
Process Algebraic Architectural Description Languages:
Generalizing Component-Oriented Mismatch Detection
in the Presence of Nonsynchronous Communications

Addendum to:
“Handling Communications in Process Algebraic Architectural Description Languages:

Modeling, Verification, and Implementation”
Journal of Systems and Software 83:1404–1429, August 2010

Marco Bernardo Edoardo Bontà Alessandro Aldini

Università di Urbino “Carlo Bo” – Italy

Abstract

In the original paper, we showed how to enhance the expressiveness of a typical process algebraic
architectural description language by including the capability of representing nonsynchronous communi-
cations. In particular, we extended the language by means of additional qualifiers enabling the designer
to distinguish among synchronous, semi-synchronous, and asynchronous ports. Moreover, we showed
how to modify techniques for detecting coordination mismatches such as the compatibility check for star
topologies and the interoperability check for cycle topologies, in such a way that those two checks are ap-
plicable also in the presence of nonsynchronous communications. In this addendum, we generalize those
results by showing that it is possible to verify in a component-oriented way an arbitrary property of a
certain class (not only deadlock) over an entire architectural type having an arbitrary topology (not only
stars and cycles) by considering also behavioral variations, exogenous variations, endogenous variations,
and multiplicity variations, so to deal with the possible presence of nonsynchronous communications.
The proofs are at the basis of some results mentioned in the book “A Process Algebraic Approach to
Software Architecture Design” by Alessandro Aldini, Marco Bernardo, and Flavio Corradini, published
by Springer in 2010.

1 Introduction

In [3], we showed how to enhance the expressiveness of a typical process algebraic architectural descrip-
tion language by including the capability of representing nonsynchronous communications. We focused on
PADL [4, 1] and extended it by means of additional qualifiers enabling the designer to distinguish among
synchronous, semi-synchronous, and asynchronous ports.

Semi-synchronous ports are not blocking. A semi-synchronous port of a component succeeds if there is
another component ready to communicate with it, otherwise it raises an exception so as not to block the
component to which it belongs. For example, a semi-synchronous input port can be used to model accesses
to a tuple space via input or read probes. A semi-synchronous output port can instead be used to model
the interplay between a graphical user interface and an underlying application, as the former must not block
whenever the latter cannot do certain tasks requested by the user.

Likewise, asynchronous ports are not blocking because the beginning and the end of the communications
in which these ports are involved are completely decoupled. For instance, an asynchronous output port can
be used to model output operations on a tuple space. An asynchronous input port can instead be used to
model the periodical check for the presence of information received from an event notification service. The
semantic treatment of asynchronous ports requires the addition of implicit repository-like components that
implement the decoupling.

1



As far as verification is concerned, in [3] we showed how to modify techniques for detecting coordination
mismatches. In particular, we addressed the compatibility check for star topologies and the interoperability
check for cycle topologies, both introduced in [4], in such a way that those two checks are applicable also in
the presence of nonsynchronous communications.

This is accomplished by viewing certain activities carried out through semi-synchronous and asynchronous
ports as internal activities when performing the above mentioned checks. The reason is that each such activity
has a specific outcome and takes place at a specific time instant when considered from the point of view of
the individual component executing that activity. However, in the overall architecture, the same activity can
raise an exception (if the port is semi-synchronous and the other ports are not ready to communicate with it)
or can be delayed (if the port is asynchronous and the communication is buffered). Thus, if we do not regard
exceptions and all the activities carried out through asynchronous ports as internal activities at verification
time, the compatibility or interoperability check may fail even in the absence of a real coordination mismatch.

In Thms. 4.7 and 4.9 of [3], we showed results based on adaptations of the compatibility check for star
topologies and the interoperability check for cycle topologies, which correspond to Thms. 4.5 and 5.2 of [4].
However, in Thms. 4.14, 4.15, 4.23, 4.25, and 4.26 of [1], the results of [4] were generalized by showing that it
is possible to verify in a component-oriented way an arbitrary property of a certain class (not only deadlock)
over an entire architectural type having an arbitrary topology (not only stars and cycles) by considering also
behavioral variations, exogenous variations, endogenous variations, and multiplicity variations.

In this addendum to [3], we extend the general results of [1] to deal with the possible presence of
nonsynchronous communications. Observing that Prop. 5.1 of [2] is a slight extension of Thm. 4.7 of [3] and
that Props. 5.2 and 5.3 of [2] are slight extensions of Thm. 4.9 of [3], this work gives rise to Thm. 5.1 and
Cors. 5.1, 5.2, 5.3, and 5.4 of [2], which respectively extend Thms. 4.14, 4.15, 4.23, 4.25, and 4.26 of [1].

