφ

n

2
+ γi, j

]

〈0 |N [Gi]φ1 . . . φn| 0〉 =

=
γφ

2
Ei

〈

0

∣

∣

∣

∣

(

ρlgl
∂

∂gl
+ νi − νj

)

Mi, jOjφ1 . . . φn

∣

∣

∣

∣

0

〉

;

γi, j = γ̃i, j +
γφ

2

(

νi − ρlgl
∂lnEi

∂gl

)

δi, j ;

βl = β̃l + γφ
νl

2
gl . (4.21)

The right hand side cannot be written in renormalized form and in fact is identically zero:
indeed, let us consider a Feynman diagram with the insertion of the operator Oi contributing
to Mi, j: it has νj external lines, as in Fig. 4.1.

Applying the operator ρlgl
∂

∂gl
, it counts with a positive sign the number of lines connected

to each vertex of the blob, and with a negative sign and a factor of 2 the internal propagators

ρlgl
∂

∂gl
= −2I +

∑

v

ρv .

But one has also

νi +
∑

v

ρv = 2I + νj

hence the identity

ρlgl
∂

∂gl
+ νi − νj = 0 . (4.22)

results.
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4.1.3 Reference Formulas

We have finally written the RG equations for 1PI Green functions (simply changing the sign
of the term referring to the field anomalous dimensions ) as follows

{[

µ
∂

∂µ
+ (βl + 2εgl)

∂

∂gl
− γφ

n

2

]

δi, j + γi, j

}

〈0 |N [Gj ]φ1 . . . φn| 0〉1PI = 0 (4.23)

and we have found the form of the β and γ functions

γφ = −
∑

L

2LPL,1
φ ,

βl =
∑

L

2LPL,1
l − γφ

ρl

2
gl ,

γi, j =
∑

L

2LML, 1
i, j

Ei

Ej
+

(

γφ

2
νi −

∑

l

βl
∂ lnEi

∂gl

)

δi, j ; (4.24)

moreover, a set of recursive relations for pole parts have been found, and using the topo-
logical relation in Eq. 4.22, they can be rewritten as

∑

L

2LML,p+1
i, k =

∑

L,L′
2LML, 1

i, j M
L′, p
j, k

+
∑

L, l

βl

∂ML, p
i, k

∂gl
+
γφ

2

∑

L

(

νi − νj
)

ML, p
i, k

∑

L

2LPL, p+1
k =

∑

L, l

(

βl
∂

∂gl
− γφ

2
ρk
)

PL, p
k ; (4.25)

these relations5 can be expanded in h̄ and give therefore useful checks on the computations:
every pole in a diagram at order L in h̄, apart the simple pole, can be predicted in terms of
the poles of graphs with L′ < L and of the β and γ functions. This is exactly equivalent to
say, as we shall see, that order by order in perturbation theory the only new information, in
the Renormalization Group Improved perturbation theory, comes from the simple log’s.

4.1.4 Finite renormalizations

Let us now consider the possibility of finite renormalizations, that is, we do not simply
subtract poles but also finite parts. This can be useful in order to impose renormalization
conditions, for instance on the matrix elements of operators. For definiteness, we shall suppose
to have already regularized some operator basis {N [G]}, and we can therefore impose further
renormalization conditions with a mixing matrix of finite parts.

5In proving the second one it can be useful to observe that in a manner similar to the proof of Eq. 4.22 one
can show that

∑

l

ρlgl

∂Pk

∂gl

= ρk
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We introduce a matrix F and define the renormalized operators as

R [Gi] = Fi, jN [Gj ] ; (4.26)

the matrix F is assumed to give finite corrections to counterterms, hence it possesses a
loop expansion of the form:

Fi, j = δi, j +
∞
∑

L=1

FL
i, j . (4.27)

It is simple to find the modification to the RG equation Eq. 4.24 induced by finite renor-
malizations: the RG equation can be written schematically as

[

Dδ̂ + γ̂
]

N
[

~Gi

]

= 0

D = µ
∂

∂µ
+ (βl + 2εgl)

∂

∂gl
(4.28)

and therefore the equation for the renormalized operators is

[

F̂DF̂−1 + F̂ γ̂F̂−1
]

N
[

~Ri

]

= 0 . (4.29)

It is worth noting that the only source of µ dependence is in the action, Eq. 4.1, hence
the µ ∂

∂µ operator commutes with F̂ . The derivative with respect to the couplings, instead,

acts on F̂ , and as we assume that this matrix is defined in order to give finite renormalization
to counterterms, it has the same properties under this derivation as the matrix M : in other
words the coupling content is the same, and it follows that (see note 3)

gl
∂

∂gl
F̂ = −LF̂ .

By using also the identity

F̂DF̂−1 = − (DF ) F̂−1

the modified RG equation results

[

Dδ̂ + γ̂′
]

R
[

~Gi

]

= 0

γ̂′ = F̂ γ̂F̂−1 −
(

DF̂
)

F̂−1

= F̂ γ̂F̂−1 −
(

βl
∂F̂

∂gl
− 2εL̂F̂

)

F̂−1 : (4.30)

the effect of the finite renormalization is a modification of γ̂ in order to account for the
evolution of the finite renormalization matrix, plus a “rotation” of the original γ matrix.
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4.1.5 Treatment of evanescent operators

It is well known how in dimensional regularization the arbitrariness in the d dimensional ex-
tension of 4 dimensional mathematical objects reflects itself in the appearance of the so-called
“evanescent” operators. While we refer to the literature, and to the examples coming from
practical computations (Chap. 5), for details on their treatment, in particular on the reduction
formulas which are the equivalent of the Zimmermann formulas in the BPHZ formulation, we
want here to discuss how evanescent operators modify the d→ 4 limit of the RG equation.

Suppose for definiteness to be interested in the evolution of the matrix element of some
operator N [R1], and that in the renormalization process it mixes with a set {N [R]} of relevant
operators having a non zero limit in 4 dimensions, and a set {N [E]} of evanescent operators.
The RG equation Eq. 4.23 are coupled, so in general one shall have

DN
[

~R
]

+ γ̂R, RN
[

~R
]

+ γ̂R, EN
[

~E
]

= 0

DN
[

~E
]

+ γ̂E, EN
[

~E
]

= 0 ; (4.31)

now the set of evanescent operators is in many cases unbounded, that is, order by order
in perturbation theory new operators appear; this is not the ruin of perturbation theory for
in the d → 4 limit the matrix elements of evanescent operators can be rewritten as local
contributions, which can be therefore accounted for as finite renormalizations of the relevant
operators. The well known result is that a reduction matrix exists, defined in perturbation
theory, such that

N
[

~E
]

= r̂E,RN
[

~R
]

; (4.32)

the matrix r̂ is zero at the classical level.
It is therefore immediate to decouple the evanescent operators in Eq. 4.31, by applying

the reduction formula to the first relation in Eq. 4.31:

[

Dδ̂ + γ̂′
]

N
[

~R
]

= 0

γ̂′ = γ̂R, R + γ̂R, E r̂E, R (4.33)

the second relation instead gives a consistency check:

[(Dr̂E, R) − r̂E, R (γ̂R, R + γ̂R, E r̂E, R) + γ̂E, E r̂E,R] ~R = 0 . (4.34)

It is worth noting that the same results can be obtained with a slightly different procedure,
namely by defining a non minimal scheme in which the evanescent operators do not contribute
to the matrix elements, as their contribution is canceled by finite renormalizations. In practice
this amounts to redefine the normal product

N
[

~E
]

→ N
[

~E
]

− r̂E, RN
[

~R
]

(4.35)

in such a manner to subtract not only poles proportional to other evanescent operators,
but also finite parts proportional to relevant ones.
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Let us find the resulting modification in the anomalous dimension matrix, as in sec-
tion 4.1.4, by defining

F̂ = δ̂ − r̂E, R ,

and then using Eq. 4.30 it results

γ̂′ =
(

δ̂ − r̂
)

γ̂
(

δ̂ + r̂
)

+ (Dr̂)
(

δ̂ + r̂
)

; (4.36)

writing Eq. 4.36 in “components”, one easily finds that

γ̂′R, R = γ̂R, R + γ̂R, E r̂E, R

γ̂′R, E = γ̂R, E

γ̂′E, R = −r̂E,R (γ̂R, R + γ̂R, E r̂E, R) + γ̂E, E r̂E, R

γ̂′E, E = γ̂E, E − r̂E, Rγ̂R, E . (4.37)

A few comments are in order

• the first relation shows that the “relevant” part of the anomalous dimension matrix is
modified exactly as in Eq. 4.33;

• the anomalous dimension mixing of relevant with evanescent is immaterial, as matrix
elements of evanescent operators have been set to zero, and is unaltered;

• we have written without comments in Eq. 4.31 that there is no mixing of evanescent
operators with relevant ones, and consequently γ̂E, R = 0. This is true in the minimal
subtraction scheme, and if one takes into account the consistency condition in Eq. 4.34,
one easily proves that this remains true, γ̂′E, R = 0; otherwise, the matrix elements of
evanescent operators would get non zero contributions from the relevant ones, vanifying
our renormalization prescription, Eq. 4.35;

• the last relation shows a modification of the flow of evanescent operators, again imma-
terial in the d→ 4 limit.

In summary, we have shown explicitly how two different ways to deal with evanescent
operators, namely reducing them at the level of the RG equation or in the course of the
renormalization process leads to the same results for the anomalous dimension matrix.

We shall give explicit examples in Chap. 5.

4.2 The RG improved perturbation theory

In Chapter 3 we have seen how the Effective Hamiltonian resulting from the OPE defines the
amplitude for a process i→ f as (we shall drop the 1PI suffix)

A (i→ f) = 〈f |i〉complete

∝ GF

∑

j

Cj

(

µ

MW
,
mt

MW

)

〈f |N [Oj ]| i〉eff. (µ) +O
(

1/M4
W

)

. (4.38)
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We have been able to compute the coefficients Cj for µ ≃ MW . Now we want to change
the µ scale in order to have µ ≃ mi, so to avoid large logarithms in the matrix element.

We known that the µ dependence on the l.h.s. is equal to the one on the r.h.s. hence we
can write down the identity

(D + γi + γf ) 〈f |i〉complete = 0 . (4.39)

On the r.h.s, the same identity holds, dropping unessential constants

(D + γi + γf )Cj

(

µ

MW
,
mt

MW

)

〈f |N [Oj ]| i〉eff. (µ) (4.40)

but the derivative D acts both on the coefficients C and on the matrix element: we already
know that a change in µ in the matrix element is compensated by a finite renormalization of
the couplings and of the operators, that is, it holds the identity

[

(D + γi + γf ) 1̂ + γ̂
] 〈

f
∣

∣

∣N
[

~O
]∣

∣

∣ i
〉

(4.41)

hence the scale dependence of the coefficients results

D ~C = γ̂T ~C . (4.42)

It is worth noting that there is no dependence on the external states, otherwise the effective
hamiltonian framework would be meaningless. The Eqs. 4.41 and 4.42 are a mere tautology:

any redefinition of the “normal product” N
[

~O
]

can be compensated by a redefinition of the

coefficient vector ~C, so to leave the physical amplitude invariant.

4.2.1 Leading Logs in QCD

The solution of Eq. 4.42 is completely standard, the derivative D can be written as a total
derivative with respect to µ, by defining the running coupling constants. In the case of QCD,
having defined αs (µ) such that

µ
∂

∂µ
αs (µ) = βQCD (α (µ)) (4.43)

the Eq. 4.42 can be rewritten as

µ
d

dµ
~C (µ) = γ̂T (α (µ)) ~C (µ) (4.44)

whose solution is given by a path-ordered exponential

~C (m) = P exp

(∫ m

M
γ̂T dµ

µ

)

~C (M) ; (4.45)

exploiting the property that the anomalous dimension matrix γ̂ does depend on µ only
through the running coupling α one arrives at the well known result

~C (m) = P exp

(

∫ α(m)

α(M)
γ̂T (a)

1

β (a)
da

)

~C (M) ; (4.46)
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where one easily recognizes that the β function is the Jacobian of the dimensional trans-
mutation, and the P means “path-ordering”.

In the LL approximation, a considerable simplification is possible. The coupling α factor-
izes and the AD matrix can be diagonalized with a µ independent orthogonal transformation
R

βQCD (a) = − a2

2π
β0

β0 =
11CA − 2nf

3

γ̂T =
a

4π
R̂−1D̂R̂ (4.47)

hence the path ordering is no longer needed and one immediately obtains

exp

[

−
∫ α(m)

α(M)

1

2β0

d a

a
R̂T D̂R̂

]

= −R̂−1 1

2β0
D̂ ln

α (m)

α (M)
R̂ . (4.48)

The evolution of the coefficients results

~C (m) = R̂−1
(

α (m)

α (M)

)− D̂
2β0

R̂ ~C (M) . (4.49)

We can observe that at leading order

(

α (m)

α (M)

)d

=

[

1 +
2β0

(4π)2
α (M) ln

M

m

]−d

= 1 +
∞
∑

i=1

ki

[

α (M) ln
M

m

]i

: (4.50)

all the terms of the form α ln have been summed, as expected.
At the next to leading order, logarithms of the form αn lnn−1 are summed, and so on.

Detailed discussions of the NLL approximation can be found in a number of works (see for
instance [22, 46, 77], and references therein). It is worth reminding that this successive ap-
proximations are not directly connected with the loop expansion. For instance we shall see
that the two-loop determination of the ADM in the b→ sγ process allows only the resum-
mation of the leading logarithms. This is due to a cancellation, at one loop one has no
contribution to the amplitude of the form in Eq. 4.50.

4.2.2 Scheme and scale dependence

Physics is determined by the amplitude and therefore schematically by the combination
~C ·N

[

~O
]

, therefore any scheme dependence implied by a different regularization and renor-

malization scheme for the composite operators must be compensated by an appropriate re-
definition of the coefficients.

The scale (µ) dependence itself is the reflection of the existence of a family of subtraction
schemes, at different renormalization points, connected by the RG equation, whose coefficients
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we are able to determine only approximately. In other words a scale dependence is introduced
when we relate two subtraction schemes belonging to the same family, as the one used to
compute the coefficients of the effective theory at the large mass scaleM to the one appropriate
to evaluate the matrix elements at the lower scale m.

In fact there are three sources of approximation: the initial conditions of the evolution,
at the higher scale M , the coefficients of the differential equation, that is the β function(s)
and the anomalous dimension matrix, and finally the matrix elements at the lower scale m.

This scale dependence has nothing to do with the non-perturbative effects6 but it is
intrinsic of the perturbative expansion and of the reorganization of the perturbative series
implied by the RG resummation. Assume for simplicity to have only one operator N [O]
contributing the some process i→ f , and to be able to sum the series

{αn lnn} ,
{

αn lnn−1
}

, . . .
{

αn lnn−p} , (4.51)

having computed the ADM up to the p+ 1 order in the αs expansion.
Then a consistent determination of the amplitude

A (i→ f) = C (m) 〈f |N [O]| i〉 (m) (4.52)

at the lower scale requires the knowledge of the initial conditions of the differential
Eq. 4.44, C (M, α) up to p order, and analogously for the matrix element 〈f |N [O]| i〉 (m).
For instance, terms αp from the matrix element, when multiplied by the terms of the series
{αn lnn} in the coefficient, generate contributions of the form αn+p lnn.

On the other hand terms of the form αn lnn−p−1 are not summed, in this approximation:
this left-out logarithms are the source of the residual scale dependence. This dependence can
be sized varying the lower scale around the typical scale of the i→ f process, for instance in
the b→ sγ case around the scale mb, and can be reduced, but never eliminated, only through
higher order computations.

4.2.3 Sizing the scale dependence

In order to estimate the scale dependence it is necessary to consider the amplitude at the next
to leading accuracy. For simplicity we shall limit ourselves to the case of a single operator in
QCD (see for instance [46], and [73] for the general case), therefore the amplitude is

C (M, µ, α) 〈f |N [O]| i〉 (m, µ, α) (4.53)

where we have made explicit the dependence on the coupling α, the two scales M, m
and the renormalization point µ. If all the intermediate computations were exact, the µ
dependence of the matrix element would be canceled by the one of the coefficient.

Let us assume that having µ ≃ m guarantees that no large logarithms appear in the
expression for the matrix element: it means that it is possible to compute the µ dependence of
the matrix element accurately, even not using the resummation techniques. The µ dependence
is a purely short distance effect7, which means that a perturbative evaluation of the matrix
element should suffice in checking the extent of cancellation of the µ dependence.

6A further source of approximation, especially at the lower scale
7Barring infrared complications, which in any case would be coped with including soft bremsstrahlung.
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The strategy is as follows: we can write down the explicit expression for the Wilson
coefficient, in dependence on M and µ, using the Renormalization Group, and check the
cancellation of the µ dependence against the matrix element, computed at the same accuracy
in perturbation theory. This will give an idea of the implied accuracy.

Given the NLL expression for the β function and anomalous dimension,

βQCD = −β0

2π
α2 − β1

8π2
α3

γ = γ0
α

4π
+ γ1

α2

16π2
(4.54)

we easily write down the expression for the RG evolution operator

U (µ1, µ2) = exp

[

∫ α(µ1)

α(µ2)
dα
γ (α)

β (α)

]

=

(

α (µ2)

α (µ1)

)

γ0
2β0
[

1 +R

(

α (µ2)

4π
− α (µ1)

4π

)]

(4.55)

R =
γ1

2β0
− γ0β1

2β2
0

.

We have

C (M, µ, α) = U (µ, M)C (M, M, α) (4.56)

and at the same accuracy we need to specify the Wilson coefficient leading α dependence:

C (M, M, α) =

(

1 +
α (M)

4π
B

)

. (4.57)

Now the µ dependence of the matrix element is easily obtained by expanding the RG
equation to the appropriate order

〈f |N [O]| i〉 (µ) = U (m, µ) 〈f |N [O]| i〉 (m)

U (m, µ) =

[

1 +
α

4π
γ0 ln

(

m

µ

)]

. (4.58)

Finally it is possible to write down the full expression for the amplitude, at NLL accuracy8

A (i→ f) =
(

α(M)
α(µ)

)

γ0
2β0

[

1 +R

(

α (M)

4π
− α (µ)

4π

)] [

1 +
α (M)

4π
B

]

[

1 +
α (m)

4π
γ0 ln

(

m

µ

)]

〈f |N [O]| i〉 (m) . (4.59)

8The expression for the running coupling at NLL accuracy is

α (m)

4π
=

1

β0 ln
(

m2

Λ2

) − β1

β3
0

ln ln
(

m2

Λ2

)

ln2
(

m2

Λ2

)
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One easily recognizes that the dominant µ dependence in the leading term is canceled by
the logarithmic term coming from the evolution of the matrix element, as it should be.

It is also important to note that in general it may be possible, given a NLL computation,
to find an appropriate range in the scale µ which minimizes the size of the NLL corrections
with respect to the LL ones: this is what one usally refers to as “setting the scale” of the
leading computation by going to NL order. This is equivalent to say that for reasonable
values of the NL coefficients in the γ function, corresponding µ values can be found in order
to reproduce the NL results with a LL expression. This somewhat “empirical” result helps
to deduce the error implicit in the LL approximation by varying the µ scale in a reasonable
range. The range itself however can be sized only explicitly checking the correspondence with
reasonable values of γ1.



Chapter 5

QCD corrections to the b → sγ

process

We are now in position to discuss in full details the short distance QCD corrections to the
b→ sγ decay. This process has been studied by many authors and the LO corrections are by
now well established. Nevertheless it is instructive to make a short review of the researches
in this field.

5.1 Review of the existing results

The great interest of the b→ sγ decay has been stimulated by the growing limits on the
top mass. Indeed, the initial analyses based on the assumption of a large mt had found a
substantial enhancement of the decay rate due to QCD perturbative corrections; however
different results had been obtained by groups working with different regularization schemes
for γ5.

The group of Grinstein et al. [37, 47], using the so called Naive Dimensional Regular-
ization scheme (NDR), based on a fully anticommuting γ5 even in d dimensions, found an
enhancement of about a factor of 4, while the enhancement was limited to a factor of about
2 in the work of Grigjanis et al. [38], based on the so called Dimensional REDuction scheme
(DRED) [15].

We stress that both the NDR and DRED schemes are known to be internally unconsistent,
that is, to give wrong results in definite computations. For instance the NDR scheme does
not reproduce the Adler anomaly, while the DRED scheme is known to fail at three loops (in
4 dimensions) [18, 19].

It is quite easy to show the internal unconsistency of the NDR scheme: consider the
following trace

Tµνρσ = Tr [γ5γαγµγνγργσγα] (5.1)

and assume to first contract the α indices without exploiting the cyclicity of the trace and
the assumed anticommuting property of γ5 with the other γ matrices: the result is

Tµνρσ = (d− 8) Tr [γ5γµγνγργσ] (5.2)
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on the other hand, bringing the γα matrices close, one obtains

Tµνρσ = −dTr [γ5γµγνγργσ] . (5.3)

Clearly the two results show that it is not possible to have a fully anticommuting γ5 and
consistently define its trace with 4 γ matrices. A possible way out is to maintain γ5 a 4
dimensional object, as in the t’Hooft-Veltman scheme (HV).

This result does not mean that NDR (and DRED) schemes cannot be applied in many
practical cases: as long as there is no need to give an explicit definition of the trace in
Eq. 5.3, the NDR regularization will give unambiguous results. A caveat, all the subtleties of
evanescent operators will still be present, see for instance [57, 76]. In fact various authors [22,
73, 77] have been able to apply NDR, DRED, HV schemes successfully to the QCD corrections
to weak hamiltonians, obtaining consistent results.

As the NDR scheme does not appear to cause unconsistencies when applied to b→ sγ
decay at the leading log approximation, we confirmed in [57] the results of Grinstein et al.

All these works were performed in a reduced basis, not including the mixing with a certain
class of 4 fermion operators. The first author to extend the computation to include all the
mixings relevant in the LO approximation has been Misiak [58], using the NDR scheme.
The resulting corrections to the previous NDR computations are small, showing that the
approximation used in [37] was good.

Nevertheless the use of a complete basis has led to understand the origin of the dis-
agreement between the pioneering works. Ciuchini et al. [76] have shown that the operators
completing the basis contribute to the b→ sγ amplitude, through one-loop graphs, at zeroth
order in QCD. This contribution is scheme dependent (for instance, in the HV scheme is
absent), and compensates the scheme dependence of the AD matrix.

We shall fully describe the re-evaluation of the LO QCD corrections [102, 103], based
on the scheme recently used by Curci et al. [74], a method we shall call from now on the
“symmetrized” scheme. In our opinion this technique greatly simplifies the calculation and
will be useful in the NLL three loop computation.

5.2 The symmetrized scheme

In the Chapter 3 we have derived the Effective Hamiltonian for the rare B decays: here we
add the operators required by the QCD corrections

Heff =
4GF√

2
V ⋆

t sV
t b

14
∑

i=1

CiOi

O1 =
1

(4π)2
s̄L D̂D̂D̂ bL

O2 =
(i eQd)

(4π)2
s̄L

{

D̂, Fµν σµν

}

bL

O3 =
(− i eQd)

(4π)2
s̄L γν bLDµFµν

O4 = − 1

(4π)2
mb s̄L D̂D̂ bR
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O5 =
(−i eQd)

(4π)2
mb s̄L Fµνσµν bR

O6 =
(i gs)

(4π)2
s̄L

{

D̂, TAGA
µν σµν

}

bL

O7 =
(−i gs)

(4π)2
s̄L γνT

A bL (DµGµν)A

O8 =
(−i gs)

(4π)2
mb s̄LT

AGA
µνσµν bR

O9 =
(

s̄αγ
L
µ cβ

)

⊗
(

c̄βγ
L
µ bα

)

O10 =
(

s̄αγ
L
µ cα

)

⊗
(

c̄βγ
L
µ bβ

)

O11/13 =
(

s̄αγ
L
µ bα

)

⊗
∑

q=u,...b

(

q̄βγ
L/R
µ qβ

)

O12/14 =
(

s̄αγ
L
µ bβ

)

⊗
∑

q=u,...b

(

q̄βγ
L/R
µ qα

)

. (5.4)

In principle working off-shell they also appear non gauge invariant operators, which do not
contribute to physics as they are proportional to motion equations. This has been avoided
by using a background gauge fixing term for the gluon field, thus ensuring that the gauge
invariant basis in Eq. 5.18 closes under renormalization.