2 Arbitrary Topologies and General Properties

As in [1, 2], we start with an architectural description A that has an arbitrary topology and a property P that
belongs to the class Ψ of properties each of which (i) is expressed only in terms of the possibility/necessity of
executing certain local interactions in a certain order through a logic that does not allow negation to be freely
used and (ii) comes equipped with a weak behavioral equivalence ≈P coarser than weak bisimilarity that
preserves P and is a congruence with respect to static process algebraic operators. Following the notation
used in [2], we denote by FC1,...,Cn

the frontier of a set of AEIs {C1, . . . , Cn}, by CUC the cyclic union of an
AEI C, and by CU(κ) the set of cyclic unions generated by a cycle covering algorithm κ; moreover, subscript
bbm, standing for before behavioral modifications, replaces bbv, standing for before behavioral variations.

Theorem 5.1 of [2] Let A be an architectural description and P ∈ Ψ be a property for which the following
two conditions hold:

1. For each K ∈ A belonging to an acyclic portion or to the intersection of some cycle with acyclic
portions of the abstract enriched flow graph of A, K is P-compatible with every C ∈ BK − CUK .

2. If A is cyclic, then there exists a total cycle covering algorithm κ such that for each cyclic union
{C1, . . . , Cn} ∈ CU(κ):

(a) If FC1,...,Cn
= ∅, then there exists Cj ∈ {C1, . . . , Cn} that P-interoperates with the other AEIs in

the cyclic union.

(b) If FC1,...,Cn
6= ∅, then every Cj ∈ FC1,...,Cn

P-interoperates with the other AEIs in the cyclic
union.

(c) If no Cj ∈ FC1,...,Cn
is such that [[Cj ]]

pc;wob
A satisfies P and there exists Cg ∈ {C1, . . . , Cn} −

FC1,...,Cn such that [[Cg]]pc;wob
A satisfies P, then at least one such Cg P-interoperates with the

other AEIs in the cyclic union.

Then [[A]]pc;#Abbm satisfies P iff so does [[C]]pc;wob
A for some C ∈ A.

2



Proof We proceed by induction on the number m ∈ N of cycles in the abstract enriched flow graph of A:

• If m = 0, then the abstract enriched flow graph of A is acyclic. We prove the result by induction on
the number s ∈ N≥1 of stars in the abstract enriched flow graph of A:

– If s = 1, then there is only one star in the abstract enriched flow graph of A, which we assume to
be composed of the AEIs K,C1, . . . , Cn and centered on K. In order to avoid trivial cases, let us
assume n > 0. We distinguish among the following three cases:

∗ Case i: [[K]]pc;wob
A satisfies P. By virtue of condition 1, since K is P-compatible with all the

AEIs in BK , from Prop. 5.1 of [2] we derive that also [[K,BK ]]tc;#K,BK ;K
K,BK

/
n
∪
l=1

(HK,Cl
∪EK,Cl

)

satisfies P. Since [[K,BK ]]tc;#K,BK ;K
K,BK

= [[A]]tc;#A;K
bbm , it holds that [[A]]pc;#Abbm satisfies P too,

because P does not contain any free use of negation.

∗ Case ii: [[K]]pc;wob
A does not satisfy P, but there exists Cj ∈ BK such that [[Cj ]]

pc;wob
A satisfies P.

By virtue of condition 1, Cj is P-compatible with K:

([[Cj ]]
pc;#K
A ‖S(Cj ,K;A) [[K]]

tc;#Cj

Cj ,BCj
) / (HCj ,K ∪ ECj ,K) ≈P [[Cj ]]

pc;wob
A

where we observe that:
[[K]]

tc;#Cj

Cj ,BCj
= [[K]]

pc;#Cj

Cj ,BCj
/ϕK,async(OALIK)

≈P [[K]]
pc;#Cj

A / (Name − VK;Cj ) /ϕK,async(OALIK)
By virtue of condition 1, since K is P-compatible with all the AEIs in BK , from Prop. 5.1
of [2] we derive in particular that:

[[K,BK − {Cj}]]tc;#K,BK ;K
K,BK

/
n
∪

l=1,l 6=j
(HK,Cl

∪ EK,Cl
) ≈P [[K]]pc;wob

A

Since [[K]]
pc;#Cj

A – occurring in the former of the last two equalities – is given by [[K]]pc;wob
A

– occurring in the latter of the last two equalities – in parallel with the buffers associated
with the originally asynchronous local interactions of K attached to Cj , from the last equality
we derive that:

[[K]]
pc;#Cj

A / (Name − VK;Cj ) /ϕK,async(OALIK)
≈P

[[K,BK − {Cj}]]tc;#K,BK ;K
K,BK

/
n
∪

l=1,l 6=j
(HK,Cl

∪ EK,Cl
) / (Name − VK;Cj ) /ϕK,async(OALIK)

Thanks to the last two hidings, all the actions but those in ϕK;Cj (LIK;Cj ) are hidden, hence
the first hiding in the right-hand term above is redundant and we obtain that:

[[K,BK − {Cj}]]tc;#K,BK ;K
K,BK

/
n
∪

l=1,l 6=j
(HK,Cl

∪ EK,Cl
) / (Name − VK;Cj ) /ϕK,async(OALIK)

≈P
[[K,BK − {Cj}]]tc;#K,BK ;K

K,BK
/ (Name − VK;Cj

) /ϕK,async(OALIK)
By definition of totally closed semantics, we then derive that:

[[K,BK − {Cj}]]tc;#K,BK ;K
K,BK

/ (Name − VK;Cj ) /ϕK,async(OALIK)

≈P
[[K,BK − {Cj}]]tc;#K,BK ;K

K,BK
/ (Name − VK;Cj

)
Hence, summarizing, we have proved that:

[[K]]
tc;#Cj

Cj ,BCj
≈P [[K,BK − {Cj}]]tc;#K,BK ;K

K,BK
/ (Name − VK;Cj )

From the first equality at the beginning of this case and the congruence property of ≈P with
respect to static process algebraic operators, we obtain that:

([[Cj ]]
pc;#K
A ‖S(Cj ,K;A) ([[K,BK − {Cj}]]tc;#K,BK ;K

K,BK
/ (Name − VK;Cj

))) / (HCj ,K ∪ ECj ,K)

≈P
[[Cj ]]

pc;wob
A

Since ≈P preserves P, the left-hand term of the previous equality satisfies P. From the fact

that P does not contain any free use of negation, we derive that [[Cj ,K,BK−{Cj}]]
tc;#K,BK ;Cj ,K
K,BK

3



satisfies P. Since [[Cj ,K,BK − {Cj}]]
tc;#K,BK ;Cj ,K
K,BK

= [[A]]
tc;#A;Cj ,K
bbm , it holds that [[A]]pc;#Abbm

satisfies P too, because P does not contain any free use of negation.

∗ Case iii: no AEI in the star satisfies P. By following the same arguments as case i, we reduce
the star to the AEI K, which does not satisfy P, from which it immediately follows that not
even [[A]]pc;#Abbm satisfies P.

– Let the result hold for a certain s ≥ 1 and suppose that the abstract enriched flow graph of A is
composed of s+1 stars. Due to the acyclicity of the abstract enriched flow graph of A, there must
be a star – say composed of the AEIs K,C1, . . . , Cn and centered on K – that is attached only
to one other star in the abstract enriched flow graph of A – say with Ci. Then, we distinguish
among the following four cases:

∗ Case I: [[Ci]]
pc;wob
A does not satisfy P, but there exists Cj ∈ BK − {Ci} such that [[Cj ]]

pc;wob
A

satisfies P. By considering BK − {Ci} in place of BK and following the same arguments as

case ii, it is straightforward to obtain that [[Cj ,K,BK − {Cj , Ci}]]
tc;#K,BK ;Cj ,K
K,BK

satisfies P
too. Now, by virtue of condition 1, K is P-compatible with Ci:

([[K]]pc;#Ci

A ‖S(K,Ci;A) [[Ci]]
tc;#K
K,BK

) / (HK,Ci ∪ EK,Ci) ≈P [[K]]pc;wob
A

Since ≈P is a congruence with respect to static process algebraic operators, we derive that:

([[Cj ,K,BK − {Cj , Ci}]]
tc;#K,BK ;Cj ,K
K,BK

‖S(K,Ci;A)[[Ci]]
tc;#K
K,BK

) / (HK,Ci ∪ EK,Ci)

≈P
[[Cj ,K,BK − {Cj , Ci}]]

tc;#K,BK ;Cj ,K
K,BK

and, as a consequence, the left-hand term of this equality satisfies P. Note that such a term is