The coefficients different from zero have already been given in Eq. 3.13, and it is to be
noted that they are evaluated in the NDR scheme: in the LO approximation the scheme
dependence of the coefficients at the µ ≃ MW scale is irrelevant, at least for the b→ sγ
process.

Two comments about the basis in Eq. 5.4 are needed: first of all this off-shell basis can
be reduced, using the equations of motion, and we shall elaborate on this in the following.
Secondly, we have seen that in the d dimensional formulation of the RG equation they are
present also evanescent operators. In what follows we assume that a subtraction scheme is
chosen in order to decouple them from the coefficient evolution: this will be explicitly shown
where appropriate.

Let us consider the general structure of the Effective Hamiltonian, leaving aside the field
content

Heff =
∑

i

CR,HV
i N [Ri] +

∑

i

CL,HV
i N [Li]

+
∑

i

CLL,HV
i N [(L⊗ L)i] +

∑

i

CLR,HV
i N [(L⊗R)i] ; (5.5)

N [L,R] stand for operators bilinear in fermion fields, like the magnetic momentum oper-
ator, and N [L⊗ Li], N [L⊗Ri] stand for current-current operators.

The symbol R and L reminds the presence of the chiral projectors PL
R

= 1
2(1 ± γ5). This

effective hamiltonian is obtained from the “complete” theory, say the SU (2) × U(1) model:
if we make in the complete theory the substitutions

γ5 → γ̄5 = −γ5

ǫµνρσ → ǭµνρσ = −ǫµνρσ (5.6)
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the resulting effective hamiltonian (in the same regularization and renormalization scheme)
is identical to the one in Eq. 5.4, except for the same substitutions in Eq. 5.6.

But the QCD corrections are independent on the convention used for defining γ5, hence
the RG evolution equation is invariant under the trasformation (5.6)

[

µ
d

dµ
+ γ̂

]











N [L⊗ L]
N [L⊗R]
N [R]
N [L]











= 0 7→
[

µ
d

dµ
+ γ̂

]











N [R⊗R]
N [R⊗ L]
N [L]
N [R]











= 0 . (5.7)

In other words the anomalous dimension matrix γ̂ is the same for the two set of operator
in Eq. 5.7 and for the purpose of the calculation of the AD matrix any linear combinations of
the two sets is equivalent. It is convenient in particular to consider the RG evolution of the
symmetric combination,

[

µ
d

dµ
+ γ̂

]







1
2 (N [L⊗ L] +N [R⊗R])
1
2 (N [L⊗R] +N [R⊗ L])

1
2 (N [R+ L])






= 0 , (5.8)

because it is possible to redefine these operators in order to make the γ5 matrix disappear.
This is trivial for the symmetrized magnetic momentum operator, while for the 4-fermion
operators a change of the d dimensional extension is needed.

A complete (infinite) basis for the Clifford algebra in d dimensions is given by the com-
pletely antisymmetric products of γ matrices [20, 30, 56, 74],

γ(n) ≡ γµ1,µ2,...µn =
1

n!

∑

p∈Πn

(−1)pγµ1γµ2 . . . γµn . (5.9)

In 4 dimensions the structures γ(n) survive only for n ≤ 4, and one can write

1

2
[(L⊗ L) + (R⊗R)] = (γ(1) ⊗ γ(1)) +

1

3!
(γ(3) ⊗ γ(3))

1

2
[(L⊗R) + (R⊗ L)] = (γ(1) ⊗ γ(1)) − 1

3!
(γ(3) ⊗ γ(3)) . (5.10)

These equations can be taken as definitions for the tensor products in d dimensions; in
practice we change the d-dimensional extension of the “symmetric” operators, with the aim
to simplify the evaluation of the AD matrix.

The key advantage over the HV scheme is that there is no split between 4 dimensional and
d− 4 dimensional objects (the indices in Eq. 5.9 are d dimensional). For example, working in

the well definite basis of
(

γ(n) ⊗ γ(n)
)

structures, for arbitrary integer n, relevant operators,

having n ≤ 4, and evanescent ones having n ≥ 5 are treated in a unified manner.
We stress that the definitions in Eq. 5.9 render this scheme different from the HV one.
In fact, working in the HV scheme, the effective hamiltonian in Eq. 5.4 can be cast in the

form

Heff =
∑

i

CHV
i (µ)N [O

(+)
i ](µ) + CHV

i (µ)N [O
(−)
i ](µ), (5.11)
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whereO
(+)
i and O

(−)
i are the symmetrized and antisymmetrized operators. The two classes

of operators are not mixed by QCD corrections, and so the two terms of Heff are separately
RG invariant

µ
d

dµ

∑

i

CHV
i (µ)N [O

(+)
i ](µ) = µ

d

dµ

∑

i

CHV
i (µ)N [O

(−)
i ](µ) = 0 . (5.12)

The redefinition of the symmetric part amounts to add of evanescent operators E
(+)
i to

the O
(+)
i , defining the “symmetric” and extended operators

Ō
(+)
i = O

(+)
i + E

(+)
i . (5.13)

Using the Ō
(+)
i operators one obtains an AD matrix different from the one obtained with

the O
(+)
i operators, which are defined as in the HV scheme. The mismatch must be readsorbed

in finite renormalizations, which ensure that we can obtain the AD matrix in the HV scheme,
and therefore also the evolution of the antisymmetric part.

This is possible as a renormalized evanescent operator can be expanded on a complete
basis of relevant ones [27] with finite reduction coefficients rij,

〈

f
∣

∣

∣N
[

E
(+)
i

]∣

∣

∣ i
〉

= rij
〈

f
∣

∣

∣N
[

Ō
(+)
j

]∣

∣

∣ i
〉

. (5.14)

For instance imposing the condition

∑

i

CHV
i (µ)N

[

O
(+)
i

]

(µ) =
∑

i

C
(+)
i (µ)N

[

Ō
(+)
i

]

(µ) (5.15)

one has

C
(+)
i (µ) = (δij − rji)C

HV
i (µ) . (5.16)

The RG evolution of C
(+)
i (µ) coefficients is guided by the anomalous dimension matrix

governing the evolution of the symmetrized basis, and using the Eq. 5.16 it is simple to find
the evolution of CHV

i (µ).
Alternatively the Eq. 5.16 can be interpreted as a redefinition of the normal product N [O]

as a non-minimal subtraction procedure: we shall use the notation N ′ [O] for this prescription.
The advantage of the method is that the rij coefficients are O (h̄); hence the most cum-

bersome part of the computation, the determination of the AD matrix, can be done in the
symmetrized scheme, while the matching needed to write down the amplitude requires a
computation at one loop order less.

In the following we shall use the following symmetrized and extended basis

H(+)
eff ≡ GF√

2
V ⋆

t sVt b

∑

i

C
(+)
i O

(+)
i (5.17)
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where the operators are defined

Ō
(+)
1 = 1

(4π)2
s̄ /D/D/D b Ō

(+)
2 = (i e Qd)

(4π)2
s̄ {/D, Fµν σµν} b

Ō
(+)
3 = (− i e Qd)

(4π)2
s̄ γν bDµFµν Ō

(+)
4 = − 1

(4π)2
mb s̄ /D/D b

Ō
(+)
5 = (−i e Qd)

(4π)2
mb s̄ Fµνσµν b Ō

(+)
6 = (i gs)

(4π)2
s̄
{

/D, TAGA
µν σµν

}

b

Ō
(+)
7 = (−i gs)

(4π)2
s̄ γνT

A b (DµGµν)A Ō
(+)
8 = (−i gs)

(4π)2
mb s̄T

AGA
µνσµν b

Ō
(+)
9,n = 1

n!(s̄αγ
(n)cβ) ⊗ (c̄βγ

(n)bα) Ō
(+)
10,n = 1

n!(s̄αγ
(n)cβ) ⊗ (c̄βγ

(n)bα)

Ō
(+)
11,n = 1

n!(s̄αγ
(n)bα) ⊗∑q(q̄βγ

(n)qβ) Ō
(+)
12,n = 1

n!(s̄αγ
(n)bβ) ⊗∑q(q̄βγ

(n)qα)

(5.18)

and the non-zero coefficients are normalized as follows, with respect to the ones in Eq. 3.13:

C
(+)
i = 2Ci i = 1, . . . 8 C

(+)
10, 1 = C

(+)
10, 3 = C10 . (5.19)

5.2.1 On-shell and off-shell formulation

To make contact with the work of other authors [76, 58], we shall also use an on-shell basis,
obtained from Eq. 5.4 by exploiting the motion equations. The reason for computing QCD
corrections off-shell is that the redundancy of the computation provides further checks, and
the intermediate results can be saved in view of the planned NLO computation: nevertheless,
given the AD matrix, it will be convenient to reduce the results to the following on-shell basis.

H1 =
GF√

2
V ⋆

t s Vt b

∑

i

Con−shell
i Qi

Q1 = (s̄c)V −A (c̄b)V −A (1 ⊗ 1)F

Q2 = (s̄c)V −A (c̄b)V −A (1 ⊗ 1)

Q3, 5 = (s̄b)V −A

∑

q=u,d,s,c,b

(q̄q)V ±A (1 ⊗ 1)

Q4, 6 = (s̄b)V −A

∑

q=u,d,s,c,b

(q̄q)V ±A (1 ⊗ 1)F

Q7 =
(−ieQd)

(4π)2
mbs̄σµν (V +A)Fµνb

Q8 =
(−igs)

(4π)2
mbs̄σµν (V +A)Ĝµνb . (5.20)

It is worth recalling the general properties of an anomalous dimension matrix γ̂ for an
operator basis not reduced by motion equations: following [5, 6, 7], it has the block form

(

relevant motion equations

relevant X̂ Ŷ
motion equations 0 Ẑ

)

,
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and we shall explicitly check this result in the computation. Please note that QCD cor-
rections background gauge fixing term has been used for the gluon field, thus ensuring that
even off-shell there is no need to introduce non gauge invariant operators, and that the basis
in Eq. 5.18 closes under renormalization.

The symmetrized and extended version of the basis in Eq. 5.20 will be given by the
following combinations of the operators appearing in Eq. 5.18

Q̄
(+)
1 = Ō

(+)
(9, 1) + Ō

(+)
(9, 3)

Q̄
(+)
2 = Ō

(+)
(10, 1) + Ō

(+)
(10, 3)

Q̄
(+)
3/5 = Ō

(+)
(11, 1) ± Ō

(+)
(11, 3)

Q̄
(+)
4/6 = Ō

(+)
(12, 1) ± Ō

(+)
(12, 3)

Q̄
(+)
7 = Ō

(+)
5

Q̄
(+)
8 = Ō

(+)
8

Q̄
(+)
9 = Ō

(+)
(9, 1) − Ō

(+)
(9, 3)

Q̄
(+)
10 = Ō

(+)
(10, 1) − Ō

(+)
(10, 3) , (5.21)

where the last two operators are introduced only in order to have and invertible relation,
and as can be expected decouple.

5.3 The computation

5.3.1 One loop results

We list in Fig. 5.1 and in Fig. 5.2 the general structure of the graphs needed to renormalize off-
shell the operators Ō+

1... 8. Here and in the following figures the external zigzag line addresses
a gluon or a photon. Note that the graphs in Fig. 5.2 are proportional to α2

s, but as pointed
by Misiak [58] they are required even at leading order since they give rise to the mixing of
the operator Ō7 with the operators Ō+

(11, n), (12, n).

The computation of the Feynman graphs in Fig. 5.1 results in the {1 . . . 8} × {1 . . . 8}
sector of the one-loop anomalous dimension matrix γ̂(1),

αs

4π





























1 2 3 4 5 6 7 8

1 −2 CF ξ 0 0 6 CF 0 0 0 0
2 0 0 0 0 8 CF 0 0 0
3 0 0 0 0 0 0 0 0
4 0 0 0 6 CF−2 CF ξ 0 0 0 0
5 0 0 0 0 8 CF 0 0 0
6 −12 CF 4 CF 0 0 4 CF 4 CF 0 4(3 CF−CA)

7 2 CF 0 8 CF
3

0 0 0 8
3

CF +3 CA 0
8 0 0 0 −12 CF 8 CF 0 0 4(4 CF−CA)





























, (5.22)
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Figure 5.1: Mixing among operators Ō+
1... 8.

Figure 5.2: Mixing of operators Ō+
1... 8 with Ō+

(11−12, n).
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Figure 5.3: Mixing among 4-fermion operators.

Figure 5.4: Mixing of 4-fermion operators with Ō+
1... 8 operators.

while the graphs in Fig. 5.2 connect the operator Ō+
7 to four fermion operators, resulting

in

(

αs

4π

)2 (

(11, 1) (11, 3) (12, 1) (12, 3)

7
−5+5 C2

A
−10 CA CF

2
9 C2

A
−30 CA CF +24 C2

F

2 0 24 CF−9 CA

2

)

. (5.23)

The renormalization of four fermion operators, off-shell, results from the graphs in Fig. 5.3
and in Fig. 5.4.

The self mixing of four fermion operators at one-loop, in Fig. 5.3, connects Dirac structures
with ∆n = +2, 0, −2

αs

4π

(

(9, n − 2) (9, n) (9, n + 2)

(9, n) (6−n) (n−5)
CA

2 CF ((1−n) (n−3)−ξ)
−((1+n) (2+n))

CA

(10, n) (n−6) (n−5)
2 3 (−2+4 n−n2)

(1+n) (2+n)
2

)

, (5.24)
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αs

4π

(

(10, n − 2) (10, n) (10, n + 2)

(9, n) (n−6) (n−5) 0 (1+n) (2+n)

(10, n) (4 CF−CA) (n−6) (n−5)
2 (3 CA−4 CF ) (2−4 n+n2)−4 CF (1+ξ)

(4 CF−CA) (1+n) (2+n)
2

)

.

The same mixings occur in the Ō+
(11,n),(12,n) sector.

The penguin graphs in Fig. 5.4 give rise to the mixing of the 4-fermion operators with
Ō+

3, 7 at the α0
s order













3 7

(9, n) −2(n−2)
3n! (−1)n cn(0) (n−2)

3n! (−1)ncn(0)

(10, n) −CA
2(n−2)

3n! (−1)ncn(0) 0

(11, n) CA
8
3 n̄fδn,1 + 2(n−2)

3n! (−1)ncn(0) 2(n−2)
3n! (−1)ncn(0)

(12, n) 8
3 n̄fδn,1 + CA

2(n−2)
3n! (−1)ncn(0) 8

3nfδn,1













. (5.25)

The meaning of the symbol cn is explained in App. B together with the other definitions
and useful formulas. We use the symbols nf = u + d, n̄f = d − 2u, with u and d being the
number of up and down quark species active.

It is to be noted that at leading order only the n = {1, 3, 5} values are needed, because
the effective hamiltonian starts with n = {1, 3} and at one loop only the n = 5 evanescent
arises. We find convenient to give also the results restricted to this set of n values

αs

4π
(













(9, 1) (9, 3) (9, 5) (10, 1) (10, 3) (10, 5)

(9, 1) 0 − 6
CA

0 0 6 0

(9, 3) − 6
CA

0 − 20
CA

6 0 20

(10, 1) 3 3 0 − 3
CA

− 6CF − 3
CA

+ 6CF 0

(10, 3) 3 3 10 − 3
CA

+ 6CF − 3
CA

− 6CF 20CF − 10
CA













, (5.26)





























3 7

(9, 1) −8
3

4
3

(9, 3) −8
3

4
3

(10, 1) −8 CA

3 0

(10, 3) −8 CA

3 0
(11, 1) 8

3 (1 + CA n̄f ) 8
3

(11, 3) 8
3

8
3

(12, 1) 8
3 (CA + n̄f ) 8

3nf

(12, 3) 8
3 CA 0





























. (5.27)

It is well known that renormalized operators proportional to motion equations mix only
between themselves and that their anomalous dimension matrix is not gauge independent.

In fact, we can observe that operator N
[

Ō+
1

]

, proportional to the s motion equation, mixes

only with itself and operator N
[

Ōs
4

]

: this one mixes with itself only, and both operators have

anomalous dimension matrix depending on ξ [5]. The difference N
[

Ō+
2 − Ō+

5

]

is proportional
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to a combination of the s and b motion equations and does not evolve at one-loop. Analo-

gously the operator N
[

Ō+
6 − Ō+

8

]

mixes with itself and with N
[

Ō+
1

]

, N
[

Ō+
2 − Ō+

5

]

, N
[

Ō+
4

]

.

Finally the combination

N

[

Ō+
7 +

αs

4π

(

1

2CA
Ō+

(11, 1) −
1

2
Ō+

(12, 1)

)]

is proportional to the equation of motion of the gluon. It is worth noting that the elim-

ination of the operator N
[

Ō+
7

]

in favor of the four fermion operators introduces a factor
1
αs

which combines with the α2
s in Eq. 5.23 to give a result relevant for the leading order

computation [58].

5.3.2 Two loop results

The two-loop mixing of the four fermion operators with operators Ō+
1,...8 can be obtained from

the computation of the Feynman diagrams in Figs. 5.5, 5.6 and in Figs. 5.7, 5.8: the “closed”
loop graphs are relevant only for the renormalization of operators Ō+

((11−12), n).
The massive b quark is represented by the heavy-faced lines. The b propagator is expanded

in series of mb up to the first order and the resulting massless graphs are regularized in the
infrared region by the flow of the external momenta: the diagrams have to be evaluated with
zero and one mass insertions. The loop integrals have been computed with the help of the
algorithms developed by Chetyrkin et al. [21], implemented in the Mathematica [62] symbolic
manipulation language. As in the case of the one loop computation, the results can be given
for arbitrary n and are listed in Tabb. 5.1, 5.2, 5.3. We refer to App. B for symbols and
definitions; let us just note that the symbol fn j results from traces involving elements of the
{γ(n)} basis.

We stress that having the results for arbitrary n will be useful for the NLO computation.

5.3.3 Reduction of evanescent operators

Before giving the results for n = 1, 3, that are needed in this leading logarithmic computa-
tion, we perform the reduction of the evanescent operators with n = 5. We follow the scheme
detailed in Sec. 4.1.5, computating the graphs in Fig. 5.9, which allow to express the inser-
tion of the evanescent operators in the Green functions in terms of the insertion of relevant
operators, with coefficients addressed by the matrix r̂

r̂ =











3 5 7 8

(9, 5) 2
5 0 −1

5 0
(10, 5) 2

5 CA 0 0 0
(11, 5) −2

5
8
15 −2

5
8
15

(12, 5) −2
5 CA

8
15 CA 0 0











. (5.28)

For the present computation only columns 5, 8 are relevant, while the columns 3, 7 con-
tribute through equations of motion to four fermion operators,

r̂on−shell =
αs

4π











(11, 1) (12, 1)

(9, 5) 1
10 CA

− 1
10

(10, 5) 0 0
(11, 5) 1

5 CA
−1

5
(12, 5) 0 0











, (5.29)
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(A.1) (A.2) (B.1) (B.2)

(C.1) (C.2) (D.1) (D.2)

(E.1) (E.2) (F.1) (F.2)

(G.1) (G.2) (H.1) (H.2)

(I.1) (I.2) (J.1) (J.2)

Figure 5.5: “Open” graphs contributing to the renormalization of Ō+
(9... 12, n).
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(K.1) (K.2) (L.1) (L.2)

(M.1) (M.1)

Figure 5.6: “Open” graphs for the renormalization of Ō+
(9... 12, n). Non abelian couplings.

and are relevant only for the NLO computation.
By combining the reduction coefficients in Eq. 5.28, the one loop anomalous dimension

matrix in Eq. 5.26 and the results of the two loop computation listed in Tabb. 5.1, 5.2, 5.3,
we are able to give the anomalous dimension matrix relevant at leading order, where a factor
αs

4 π is understood.



































1 2 3 4

(9, 1) 2 CF

3
−44 CF

9
−88 CF

27 −2CF

(9, 3) 2 CF

9
−44 CF

9 8CA − 1688 CF

27 −2CF

(10, 1) 0 0 −40 CA CF

3 0

(10, 3) 0 0 4 CA (3−14 CF )
3 0

(11, 1) 4 CF

3
20 CF

9
−176 CF

27 +
8 CA CF n̄f

3 −16CF

(11, 3) 4 CF

9
20 CF

9
944 CF

27 −24CF

(12, 1)
4 CF (2 n̄f−3 nf)

9

16 CF (2 n̄f−3 nf)
27

40 CA CF

3 +
8 CF (95 n̄f−102 nf)

81

4 CF (2 n̄f−3 nf)
3

(12, 3) 0
4 CF n̄f

3
32 CA CF

3 +
88 CF n̄f

9 0





































































5 6

(9, 1) −8CF
CA

2 + 10 CF

9

(9, 3) −8CF
CA

2 + 10 CF

9
(10, 1) 0 1
(10, 3) 0 1
(11, 1) −4CF CA + 20 CF

9

(11, 3) −32
3 CA

+ 32 CA

3 + 28 CF

3 CA + 20 CF

9 + 2
(

nf − 2
3 n̄f

)

(12, 1) 4CA CF 2 +
(16 CF−18 CA) (2 n̄f−3 nf)

27

(12, 3) 52 CA CF

3 +
8 CF n̄f

3 2 +
(4 CF−CA) (3 nf−2 n̄f)

3
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(A.1) (A.2) (B.1) (B.2)

(C.1) (C.2) (D.1) (D.2)

(E.1) (E.2) (F.1) (F.2)

(G.1) (G.2) (H.1) (H.2)

(I.1) (I.2) (J.1) (J.2)

Figure 5.7: ‘Closed” graphs contributing to the renormalization of Ō+
(11−12, n).
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(K.1) (K.2) (L.1) (L.2)

(M.1) (M.1)

Figure 5.8: “Closed” graphs for the renormalization of Ō+
(11−12, n). Non abelian couplings.

Figure 5.9: Diagrams relevant at LO for the reduction of evanescent operators.
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Table 5.1: Two loop AD matrix entries for Ō+
(9, n), Ō

+
(10, n), resulting from the mixing with

Ō+
1... 8

γ entry

(9, n), 1 (−1)n CF

3n! ((1 − n) cn(0) + (2 − n) cn(1))

(9, n), 2 2 CF

n!

[

−fn,3 (0) + (−1)n (2−n)
9 cn (0)

]

(9, n), 3 4 CF

n!

[

−fn,3(0) + n(n−1)(−1)n

18

(

1908 − 1124n + 213n2 − 13n3
)

cn−2(0)

+ (−1)n

54

(

160 − 290n + 177n2 − 33n3
)

cn(0)

+2(n−2)(−1)n

9

(

4 − 12n + 3n2
)

cn(1)
]

(9, n), 4 CF (2−n)(−1)n

2n! cn(0)

(9, n), 5 2 CF (n−2)
3n!

(

2n2 − 8n+ 3
)

(−1)n cn(0)

(9, n), 6 4 CF −CA

4n! fn,3(0) + (−1)n (8 CF−9 CA)(2−n)
36n! cn(0)

(9, n), 7
(4 CF−CA) fn,3(0)

2n!

+ (−1)n (CA−2 CF ) n (n−1)
18n!

(

1908 − 1124n + 213n2 − 13n3
)

cn−2(0)

+ (−1)n

108n!

(

3CA (4 − n)
(

3 − 46n+ 24n2
)

−4CF
(

58 − 230n + 177n2 − 33n3
))

cn(0)

+ (−1)n

18n! (n− 2)
(

4CF
(−11 + 24n − 6n2

)

+ 3CA
(−3 − 8n+ 2n2

))

cn(1)

(9, n), 8 (−1)n (n−2)
24n!

(

8CF
(−3 + 8n− 2n2

)

+ CA
(

1 − 16n+ 4n2
))

cn(0)

(10, n), 1 (2) 0

(10, n), 3 CA CF (−1)n

9n!

[

n (n− 1)
(

1908 − 1124n + 213n2 − 13n3
)

cn−2(0)
+
(

108 − 148n + 83n2 − 13n3
)

cn(0)
]

(10, n), 4 (5) 0
(10, n), 6 1

2n!fn,3(0)

(10, n), 7 1
n!fn,3(0) + (−1)n n (n−1)

36n!

(−1908 + 1124n − 213n2 + 13n3
)

cn−2(0)

+ (−1)n

36n!

(

24 + 32n − 35n2 + 9n3
)

cn(0) + (−1)n (n−2)
3n!

(−3 + 8n − 2n2
)

cn(1)

(10, n), 8 (−1)n (n−2)
6n!

(−3 + 8n − 2n2
)

cn(0)



































7 8

(9, 1) 25 CA

3 − 88 CF

27
−11 CA

6 + 4CF

(9, 3) −5CA

3 + 688 CF

27
−11 CA

6 + 4CF

(10, 1) −10
3 2

(10, 3) 10 2
(11, 1) 50 CA

3 − 176 CF

27
13 CA

3 − 4CF

(11, 3) 944 CF +126 CA

27 + 44
3

(

nf − 2
3 n̄f

)

92 CF−19 CA

3 + 4
(

nf − 2
3 n̄f

)

(12, 1) −20
3 +

(56 CF−252 CA) (2 n̄f−3 nf)
81 −8 +

5 CA (2 n̄f−3 nf)
9

(12, 3) 16 +
22 (4 CF−CA) (3 nf−2 n̄f)

9

2 (4 CF−CA) (3 nf−2 n̄f)
3



































.

5.3.4 On-shell results

By applying the motion equations, it is now possible to give the results in the following on-
shell basis which closely corresponds to the symmetrization of the one used by Ciuchini et
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Table 5.2: Two loop AD matrix entries for Ō+
(11, n), resulting from the mixing with Ō+

1... 8

γ entry

(11, n), 1 2 CF (−1)n

3 n! [(1 − n) cn(0) + (2 − n) cn(1)]

(11, n), 2 2 CF

n!

[

fn,3(0) + 2
9 (2 − n) (−1)n cn(0)

]

(11, n), 3 CF

n! [8CA n̄fδn, 1 + 4 fn, 3(0)
+2

9 (−1)n (n− 1) n
(−1908 + 1124n − 213n2 + 13n3

)

cn−1(0)
+ 2

27 (−1)n
(−58 + 230n − 177n2 + 33n3

)

cn(0)

+4
9 (−1)n (n− 2)

(−11 + 24n − 6n2
)

cn(1)
]

(11, n), 4 CF

n!

[

1
3

(

39 − 68n + 20n2 + 3 (2 − n) (−1)n
)

cn(0) + 2 (n− 3) (n− 1) cn(1)
]

(11, n), 5 CF

3n!

[

2 (n− 6) (n− 5)2 (n− 3) (n− 1) n cn−2(1)

−1
3

(

45 + 100n − 170n2 + 56n3 − 4n4

+2 (n− 2)
(

2n2 − 8n+ 3
)

(−1)n) cn(0)
+2 (n− 3) (n− 1)

(−5 + 3n− n2
)

cn(1)
]

(11, n), 6 1
n!

[

12nf δn,3 + 1
2 (4CF − CA) fn,3(0)

+ (−1)n

18 (9CA − 8CF ) (n− 2) cn(0)
]

(11, n), 7 1
n! [88nf δn,3 + (4CF − CA) fn,3(0)

+1
9 (−1)n (2CF − CA) (n− 1) n

(−1908 + 1124n − 213n2 + 13n3
)

cn−2(0)
+ 1

54 (−1)n
(

3CA (n− 4)
(−3 + 46n − 24n2

)

+
+ 4 CF

(−58 + 230n − 177n2 + 33n3
))

cn(0)

+1
9 (−1)n (2 − n)

(

3CA
(

3 + 8n− 2n2
)

+ 4CF
(

11 − 24n + 6n2
))

cn(1)
]

(11, n), 8 1
n!

[

1
3(−CA + 2CF ) (n− 6) (n− 5)2 (n− 3) (n− 1) n cn−2(1)

+ 1
18

(

CA
(

99 + 24n − 125n2 + 40n3 − 2n4
)

+
+ 2CF

(−45 − 100n + 170n2 − 56n3 + 4n4
))

cn(0)
+1

3(n− 3) (n− 1)
(

CA n+ 2CF

(−5 + 3n− n2
))

cn(1) + 24nf δn,3

+ 1
12 (−1)n (n− 2)

(

8CF
(−3 + 8n − 2n2

)

+ CA
(

1 − 16n + 4n2
))

cn(0)
]

al. [76, 77] in the HV case,

Q+
1 = Q̄+

1 − E+
1 = Ō+

(9, 1) + Ō+
(9, 3) − E+

1

Q+
2 = Q̄+

2 − E+
2 = Ō+

(10, 1) + Ō+
(10, 3) − E+

2

Q+
3/5 = Q̄+

3/5 − E+
3/5 = Ō+

(11, 1) ± Ō+
(11, 3) − E+

3/5

Q+
4/6 = Q̄+

4/6 − E+
4/6 = Ō+

(12, 1) ± Ō+
(12, 3) − E+

4/6

Q+
7 = Q̄+

7 = Ō+
5

Q+
8 = Q̄+

8 = Ō+
8

Q+
9 = Q̄+

9 − E+
9 = Ō+

(9, 1) − Ō+
(9, 3) − E+

9

Q+
10 = Q̄+

10 − E+
10 = Ō+

(10, 1) − Ō+
(10, 3) − E+

10 . (5.30)

The last two operators have been introduced to have an invertible relation between the
bases Ō+

i and Q+
i ; as expected they decouple from the others in the RG evolution. The
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Table 5.3: Two loop AD matrix entries for Ō+
(12, n), resulting from the mixing with Ō+

1... 8

γ entry
(12, n), 1 −4

3 CFnfδn,1

(12, n), 2 −16
9 CFnfδn,1 + 4CF n̄fδn,3

(12, n), 3 − 8
81 CF (102nf − 81n̄f ) δn,1 + 88

3 CF n̄fδn,3

+CA CF (−1)n

9 n!

[

(n− 1) n
(−1908 + 1124n − 213n2 + 13n3

)

cn−2(0)
+
(−108 + 148n − 83n2 + 13n3

)

cn(0)
]

(12, n), 4 −4CFnfδn,1

(12, n), 5 CA CF

3 n!

[

(n− 6) (n− 5)2 (n− 3) (n− 1) n cn−2(1)

+1
3

(

45 − 80n + 56n2 − 12n3
)

cn(0)
+ (n− 3) (n− 1)

(−2 − 5n + n2
)

cn(1)
]

+ 8CF n̄f δ(n, 3)
(12, n), 6 1

n! fn,3(0) + 2
9 (9CA − 8CF ) nf δn,1 + (4CF − CA) nf δn,3

(12, n), 7 28
27 (9CA − 2CF )nfδn,1 + 22

3 (4CF − CA)nfδn,3 + 2
n!fn,3(0)

(−1)n

3n!

[

1
6 (n− 1) n

(−1908 + 1124n − 213n2 + 13n3
)

cn−2(0)

+1
6

(

24 + 32n − 35n2 + 9n3
)

cn(0)
+2 (2 − n)

(

3 − 8n + 2n2
)

cn(1)

(12, n), 8 −5 CA

3 nfδn,1 + 2 (4CF − CA) nfδn,3

+ 1
3 n!

[

1
2 (n− 6) (n− 5)2 (n− 3) (n− 1) n cn−2(1)

+1
3

(

73n2 − 18 − 62n − 22n3 + 2n4 (−1)n (18 − 57n + 36n2 − 6n3
))

cn(0)

+1
2 (n− 3) (n− 1)

(−4 + 11n− 3n2
)

cn(1)
]

presence of the evanescent operators takes into account the difference of the d-dimensional
extensions. In the basis Q̄+

i we give the final results for the AD matrix in the following block
form:

γ̂ =
αs

4π

(

γ̂ff γ̂fm

0̂ γ̂mm

)

. (5.31)

The matrices γ̂ff , γ̂mm result from the one loop computation and are scheme independent;
they guide the RG evolution respectively in the four fermion and in the magnetic momentum
sectors,

γ̂ff =



























1 2 3 4 5 6

1 − 6
CA

6 0 0 0 0

2 6 − 6
CA

− 2
3 CA

2
3 − 2

3 CA

2
3

3 0 0 − 22
3 CA

22
3 − 4

3 CA

4
3

4 0 0
2(9 CA−nf)

3 CA
−2(9−nf CA)

3 CA
− 2 nf

3 CA

2 nf

3

5 0 0 0 0 6
CA

−6

6 0 0 − 2 nf

3 CA

2 nf

3 − 2 nf

3 CA

2(nf−18 CF )
3



























,

γ̂mm =

(

7 8

7 8CF 0
8 8CF 16CF − 4CA

)

. (5.32)
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The matrix γfm connecting the four fermion and the magnetic momentum sectors results
from the two-loop computation and it is scheme dependent, even at leading order, as pointed
out by Ciuchini et al. [76, 77]

γ̂fm =





















7 8

1 0 6
2 −232 CF

9 −8 CA

3 + 92 CF

9

3 280 CF

9
280 CF

9 + 6nf

4 64 CA CF

3 + 4 CF

9 (27 n̄f − 4nf ) −4 − 8 CA

3 nf + 92 CF

9 nf

5 −104 CF

3
32 CA

3 − 104 CF

3 − 6nf

6 −40 CA CF

3 − 4 CF

9 (4nf + 27 n̄f ) −8 + 10 CA

3 nf − 124 CF

9 nf





















. (5.33)

5.3.5 Matrix elements and scheme independence

The scheme dependence of the matrix γ̂fm is compensated in the physical amplitude by the
matrix elements of the four fermion operators.

The “even” contribution to the amplitude for the b→ sγ decay has the form

< sγ|H+
eff |b >= C̄s

7

〈

sγ
∣

∣

∣N
[

Q+
7

]∣

∣

∣ b
〉

0
+

6
∑

n=3

C̄s
n

〈

sγ
∣

∣N
[

Q+
n

]∣

∣ b
〉

1 (5.34)

where the subscripts 0, 1 address the order in h̄ of the matrix element, and an analogous
formula holds for the b→ sg amplitude 1.

The one loop matrix elements of the operators Q+
3, 4, 5, 6 result from Feynman diagrams

analogous to the ones listed in Fig. 5.9 and with a mass insertion. If we define our scheme
preserving the naive four dimensional Fierz simmetry they give a zero result. In fact in this
case the “open” diagram in Fig. 5.9 with a mass insertion is proportional to the “closed” one,
which is set to zero by the trace. The symmetry can be preserved by using the HV scheme
for γ5 and maintaining the four dimensional definition for the current-current products [77].

In other regularization schemes this is no longer true and in general one obtains a local,
finite contribution. This difference can be reinterpreted as a finite correction2 to the coefficient
Cs

7 or alternatively to the operators. In our scheme the following relations hold

〈

sγ

∣

∣

∣

∣

∣

(

Ō+
11,n

Ō+
12,n

)∣

∣

∣

∣

∣

b

〉

1

=

(

(−36+64 n−19 n2)
36

cn(0)
n! + (1−n) (−3+n)

6
cn(1)

n!

)

(

1
CA

)

〈

sγ
∣

∣

∣Ō+
5

∣

∣

∣ b
〉

0
〈

sg

∣

∣

∣

∣

∣

(

Ō+
11,n

Ō+
12,n

)∣

∣

∣

∣

∣

b

〉

1

= (5.35)

(

(−36+64 n−19 n2)
36

cn(0)
n! + (1−n) (−3+n)

6
cn(1)

n!

)

(

1
0

)

〈

sg
∣

∣

∣Ō+
8

∣

∣

∣ b
〉

0
.

1The bar over the coefficients reminds us that they are obtained after applying motion equations: for
instance C̄s

7 = Cs
2 + Cs

5 , C̄s
8 = Cs

6 + Cs
8 .

2see, f.i. in [81], the so called “effective coefficients” formalism
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Using the definitions in Eq. 5.30 we can write

〈

s γ
∣

∣

∣Q̄+
i

∣

∣

∣ b
〉

= Z7i

〈

s γ
∣

∣

∣Q̄+
7

∣

∣

∣ b
〉

i = {1 . . . 6}
〈

s g
∣

∣

∣Q̄+
i

∣

∣

∣ b
〉

= Z8i

〈

s g
∣

∣

∣Q̄+
8

∣

∣

∣ b
〉

i = {1 . . . 6} (5.36)

where following [76] we define the vectors

~Z7 =

(

0, 0,
8

3
,
8CA

3
,−2

3
,−2CA

3
, 0, 0

)

~Z8 =

(

0, 0,
8

3
, 0,−2

3
, 0, 0, 0

)

. (5.37)

We can perform the finite renormalizations needed to compare the results with the ones
obtained in the HV scheme. We match the renormalization schemes by defining a non-minimal
subtraction

N ′
[

Q̄+
i

]

=
(

1̂ + δF̂
)

i j
N
[

Q̄+
j

]

δF̂i j =

{

−Zj i j = {7, 8}
0 j = {1, . . . 6} (5.38)

which sets to zero the matrix elements in Eq. 5.36, as they are in the HV scheme.
According to the formula in Eq. 4.30 the AD matrix is modified as follows

γ̂′ =
(

1̂ + δF̂
)

γ̂
(

1̂ + δF̂
)−1

. (5.39)

Using the results in Eq. 5.37, one easily obtains the AD matrix in the HV scheme

γ̂′mf =























7 8

1 0 6
2 −208 CF

9
116 CF

9 − 4CA

3 232 CF

9
232 CF

9 − 8CA + 6nf

4 8 CF

9 nf + 12CF n̄f 12 +
(

116 CF

9 − 4CA

)

nf

5 −16CF 4CA − 16CF − 6nf

6 8 CF

9 nf − 12CF n̄f −8 +
(

2CA − 100 CF

9

)

nf























(5.40)

which coincides with the result in [76].
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5.4 Effective Hamiltonian at µ ≃ mb

We have obtained the expression for the AD matrix in the HV scheme:

γ̂HV =
αs

4π





























1 2 3 4 5 6 7 8

1 −2 6 0 0 0 0 0 6
2 6 −2 −2

9
2
3 −2

9
2
3 −832

27
140
27

3 0 0 −22
9

22
3 −4

9
4
3

928
27

1090
27

4 0 0 44
9

4
3 −10

9
10
3 −272

27
1024
27

5 0 0 0 0 2 −6 −64
3 −118

3
6 0 0 −10

9
10
3 −10

9 −38
3

592
27 −1406

27
7 0 0 0 0 0 0 32

3 0
8 0 0 0 0 0 0 32

3
28
3





























, (5.41)

where the values nf = 5, n̄f = −1 have been inserted, as appropriate to the 5 quark
theory below MW .

With the help of Mathematica[62] it is easy to find numerically eigenvectors and eigenvalues
of the transpose of the matrix in Eq. 5.41

γ̂T
HV =

αs

4π
R̂−1 · D̂ ·R (5.42)

D̂ =





























1 2 3 4 5 6 7 8

1 10.6667 0 0 0 0 0 0 0
2 0 9.33333 0 0 0 0 0 0
3 0 0 6.26549 0 0 0 0 0
4 0 0 0 −6.48583 0 0 0 0
5 0 0 0 0 2.23328 0 0 0
6 0 0 0 0 0 −13.7907 0 0
7 0 0 0 0 0 0 4 0
8 0 0 0 0 0 0 0 −8





























(5.43)

R̂ ≃





























1 2 3 4 5 6 7 8

1 6.882 6.528 64.18 65.69 −32.51 −9.038 1 8
2 1.442 1.725 10.66 11.51 −4.603 −0.9293 0 1
3 −0.08882 −0.1224 −0.6888 −0.7894 0.1511 −0.1074 0 0
4 −0.2444 0.1827 −0.8566 0.4248 0.2403 0.3399 0 0
5 −0.04516 −0.03186 −0.2895 −0.2496 −0.9597 0.03731 0 0
6 −0.02363 0.04644 −0.02528 0.1849 −0.3489 −0.9184 0 0
7 0.7071 0.7071 0 0 0 0 0 0
8 −0.7071 0.7071 0 0 0 0 0 0





























.(5.44)

Then we can determine the evolution of the coefficients at leading logarithmic order, on
the basis of Eq. 4.49

~C (mb) = R̂−1 ·
(

αs (mb)

αs (MW )

)

−D̂
2β0 · R̂ · ~C (MW ) . (5.45)
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The numerical result for the coefficient Con−shell
7 of the magnetic momentum operator, is

at µ = mb

r =
αs (mb)

αs (MW )

Con−shell
7 (mb) = r−0.69565 Con−shell

7 (MW ) + 8
(

r−0.69565 − r−0.6087
)

Con−shell
8 (MW )

+
(

6.52786 r−0.69565 − 13.797 r−0.608696 + 3.89614 r−0.40862

+ 2.57143 r−0.26087 + 0.034332 r−0.14565 + 0.22793 r0.422989

+ 0.428571 r0.521739 + 0.111299 r0.899395
)

Con−shell
2 (MW ) . (5.46)

The values3 of the on-shell coefficients can be obtained from Eq. 3.13, taking into account
the change in the normalization of the operators

Con−shell
2 (MW ) = 1

Con−shell
7 (MW ) = 2 (C2 (MW ) + C5 (MW )) =

8x3 + 5x2 − 7x

4 (x− 1)3
− 3x2 (3x− 2)

2 (x− 1)4
lnx

Con−shell
8 (MW ) = 2 (C6 (MW ) + C8 (MW )) =

−x3 + 5x2 + 2x

4 (x− 1)3
− 3x2

2 (x− 1)4
lnx .

Following Buras et al. [81] we shall normalize the QCD coupling to the value determined
at LEP,

αs (MZ = 91.175GeV) ≃ 0.12 (5.47)

using consistently the leading order approximation for the running coupling,

αs (µ) =
αs (MZ)

1 + αs(MZ)
2π

11 CA−2nf

3 ln
(

µ
MZ

) . (5.48)

With this choice the ratio r has, still for µ = mb, the value

r ≃ 1.7 (5.49)

with the choices mb = 5GeV, MW = 80.14, and the formula for the coefficient Con−shell
7

becomes

Con−shell
7 (mb) ≃ 0.97Con−shell

2 + 0.69Con−shell
7 (MW ) − 0.26Con−shell

8 (MW ) ; (5.50)

as anticipated the multiplicative renormalization tends to suppress the ratio.
Considering the range of variation of the coefficients for mt in the 130− 180GeV interval,

Con−shell
7 (MW ) = 0.95 − 1.20

Con−shell
8 (MW ) = (−0.17) − (−0.20) (5.51)

one can make a few comments:
3in the Standard Model
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• the mixing with the gluon magnetic momentum operator is not much relevant.

• The contribution from the 4 fermion operator is of the same order of magnitude, and
with the same sign, as the one from photon magnetic momentum operator.

• As the C7 coefficient increases withmt, the relative importance of the QCD enhancement
decreases.

5.4.1 Error analysis

Let us go back to the formula in Eq. 2.15, which expresses the ratio of the b→ sγ to the
b→ ceν̄e decay rate.

R =
Γ (b→ sγ)

Γ (b→ c e ν̄e)
=

|VtbV
⋆
ts|2

|Vcb|2
6αQED

π
(

1 − f
(

mc

mb

)) |Cm.m. (mb)|2 , (5.52)

We want to briefly explain how they have been derived the theoretical error bars shown
in Figg. 2.2, 2.5. This topic has been addressed at length by the authors of [81], and we shall
be schematic.

In the above mentioned papers 6 sources of uncertainty are discussed: the resulting errors
can be added in quadrature, as there is no reason to assume they are correlated.

(i) The use of a spectator model is now know to correspond to the leading order in the 1/mb

expansion, and the existing literature [49, 65, 66] suggests that at most a 10% error can
be ascribed to this origin.

(ii) The cancellation of the rapidly varying factor m5
b , using the normalization to the semilep-

tonic decay rate, introduces a dependence on the ratio z = mc/mb, which is known [43]
to be z = 0.316 ± 0.013, and originates a 6% error.

(iii) The combination of CKM parameters occurring in Eq. 2.15, assuming unitarity and
taking into account limits from CP violation in K physics, is

|VtbV
⋆
ts|2

|Vcb|2
= 0.95 ± 0.04 . (5.53)

(iv) It is common to use αs coming from the Z physics: αs = 0.12±0.01. This determination
however results by using NLL expressions for the observables at the Z peak, therefore
it is in general unconsistent to use this determination at the present level of theoretical
accuracy of the b→ sγ process. The authors of [81] have checked that using two or
one loop expressions for αs in the coefficient evolution gives an error 4 times smaller
than the one resulting by the inaccuracy in the determination of the initial value. It
appears therefore reasonable to use consistently a leading logarithm expression for αs

and maintain the range of variation of the initial condition, as it comes from LEP.

(v) In Sec. 4.2.3 we have discussed how the expression for the coefficient evolution is altered
by going from the leading to the next-to-leading expression: we have also seen how the
dependence on the arbitrary renormalization scale is reduced. Also in the present case it
is possible to check [81] the explicit reduction of µ dependence, however the central value
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cannot be predicted without the NLL terms in the anomalous dimension matrix. On the
other hand, as the variation of the admissible perturbative values of these parameters
can be put in correspondence with a variation of the µ scale of the LL computation, the
resulting error can be reasonably estimated by varying the scale between, say, 1/2mb

and 2mb. It is worth noting that even 1/2mb ≃ 2.5GeV is a scale sufficiently high to
trust perturbative QCD, so the assumption that NL coefficients remain “reasonable” is
justified. The resulting error is about 25%

(vi) The branching ratio BR [B → Xsγ] is further affected by the experimental error on
BR [B → Xceν̄e] = (10.4 ± 0.4) %.

The lack of the NLL analysis is the main source of error: a NLL computation could reduce
the uncertainty under 10%, while it is currently larger than 25%. We have already seen how
difficult is at the moment to discriminate among the different models, in view of these large
uncertainty. We shall come back to this point after discussing the second topic of this thesis,
the heavy top effects at LEP, because other processes sensible to the short distance structure
of the Standard Model, like the Z → bb̄ decay, put complementary limits to the New Physics
parameters and a comparative discussion is mandatory.



Part II

Heavy Top effects at LEP



Chapter 6

Overview

It is known from a long time that an heavy top quark results in relatively large quantum
corrections to LEP observables. This heavy top dependence allowed to derive, together with
low energy data, bounds on the mt value. At the present time the top quark appears to
have been discovered at CDF, and the same calculations which helped to set the bounds are
used to “subtract” the top effect from precision electroweak experiments, in order to uncover
possible New Physics effects.

In this Chapter we would like to provide an introduction to these topics and to set up a

framework for the detailed discussion of a part of the radiative corrections, the O
(

G2
µm

4
t

)

effects.

6.1 The renormalization scheme

It is useful to recall the methods commonly used to analyze the radiative corrections to the
SM, limiting to the aspects more relevant for the study of the heavy top corrections at LEP.

The Standard Model is a renormalizable theory, which means that a finite number of
experiments is sufficient to its complete determination, allowing to make predictions for all
the other processes.

Given the set of “bare” parameters of the SM lagrangian, say {ai
o}, an equal number of

experiments {ei} has to be performed. The theoretical relations

ei (ao) (6.1)

can then be inverted to obtain

ai
o (e) (6.2)

and specify any other experiment in terms of the basic ones.
The choice of the defining experiments is largely arbitrary, with the only requirement of

independence, in order to allow the inversion of the relations in Eq. 6.1. In practice, the
accuracy in the determination of the ai

o parameters is maximized choosing basic observables
which are on one hand experimentally clean and on the other hand computable (for instance
within perturbation theory) to an high degree of precision.
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6.1.1 Basic observables

The specification of the SM gauge content SU(2) × U(1), together with the electroweak
symmetry breaking scale, given by the vacuum expectation value (vev) for the Higgs fields,
require the determination of three basic quantities, which are the two gauge couplings

g0, g
′
0 (6.3)

and the vacuum expectation value v0. Other than these quantities, the theory is specified
by the fermion Yukawa couplings and the quartic Higgs self coupling.

For what concerns the three basic parameters, an optimal set of experiments is provided
by [17]

• the determination of the fine structure constant α, coming from the Josephson effect or
by the (g − 2) experiment

α−1 = 137.0359895(61) . (6.4)

• The Fermi constant

Gµ = 1.16639(2) × 10−5 GeV−2 (6.5)

as determined from the lifetime of the muon and by the theoretical formula

τ−1
µ =

G2
µm

5
µ

192π3

(

1 − 8
m2

e

m2
µ

)[

1 +
α

π

(

25 − π2
)

(

1 +
α

3π
ln
m2

µ

m2
e

)]

(6.6)

including the QED corrections to the 4−fermion interaction. 1

• The Z−mass, as determined by the LEP experiment [90]

MZ = 91.187 ± 0.007GeV (6.9)

1One easily recognizes that the log appearing in the right hand side is the first contribution of the leading
log series contributing to the running QED constant, as given by

α (M)−1 = α−1 +
1

3π

∑

f

Q2
f ln

M2

m2
f

(6.7)

where the sum runs over all the fermionic degrees of freedom which are “active” at the mµ scale, hence one
could have also written

τ−1
µ =

G2
µm5

µ

192π3

(

1 − 8
m2

e

m2
µ

)[

1 +
α (mµ)

π

(

25 − π2
)

]

, (6.8)

which is rather an affectation at this level, but will be important when considering experiments at the scale
of the SU(2) × U(1) breaking.
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For what concerns the Yukawa couplings, they are eliminated in favor of the fermion
masses: we just recall that while lepton masses are unambiguously defined because these
particles are observed in isolation, the masses of the light u, d, s quarks (or better the ratios
mu/md, ms/md) are extracted from pion and kaon masses using chiral symmetry, while c, b
masses come either from the study of charmonium spectra, and by the D and B meson masses.
In dealing with LEP observables it is possible to avoid the resulting uncertitude, for instance
in the expression for the running QED coupling the hadronic contribution can be related to
the e+ e− → γ → hadrons using a dispersive representation.

A different role is played by the masses of the top quark and of the Higgs field (which is a
substitute for the quartic Higgs coupling): in the analysis of experiments up to the electroweak
breaking scale, and in the language of effective theories, heavy fields can be removed at the
price of renormalizing the effective lagrangian [25]: but the decoupling theorem, as we shall
see, is “evaded”, and the corrections grow with the top mass.

6.1.2 Derived observables

At the tree level, the W mass is related to the basic observables by the relation

M2
W = M2

Z cos2 θW (6.10)

where

sin2 θW cos2 θW =
πα√

2GµM
2
Z

. (6.11)

At the quantum level, if we maintain the definition of the Weinberg angle as fixing the
γ and Z fields as mass eigenstates, the relation with the vector boson masses is altered as
follows

sin2 θW → s2θ = 1 − M2
W

ρM2
Z

; (6.12)

the ρ parameter has a tree value of 1 for a minimal SM or extensions based on doublets
of scalar fields. However, it is also altered by quantum corrections. It is customary to define

s2θ =

(

1 − M2
W

M2
Z

)

+
M2

W

M2
Z

∆ρ ≡ s2W + c2W ∆ρ (6.13)

where the parameter s2W = 1 −M2
W /M2

Z is just a substitute for the W mass, while s2θ
describes the coupling constants in the neutral current sector and enters neutrino scattering
and observables at the Z peak.

From the relation of the Charged Current coupling to the effective Fermi constant Gµ

Gµ =
e2

8 s2θM
2
W

=
π α

2s2θc
2
θρM

2
Z

(6.14)

one obtains the definition of sθ in terms of the fundamental observables, and the calculable
ρ parameter

s2θ c
2
θ =

π α√
2GµM2

Zρ
, (6.15)
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in other words the ρ parameter enters the overall normalization of the Neutral Current
vertex

e

2sθcθ
=
(√

2GµM
2
Zρ
)1/2

(6.16)

and can be compactly defined as the ratio of the neutral current to charged current
interaction at low energy

ρ =
GNC(0)

GCC(0)
. (6.17)

It must be stressed that s2θ is not a fundamental observable, it is a derived quantity and
can be tested in the appropriate experiments.

The fact that the ρ parameter is nearly equal to one, that is, the corrections are “naturally”
small, is the reflection of a underlying symmetry of the SM (see for instance [26]). Indeed, in
the limit in which the U(1) gauge coupling g′ goes to zero and also the Yukawa couplings go
to zero, the SM possesses a gauged SU(2)L symmetry and also a global SU(2)R symmetry.
When the Higgs field acquires a vev, this symmetry is broken down to diagonal SU(2), the so
called “custodial” symmetry. This means that the neutral currents and the charged currents,
being part of an SU(2) multiplet must have the same coefficients, hence ρ = 1 at the tree
level.

6.2 Heavy top effects

The heavy top effects are a manifestation of the mass-generation mechanism in the SM, that
is, of the Yukawa coupling to the Higgs field [10, 12]. It is sometimes stated that these
effects, growing with mt, are an “evasion” of the Applequist-Carazzone theorem [4]. This
can be misleading: simply the theorem does not apply. Recall that the theorem asserts that
sending a dimensionful parameter, say the mass of one of the fields to infinity, the low energy
theory results by considering the lagrangian with the heavy field removed, including finite,
unobservable redefinition of the couplings, plus corrections which are depressed by powers of
the large mass. But the mt → ∞ limit results from a dimensionless parameter, the Yukawa
coupling gt, going to ∞. Diagrammatically, we shall see that powers of the Yukawa coupling
from the vertices can over-compensate the mt terms from the denominators.

6.2.1 Heavy top effects in the ρ parameter

We have seen that the ρ parameter is protected by the “custodial” symmetry, which is broken
by the Yukawa couplings. What really counts is not the mass of the individual quarks, but
the mass splitting within a multiplet: for instance, if the b and t quarks were both heavy and
degenerate, the SU(2) custodial would remain unbroken.

The language of effective field theories is well suited to analyze the effect of the mass
splitting [25]. Suppose we are given the t, b doublet, with mb ≪ MW , mt ≫ MW ; we can
divide the range of scales in three regions: below MW the theory can be described with an
effective Fermi theory, that is, with W, Z, t fields integrated out. At a scale around MW a
theory with the t field integrated out is used, while finally at energies of the order of mt the
full structure of the theory is recovered. The matching between these descriptions, that is, the
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← ←

Figure 6.1: From the effective theory to the fundamental theory

procedure needed to derive the coefficients of the effective lagrangian, at lower energy scales,
from the fundamental description at higher energy scales, originates the residual dependence
of the low energy theory from the parameters of the “fundamental” theory.

The coefficients of the four fermion operators, considered at a matching scale of about
µ ≡MW , are connected to the gauge boson mass terms of the intermediate scale theory, while
on his turn the gauge boson mass terms are affected by the heavy t quark present in the higher
scale theory (Fig. 6.1). In practice then the ρ parameter results from the different effect of
the heavy quark on the W± and the W 3 mass terms. In this language it is particularly clear
why the effect is so relevant, and depends on the square of the top mass: the mass terms in
the effective lagrangian of the intermediate scale theory are dimension two operators, hence
nothing prevents them to depend on m2

t .
We anticipate the result at one-loop order,

ρ = 1 +Nc
Gµm

2
t

8π2
√

2
(6.18)

where Nc is the number of colors, which shows that to this order the effect comes entirely
from fermion loops.

6.2.2 Heavy top effects in vertices

The effect on the ρ parameter can be regarded as a self-energy effect; in the scheme which
sets among the fundamental parameters the Z mass and the Fermi coupling Gµ, it results
from the W± self-energy.

Other heavy top effects stem from the vertex corrections, and the most relevant, from a
numerical point of view, are the corrections to the Z → f f̄ vertex [33, 39, 40, 41]. We shall
see how in the limit of a very heavy top only the exchange of the would-be-Goldstone fields
is relevant to the computation of the m2

t corrections, as in Fig. 6.2.
The vertex is proportional to |Vq f |2, hence due to the smallness of Vt d, Vt s coefficients 2

the heavy top effects are relevant numerically only for the Z → bb̄ vertex. In the following we
shall always set Vtb = 1.

Due to the SU(2)L symmetry, a purely left handed correction results to the lowest order
Z → bb̄ vertex: we again anticipate the result for the amplitude, at leading order

2|Vt d| = 0.004 ÷ 0.015, |Vt s| = 0.030 ÷ 0.048[70]
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Figure 6.2: Leading corrections to Z → bb̄ in the mt → ∞ limit.

Aµ
(

Z → bb̄
)

= −i e

2 sθ cθ

[(

1 − 2

3
s2θ + τ

)

γL
µ − 2

3
s2θγ

R
µ

]

τ = − Gµm
2
t

4π2
√

2
. (6.19)

Apart the overall factor, the corrections can be included in a redefinition of the vector
and axial electroweak couplings,

gbV = 1 − 4

3
s2θ + τ gbA = 1 + τ (6.20)

thus separating the vertex corrections to the amplitude, included in τ , from the corrections
induced by the very connection to the fundamental observables, included in sθ.

6.2.3 Bounds on top mass

We have to remind, before discussing the bounds, that a comparison with experiment is
possible only introducing the main sources of radiative corrections to electroweak observables,
coming from the “pure” QED effects3 and by the QCD corrections.

Their inclusion is mandatory and straightforward: in this thesis it is impossible to account
for the whole set of radiative corrections, but it goes without saying that in graphs and tables
all the relevant effects other than the heavy top ones are included whenever needed.

Low energy data

The most precise low energy informations come from the determination of NC/CC neutrino-
nucleon cross section ratios [68], by the CDHS[35, 45] and CHARM[34] experiments: the
accuracy is about 1%. At tree level, this ratios are given by [23]

Rν =

(

MW

MZ

)4 1 − 2s2W + 10
9 (1 + r) s4W

2
(

1 − s2W
)2

Rν̄ =

(

MW

MZ

)4 1 − 2s2W + 10
9

(

1 + 1
r

)

s4W

2
(

1 − s2W
)2 (6.21)

3As shown by Okun and collaborators [91, 108], for some time QED effects have been sufficient to account
for all the radiative corrections.
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where r = σν
CC/σ

ν̄
CC ≃ 0.4. Leaving aside the QED, box and vertex corrections, the large

mt effects can be incorporated in this formulas by replacing s2W → s2W + ∆ρc2W . But in the
expression for Rν the dependence on s2W is weak:

Rν =
1

2

(

MW

MZ

)4 (

1 + 0.56s2W +O
(

s4W

))

. (6.22)

Hence the ratio MW/MZ , when extracted from Rν , depends very weakly on mt; this
stability is the result of an accidental cancellation, and does not appear neither in the Rν̄

ratio nor in the ν e cross sections. Combining this MW /MZ measurement and the other
low energy ν e, ν q, e q data one can obtain an upper limit mt < 168GeV at 68%C.L., for
MH ≃MZ [51], but including also the direct measurement at CDF of the ratio of vector-boson
masses, together with the theoretical prediction from the input parameters α, Gµ, MZ , one
can obtain a global fit (see for instance [68])

mt = 122+46
−32GeV (68%C.L.) (6.23)

for 40GeV < MH < 1TeV.

LEP data

We refer to a number of good reviews [44, 53, 60, 67, 92, 95] for a complete discussion of
the observables studied at LEP around the Z resonance. We shall here be brief because we
will come back to this subject in the Chapter 8, when also the two-loop corrections will be
considered.

It suffices here for the purpose of illustration, to focus on one of the most precisely mea-
sured observables, the total width ΓZ . In Fig. 6.3 it is shown the comparison between theory
and experiment. The various curves, plotted in dependence of mt, for different values of the
Higgs mass, are superimposed on the band of experimental values.

One can note a few features common also to similar plots for the various partial widths,
like Γ (Z → µ+µ−) or the forward-backward asymmetries: the MH dependence is rather slow,
as a consequence of the Veltman “screening” theorem [9]: leading quantum corrections depend
logarithmically on MH .

Combining limits extracted from plots like the one in Fig. 6.3 with low energy informations,
and the determination of MW from CDF, different [68] analyses agree on the following limits
on mt, at 1σ level

mt = 144+23 +19
−26−23GeV (6.24)

where the second error is desumed by varying MH around a central value of 300GeV4.
The very significance of these bounds relies on the stability of the perturbative expansion:

predicting an heavy top mass starting from an expansion in powers ofmt calls for a check of the
next perturbative order. In the following we shall describe the calculation of g4

t effects to LEP
parameters, which has been useful, at the time it was performed, to improve the confidence
in the existing results. Presently the g4

t effects are included in the analyses of experimental

4A more recent analysis [111] finds a result in remarkable agreement with the recent CDF results, namely

mt = 175 ± 11+17
−19GeV for MH = 300+700

−240GeV .
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Figure 6.3: The total Z width from LEP

data, since some observables are being measured at a comparable level of accuracy: however
we shall see that, in view of the present probable value of the top mass, the g4

t effect cannot
be considered dominant, and eventually a full two loop calculation shall be mandatory.



Chapter 7

Strategy to compute heavy top

corrections

Our aim is to evaluate all the corrections growing like Gµm
2
t , G

2
µm

4
t to the Standard Model

parameters 1; we have seen that it is known how these effects stem from the Yukawa sector of
the theory [52, 50]. The idea is to define an appropriate limit such that for gt ≫ g, g′ the theory
reduces to a pure Yukawa model, that is, to a scalar theory, simplifying the computation.

The easiest way to define this limit is to work in a renormalizable gauge: in this way only
charged and pseudoscalar Higgs fields, not “eaten up” by the gauge fields, have couplings with
the (t, b) doublet proportional to gt. As a consequence only Feynman diagrams resulting by
the exchange of these scalar particles are to be considered, while the quantum gauge fields
are irrelevant, and the gauge fields appear only on the external lines and can be considered
of classical nature.

These considerations are made rigorous by using the background field formulation of the
Standard Model, which allows to relate different Green functions by classical Ward Identities;
in particular it results that quantum corrections to the ρ parameter and to the Z → bb̄ vertex
are connected to correlations of scalar fields. The advantage over a standard formulation,
which would lead to Slavnov-Taylor Identities, is that it is made manifest how these large gt

effects are completely decoupled from the gauge structure of the theory. The gauge structure
almost completely disappears, in the sense that gauge fields do not propagate, and they couple
as external sources to the classical SU(2) ⊗ U(1) currents of the theory.

It can be useful to give a pictorial resume of the strategy

Full Model

Classical SU (2) ⊗ U (1) gauge symmetry → BRS symmetry

Fields

(A, Z, W ) ∪ (H, χ, ϕ±) ∪ (t, b)

Inputs

αe.m. Gµ MZ mt (mH)

1Times functions of the ratio mt/mH , and disregarding QCD effects
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⇓
Background Field Gauge

⇓
• Fields doubling Φ → Φq + Φcl

• Ward Identities on external lines

• Slavnov-Taylor Identities, ghosts, . . . in internal lines

⇓
g ≪ gt −→ MW, Z ≪ mt

⇓
ghosts and gauge fixing related vertices irrelevant; gauge bosons coupled as external currents

m

Gaugeless limit of the Standard Model

7.1 The Ward Identities

In App. C and D the formulation of the quantum Standard Model in the renormalizable
non-linear gauge and then in the background field gauge is discussed.

The formulas given there are rather involved, in the attempt to write down results as
general as possible, but the philosophy is quite elementary, and the results are self explanatory.

Having chosen to preserve the classical symmetries of the theory, by using a background
field formulation, we are allowed to impose on the renormalized effective action Γ the same
Ward identities2 we would obtain in the “tree-level” theory (see Appendix D).

As discussed in the previous chapter, for the purpose of evaluating the large mt effects we
can reduce the matter content of the Standard Model only to the third quark doublet (t, b).

By exploiting the invariance under the so called type II transformations, which are pure
rotations on the quantum fields, we can obtain 4 generating equations for the classical Ward
Identitities relating 1PI Green functions, corresponding to the 4 generators of SU(2)⊗U(1)

∑

f

δII
i f

cl (x)
δΓ

δf cl (x)
= 0 i = 1 . . . 4 . (7.1)

Taking into account the formulas C.39, C.40, C.41 we can easily write down their detailed
form: in the following the ∓, ± symbols whould be understood as summations over the
contributions from oppositely charged fields.

A-current Ward Identity

∂x
µ

δΓ

δAµ (x)
= ±ieW±

µ

δΓ

δW±
µ

± ieφ±
δΓ

δφ±

−
∑

q=t,b

ieQq

[

δΓ

δq(x)
q(x) + q̄(x)

δΓ

δq̄(x)

]

(7.2)

2in absence of external quantum legs or ghosts
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Z-current Ward Identity

∂x
µ

δΓ

δZµ(x)
=

±ig cosW W±
µ

δΓ

δW±
µ

± ie

tan 2θW
φ±

δΓ

δφ±
+

e

sin 2θW
χ
δΓ

δH
− (H + v)

e

sin 2θW

δΓ

δχ

−
∑

q

ie

sinW cosW

[

δΓ

δq(x)

(

T 3PL − sin2
W Q

)

q(x) + q̄(x)
(

T 3PR − sin2
W Q

) δΓ

δq̄(x)

]

,

(7.3)

here the projector PL on left states has been explicitly introduced.

Charged current Ward Identities

Here no summation on signs ±,∓ is understood

(

∂µ ± igW 3
µ

) δΓ

δW±
µ

=

±iW∓
µ

(

e
δΓ

δAµ
+ g

δΓ

δZµ

)

+
g

2
φ∓
(

∓i δΓ
δH

+
δΓ

δχ

)

+
g

2
(±i (H + v) − χ)

δΓ

δφ±
− ig√

2

∑

q

(

δΓ

δqL
σ±qL + q̄Lσ

± δΓ

δq̄L

)

(7.4)

Having fully described the symmetry content of the theory, we can specialize to the pro-
cesses under investigation.

7.2 Identities relevant for Z → bb̄ and the ρ parameter

By differentiating Eq. 7.3 with respect to b fields one easily obtains

∂x
µ

δΓ

δZµ(x)b(y)b̄(z)
=

− ev

sin 2θW

δΓ

δχ(x)δb(y)δb̄(z)

− ie

sinW cosW

[

− δΓ

δb(x)δb̄(z)

(

−1

2
PL +

1

3
sin2

W

)

δ(x− y)+

+δ(x− z)

(

−1

2
PR +

1

3
sin2

W

)

δΓ

δb(y)δb̄(x)

]

(7.5)

which allows to express the irreducible Z → bb̄ vertex in terms of the corresponding vertex
for χ→ bb̄3.

3Note a useful identity relating the W + → tb̄ vertex with the corresponding one for φ+
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The identities relevant for the ρ parameter can be analogously obtained by considering
the wave function renormalization of fields Z, χ and W±, φ± 4 and the tadpole term for H:

∂x
µ

δΓ

δZµ(x)δZν(y)
= −g v

2 c

δΓ

δχ(x)δZν(y)

∂x
µ

δΓ

δZµ(x)δχ(y)
=

g

2 c

[

δ(x− y)
δΓ

δH(x)
− v

δΓ

δχ(x)δχ(y)

]

. (7.7)

As a renormalization condition we shall set to zero the tadpole term, thus imposing that
the vacuum expectation value v does not renormalize: consequently the two relations in
Eq. 7.7 combine to give

∂x
µ∂

y
µ

δΓ

δZµ(x)δZν(y)
=
g2 v2

4 c2
δΓ

δχ(x)δχ(y)
. (7.8)

We can also relate the renormalization of W±, φ± fields by writing

∂x
µ

δΓ

δW+
µ (x)δφ−(y)

=
g

2
δ(x− y)

(

−i δΓ

δH(x)
+

δΓ

δχ(x)

)

+
igv

2

δΓ

δφ+(x)φ−(y)

∂x
µ

δΓ

δW+
µ (x)δW−

ν (y)
= iδ(x − y)

[

e
δΓ

δAν(y)
+ g

δΓ

δZν(y)

]

+
igv

2

δΓ

δφ+(x)δW−
ν (y)

(7.9)

and then, again setting to zero the tadpoles,

∂x
µ∂

y
ν

δΓ

δW+
µ (x)δW−

ν (y)
=

(

g v

2

)2 δΓ

δφ+(x)φ−(y)
. (7.10)

7.2.1 Form factors

In momentum space, the identities in Eqs. 7.8, 7.10 can be rewritten as follows:

pµpνΠ
Z
µν (p) =

(

gv

2c

)2

Πχ (p)

pµpνΠ
W
µν (p) =

(

gv

2

)2

Πφ (p) . (7.11)

The self energy at zero momentum gives the correction to the mass,

∂x
µ

δΓ

δW +
µ (x)δb(y)δt̄(z)

=
igv

2

δΓ

δφ+(x)δb(y)δt̄(z)

− ig√
2

[

− δΓ

δt(x)δt̄(z)
PLδ(x − y) + δ(x − z)PR

δΓ

δb(y)δb̄(x)

]

(7.6)

4Note that the background gauge fixing sets to zero the mixing Z, χ only in the quantum quadratic part of
the action
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ΠZ
µν

∣

∣

∣

∣

p=0
= (−i) ηµνδm

2
Z

2ηµνδm
2
Z = im2

Z

∂Πχ

∂pµ∂pν
(7.12)

where the mass mZ appearing in the formula is the tree level one.
We shall use the notation, for the self energy of the scalar fields,

Πf = ip2Σf +O (1)

and obtain the mass renormalizations

δm2
Z

m2
Z

= i
∂Πχ

∂p2

∣

∣

∣

∣

p=0
= −Σχ

δm2
W

m2
W

= i
∂Πφ

∂p2

∣

∣

∣

∣

p=0
= −Σφ± . (7.13)

The unrenormalized ratio ρ̄ is then given by

ρ̄ =
m2

W + δm2
W

c
(

m2
Z + δm2

Z

)

= 1 + h̄
(

Σ(1)
χ − Σ

(1)
φ±

)

+ h̄2
[(

Σ(2)
χ − Σ

(2)
φ±

)

+ Σ(1)
χ

(

Σ(1)
χ − Σ

(1)
φ±

)]

(7.14)

where the orders of h̄ have been put in evidence. We shall see in the following that a term
(

1 + Σφ±
)

will be readsorbed by the renormalization procedure in the definition of the Fermi
coupling Gµ. Consequently the renormalized ρ parameter will be obtained by the formula

ρ = 1 + h̄
(

Σ(1)
χ − Σ

(1)
φ±

)

+ h̄2
[

(

Σ(1)
χ − Σ

(1)
φ±

)2
+
(

Σ(2)
χ − Σ

(2)
φ±

)

]

+O
(

h̄3
)

, (7.15)

which deserves a few comments: first of all, it is made evident that only the difference of the
self energies for charged and pseudoscalar unphysical Higgs fields has to be computed. Next
we note that at h̄2 order there are two contributions, one resulting from reducible diagrams
and proportional to the square of the one-loop coontributions, the other coming from two-loop
diagrams. It is therefore common to present the results of a perturbative evaluation of the ρ
parameter in a different form,

1

ρ
− 1 = −h̄

(

Σ(1)
χ − Σ

(1)
φ±

)

− h̄2
(

Σ(2)
χ − Σ

(2)
φ±

)

+O
(

h̄3
)

. (7.16)

A similar analysis for the Ward Identity in Eq. 7.5 (relevant for the Z → bb̄ vertex) is
slightly simplified if we choose as renormalization condition for the b propagator a unit residue
at the mass pole (at mb = 0 in the present approximation): the tree level terms cancel in
both sides of the equation, and it is immediate to show that the quantum corrections of the
vertices at zero exchanged momentum are related by

〈

Zµbb̄
〉

quantum = − i g v
2 c

∂

∂kµ

〈

χbb̄
〉 ‖k=0 (7.17)

where k is the momentum entering the χ, Z line.
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7.3 The Yukawa model

The computation of the ρ parameter and the Z → bb̄ vertex have been reduced, through
Eq. 7.15 and 7.17, to the evaluation of correlations of scalar fields. Now it comes the final step,
in the heavy top limit these fields are described by the following Yukawa lagrangian, resulting
by dropping the gauge couplings and fields from the SM lagrangian, in the renormalizable,
background field gauge fixed form:

L = −Q̄L/∂QL − t̄R/∂tR − b̄R/∂bR − (∂µΦ)† (∂µΦ)

− V
(

Φ†Φ
)

− gt

{

Q̄LΦ̃tR + t̄Φ̃⋆QL

}

QL =

(

tL
bL

)

Φ =

(

φ+

1√
2
(H ′ + iχ)

)

(7.18)

with the usual form for the potential V

V (x) = µ2x+ λx2 . (7.19)

The Ward Identities we have discussed before are now derived by supplementing this
lagrangian with the coupling of the external W, Z fields to the conserved classical currents,

∆L = − i g
c

(

1

2
J3

µ − s2 Jem
µ

)

− i g√
2

(

J+
µ W+

µ + J−
µ W

−
µ

)

, (7.20)

resulting from the different symmetry generators

• baryon U(1)

ĴB
µ = t̄γµt+ b̄γµb (7.21)

• weak hypercharge U(1)

ĴY
µ =

1

3
t̄LγµtL +

4

3
t̄RγµtR +

1

3
b̄LγµbL − 2

3
b̄RγµbR − Φ⋆∂µΦ + ∂µΦ⋆Φ (7.22)

• T 3 generator of SU(2)

Ĵ3
µ = t̄LγµtL − b̄LγµbL +

(

φ+∂µφ
− − φ−∂µφ

+)+ (Φ⋆
0∂µΦ0 − Φ0∂µΦ⋆

0) (7.23)

• Combining in the usual way the currents J3 and JY one gets the e.m. current Ĵem

Ĵem
µ =

2

3
t̄γµt−

1

3
b̄γµb+

(

φ+∂µφ
− − φ−∂µφ

+) (7.24)

• T± generators of SU(2)

Ĵ−
µ = t̄LγµbL +

1√
2

(

H∂µφ
− − φ−∂µH

)

+
i√
2

(

χ∂µφ
− − φ−∂µχ

)

Ĵ+
µ = −b̄LγµtL +

1√
2

(

H∂µφ
+ − φ+∂µH

)− i√
2

(

χ∂µφ
+ − φ+∂µχ

)

. (7.25)
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In other words, the classical Ward Identities reduce to the conservation of these Noether
currents; in particular, as the electromagnetic current is exactly conserved, we have that only
the renormalization of current J3 is important.

Note that Eq. 7.18 is written without specifying the phase of the theory (this is the
meaning of the H ′ notation): when considering the symmetry breaking a subtlety arises and
the conclusions of the previous section, that is, the Ward Identities relating the effective Z
and χ vertices, are to be translated in this language by stating that the current coupled to
the Z field is still

Ĵ3
µ = t̄LγµtL − b̄LγµbL +

(

φ+∂µφ
− − φ−∂µφ

+)+ i (H∂µχ− χ∂µH) (7.26)

but the conserved current is

J3
µ = Ĵ3

µ + iv∂µχ , (7.27)

meaning that, as operators

∂µĴµ = −iv2χ+ motion equations (7.28)

and the insertion of the current Ĵµ is put in relation with the insertion of operator ∂µχ.
Analogously one has that

J±
µ = Ĵ±

µ +
v√
2
∂φ± (7.29)

are the charged conserved currents.
We stress that this is an information coming from the full model, in the non-linear back-

ground field formulation, which allowed to derive the Ward Identities.
In summary, by considering the SM quantized in the background field gauge, we have

shown that the same Ward Identities, in the complete theory and in the so-called gaugeless
theory, relate the quantities most sensitive to mt to correlations of scalar fields, which can be
studied in a pure Yukawa model.



Chapter 8

Heavy Top effects in the Gaugeless

Limit

We are now in position to describe in detail the computations needed to obtain the O
(

G2
µm

4
t

)

corrections. We start by defining the renormalized model.

8.1 Renormalized model

We work in dimensional regularization using the NDR scheme for the γ5 matrix. We have
seen in considering the computation of QCD corrections to the b→ sγ process that up to two
loops it is possible to avoid any resulting regularization ambiguity.

The following renormalization constants are introduced, to cancel poles and perform ad-
ditional subtractions in order to impose suitable conditions, without breaking the classical
symmetries

QL → Z
1/2
L QL µ2 → (

µ2 − δµ2
)

Z−1
φ

tR → Z
1/2
R tR λ→ λZλZ

−2
φ

gt → Zggt v → Z
1/2
φ (v − δv)

Φ → Z
1/2
φ Φ

(8.1)

where the redefinitions of v, Zλ, µ
2 contain also Zφ for reasons of opportunity. Indeed, one

has
(

φ+

H+iχ√
2

+ v√
2

)

→ Z
1/2
φ

(

φ+

H+iχ√
2

+ v−δv√
2

)

≡ Z
1/2
φ Φ . (8.2)

The renormalized lagrangian for the Yukawa model is therefore

L = −ZLQ̄L/DQL − ZRt̄R/∂tR − b̄R/∂bR − Zφ (∂µΦ)† (∂µΦ)

− gtZg (ZLZRZφ)1/2
{

Q̄LΦ̃tR + t̄Φ̃⋆QL

}

−
(

µ2 − δµ2
)

Φ†Φ − λZλ

(

Φ†Φ
)2

(8.3)
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where for each Z constant we mean Z = 1 + h̄δZ. No wave function renormalization is
needed for the bR, which completely decouples in this reduced model.

Apart the subtraction of poles, the counterterms arising from these redefinitions are set
according to the following renormalization conditions:

Tadpole cancellation T + iv3

[

δµ2

v2
+ 2λ

δv

v
− λZλ

]

= 0 .

Higgs mass at its classical value mH = 2λv2

ΠH

∣

∣

∣

∣

p2=−m2
H

+ i
[

δµ2 − 3v2λδZλ + 6λvδv
]

= 0 (8.5)

Higgs Propagator residue set to 1. In order to preserve the explicit invariance of the
action only one of the residues of the Higgs fields can be fixed; choosing the physical
one, the condition is

∂

∂p2
ΠH

∣

∣

∣

∣

p2=−m2
H

− iδZφ = 0 . (8.6)

Masses of χ, φ± . In this restricted model we forget masses proportional to the gauge
couplings, when compared to the mt, mH , so we set to zero the masses of the unphysical
degrees of freedom.

Πχ|φ±

∣

∣

∣

∣

p2=0
+ i

[

δµ2 − v2λδZλ + 2λvδv
]

= 0 ; (8.7)

it is crucial that the two self energies are equal at p2 = 0. As one may expect this
condition coalesces with the one on the tadpole and no new constraint arises.

Bottom propagator . In this model it is easy to see that no mass is generated for the b
quark, so the only condition we impose is on the residue

Πb = ΣL
b /p

L

ΣL
b + δZL = 0 (8.8)

Top Mass . The perturbative expansion generates a non zero axial term for the top self
energy, which can be set to zero at the physical pole: given the expression

Πt = ΣV /p+ ΣA/pγ5 + imtΣs (8.9)

one can impose

ΣA

∣

∣

∣

∣

p2=−m2
t

+
1

2
(δZL − δZR) = 0 . (8.10)
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We fix the mass at the tree level value with the condition

{

/p

[

ΣV +
1

2
(δZL + δZR)

]

+ imt

[

ΣS − δmt

mt

]} ∣

∣

∣

∣

/p=imt

= 0 , (8.11)

where δmt is only a shortcut for

δmt = δZg +
1

2
(δZL + δZR + δZφ) − δv

v
; (8.12)

it follows that

(ΣV + ΣS)

∣

∣

∣

∣

p2=−m2
t

−
(

δZg +
1

2
δZφ

)

+
δv

v
= 0 . (8.13)

Decay constant Gµ . The value of the µ decay constant cannot be of course obtained by
this model: we may use an indirect argument, noting that contributions to the process
µ → e ν̄e νµ arise from corrections on the line of the φ± exchanged: these corrections,
together with the mass and wave-functions renormalizations, give rise to a non zero
residue which can be incorporated in the definition of the physical coupling.

In short, if

Πφ±

(

p2
)

− Πφ± (0) = ip2Σφ± (8.14)

is the φ± self energy after mass renormalization, then the propagator has the residue

Rφ± =
1

Zφ

(

1 + Σφ±

∣

∣

∣

∣

p2=0

)

; (8.15)

again terms proportional to the gauge coupling g have been omitted.

The resulting correction on Gµ is given by

G1 loop
µ = Gtree

µ

(

1 + Σφ±

∣

∣

∣

∣

p2=0
− δZφ

)

(8.16)

Now the tree level relation between Gµ and the other couplings is

Gµ√
2

=
1

2v2
(8.17)

so we can proceed by fixing also the residue of the φ± propagator to 1 and setting to zero the
correction to v, thus preserving the relation 8.17.

It is to be stressed that the only physical inputs are mt, Gµ, mH . The other conditions
like the ones on the propagator residues are just conventional, to simplify the expression of
amplitudes.
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φ

H

b

t

Figure 8.1: Legenda for fields in Feynman Diagrams

H

Figure 8.2: Higgs “tadpole” diagrams

8.1.1 The renormalization constants

Here we list the one-loop computations needed to set up the renormalization framework up
to two-loops.

The abbreviation

∆ =
1

ε
− γE + log 4π (8.18)

is used, where ε = (4 − d) /2, and the fields are addressed according to the legenda in
Fig. 8.1.

Tadpole (Fig. 8.2)

T

v
= i

{

3m2
H

λ

(4π)2

[

∆ + 1 − log
m2

H

µ2

]

− 2m2
t

g2
t

(4π)2
Nc

[

∆ + 1 − log
m2

t

µ2

]}

(8.19)

where Nc is the number of colors.

H, χ, φ

H

Figure 8.3: Higgs or χ self energy
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H

H

Figure 8.4: φ self energy

Figure 8.5: Bottom self energy

Higgs self energy (Fig. 8.3)

ΠH

(

p2
)

= i
(

p2 +m2
H

)

[

λ

(4π)2

(

12 − 2π
√

3
)

− g2
t

(4π)2
Nc

(

∆ + 1 − log
m2

H

µ2

)]

+

+ im2
H

[

λ

(4π)2

(

∆ + 27 − 3π
√

3 − 15 log
m2

H

µ2

)]

+O
(

p2 +m2
H

)2

(8.20)

χ, φ± self energy (Fig. 8.3, 8.4)

Πχ

(

p2
)

= ip2

[

− λ

(4π)2
− g2

t

(4π)2
Nc

(

∆ − log
m2

H

µ2

)]

+

+ im2
H

[

3
λ

(4π)2

(

∆ + 1 − log
m2

H

µ2

)

+O

(

m2
t

m2
H

)]

+O
(

p2
)2

,

Πφ± = ip2

[

− λ

(4π)2
− g2

t

(4π)2
Nc

(

∆ +
1

2
− log

m2
t

µ2

)]

+

+ im2
H

[

3
λ

(4π)2

(

∆ + 1 − log
m2

H

µ2

)

+O

(

m2
t

m2
H

)]

+O
(

p2
)2

(8.21)

where terms proportional to T/v have bee omitted.
b self energy (Fig. 8.5)

Πb = Σb
L/pPL ,

Σb
L

∣

∣

∣

∣

p2≃0
=

g2
t

(4π)2

[

1

2
∆ +

3

4
− 1

2
log

m2
t

µ2

]

(8.22)
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H, χ

Figure 8.6: Top self energy

t self energy (Fig. 8.6)

Πt = ΣV /p+ ΣA/pγ5 + imtΣS ,

ΣV

∣

∣

∣

∣

p2=−m2
t

=
g2
t

(4π)2

[

3

4
∆ +

11

8
+

1

4
log r − 3

4
log

m2
t

µ2

]

,

ΣA

∣

∣

∣

∣

p2=−m2
t

=
g2
t

(4π)2

[

−1

4
∆ − 1

2
+

1

4
log

m2
t

µ2

]

,

ΣS

∣

∣

∣

∣

p2=−m2
t

=
g2
t

(4π)2

[

−1

2
+

1

2
log

m2
t

m2
H

]

. (8.23)

The renormalization constants are then

δZL =
g2
t

(4π)2

[

−3

4
− 1

2
∆ +

1

2
log

m2
t

µ2

]

,

δZR =
g2
t

(4π)2

[

−7

4
− ∆ + log

m2
t

µ2

]

,

δmt

mt
=

g2
t

(4π)2

[

−3

8
+

3

4
log r

]

. (8.24)

The δv constant is set equal to zero: it follows that the counterterm δmt/mt defines also
the finite vertex counterterms, in accordance with Eq. 8.3 and Eq. 8.12.

8.2 One loop order

The expression for the φ±, χ self energies in Eq. 8.21 together with Eq. 7.15 allows to obtain
the ρ parameter at one loop order

ρ ≡ 1 + δρ1 = 1 +
Nc

2

g2
t

(4π)2
(8.25)

where Nc = 3 is the number of colors. The tree level relations

gt =

√
2mt

v

Gµ√
2

=
1

2 v2
(8.26)
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Figure 8.7: One loop χbb̄ vertex

can be used to write the result in terms of the physical inputs,

ρ = 1 +Nc
Gµ m

2
t

8π2
√

2
. (8.27)

The computation of the single Feynman diagram contributing to the χb̄b vertex, in Fig. 8.7
allows to obtain

〈

χbb̄
〉

=
1

v

(

−i/kL
) g2

t

(4π)2
(8.28)

and using Eq. 7.17 one obtains the quantum contribution to the amplitude

〈

Zµbb̄
〉

quantum = − g

2 c

g2
t

(4π)2
γL

µ . (8.29)

Before expressing also this result in terms of physical inputs, let us consider the two-loop
contributions.

8.3 Two-loop order: Z → bb̄

The Feynman diagrams contributing to the
〈

χbb̄
〉

are listed in Fig. 8.8. The results are
normalized to the one loop calculation, and an overall factor

g0 = − i/q
L

v

g2
t

(4π)2
(8.30)

is understood, where q is the momentum entering the χ vertex.
Only two mass scales are present, mt and mH , and apart an overall scale factor and the

renormalization logarithms they appear only in the combination

r =
m2

t

m2
H

. (8.31)

The “technology” for the computation of this diagrams is well known, and we have ob-
tained analytical results for arbitrary values of the ratio r; for compactness, the results graph
by graph will be reported in the asymptotic small r limit, and when appropriate in the large
r limit, but the full analytical results will be also discussed in the following.
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χ

H χ
1 2

3
H H

4

5 6 H, χ

φ

7

Figure 8.8: Two loop contributions to the χbb̄ vertex

Non divergent diagrams

We recall that the results are normalized to g0:

Diagrams 1 − 4, 7

g1 =
g2
t

(4π)2

[

1

16
+

3

8
log r

]

g2 =
g2
t

(4π)2
Nc

[

−1

2

]

g3 =
g2
t

(4π)2

[

27

32
− π2

12
− 11

16
log r +

1

16
log2 r +O (r log r)

]

g4 =
g2
t

(4π)2

[

− 1

16
+
π2

12
− 7

8
log r +

1

4
log2 r +O (r log r)

]

g7 =
g2
t

(4π)2

[

1

4
+
π2

24
+

1

2
log r +O (r log r)

]

(8.32)

Divergent diagrams

It is convenient to impose some of the renormalization conditions diagram by diagram: in
particular, the mass renormalization of the φ± fields entering the diagram 5. We list also the
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counterterm for the t self energy entering graph 6.

Diagram 5 The result after mass subtraction only is

gmass subtracted
5 =

g2
t

(4π)2

[

Nc

2
− 1

72
− 1

12
log r +O (r log r)

]

+

+

[

− λ

(4π)2
− g2

t

(4π)2
Nc

(

∆ +
1

2
− log

m2
t

µ2

)

− δZφ

]

(8.33)

where as usual ∆ = 1
ε − γE +log 4π. The wave function renormalization δZφ coming from

the condition on the Higgs propagator residue does not cancel the second line in Eq. 8.33
completely: it leaves a finite result which will cancel against the redefinition of Gµ.

Diagram 6 Here we show separately the graph and the counterterm induced by mass and
wave function renormalization.

gunsubtracted
6 =

g2
t

(4π)2

[

−1

ε
− 1

2
+ 2γE +

π2

24
+

1

4
log r + 2 log

m2
t

4πµ2

]

. (8.34)

The counterterm results from the insertion of the following self energy correction

ct = /pL

[

−3

4
− 1

2
∆ +

1

2
log

m2
t

µ2

]

+ /pR

[

−7

4
− ∆ + log

m2
t

µ2

]

+ imt

[

3

8
− 3

4
log r

]

; (8.35)

when inserted in the one loop graph the counterterm results

gcounterterm
6 =

g2
t

(4π)2

[

1

ε
− 2γE +

13

8
− 3

4
log r − 2 log

m2
t

µ2

]

. (8.36)

The total result is therefore

g6 =
g2
t

(4π)2

[

9

8
+
π2

24
− 1

2
log r

]

. (8.37)

Other finite counterterms

The counterterms for the t and φ± self energies have been sufficient to obtain a finite result:
it only remains to include finite counterterms resulting from the Yukawa couplings. Having
fixed δv to zero, as a consequence of the definition of Gµ, the counterterms for the vertices
〈χtt̄〉 , 〈φ+bt̄〉 , . . . are connected to the mass counterterm of the t: each of these vertices is
multiplied by the factor

[

1 + δZg +
1

2
(δZL + δZR + δZφ)

]

=

[

1 +
δmt

mt

]

; (8.38)
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hence one has a contribution, proportional to the one loop result, of the form

gc = 3
δmt

mt
=

g2
t

(4π)2

[

−9

8
+

9

4
log(r)

]

. (8.39)

8.3.1 Cumulative result

It is convenient to define the dimensionless expansion parameter

x =
Gµm

2
t

8π2
√

2
(8.40)

and write the
〈

χ bb̄
〉

in the form

〈

χbb̄
〉

=
i/qL

v
τ (8.41)

where

τ = −2x
(

1 + x τ (2)
)

. (8.42)

In the small r, (mH ≫ mt) limit we have

τ (2) =
311 + 24π2 + 282 log r + 90 log2 r

144
, (8.43)

while in the large r limit

τ (2) =
27 − π2

3
. (8.44)

To understand the meaning of the τ parameter, note that the Z → bb̄ amplitude can be
written as follows

A
(

Zµ → bb̄
)

=
e

4 s c
(gvγµ + gaγµγ5)

gv = 1 − 4

3
s2 + τ

ga = 1 + τ . (8.45)

We recall that s = sin θW is not in our renormalization scheme a physical input and it is
eliminated through the relation1 in Eq. 6.11

α̂em

s2 c2
=

1

π

(√
2GµM

2
Zρ
)

. (8.47)

1s2 should not be confused with the definition of

sin2
W = 1 − M2

W

M2
Z

(8.46)
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The decay width is therefore given by

Γ
(

Z → bb̄
)

=
Nc

24π

Gµ√
2
M3

Zρ
(

|gv|2 + |ga|2
)

, (8.48)

where contributions proportional to mb/MW have been dropped. They will be reinserted
when dealing with numerical results and physical observables. Here it was interesting to
show the dependence on the ρ parameter, coming from the renormalization conditions. This
dependence is conventionally called oblique, as it is common to all the physical observable as
a consequence of the theoretical framework, in opposition to the non oblique corrections, like
τ itself.

We require now the full two-loop heavy t expression for the ρ parameter.

8.4 Two loop order: ρ

Let us recall that defining the renormalized model in Sec. 7.2.1 we have fixed Gµ by adsorbing
in the physical value the self energy contribution from φ±: we have used the relation

Gphys
µ = Gbare

µ

(

1 + Σ
(1)
φ±

)

. (8.49)

Explicitly, in the formula in Eq. 7.14

δρ = (1 + Σ
(1)
φ±)

(

Σ(1)
χ − Σ

(1)
φ±

)

+
(

Σ(1)
χ − Σ

(1)
φ±

)2
+
(

Σ(2)
χ − Σ

(2)
φ±

)

(8.50)

the prefactor in the first term was adsorbed in the definition of Gµ: and δρ results calcu-
lable in terms of finite measurable quantities2.

The two loop graphs needed to compute the difference of self energies of the unphysical
Higgs fields at two loop level are listed in Fig. 8.9, and the individual contributions are
addressed as follows

δρ# = Σχ − Σφ (8.51)

where # numbers the graph, starting from 2 because the number 1 was used for the one-
loop result. Again the detailed results are given in the small r limit, but the full analytical
formulas have been used in the numerical evaluation.

Diagram 2 There is no contribution to φ self energy, while the χ self energy gives

δρ2 =

(

g2
t

(4π)2

)2

Nc

[

−1

2
+
π2

6
+

1

2

(

log r + log2 r
)

]

(8.52)

2We include in the definition of Σf the subtraction of counterterms, both infinite and finite parts, as in the
case of the Z → bb̄ process
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2

χ χH, χ

3

χ χ

4

χ χ

χ χ

H H

5

χ χ

H

χ

H

Figure 8.9: Two loop graphs for the computation of ρ parameter

Diagram 3 In the difference of the self energies the square pole cancels

δρbare
3 =
(

g2
t

(4π)2

)2

Nc

[

25

16
− π2

4
+

1

8
log r − 1

8
log2 r − 3

2

(

1

2ε
− γE − log

m2
t

4πµ2

)]

.

(8.53)

The t self energy counterterm gives the contribution

δρcount.
3 =

(

g2
t

(4π)2

)2

Nc

[

7

8
+

3

2

(

1

2ε
− γE − log

m2
t

4πµ2

)]

(8.54)

and the sum is finite as expected

δρ3 =

(

g2
t

(4π)2

)2

Nc

[

39

16
− π2

4
+

1

8
log r − 1

8
log2 r

]

(8.55)

Diagram 4

δρ4 =

(

g2
t

(4π)2

)2

Nc

(

3

2
+
π2

6
+ log r

)

(8.56)
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Diagram 5

δρ5 =

(

g2
t

(4π)2

)2

Nc

(

π2

6
+ log r

)

(8.57)

Finite counterterms As in the case of the Z → bb̄ process, we have to include finite vertex
counterterms, in analogy with Eq. 8.39

δρ6 =
2δmt

mt
δρ1

= 2
g2
t

(4π)2

(

−3

8
+

3

4
log r

)

δρ1

=

(

g2
t

(4π)2

)2 (

−3

8
+

3

4
log r

)

. (8.58)

The two loop contribution is therefore

Σ(2)
χ − Σ

(2)
φ± =

6
∑

n=2

δρn

=

(

g2
t

(4π)2

)2

Nc
49 + 4π2 + 54 log r + 6 log2 r

16
. (8.59)

We already know that

Σ(1)
χ − Σ

(1)
φ± = δρ1 =

Nc

2

g2
t

(4π)2
, (8.60)

and combining the results we obtain

δρ = h̄δρ1 + h̄2

[

δρ2
1 +

6
∑

n=2

δρn

]

=
Nc

2

g2
t

(4π)2

[

1 +
g2
t

8 (4π)2

(

49 + 4Nc + 4π2 + 54 log r + 6 log2 r
)

]

= Ncx

[

1 + x
49 + 4Nc + 4π2 + 54 log r + 6 log2 r

4

]

. (8.61)

This result confirms a preceding computation [36], performed in the mH = 0 limit.
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8.5 Summary of the results

We have already discussed in the previous chapter that it is common to present the ρ param-
eter as

1

ρ
− 1 = −Ncx

(

1 + xρ(2)
)

x =
Gµm

2
t

8π2
√

2
; (8.62)

recalling the definition of τ

τ = −2x
(

1 + xτ (2)
)

, (8.63)

the asymptotic expansions of the two loop contributions ρ(2), τ (2) are

(i) for r = (mt/mH)2 ≪ 1

ρ(2) =
49

4
+ π2 +

27

2
log r +

3

2
log2 r +

+
r

3

(

2 − 12π2 + 12 log r − 27 log2 r
)

+

+
r2

48

(

1613 − 240π2 − 1500 log r − 720 log2 r
)

+O
(

r3
)

(8.64)

τ (2) =
1

144

[

311 + 24π2 + 282 log r + 90 log2 r+

−4r
(

40 + 6π2 + 15 log r + 18 log2 r
)

+

+
3r2

100

(

24209 − 6000π2 − 45420 log r − 18000 log2 r
)

]

+O
(

r3
)

where some sub-asymptotic contributions are included in order to improve the convergence
to the exact formula.

(ii) for r ≫ 1

ρ(2) = 19 − 2π2 − 4π√
r

+O

(

log r

r

)

(8.65)

τ (2) =
27 − π2

3
+

4π√
r

+O

(

log r

r

)

.

The r → ∞ limit of eq. (8.66) confirms the result given in ref. [36].
These asymptotic expressions are not sufficient for an accurate evaluation of the second-

order coefficients ρ(2) and τ (2) for mt ≃ mH .
In Tab. 8.5 the numerical values of ρ(2) and τ (2) as functions of mH/mt are therefore

given.
The exact numerical results are compared with the asymptotic expansions in Fig. 8.10:

one can see that already for mH ≥ 2mt the asymptotic expansion is fairly accurate.
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mH/mt ρ(2) τ (2)

0.1 -1.82 4.67
0.2 -2.70 3.90
0.3 -3.46 3.30
0.4 -4.13 2.83
0.5 -4.72 2.46
0.6 -5.25 2.16
0.7 -5.74 1.92
0.8 -6.18 1.73
0.9 -6.58 1.59
1.0 -6.95 1.47

mH/mt ρ(2) τ (2)

1.1 -7.30 1.38
1.2 -7.62 1.32
1.3 -7.91 1.27
1.4 -8.19 1.24
1.5 -8.44 1.23
1.6 -8.68 1.23
1.7 -8.90 1.24
1.8 -9.11 1.26
1.9 -9.30 1.29
2.0 -9.48 1.33

mH/mt ρ(2) τ (2)

2.1 -9.66 1.37
2.2 -9.81 1.42
2.3 -9.96 1.47
2.4 -10.1 1.53
2.5 -10.2 1.60
2.6 -10.4 1.66
2.7 -10.5 1.73
2.8 -10.6 1.80
2.9 -10.7 1.87
3.0 -10.8 1.95

Table 8.1: Values of ρ(2) and τ (2) as functions of mH/mt

These results have been confirmed by other authors [96, 106]; they have also been able
to fully exploit algebraic identities of the Li2 functions in order to obtain compact analytical
results3.

All in all, the corrections to the one-loop computation are small, a fact that justifies a
posteriori the perturbative expansion, even for rather large values of the gt coupling. Indeed,
for mt ≃ 180GeV one has gt ≃ 1.0, and the typical expansion parameter

αt =
g2
t

4π
=
Gµm

2
t

π
√

2
(8.66)

has the value of αt ≃ 0.08.
The good convergence of the perturbative expansion is shown in Fig. (8.11), where the

first and second order expressions for 1
ρ − 1 and τ are compared, for different values of mH

in the mt = 150–250GeV interval: the most affected quantity is the ρ parameter, and even
for mt = 250GeV one has less than a 10% correction of the one-loop contributions.

8.5.1 Physical observables

Let us consider the influence of these heavy top effects on the various LEP observables.
Observe first that we could also have defined the ρ and τ parameter from the Z → µ+µ−

and Z → bb̄ width: reinserting the phase space factors, one has

Γ
(

Z → µ+µ−
)

= ρ
GµM

3
Z

8π
√

2

(

g2
µV + g2

µA

)

(8.67)

Γ
(

Z → bb̄
)

= ρ
GµM

3
Z

8π
√

2

√

1 − 4m2
b

M2
Z

[

(

g2
bB + g2

bA

)

(

1 + 2
m2

b

M2
Z

)

− 6g2
bA

m2
b

M2
Z

]

gµV = 1 − 4s2 , gµA = 1

(8.68)

gbV = 1 − 4

3
s2 + τ , gbA = 1 + τ

3In [106] an explicit check of the Ward-Takahashi identities used by us has been given
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where

s2 =
1

2

(

1 −
√

1 − 4πα√
2GµM2

Zρ

)

. (8.69)

Formulas are greatly simplified by the possibility of writing the heavy top corrections as
a redefinition of the Weinberg angle, through the relation in Eq. 8.69, and of the axial and
vector couplings of the Z field with the b field. The results can then be included in the so
called “improved Born” approximation for the LEP observables, together with part of the
QCD and “pure QED” effects.

For instance, considering the effect on the e+e− → µ+µ− forward backward asymmetry

Aµ
FB =

σF − σB

σF + σB
(8.70)

where

σF (B) = 2π

∫ 1(0)

0(−1)
d (cos θ)

dσ

dΩ
, (8.71)

in this limit it can be simply written as

Aµ
FB =

3g2
µV g

2
µA

(

g2
µV + g2

µA

)2 (8.72)

and depends on ρ through the effective Weinberg angle s.
But to illustrate the effect of this two-loop computation on the electroweak precision

observables currently measured at LEP, it is necessary to include also the other relevant
corrections: in Figs. 8.12,8.13,8.14 we report the Standard Model predictions for the Z leptonic
width, Γ (Z → e+e−), the forward-backward e+e− → µ+µ− asymmetry at the Z pole, Aµ

FB

(both affected by ρ only) and the total Z width, ΓZ (affected by ρ and τ).
The graphs are obtained using the ZFITTER code [71]; the dashed lines include the m4

t

effects irreducible, that is, coming from the two-loop computations, for different values of the
Higgs mass.

Superimposed is the band of experimental values:

ΓTot
Z = 2497.4 ± 3.8MeV

Γl
Z = 83.96 ± 0.18MeV (8.73)

Aµ
FB = 0.0170 ± 0.0016 .

To judge the importance of the two-loop effect, the dot-dashed curve at mH = 2TeV
can be compared with the one-loop result, at the same value of the Higgs mass, given by
the full line and resulting by setting to zero the second-order coefficients ρ(2) and τ (2). The
mH = 2TeV has been chosen because the effect is larger, but unless the top mass is pushed
at unreasonably large values, the effect is at most of per mille.
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8.5.2 Validity of the gaugeless approximation

Is the gaugeless approximation sensible, for the real world? We have seen that for mt in the
150 − 200GeV range, the corresponding range of gt ≃ 5.74 × 10−3 mt/GeV is 0.86 − 1.15,
while the gauge couplings are g = e/ sin θW ≃ 0.64, g′ = e/ cos θW ≃ 0.34; alternatively,
recall that in the two-loop computations we have systematically neglected MW , MZ when
compared with mt, a procedure which cannot be justified on numerical grounds.

It is useful to consider one of the original computations at one loop of the heavy top
corrections to the Z → bb̄, performed in [41] without the MW ≪ mt approximation, in the
renormalizable t’Hooft-Feynman gauge. It is possible to separate the contribution of the
graphs with the exchange of W± and the φ± fields and the result is that even for mt ≥ 2MW

the “leading” m2
t contribution is only a factor of two greater than the subleading one.

This means that while the large mt limit is sufficient for an order of magnitude estimate,
the actual accuracy in LEP experiments requires the inclusion of the one-loop subleading
contributions.

At the two loop level no complete computation exists, but other authors [107] have at-
tempted to estimate the subleading contributions by working in a reduced SM model, limiting

themselves to an SU(2) gauge group4. They find that the leading O
(

G2
µm

2
t

)

and the sub-

leading O
(

G2
µm

2
tM

2
Z

)

corrections are of the same order of magnitude, and of the same sign.

Similar results have been obtained in [112], estimating in a particular process (neutrino scat-
tering on a leptonic target) the subleading terms, which are again found to be even larger than
the “leading” ones. This results are a clear indication that at the moment the two-loop heavy
top effects can be considered as a partial estimation of the theoretical error of the one-loop
approximation, and that whenever the two loop heavy-top effects become observable, they
will require a much greater theoretical effort to be compared with experiments.

4in other words, QED effects are not present
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Figure 8.10: Asymptotic expansions and exact results for ρ(2) and τ (2)
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Figure 8.11: Convergence of the perturbative expansion: 1/ρ − 1 and τ
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Figure 8.12: Partial width Γ (Z → e+e−) (ZFITTER)
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Figure 8.13: Forward-backward asymmetry Aµ
FB (ZFITTER)
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Figure 8.14: Total Z width Γtot
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Chapter 9

Conclusions and perspectives

We have presented in this thesis the computation of some radiative corrections to weak decays
in the context of the Standard Model. We believe that the processes we have studied, the
b→ sγ and the Z → bb̄ decays, shall receive further attention in the future, thanks to their
sensitivity to New Physics.

For what concerns the b→ sγ decay, we have seen that the prediction of the inclusive
decay is in good agreement with the experiment, and that this may be regarded not only as a
success of the Standard Model but also of perturbative QCD itself: the dramatic enhancement
of the rate resulting from the resummation of QCD logarithms is something which is difficult
to miss.

The study of the O
(

m4
t

)

corrections to the Z → bb̄ decay did not result, on the contrary,
in a dramatic effect. We have seen that the corrections to the one loop expressions are
relatively small, improving our confidence in the phenomenological analysis of the LEP data.
Our opinion is that these corrections are not sufficient to account for the bulk of the two loop
effects: presently they can be regarded as an estimate of the error implied by the perturbative
expansion.

To conclude the work it seems interesting to us to give an example of a phenomenological
analysis based on these two independent processes.

9.1 An example: bounds on two Higgs doublets models

We have seen in Chapter 2 how the presence of an extended Higgs sector may affect the
prediction for the b→ sγ decay rate, in dependence of the mass of the extra charged Higgs
particle, MH± . It can be easily grasped, on the basis of the discussion in Chapter 6, that the
same extended Higgs sector contributes also to the Z → bb̄ process.

We have already discussed how this contributions are parameterized by two other quanti-
ties, MH± and tanβ: a comparison between theory and experiments allows to exclude portions
of these parameter space.

The limits coming from the b→ sγ process can be defined observing that in Model II the
contribution from the extra doublet enhances the rate, for smaller values of MH± . We define
excluded values of MH± , tanβ the ones for which the inequality

BRth (B → Xsγ) − 2 ×
(

theo.
error

)

> BRexp (B → Xsγ) + 2 ×
(

exp.
error

)

(9.1)
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Figure 9.1: Lower limits for the mass of the charged Higgs boson

holds. This relation gives a lower limit on MH± , displayed by solid lines in Fig. 9.1, varying
mt around the central CDF value.

We refer to [109] (and references therein) for detailed formulas on the bound from the
Z → bb̄ process: in the same figure the dashed lines display the resulting bound for the
central CDF mt mass.

For completeness the lower bound coming from the b → cτ ν̄τ [42, 98] is displayed with a
dotted line. It is obtained by the simple formula

tan β < 0.54
MH±

GeV
. (9.2)

We can appreciate that in the analysis of this extended model the two processes are
complementary, and they already exclude large portions of the plane. As larger values of
tan β are preferred, in order to explain the large splitting in the (t, b) multiplet, one can see
that the b→ sγ process gives the most important constraint.

9.2 Future work

In the study of the b→ sγ process, presently theoretical and experimental accuracies are
comparable. We can expect in the near future an improvement of the statistics of the CLEO
experiment, and therefore the b→ sγ decay shall require a complete next-to-leading compu-
tation. We have seen that such a computation is mandatory if one is willing to obtain sensible
answers to the question whether the effect comes in its entirety from the Standard Model or
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not. The techniques we have applied to this computation are in our opinion well suited to
simplify the required three loop computations.

Once a complete three loop evaluation of the QCD corrections will be available, it will
be necessary also to re-consider the determination of the Effective Hamiltonian, obtained by
the matching procedure at the higher evolution scale, as described in Chapter 3. In order to
exploit the higher precision in the evolution coefficients, it will be necessary to extend up to
two loops the matching, not only for the Standard Model but for all the extensions one is
interested to compare, including the Minimal Supersymmetric Standard Model.

For what concerns the Z → bb̄ process, and more generally the corrections to the observ-
ables measured at LEP, we have mentioned some works where different parts of the two loop
effects have been computed. A complete evaluation of the electroweak corrections does not
exist, and we cannot say, at the present level of experimental accuracy, that such an effort is
mandatory.

We can just say that a complete analysis of LEP observables at the “per mille” level of
accuracy shall require the full inclusion of two loop electroweak corrections. We hope that
the techniques discussed in this thesis may result of help in this task.
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Appendix A

Notations

In this thesis both the pseudo-Euclidean (E) notation and the Minkowsky (M) notations have
been used, so it is useful to give here a translation table.

A.0.1 Metrics

The metric tensor is given by

Minkowsky: a · b = ηµνaµbν Euclidean: a · b = δµνaµbν (A.1)

where ηµν = (−1,+1,+1,+1) ., so that a · b = ηµνaµbν = ~a ·~b− a0b0. The transcription in
the PE notation is given in the following table

xM0 = −ixE
4 ∂M

0 = i∂E
4

xMi = xE
i ∂M

i = ∂E
i

(A.2)

For a vector field in E notation the fourth component is purely imaginary

AM0 = −iAE
4 AMi = AE

i

AM
0 = iAE

4 AM
i = AE

i

GM
0i = iGE

4i GM
ij = GE

ij

(A.3)

hence for instance

GM
µνG

Mµν = GE
µνG

E
µν . (A.4)

Fourier Transform

We adopt the following conventions for Fourier transforms of fields

φ(x) =

∫

d4k

(2π)4
eipµxµ

φ̃(p) (A.5)

as an example

ū(p−)γµv(p+)Aµ(k) (A.6)
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with k = p++p− incoming in the vertex is the amplitude for pair creation in electrodynamics,
written in momentum space. Using this convention the expression for the four momentum is

pµ = (E, ~p) =

(

i
∂

∂t
,−i~∇

)

∂µ =
∂

∂xµ
=

(

− ∂

∂t
, ~∇
)

(A.7)

hence one has the correspondence

pµ = −i∂µ ∂µ = ipµ (A.8)

Spinors and Gamma Matrices

The correspondence for spinors in the two notations is as follows

ψM = ψE ψ̄M = iψ†γ0 = ψ̄E = ψ†γ4 (A.9)

where gamma matrices, defined by

γµγν + γνγµ = 2ηµν (A.10)

γ5 = −iγ0γ1γ2γ3 = +iγ0γ1γ2γ3 =
i

4!
εµνρσγ

µγνγργσ (A.11)

1 obey the following correspondences

γM0 = −iγE
4 γMi = γE

i

γM
0 = +iγE

4 γM
i = γE

i

γM
5 = γE

5 = γ1γ2γ3γ4 .
(A.12)

For the computation of squared amplitudes it will be useful also

γ†i = γi γ†0 = −γ0 = γ0 γ†5 = γ5 (A.13)

γ0γ
†
µγ0 = γµ (A.14)

while for chiral theories the expressions of left and right projectors are

PL/R =
1

2
(1 ∓ γ5) (A.15)

so that one has two component Weyl spinors

γ5R = R R̄γ5 = −R̄
γ5L = −L L̄γ5 = +L̄

(A.16)

obtained from a 4-component spinor via projection

R = PRψ L = PLψ (A.17)

note that one has

ψ̄ψ = L̄R+ R̄L ψ̄γµψ = L̄γµL+ R̄γµR . (A.18)

Unpolarized density matrices, and Dirac equations are given by
∑

spin uα(P )ūβ(P ) = (−i/P +m) (i/P +m)u(P ) = 0
∑

spin vα(P )v̄β(P ) = (−i/P −m) (i/P −m) v(P ) = 0 .
(A.19)

1ε0123 = −1 εµνρσεµναβ = −2
(

ηα
ρ ηβ

σ − ηβ
ρ ηα

σ

)
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A.0.2 Lagrangian and Generating functional

The measure in the Generating Functional for Green functions is different in the two metrics:
the correspondence is

e−SE

= eiS
M

−
∫

(

d4x
)E

LE = i

∫

(

d4x
)M

LM

LE = −LM (A.20)

The generating functional for Green functions is given by

Z [J ]E = exp
[

−SE +
∫

dxJ · φ
]

Z [J ]M = exp
[

iSM + i
∫

dxJ · φ
]

. (A.21)

The generating functional of connected functions is given by

W [J ]E = lnZ [J ]E W [J ]M = 1
i lnZ [J ]E . (A.22)

Defining the “classical field” φc functional of J , as

φc [J ]E = δW [J ]E

δJ φc [J ]M = δiW [J ]M

iδJ
, (A.23)

one obtains by Legendre transform the generators of 1PI Green functions

Γ [φc]
E = −W [J ]E +

∫

dxJ · φc Γ [φc]
M = W [J ]M − ∫ dxJ · φc . (A.24)

A.0.3 QED in Minkowsky notation

The lagrangian is given by

LM
QED = −1

4
FµνF

µν − ψ̄ (γµDµ +m)ψ (A.25)

where

Fµν = ∂µAν − ∂νAµ Dµ = ∂µ − i eQAµ (A.26)

note that the electric charge Q of the electron is −1.

Charge conjugation

The Dirac equation is given by

[(∂µ − ieQAµ) γµ +m]ψ = 0 (A.27)

taking the adjoint and transposing one has, equivalently
[

−γT
µ (∂µ + ieQAµ) +m

]

ψ̄T = 0 (A.28)

the charge conjugation operator C, equipped with the property

C−1γT
µC = −γµ (A.29)

allows to define the charge conjugated spinor ψc = C−1ψ̄T obeying the Dirac equation with
the reversed sign for the charge

[(∂µ + ieQAµ) γµ +m]ψc = 0 . (A.30)
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It is possible to choose C with the following properties:

CT = C† = −C = C−1

CC† = C†C = 1

C2 = −1 . (A.31)

Some useful relations are

C−1γT
5 C = γ5

Cγ5C
−1 = γT

5

CγL
µC

−1 = −
(

γR
µ

)T

CγR
µC

−1 = −
(

γL
µ

)T
. (A.32)

A.0.4 SU(N) gauge theory in Minkowsky notation

The pure gauge lagrangian is given by

LM
gauge = −1

4
Ga

µνG
aµν (A.33)

where

Ga
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAa

µA
b
ν (A.34)

and a = 1, · · · , N2 − 1. labels the generators, while the fermionic part is given by:

Lfermion = −
n
∑

i=1

(

ψ̄iγ
µDµψi +miψ̄iψi

)

(A.35)

where Dµ è is the covariant derivative.

Dµ = ∂µ − igT aAa
µ (A.36)

and matrices T a satisfy the algebra:
[

T a, T b
]

= ifabcT c . (A.37)

The field tensor Gµν can be expressed in terms of the commutator of covariant derivatives

[Dµ, Dν ] = −igTaG
a
µν (A.38)

fixing so the sign of the charge in A.34 on the basis of A.36.

gauge transformations

Some basical properties are

δωA
a
µ = ∂µω

a − gfabcω
bAc

µ δωG
a
µν = −gfabcωbGc

µν

δωψ = igωaTaψ δωψ̄ = −igωaψ̄Ta
(A.39)
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Generators of the algebra

Fundamental representation:

T aT a = CF I where CF =
N2 − 1

2N
(A.40)

Adjoint representation:

T a
bc = ifabc (A.41)

T aT a = CAI where CA = N (A.42)

Minkowsky-Euclidean correspondence

iSM = i

∫

(dx)M
(

−1

4
GµνG

µν − ψ̄ (γµDµ +m)ψ

)

= −SE (A.43)

where

SE =

∫

(dx)E
(

1

4
GµνGµν + ψ̄ (γµDµ +m)ψ

)

(A.44)
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Dirac algebra in d dimensions

Some useful dirac algebra definitions and identities valid for a d dimensional space, mostly
taken from [1, 20, 30].

B.1 Clifford algebra

A complete basis of dirac algebra in d dimensions is provided by the completely antisymmetric
products of γ matrices:

γµ1µ2...µn =
1

n!

∑

p

(−1)p γµ1γµ2 . . . γµn ≡ gn
µνγν1γν2 . . . γνn , (B.1)

where it has been introduced, following Avdeev [30] the antisymmetrization operator

gm
µν =

1

m!

∑

π∈sm

(−1)p(π) δµ1νπ(1)
. . . δµmνπ(m)

(B.2)

which is a projector

gm
µνg

m
νρ = gm

µρ (B.3)

with the trace given by

gm
µµ =

(

d
m

)

≡ 1

m!

m
∏

i=1

(d−m+ i) . (B.4)

In the limit d→ 4 the transcription identities are as follows:

γµ1µ2...µn = 0 n > 4

γµ1µ2µ3µ4 = −γ5

γµ1µ2µ3 = −εµ1µ2µ3ργ5γρ

1

3!
γµνρ ⊗ γµνρ = γµγ

5 ⊗ γµγ
5 . (B.5)

In d dimension some useful relations are then

γµγνγρ ⊗ γµγνγρ = γµνρ ⊗ γµνρ + (3d− 2) γµ ⊗ γµ

γµγνγρ ⊗ γργνγµ = −γµνρ ⊗ γµνρ + (3d− 2) γµ ⊗ γµ . (B.6)
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The projection on the canonical basis of any product of gamma matrices can be obtained by
using recursive relations

γνγµ1,µ2...,µn = γν,µ1...,µn −
∑

i

(−1)i δνµi
γµ1...µi−1,µi+1...,µn (B.7)

γµ1,µ2...,µnγν = γµ1...,µn,ν +
∑

i

(−1)n−i δνµi
γµ1...µi−1,µi+1...,µn (B.8)

. The following trace identity holds:

Tr
(

γ(m)γ(n)
)

= n!δm,nsmg
m
µνTr (1)

sn = (−1)
n(n−1)

2 . (B.9)

Some contraction identities:

γµ1µ2...µnγµ1 = (−1)n−1 (d− n+ 1) γµ2...µn

γµ1µ2...µnγµ1µ2...µn = cn

cn = sn

n−1
∏

i=0

(d− i) ; (B.10)

the cn coefficient can been expressed as a series in ε defining

cn = cn(0) + ε cn(1) + ε2cn(2) +O(ε3) .

They are also useful the following commutation identities:

{γµ1,µ2,...,µn , γν} = 2γµ1,µ2,...,µn,ν n even

[γµ1,µ2,...,µn , γν ] = 2γµ1,µ2,...,µn,ν n odd

(B.11)

and the reduction identities:

γµγ
(n)γµ = (−1)n (d− 2n) γ(n)

γ(n)γµγ
(n) = sn (2n − d)

n−1
∏

i=1

(i− d) γµ n ≥ 2

= (−1)n
d− 2n

d
cn (B.12)

γ(n)γµγνγ
(n) =

1

d (d− 1)

[(

d2 − (d− 2n)2
)

δµν +
(

(d− 2n)2 − d
)

γµγν

]

γ(n)γ(n)

γ(m)γ(n)γ(m) = fm,nγ
(n) (B.13)

fm,n = m!snsm+n

min(m,n)
∑

l=0

(−1)l
(

n
l

)(

d− n
m− l

)

. (B.14)

In Eq. B.12 summation over repeated indices is understood.
Again the f coefficients can be expanded in series of ε

fm,n = fm,n(0) + εfm,n(1) +O(ε2) ,
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and obey the consistency condition

δm,k (Tr (1))2 =
∞
∑

n=0

sn sk

m!n!
fm,nfn,k . (B.15)

Let us report a note of Avdeev about the use of Fierz transformations: first of all, the following
relation holds

γ(m) ⊗ γ(m) =
1

Tr (1)

∞
∑

n=0

sn

n!
fmn

d

(

γ(n) ⊗ γ(n)
)

F
(B.16)

which, together with Eq. B.15 and the consequences

f0 n = 1 and fn 0 = n! sn

(

d
n

)

(B.17)

imposes the condition

(Tr (1))2 =
∞
∑

l=0

(

d
l

)

= 2d . (B.18)

It follows that Fierz transformations (B.16) are inconsistent with the usual choice Tr (1) = 4 !
On the other hand, as the values of fm,n follow from purely combinatorial relations in

Eq. B.14, contraction identities remain valid.
We have used in the computation reduction identities of the following form

γµγ
(n) ⊗ γµγ

(n) = γ(n+1) ⊗ γ(n+1) + n (d− n+ 1) γ(n−1) ⊗ γ(n−1) (B.19)

γ(n)γµ ⊗ γ(n)γµ = γ(n+1) ⊗ γ(n+1) + n (d− n+ 1) γ(n−1) ⊗ γ(n−1) (B.20)

γµγ
(n) ⊗ γ(n)γµ = (−1)n

(

γ(n+1) ⊗ γ(n+1) − n (d− n+ 1) γ(n−1) ⊗ γ(n−1)
)

(B.21)

The relations in Eq. B.19 are fundamental and allow to reduce recursively any product of the
form

γµ1 . . . γµk
γ(n)γµk+1

. . . γµm ⊗ γµπ(1)
. . . γµπ(h)

γ(n)γµπ(h+1)
. . . γµπ(m)

(B.22)

where π ∈ Sm is a permutation of indexes.



Appendix C

Standard Model

In this appendix the notations for the Standard Model are set, in Minkowskian space, using
ηµν notation (see App. A).

C.1 Generalities

The electro-weak model is based on a SU(2)left×U(1)Y symmetry: the conserved hypercharge
Y is associated with the U(1) sector.

C.1.1 Matter fields

The matter fields are organized in SU(2) doublets with left chirality, and right singlets: we
resume in the following the quantum numbers and the composition of doublets.

Leptons

Ll = 1
2 (1 + γ5)

(

νl

l−

)

Rl = 1
2 (1 − γ5) e

− l ∈ {e, µ, τ} (C.1)

Assignments of weak hypercharge:

Q = I3 +
1

2
Y Y Ll = −LlY Rl = −2Rl (C.2)

Quarks

Lq↑ =
1

2
(1 + γ5)

(

q↑
q↓

)











Rq↑ = 1
2 (1 − γ5) q↑

Rq↓ = 1
2 (1 − γ5) q↓4b

(C.3)

where

q↑ ∈ u, c, t q↓ ∈ d, s, b . (C.4)

Weak hypercharge assignments:

Y Lq↑ =
1

3
Lq↑ Y Rq↑ =

4

3
Rq↑ Y Rq↓ = −2

3
Rq↓ . (C.5)
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The mass eigenstates do not coincide with the states that diagonalize the weak interaction
matrix: the relation is given by the well known Cabibbo-Kobayashi-Maskawa matrix



























































L′
u = 1

2 (1 + γ5)

(

u
d′

)

d′ = Vudd+ Vuss+ Vubb

L′
c = 1

2 (1 + γ5)

(

c
s′

)

s′ = Vcdd+ Vcss+ Vcbb

L′
t = 1

2 (1 + γ5)

(

t
b′

)

b′ = Vtdd+ Vtss+ Vtbb

, (C.6)

where the primed fields are eigenstates of W.I., while the non primed are mass eigenstates.
The notation Vq↑q↓ will be used for the elements of V , and V ⋆

q↓q↑ for the ones of V †.

C.1.2 Gauge field content

Four gauge fields are associated to the local version of the SU(2)×U(1) symmetry: threeW 1 2 3
µ

associated with SU(2) rotations, one Bµ with the remaining U(1) (hypercharge) symmetry.
The respective charges are g and g′, and the covariant derivative is given by

Dµ = I∂µ − ig ~Wµ · ~T − ig′Bµ
Y

2
(C.7)

while the classical lagrangian is

LSU(2)×U(1) = Lgauge + Lleptons + Lquarks + LHiggs + LY ukawa (C.8)

and the Higgs and Yukawa terms will provide the mean to introduce masses in an invariant
manner.

The pure gauge lagrangian is then

Lgauge = −1

4
~Wµν · ~W µν − 1

4
BµνB

µν (C.9)

where

~Wµν = ∂µ
~Wν − ∂ν

~Wµ + g ~Wµ × ~Wν (C.10)

with
(

~Wµ × ~Wν

)

i
= ǫijkW

j
µW

k
ν

Bµν = ∂µBν − ∂νBµ (C.11)

C.1.3 Matter fields lagrangian

The lepton lagrangian is

Llepton = −
∑

l=e,µ,τ

L̄lγ · DLl −
∑

l=e,µ,τ

R̄lγ · DRl (C.12)

while hadrons are incorporated in

Lquark = −
∑

q↑=u,c,t

L̄′
q↑γ · DL′

q↑ −
∑

q↑=u,c,t

R̄q↑γ · DRq↑ −
∑

q↓=d,s,b

R̄q↓γ · DRq↓ (C.13)
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C.1.4 Higgs fields

The Higgs field is defined as a doublet of complex fields transforming under the fundamental
representation of SU(2) with assigned hypercharge +1.

Φ =

(

φ+

φ◦

)

Y Φ = Φ (C.14)

The form of the Higgs lagrangian is fixed by the gauge symmetry, while the couplings in
the potential part are chosen in order to allow a spontaneous symmetry breaking.

LHiggs = −DΦ†DΦ − µ2Φ†Φ − λ
(

Φ†Φ
)2

. (C.15)

The interaction of the Higgs field with matter fields is then of Yukawa type:

LY ukawa = LY ukawa−quarks + LY ukawa−leptons (C.16)

LY ukawa−leptons = − GlL̄l · ΦRl + h.c.

LY ukawa−quarks = − G
q↑ q↓
↓ L̄′

q↑ · ΦRq↓ + h.c.

− G
q↑ q↓
↑ L̄′

q↑ · Φ̃Rq↑ + h.c. (C.17)

where the conjugated doublet Φ̃ is given by:

Φ̃ =

(

φ∗◦
−φ−

)

Y Φ̃ = −Φ̃ (C.18)

and the Yukawa couplings are proportional to the ratio of the quark mass to the massive
gauge field mass

Gl = g√
2MW

ml

Gij
↓ = g√

2MW
mjVij Gij

↑ = g√
2MW

miδij
. (C.19)

C.1.5 Symmetry breaking

Choosing a negative sign for the mass term, µ2 < 0, the Higgs field acquires an expectation
value: we may choose the phases in order to have it in the form:

Φ =

(

φ+

1√
2

(H + iχ)

)

+

(

0
1√
2
v

)

(C.20)

Φ̃ =

(

1√
2

(H − iχ)

−φ−

)

+

(

1√
2
v

0

)

(C.21)

where

v =

√

−µ2

λ
=

2MW

g
. (C.22)
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Thus we obtain for the lepton lagrangian

Ll
Y ukawa = − ml

(

1 +
g

2mW
H

)

l̄l + i
g

2mW
mlχl̄γ5l

− g√
2mW

ml

(

ν̄lφ
+Rl + l̄φ−Lνl

)

(C.23)

Analogously for the mass lagrangian of the quarks and their coupling to H,Φ(+,−), χ:

LY ukawa−quarks = Lmass,H + LΦ + Lχ ; (C.24)

H – quarks lagrangian:

Lmass,H = −
(

1 +
g

2mW
H

)

∑

quarks

mq q̄q ; (C.25)

Φ(+,−) – quarks lagrangian:

LΦ = − g√
2

mj
d

mW

(

Vij ū
i
Lφ

+dj
R + V †

jid̄
j
Rφ

−ui
L

)

+
g√
2

mi
u

mW

(

V †
jid̄

j
Lφ

−ui
R + Vij ū

i
Rφ

+dj
L

)

(C.26)

χ – quarks lagrangian:

Lχ = i
g

2MW
χ
∑

quarks

(

mq↓ q̄↓γ5q↓ −mq↑ q̄↑γ5q↑
)

; (C.27)

Weinberg angle

The gauge covariant interaction of Higgs and gauge fields gives rise to mass terms for the
latter: one gauge field remains massless, corresponding to the unbroken U(1) electromagnetic
symmetry. To put in evidence this symmetry breaking pattern it is convenient to define
“rotated” fields

W 3
µ = Zµ cos θW +Aµ sin θW

Bµ = Aµ cos θW − Zµ sin θW (C.28)

Aµ = Bµ cos θW +W 3
µ sin θW

Zµ = W 3
µ cos θW −Bµ sin θW (C.29)

The covariant derivative turns into the following

Dµ = I∂µ − ig
(

W 1
µT

1 +W 2
µT

2
)

− i

(

g′
Y

2
cos θW + gT 3 sin θW

)

Aµ

− i

(

gT 3 cos θW − g′
Y

2
sin θW

)

Zµ (C.30)

The condition that the field Aµ is associated with the photon imposes that

g′
Y

2
cos θW + gT 3 sin θW = e

(

T 3 +
Y

2

)

= eQ (C.31)
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e = g′ cos θW = g sin θW (C.32)

hence the relations

g′

g
= tan θW e =

g′g
√

g′2 + g2
. (C.33)

We may then define charge lowering and raising operators of the weak isospin (and hence of
the electric charge, according to Eq. C.31

T± = T 1 ± iT 2 . (C.34)

We may individuate the charged components of the gauge fields:

W±
µ =

1√
2

(

W 1
µ ∓ iW 2

µ

)

(C.35)

and the covariant derivative can be simply written as:

Dµ = I∂µ − ig√
2

(

W+
µ T

+ +W−
µ T

−
)

− ieQAµ − ieQ′Zµ (C.36)

where the neutral charge matrix Q′ is introduced

Q′ = T 3 cot θW − Y

2
tan θW =

1

sin θW cos θW

(

T 3 − sin θ2
WQ

)

. (C.37)

C.1.6 Field transformations

It is useful to reformulate transformation laws in terms of rotated fields: to this end let us set

ω± = 1√
2

(

ω1 ∓ iω2
)

ωA = ω′ cos θW + ω3 sin θW ωZ = ω3 cos θW − ω′ sin θW
. (C.38)

It follows for the transformation of gauge fields

δAµ = ∂µωA − ie
(

ω−W+
µ − ω+W−

µ

)

δZµ = ∂µωZ − ig cos θW

(

ω−W+
µ − ω+W−

µ

)

δW±
µ = ∂µω

± ∓ ie
(

ω±Aµ − ωAW
±
µ

)

∓ ig cos θW

(

ω±Zµ − ωZW
±
µ

)

(C.39)

while for the Higgs it results

δH =
ig

2
(ω−φ+ − ω+φ−) + ωZχ

e

sin 2θW

δχ =
g

2
(ω−φ+ + ω+φ−) − ωZ (H + v)

e

sin 2θW

δφ± = ± ig
2
ω± (H + v) − g

2
ω±χ± ie

(

ωA +
1

tan 2θW
ωZ

)

φ± (C.40)

and finally for any doublet or singlet of matter fields

δΨ =

[

ig√
2

(

ω+T+ + ω−T−)+ ieQωA + ieQ′ωZ

]

Ψ (C.41)
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C.1.7 The complete Lagrangian

The gauge lagrangian may be expressed as follows

Lgauge = −1

2
W+

µνW
−µν − 1

4
W 3

µνW
3µν − 1

4
BµνB

µν (C.42)

where

W±
µν =

(

∂µ ∓ igW 3
µ

)

W±
ν −

(

∂ν ∓ igW 3
ν

)

W±
µ

W 3
µν = ∂µW

3
ν − ∂νW 3

µ − ig
(

W+
µ W

−
ν −W+

ν W
−
µ

)

(C.43)

that is, evidencing the subgroup U(1) of electromagnetism

Lgauge = − 1

4
FµνFµν − 1

4
ZµνZµν

+ ig
(

∂µW
3
ν − ∂νW

3
µ

)

W+
µ W

−
ν

+
1

2
g2
(

W+
µ W

−
ν −W−

µ W
+
ν

)

W+
µ W

−
ν

− 1

2

∣

∣

∣

(

∂µ − igW 3
µ

)

W+
ν −

(

∂ν − igW 3
ν

)

W+
µ

∣

∣

∣

2
(C.44)

where

Fµν = ∂µAν − ∂νAµ Zµν = ∂µZν − ∂νZµ . (C.45)

The hadronic lagrangian is, in full form

Lquark = −
∑

quarks

q̄γµ (∂µ − ieQAµ − ieQ′Zµ

)

q

+
ig√
2

(

Vjiū
j
Lγ

µW+
µ d

i
L + V †

ij d̄
i
Lγ

µW−
µ .uj

L

)

. (C.46)

Separating the Higgs lagrangian in kinetic and potential parts, LHiggs = THiggs − VHiggs we
have

THiggs = −
(

∂µφ
− + i

g

2
W 3

µφ
− + i

g′

2
Bµφ

− + i
g√
2
W−

µ φ
∗
◦

)

×
(

∂µφ+ − i
g

2
W 3µφ+ − i

g′

2
Bµφ+ − i

g√
2
W+µφ◦

)

−
(

∂µφ
∗
◦ − i

g

2
W 3

µφ
∗
◦ + i

g′

2
Bµφ

∗
◦ + i

g√
2
W+

µ φ
−
)

×
(

∂µφ◦ + i
g

2
W 3µφ◦ − i

g′

2
Bµφ◦ − i

g√
2
W−µφ+

)

(C.47)

that is, putting in evidence the charged gauge fields

THiggs = −
(

∂µφ
− + i

g

2
W 3

µφ
− + i

g′

2
Bµφ

−
)

×
(

∂µφ+ − i
g

2
W 3µφ+ − i

g′

2
Bµφ+

)
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−
(

∂µφ
∗
◦ − i

g

2
W 3

µφ
∗
◦ + i

g′

2
Bµφ

∗
◦

)

×
(

∂µφ◦ + i
g

2
W 3µφ◦ − i

g′

2
Bµφ◦

)

+ i
g√
2
W+µ (φ◦∂µφ

− − φ−∂µφ◦ + ig′Bµφ◦φ
−)+ h.c.

− 1

2
g2W+µW−

µ

(

φ+φ− + φ∗◦φ◦
)

. (C.48)

It is convenient to define the covariant derivative in the subgroup U(1) × U(1):

D̂µ = I∂µ − igW 3
µT

3 − ig′
Y

2
Bµ

= ∂µ − ieQAµ − ieQ′Zµ

Q′ =
1

sinW cosW

(

T 3 − sin2
W Q

)

. (C.49)

An useful relation is the following

v

2

(

gW 3
µ − g′Bµ

)

=
v

2

gg′

e
Zµ = mZZµ (C.50)

Setting

φ◦ = S +
v√
2
≡ H + iχ√

2
+

v√
2

(C.51)

D̂µS −
(

D̂µS
)∗

= i
√

2

(

∂µχ+
1

2

gg′

e
ZµH

)

(C.52)

one is able to rewrite the kinetic Higgs lagrangian in the form

THiggs = −
(

D̂µφ
+
)∗

D̂µφ+ −
(

D̂µS
)∗

D̂µS

− mZZµ

(

∂µχ+
1

2

gg′

e
ZµH

)

+ imWW+
µ

(

∂µ + ig′Bµ )φ− + h.c.

+ i
g√
2
W+

µ

(

S∂µφ− − φ−∂µS + ig′BµSφ−
)

+ h.c.

− 1

2
g2W+

µ W
−µ (φ+φ− + S∗S

)− gmWW+
µ W

−µH

− m2
WW+

µ W
−µ − 1

2
m2

ZZµZ
µ . (C.53)

Noting that

λ = 1
8g

2
(

mH

mW

)2
µ2 = −1

2m
2
H

(C.54)

it is possible to rewrite the potential part as follows

−VHiggs = − 1

2
m2

HH
2 − 1

4
gmW

(

mH

mW

)2

H
(

H2 + χ2
)

− 1

32
g2
(

mH

mW

)2 (

H2 + χ2
)2

− 1

2
gmW

(

mH

mW

)2

Hφ+φ−

− 1

8
g2φ+φ−

(

H2 + χ2
)

− 1

8
g2 (φ+φ−

)2
(C.55)
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C.2 Quantization

A perturbative evaluation of matrix elements requires to break the gauge invariance and
introduce a gauge fixing. In this section we want to discuss a few technical points that result
of great practical advantage.

C.2.1 Non linear gauge fixing

After the symmetry breaking, the interaction between gauge fields and non-physical Higgs
fields gives rise to spurious terms in the quadratic part of the lagrangian: it is possible a gauge
choice which explicitly eliminates this coupling, avoiding so mixed propagators between gauge
and Higgs fields. The gauge-fixing is given by:

Lg.f. = − 1

2α
(∂µA

µ)2− 1

2η
(∂µZ

µ + ηmZχ)2− 1

ξ

∣

∣

∣(∂µ − igW 3
µ)W+µ + iξmWφ+

∣

∣

∣

2
(C.56)

Putting together gauge fixing and Higgs lagrangian one has

LHiggs + Lg.f. = − 1

2α
(∂µA

µ)2 − 1

2η
(∂µZ

µ)2 − 1

ξ

∣

∣

∣(∂µ − igW 3
µ)W+µ

∣

∣

∣

2

−
(

D̂µφ
+
)∗

D̂µφ+ −
(

D̂µS
)∗

D̂µS − η

2
m2

Zχ
2 − ξm2

Wφ+φ−

− 1

2

gg′

e
mZZµZ

µH

+

(

gg′

e
mWW+

µ Z
µφ− + h.c.

)

+ i
g√
2
W+

µ

(

S∂µφ− − φ−∂µS + ig′BµSφ−
)

+ h.c.

− 1

2
g2W+

µ W
−µ (φ+φ− + S∗S

)− gmWW+
µ W

−µH

− m2
WW+

µ W
−µ − 1

2
m2

ZZµZ
µ (C.57)

We may collect terms in the total lagrangian containing only gauge fields

Lgauge total = − 1

4
FµνF

µν − 1

2α
(∂µA

µ)2

− 1

4
ZµνZ

µν − 1

2η
(∂µZ

µ)2 − 1

2
m2

ZZµZ
µ

+ ig
(

∂µW
3
ν − ∂νW

3
µ

)

W+µW−ν

+
1

2
g2
(

W+
µ W

−
ν −W−

µ W
+
ν

)

W+µW−ν

− 1

2

∣

∣

∣

(

∂µ − igW 3
µ

)

W+
ν −

(

∂ν − igW 3
ν

)

W+
µ

∣

∣

∣

2

− 1

ξ

∣

∣

∣(∂µ − igW 3
µ)W+µ

∣

∣

∣

2
−m2

WW+
µ W

−µ (C.58)

and terms coupling gauge and Higgs fields

Lgauge−Higgs = −
(

D̂µφ
+
)∗

D̂µφ+ −
(

D̂µS
)∗

D̂µS − η

2
m2

Zχ
2 − ξm2

Wφ+φ−
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− 1

2

gg′

e
mZZµZ

µH − gmWW+
µ W

−µH

+

(

gg′

e
mWW+

µ Z
µφ− + h.c.

)

+ i
g√
2
W+

µ

(

S∂µφ− − φ−∂µS + ig′BµSφ−
)

+ h.c.

− 1

2
g2W+

µ W
−µ (φ+φ− + S∗S

)

(C.59)

of course the unitarity is reinforced introducing anti-commuting scalar fields: the ghosts.

C.2.2 Ghosts and Slavnov Invariance

It is convenient to rewrite the gauge fixing lagrangian in the form

Lg.f. = − 1

2α
F 2

A − 1

2η
F 2

Z − 1

ξ
F+F−

FA = ∂µA
µ

FZ = ∂µZ
µ + ηmZχ

F± =
(

∂µ ∓ igW 3
µ

)

W±µ ± iξmW Φ± (C.60)

The properties of transformation under SU(2) × U(1) are

δωFA = 2ωA − ie∂µ
(

ω−W+
µ − ω+W−

µ

)

δωFZ = 2ωZ − ig cos θW∂µ
(

ω−W+
µ − ω+W−

µ

)

− ηmZ

[

ωZ (H + v)
e

sin 2θW
− g

2

(

ω−Φ+ + ω+Φ−)
]

δωF± = ∂µ
(

∂µ ∓ igW 3
µ

)

ω± ∓ igW 3
µ

(

∂µ ∓ igW 3
µ

)

ω±

± igω3

(

∂µ ∓ igW 3µ
)

W±
µ ∓ g2W±

µ

(

ω−W µ+ − ω+W µ−)

− ξmW

[

g

2
ω± (H + v ± iχ) + e

(

ωA +
1

tan 2θW
ωZ

)

Φ±
]

(C.61)

Following Becchi-Rouet-Stora we may define the gauge transformation with parameters ωi =
Xiζ, ω′ = X ′ζ where the compensating fieldsXi, X ′ anticommute, so as the x−independent
parameter ζ. The BRS transform s is defined as the right derivative with respect to ζ of a
gauge transformation parameterized in terms of fields X. In the basis defined by the same
rotation which diagonalizes the mass matrix of gauge fields one has

X± = 1√
2

(

X1 ∓ iX2
)

XA = X ′ cos θW +X3 sin θW XZ = X3 cos θW −X ′ sin θW
(C.62)

and this fields are introduced in the action with the following lagrangian

Lg.c. = + X̄AsFA + X̄ZsFZ + X̄+sF+ + X̄−sF−

X̄AsFA = − ∂µX̄A∂µXA + ie∂µX̄A

(

X−W+
µ −X+W−

µ

)

X̄ZsFZ = − ∂µX̄Z∂µXZ − ηm2
ZX̄ZXZ + ig cos θW∂µX̄Z

(

X−W+
µ −X+W−

µ

)
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− ηmZ
gg′

2e
X̄ZXZH + ηmZ

g

2

(

X̄ZX
−Φ+ + X̄ZX

+Φ−)

X̄±sF± = −
(

∂µ ± igW µ3
)

X̄±
(

∂µ ∓ igW 3
µ

)

X± − ξm2
W X̄±X±

± igX̄±X3
(

∂µ ∓ igW µ3
)

W±
µ − g2

(

X̄±X∓W±
µ − X̄±X±W∓

µ

)

W µ±

− ξmW
g

2
X̄±X± (H ± iχ) − ξmW e

(

X̄±XA +
1

tan 2θW
X̄±XZ

)

Φ±

(C.63)

where s is the BRS transformation.
In the following for completeness we report the effect of BRS transformation.
The explicit expression for gauge fields is

sAµ = ∂µXA − ie
(

X−W+
µ −X+W−

µ

)

sZµ = ∂µXZ − ig cos θW

(

X−W+
µ −X+W−

µ

)

sW±
µ = ∂µX

± ∓ ie
(

X±Aµ −XAW
±
µ

)

∓ ig cos θW

(

X±Zµ −XZW
±
µ

)

(C.64)

while for Higgs fields

sH =
ig

2

(

X−Φ+ −X+Φ−)+
e

sin 2θW
XZχ

sχ =
g

2

(

X−Φ+ +X+Φ−)− e

sin 2θW
XZ (H + v)

sΦ± = ± ig
2
X± (H + v) − g

2
χX± ± ie

(

XA +
1

tan 2θW
XZ

)

Φ± (C.65)

and lastly for the compensating (ghost) fields

sXi = g
2ǫ

i j kXjXk sXB = 0
sX̄i = 1

ξFi sX̄B = 1
ξFB

(C.66)

that is,

sX± = ∓ie
(

XA + 1
tan θW

XZ

)

X± sX̄± = 1
ξF∓

sXA = −ieX+X− sX̄A = 1
αFA

sXZ = − ie
tan θW

X+X− sX̄Z = 1
ηFZ .

(C.67)

It is easy to verify, thanks to the nilpotence of the BRS transformation (s2 ≡ 0), that the
variation of the Gauge Fixing Lagrangian is compensated by the variation of the Ghost terms.
The original gauge invariant lagrangian is also BRS invariant, hence at a classical level the
gauge fixing breaks the classical invariance but leaves a BRS invariance. In App. D we shall
see how it is possible, and in many cases convenient, a different choice of the gauge fixing
which enables to preserve also the classical invariance.

C.2.3 Feynman rules

It is now useful to report the Feynman rules for the electro-weak sector of the Standard
Model, for the given choice of gauge fixing. The modifications required by the Background
Field Gauge will be discussed in App. D.

The convention chosen in the following is that momenta and charges enter the vertex.
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Masses

W± (Zµ) : mW (mZ)

Φ± :
√

ξmW

χ :
√
ηmZ

H : mH

(C.68)

Propagators

scalar field 〈Φ (−p)Φ (p)〉 =
(−i)

p2 +m2

fermionic field
〈

ψ̄ψ
〉

=
(−i)

i/p +m

vector field W±
〈

W±
µ (−p)W∓

ν (p)
〉

=
(−i)

p2 +m2
w

[

ηµν − (1 − ξ)
pµpν

p2 + ξm2
w

]

vector field Z 〈Zµ (−p)Zν (p)〉 =
(−i)

p2 +m2
z

[

ηµν − (1 − η)
pµpν

p2 + ηm2
z

]

vector field A 〈Aµ (−p)Aν (p)〉 =
(−i)
p2 + λ2

[

ηµν − (1 − α)
pµpν

p2 + αλ2

]

(C.69)

Matter fields-gauge fields couplings

〈

ūiW
+
µ dj

〉

= − g√
2
Vi jγ

L
µ

〈

d̄iW
−
µ uj

〉

= − g√
2
V †

i jγ
L
µ

〈

ν̄lW
+
µ e
〉

= − g√
2
γL

µ

〈

ψ̄qAµψ
〉

= −eQqγµ

〈ūZµu〉 = − e

sinW cosW

[

1

2
γL

µ − 2

3
sin2

W γµ

]

〈

d̄Zµd
〉

= − e

sinW cosW

[

−1

2
γL

µ +
1

3
sin2

W γµ

]

〈

l̄Zµl
〉

= e
1

2

[

tanW

(

2γR
µ + γL

µ

)

− cotW γL
µ

]

〈ν̄lZµνl〉 = e
1

2
[tanW + cotW ] γL

µ (C.70)

Matter fields-Higgs fields coupling

〈

ūiΦ
+dj

〉

=
ig√
2
Vi j

(

mi

mW
PL − mj

mW
PR

)
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〈

d̄iΦ
−uj

〉

=
−ig√

2
V †

i j

(

mi

mW
PL − mj

mW
PR

)

〈

ν̄lΦ
+l
〉

=
−ig√

2

ml

mW
PR

〈

l̄Φ−νl

〉

=
−ig√

2

ml

mW
PL

〈

f̄Hf
〉

= − ig
2

mf

mW
〈

l̄χl
〉

= −g
2

ml

mW
γ5

〈ūχu〉 = +
g

2

mu

mW
γ5

〈

d̄χd
〉

= −g
2

md

mW
γ5 (C.71)

Gauge fields self interactions

〈(

Aµ

Zµ

)

W+
ρ (p+)W−

σ (p−)

〉

=

i

(

e
g cosW

)

[

(p+ − p−)µ ηρσ + 2ηµσ (p+ + p−)ρ − 2ηµρ (p+ + p−)σ

+

(

1 − 1

ξ

)

(

ηµρp
−
σ − ηµσp

+
ρ

)

]

〈

W+
µ W

−
ν W

+
µ′W

−
ν′

〉

= ig2 [2ηµµ′ηνν′ − ηµνηµ′ν′ − ηµν′ηµ′ν
]

〈

W 3
µW

3
µ′W+

ν+W
−
ν−

〉

= i
(

−g2
)

[

2ηµµ′ην+ν− − ηµν+ηµ′ν− − ηµν−ηµ′ν+

]

〈

AµAµ′W+
ν+W

−
ν−

〉

= i
(

−e2
)

[

2ηµµ′ην+ν− − ηµν+ηµ′ν− − ηµν−ηµ′ν+

]

〈

ZµZµ′W+
ν+W

−
ν−

〉

= i
(

−g2 cos2
W

)

[

2ηµµ′ην+ν− − ηµν+ηµ′ν− − ηµν−ηµ′ν+

]

〈

AµZµ′W+
ν+W

−
ν−

〉

= i (−eg cosW )
[

2ηµµ′ην+ν− − ηµν+ηµ′ν− − ηµν−ηµ′ν+

]

(C.72)

Gauge fields-Higgs interactions

〈Φ (p+)AµΦ (p−)〉 = ie (p− − p+)µ

〈Φ (p+)ZµΦ (p−)〉 =
i

2

(

g cosW −g′ sinW

)

(p−p+)

〈

W+
ν ZµΦ−〉 = i

gg′

e
mWηµν

〈

ZµZµ′H
〉

= − i

2

gg′

e
mZηµµ′

〈

W+
µ W

−
µ′H

〉

= −igmW ηµµ′

〈

W±
µ Φ∓ (p∓

)

H
(

pH
)〉

= ± ig
2

(

pH
µ − p∓µ

)
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〈

W±
µ Φ∓ (p∓

)

χ (pχ)
〉

=
g

2

(

p∓µ − pχ
µ

)

〈

Zµ

(

pZ
)

Hχ
〉

=
1

2

(

g cosW +g′ sinW
)

pZ
µ

〈

ZµZν

(

HH
χχ

)〉

= −i1
4

(

g cosW +g′ sinW
)2
ηµν

〈

W+
µ Wν

(

HH
χχ

)〉

= −i1
2
g2ηµν

〈

AµAµ′Φ+Φ−〉 = −i2e2ηµµ′
〈

AµZµ′Φ+Φ−〉 = −ie2 (cotW −tanW ) ηµµ′

〈

ZµZµ′Φ+Φ−〉 = −ie2 1

2
(cotW −tanW )2 ηµµ′

〈

W+
µ W

−
µ′Φ

+Φ−
〉

= −ig
2

2
ηµµ′

〈

W±
µ AνHΦ∓

〉

= −eg
2
ηµν

〈

W±
µ AνχΦ∓

〉

= ∓ieg
2
ηµν

〈

W±
µ ZνHΦ∓

〉

=
eg′

2
ηµν

〈

W±
µ ZνχΦ∓

〉

= ±ieg
′

2
ηµν

(C.73)

Higgs fields self interactions

r =
mH

mW

〈HHH〉 = −i3
2
gmW r2

〈

H

(

χχ
Φ+Φ−

)〉

= −i1
2
gmW r2

〈HHHH〉 = −i3
4
g2r2

〈HHχχ〉 = −i1
4
g2r2

〈χχχχ〉 = −i3
4
g2r2

〈(

HH
χχ

)

Φ+Φ−
〉

= −i1
4
g2

〈

Φ+Φ−Φ+Φ−〉 = −i1
2
g2 (C.74)

Ghost masses

XA : 0
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XZ :
√
ηmZ

X± :
√

ξmW (C.75)

Ghost-Gauge interactions

〈

X̄A

(

pA
)

X∓W±
µ

〉

= ∓iepA
µ

〈

X̄Z

(

pZ
)

X∓W±
µ

〉

= ∓ig cosW pZ
µ

〈

X̄± (p̄)W 3
µX

± (p)
〉

= ±ig (p− p̄)µ
〈

X̄± (p̄)W 3
µW

3
νX

± (p)
〉

= −ig2ηµν
〈

X̄±X3W±
µ

(

p±
)

〉

= ∓igp±µ
〈

X̄±X3W 3
µW

±
ν

〉

= ig2

〈

X̄±X±W±
µ W

∓
ν

〉

= ig2

〈

X̄±X∓W±
µ W

±
ν

〉

= −ig2

(C.76)

Ghost-Higgs interactions

〈

X̄ZXZH
〉

= −iηmZ
gg′

e
〈

X̄ZΦ±X∓〉 = iηmZ
g

2
〈

X̄±
(

H
χ

)

X±
〉

= −iξmW
g

2

1
±1

〈

X̄±Φ±XA
〉

= −iξmW e
〈

X̄±Φ±XZ

〉

= −iξmW e
1

tan 2θW
(C.77)



Appendix D

The Background Field gauge

The background formulation of field theory is an useful tool, which allows to take full advan-
tage of local symmetries. The point is that one can separate the field in a “classical” (we will
see below in which sense) and a quantum part; to be definite one finds that for gauge theories
the original symmetry is implemented via two different transformations, and the “classical”
symmetry can be implemented regardless from the quantization method.

In the following we will summarize known results about this formulation and its imple-
mentation in the Standard Model (see for instance [110] and references therein).

D.1 Generalities

To be definite, let us consider the theory of a single scalar field φ, described by some lagrangian
L (φ, ∂µφ). The Green functions of the theory can be obtained by the generating functional

Z [J ] = eiW [J ] =

∫

Dφ exp

[

i

∫

dxL + Jφ

]

where W is the generator of connected Green functions. Let us consider instead the same
theory in presence of a fixed background field, that is,

eiW [φcl,J] =

∫

Dφ exp

[

i

∫

dxL
(

φ+ φcl
)

+ Jφ

]

(D.1)

Suppose then to choose J as a function of φcl, in such a manner that the condition

d

dφcl(x)
W
[

φcl, J
]

= −J(x)

is enforced. Explicitly one has then

∂W

∂φcl (x)
+

∫

dy
∂J (y)

∂φcl (x)

∂W

∂J (y)
= −J

(

φcl, x
)

(D.2)

The sense is clear in the zero loop ( h̄ → 0 ) limit: in this case the expression for W is the
extremum of the integrand under the variation of φ, that is

W
[

φcl, J
]

= extrφ

∫

dxL
(

φ+ φcl
)

+ J(x)φ(x)
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which means that a solution is given by

φ = 0

J0 = −
δL
[

φcl
]

δφcl

W0

[

φcl, J
(

φcl
)]

=

∫

dxL
(

φcl
)

(D.3)

Now equation D.2 can be iterated

J = J0 + h̄J1 + h̄2J2 + . . .

W = W0 + h̄W1 + h̄2W2 + . . .

J1

(

φcl
)

= − d

dφcl
W1

[

φcl, J0

]

+O (h̄)2 + . . . (D.4)

The important result is that the functional W
[

φcl, J
(

φcl
)]

so obtained concides with the

generating functional Γ
(

φcl
)

of 1PI Green functions of classical fields. To see this, we have

the give a sense to the term “classical” we have been using until now: we will choose the
condition on φcl

J
(

φcl
)

= 0

which substitutes the classical motion equation

δS

δφ
= 0 (D.5)

with the perturbative form

δW

δφcl
= 0 (D.6)

By now it is almost evident the thesis: in fact

• shifting the fields one has that

W
[

φcl, J
]

= W [J ] −
∫

Jφcl

which means that one has the Legendre transform of W [J ], that is Γ

• The equation of motion implies

∂

∂φcl
Γ
(

φcl
)

= 0

so the functional Γ is an effective lagrangian containing the quantum fluctuations, which
allows to compute Green fucntions by a tree level expansion in terms of irreducible
quantum kernels.

What about gauge theories? One has the following relevant consequences:
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1. the gauge fixing needed to compute quantum fluctuations is largely arbitrary: by choos-
ing it invariant under gauge transformations of the classical fields one ensures that the
effective lagrangian Γ is invariant under the same classical transformations.

2. As the amplitudes are built of irreducible functions derived by Γ and connected by clas-
sical lines, the gauge fixing needed to determine the classical propagator is completely
arbitrary, in the sense that any gauge dependence in it is canceled by the effect of Ward
Identities for the irreducible vertex parts.

Having laid down the basics, we will work now on our preferred model.

D.2 Compact Notation

We will follow the notation used by Van Damme in [24, 31]; let us first consider the gauge+higgs
sector:

L = −1

4
Ga

µνG
a
µν − (DµΦ)† (DµΦ) − V

(

Φ†Φ
)

Ga
µν = ∂µG

a
ν − ∂νG

a
µ + fa b cGa

µG
b
ν

DµΦ = ∂µΦ +Ga
µ (T aφ)

DµG
a
ν = ∂µG

a
ν + fa b cGb

µG
c
ν

(T a)† = −T a

[

T a, T b
]

= fa b cT c

(DµΦ)† = ∂µΦ† −Ga
µΦ†T a (D.7)

where the index a will run over the Lie generators of the symmetry group, even for non-simple
groups as is the Standard Model case: all couplings are contained in the definitions for the
generators itself. The field Φ will in general be a multiplet of complex fields. Simmetry
transformations are of the form

δGa
µ = −∂µΛa + fabcΛbGc

µ

δΦ = ΛaT aΦ (D.8)

where in our notation Λ are real parameters.
We want now to perform the shift Φ → Φ+Φcl, Gµ → Gµ +Gcl

µ . It is a matter of algebra
to show then that

Ga
µν → Dcl

µG
a
ν −Dcl

ν G
a
µ + fa b cGb

µG
c
ν +Ga cl

µν

Dcl
µG

a
ν = ∂µG

a
ν + fa b cGb cl

µ Gc
ν

− (DµΦ)† (DµΦ) → −
(

Dcl
µ

(

Φ + Φcl
))†

Dcl
µ

(

Φ + Φcl
)

−Ga
µ

[

(

Dcl
µ

(

Φ + Φcl
))†

T a
(

Φ + Φcl
)

−
(

Φ + Φcl
)†
T aDcl

µ

(

Φ + Φcl
)

]

+ Ga
µG

b
µ

(

Φ + Φcl
)†
T aT b

(

Φ + Φcl
)

(D.9)
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where we have put in evidence the quantum gauge fields.
Suppose now that the potential V is of the Higgs form, thus giving rise to a symmetry

breaking: in this notation we may then write that the classical field acquires an expectation
value, thus giving rise to a shift

Φcl = Φcl + ε .

This gives rise, thanks to the last term of D.9 to a mass matrix term for the gauge fields:

Ma b = −ε†
(

T aT b + T bT a
)

ε . (D.10)

The Goldstone theorem states that this mass matrix will have some zero eigenvalue, so at
least one ( as in the Standard Model ) gauge field will remain massless: this will enforce us
to introduce some gauge fixing to work in perturbation theory.

They appear in the quadratic part of the lagrangian also a set of terms involving gauge
and Higgs fields, which would lead to mixed propagators:

−Ga
µ

[

∂µΦT aε− ε†T a∂µΦ
]

. (D.11)

The resulting complications in the Feynman rules can be avoided by choosing, following
t’Hooft as we did in App C, an appropriate non-linear form for the gauge fixing term:

Lg.f. = − 1

2ξ

∣

∣

∣Dcl
µG

a
µ + ξ

(

Φ†T aΦcl − Φ†clT aΦ
)∣

∣

∣

2
(D.12)

as the classical field acquires a “vev” ε, the resulting quadratic term combines with the one
in D.11 to form a total derivative. It is important to observe that this gauge fixing is invariant
under the so called type II transformations

δGµ = Λ ∧Gµ δGcl
µ = Λ ∧Gcl

µ − ∂µΛ

δΦ = ΛaT aΦ δΦcl = ΛaT aΦcl (D.13)

this results in the classical invariance for Green functions of classical fields: in fact the ac-
companying transformation of quantum variables amounts to a change of variable in the
functional integral.

Finally after the shift the mixing between non-physical Higgs and gauge fields disappears,
and the following quadratic lagrangian results for the gauge fields

L2gauge = −1

4

(

∂µG
a
ν − ∂νG

a
µ

)2
− 1

2ξ

(

∂µG
a
µ

)2
− 1

2
Ga

µG
b
µMa b (D.14)

while for the (quantum) Higgs fields one has

L2higgs = − (∂µΦ)† ∂µΦ − 1

2
ξ
[

Φ†T aε− ε†T aΦ
]2

− V2 (ε,Φ) (D.15)

and the last term results from the symmetry breaking potential.
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D.3 Application to Standard Model

Let us write down a transcription table to use the results of the preceding section in the
Standard Model.

The following correspondence holds:

Ga
µT

a = −ig ~Wµ · ~σ
2
− ig′Bµ

Y

2
(D.16)

giving so fabc = gǫabc for {a, b, c} ∈ {1, 2, 3}, and zero otherwise.
On the other hand it is easier to perform already at this stage the Weinberg’s rotation

which gives diagonal mass matrices, and the choice of charged states; so we use the following
“vector” of group generators:

{T a} =

{

− ig√
2
σ+,− ig√

2
σ−,−ieQ,−ieQ′

}

(D.17)

where σ± are the raising/lowering operators in the SU(2) group, and Q,Q′ are defined as in
Sec. C.1.5.

We need then to write down the gauge fixing term in this notation: first note that the
“vev” has the form

ε =

(

0
v√
2

)

so it results that

T+ε =

(

v√
2

0

)

T−ε = 0

(−ieQ) ε = 0 (−ieQ′) ε = ie
2 sinW cosW

ε

. (D.18)

Next let us write down the type II covariant derivatives for the gauge fields:

Dcl
µW

±
ν = ∂µW

±
ν ∓ ig

(

W 3cl
µ W±

ν −W 3
νW

±cl
µ

)

= ∂µW
±
ν ∓ ie

(

Acl
µW

±
ν −AνW

±cl
µ

)

∓ ig cosW

(

Zcl
µW

±
ν − ZνW

±cl
µ

)

Dcl
µAν = ∂µAν − ie

(

W+cl
µ W−

ν −W−cl
µ W+

ν

)

Dcl
µZν = ∂µZν − ig cosW

(

W+cl
µ W−

ν −W−cl
µ W+

ν

)

(D.19)

We will need also the gauge fixing term, which is given by

Lg.f. = −1

ξ

∣

∣

∣

∣

Dcl
µW

+
µ + ξ

(

− ig√
2

)

(

Φ†σ−Φcl − Φ†clσ−Φ
)

∣

∣

∣

∣

2

− 1

2ξ

[

Dcl
µAµ + ξ (−ie)

(

Φ†QΦcl − Φ†clQΦ
)]2

− 1

2ξ

[

Dcl
µZµ + ξ (−ie)

(

Φ†Q′Φcl − Φ†clQ′Φ
)]2

. (D.20)
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To rewrite this expression in terms of component fields, we need the value of the following
terms

Φ†σ−Φcl − Φ†clσ−Φ =
1√
2

[

φ+cl (H − iχ) − φ+
(

Hcl + v − iχcl
)]

Φ†QΦcl − Φ†clQΦ = φ+clφ− − φ−clφ+

Φ†Q′Φcl − Φ†clQ′Φ =
1

sinW cosW

[(

1

2
− sin2

W

)

(

φ−φ+cl − φ−clφ+
)

+
i

2

((

Hcl + v
)

χ−Hχcl
)

]

. (D.21)

To write down the gauge fixing lagrangian in expanded form it is easier to consider sepa-
rately the different terms

Quadratic part

as expected, we have

Lg.f.2 = −1

ξ

[

∣

∣

∣∂µW
+
µ + iξMWφ+

∣

∣

∣

2
+

1

2
(∂µAµ)2 +

1

2
(∂µZµ + ξMZχ)2

]

(D.22)

Trilinear in gauge fields

Lg.f.3g = − ig
ξ

[

W 3cl
µ

(

∂νW
+
ν W

−
µ − ∂νW

−
ν W

+
µ

)

−W 3
µ

(

∂νW
+
ν W

−cl
µ − ∂νW

−
ν W

+cl
µ

)]

− ig
ξ

(

∂µW
3
µ

) (

W−cl
ν W+

ν −W+cl
ν W−

ν

)
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Quadrilinear in gauge fields

Lg.f.4g = −g
2

ξ

(

W 3cl
µ W+

µ −W 3
µW

+cl
µ

) (

W 3cl
ν W−

ν −W 3
νW

−cl
ν

)

−e
2 + g2 cosW

2ξ

(

W+cl
µ W−

µ −W−cl
µ W+

µ

) (

W−cl
ν W+

ν −W+cl
ν W−

ν

)
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Trilinear in Higgs field

Lg.f.3H =

ξ
g

2

(

gv

2

)

[

H
(

φ+clφ− + φ−clφ+
)

+ iχ
(

φ+φ−cl − φ−φ+cl
)]

+ξ
g

2 cosW

(

gv

2 cosW

)

iχ
[(

1 − 2 sin2
W

)(

φ−φ+cl − φ+φ−cl
)

+ i
(

Hclχ−Hχcl
)]

(D.25)
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Quadrilinear in Higgs field

Lg.f.4H =

−ξ
(

g

2

)2 {

φ+clφ−cl
(

H2 + χ2
)

+ φ+φ−
(

H2 + χ2
)cl

−
(

φ+clφ− + φ+φ−cl
)(

HHcl + χχcl
)

− i
(

φ+clφ− − φ−clφ+
)(

Hχcl −Hclχ
)}

+ξ
e2

2

[

φ+clφ− − φ−clφ+
]2

+
ξ

2

(

e

2 sinW cosW

)2 [(

1 − 2 sin2
W

) (

φ−φ+cl − φ+φ−cl
)

+ i
(

Hclχ−Hχcl
)]2
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D.3.1 Modifications to Feynman Rules

By expanding this expression in terms of component fields we obtain, as already anticipated

• a quadratic correction to the gauge lagrangian which cancels the Higgs-gauge mixing

• a gauge dependent correction to the cubic and quartic coupling of gauge fields ( one or
two classical legs )

• a gauge dependent correction to the mass matrix of the would-be Goldstone bosons
φ±, χ

• gauge independent corrections (proportional to the “vev” ) to the cubic interaction of
gauge fields and Higgs fields

• a gauge dependent correction to the interaction of Higgs fields, (one or two classical
legs)

In this Appendix we shall limit ourselves to the vertices relevant for the calculation Z → bb̄.
Then we need to reconsider only the vertices of the χcl with 2, 3 quantum Higgs fields.

Relevant χcl-quantum vertices

〈

χclχH
〉

= −2iλ

√

−µ2

λ
+ iξ

g

2 cosW

(

gv

2 cosW

)

= − i

2
gmW

(

mH

mW

)2

+ iξ
g

2 cosW
mZ

〈

χclχφ+φ−
〉

= −2iλ

= − i

4
g2
(

mH

mW

)2
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It results that only the trilinear vertex H,χ, χ takes a gauge correction. For completeness we
list in the following the other relevant vertices, which are the same for quantum or classical
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fields

〈χtt̄〉 =
gt√
2
γ5 =

g

2

mt

mW
γ5

〈

χbb̄
〉

= − gb√
2
γ5 = −g

2

mb

mW

〈

t̄φ+b
〉

= igtPL =
ig√
2

mt

mW
PL

〈

b̄φ−t
〉

= igtPR =
ig√
2

mt

mW
PR

〈t̄Ht〉 = − igt√
2

= − ig
2

mt

mW
(idem for b)

(D.28)
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and A. Santamaŕıa, Nucl. Phys. B363 (1991) 326.



BIBLIOGRAPHY 141

[51] New bounds on mt and first bounds on MH from precision electroweak data, J. Ellis

and G. L. Fogli Phys. Lett. B249 (1990) 543.

[52] Electroweak radiative corrections to b-quark production , B. W. Lynn and R. G. Stuart

Phys. Lett. B252 (1990) 676.

[53] Theory of Electroweak Interactions, L. Maiani, in the 1990 Cargèse Lectures, Z0 Physics,
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