≈P -equivalent to [[K,BK ]]
tc;#K,BK ;Cj ,K
K,BK

/ (HK,Ci
∪EK,Ci

). Since P does not contain any free

use of negation, we derive that also [[K,BK ]]
tc;#K,BK ;Cj ,K
K,BK

satisfies P and, for the same reason,

so does [[K,BK ]]
tc;#K,BK ;Cj ,K
A . Since P is expressed only in terms of local interactions, it holds

that [[K,BK ]]
tc;#K,BK ;Cj ,K
A /EK,BK

satisfies P too, where EK,BK
is the set of exceptions that

may be raised by semi-synchronous interactions involved in attachments between K and the
AEIs in BK .
Now, consider the architectural description A′ obtained by replacing the AEIs K,C1, . . . , Cn

with a new AEI K ′ isomorphic to [[K,BK ]]
tc;#K,BK ;Cj ,K
A /EK,BK

. It turns out that A′ has
an acyclic topology with one fewer star with respect to A, so the induction hypothesis is
applicable to A′ if we show that all of its AEIs satisfy condition 1. It will then follow that

[[A′]]pc;#A
′

bbm satisfies P because so does [[K ′]]pc;wob
A′ and hence, since P does not contain any

free use of negation, we will derive that [[A]]pc;#Abbm satisfies P because so does [[Cj ]]
pc;wob
A .

It is easy to see that K ′ satisfies condition 1. If C is an arbitrary AEI attached to K ′ because
it was previously attached to Ci, by virtue of condition 1 in A we have that:

([[Ci]]
pc;#C
A ‖S(Ci,C;A) [[C]]tc;#Ci

Ci,BCi
) / (HCi,C ∪ ECi,C) ≈P [[Ci]]

pc;wob
A

from which it follows that in A′:
([[K ′]]pc;#C

A′ ‖S(K′,C;A′) [[C]]tc;#K′

K′,BK′ ) / (HK′,C ∪ EK′,C) ≈P [[K ′]]pc;wob
A′

because ≈P is a congruence with respect to static process algebraic operators.
Also any such C satisfies condition 1 in A′. Starting from the fact that by virtue of condi-
tion 1 in A we have that:

([[C]]pc;#Ci

A ‖S(C,Ci;A) [[Ci]]
tc;#C
C,BC

) / (HC,Ci ∪ EC,Ci) ≈P [[C]]pc;wob
A

we have to prove that in A′:
([[C]]pc;#K′

A′ ‖S(C,K′;A′) [[K ′]]tc;#C
C,BC

) / (HC,K′ ∪ EC,K′) ≈P [[C]]pc;wob
A′

which can be accomplished by proving that:
[[K ′]]tc;#C

C,BC
≈P [[Ci]]

tc;#C
C,BC

On the one hand, since K ′ is attached to C in A′ because Ci is attached to C in A, it holds
that:

[[K ′]]tc;#C
C,BC

≈P [[K,BK ]]
tc;#C,K,BK ;Cj

A /EK,BK
/ϕCj ,async(OALICj

) / (Name − VCi;C)

≈P [[K,BK ]]tc;#C,K,BK

A /EK,BK
/ (Name − VCi;C)

4



On the other hand, it holds that:

[[Ci]]
tc;#C
C,BC

≈P [[Ci]]
pc;#C
C,BC

/ϕCi,async(OALICi)

≈P [[Ci]]
pc;#C
A /ϕCi,async(OALICi

) / (Name − VCi;C)
and by virtue of condition 1:

[[Ci]]
pc;wob
A ≈P ([[Ci]]

pc;#K
A ‖S(Ci,K;A)[[K]]tc;#Ci

Ci,BCi
) / (HCi,K ∪ ECi,K)

≈P [[Ci,K]]tc;#Ci,K;Ci

Ci,BCi
/ (HCi,K ∪ ECi,K)

Since [[Ci]]
pc;#C
A is given by [[Ci]]

pc;wob
A in parallel with the buffers associated with the origi-

nally asynchronous local interactions of Ci attached to C, we derive that:

[[Ci]]
pc;#C
A /ϕCi,async(OALICi) / (Name − VCi;C)

≈P
[[Ci,K]]tc;#C,Ci,K;Ci

Ci,BCi
/ (HCi,K ∪ ECi,K) /ϕCi,async(OALICi

) / (Name − VCi;C)

≈P
[[Ci,K]]tc;#C,Ci,K;Ci

Ci,BCi
/ECi,K /ϕCi,async(OALICi

) / (Name − VCi;C)

because HCi,K ⊆ (Name − VCi;C). Note that the term above includes [[K]]pc;wob
A , which, by

virtue of condition 1 and Prop. 5.1 of [2], satisfies:

[[K]]pc;wob
A ≈P [[K,BK − {Ci}]]tc;#K,BK ;K

K,BK
/

n
∪

l=1,l 6=i
(HK,Cl

∪ EK,Cl
)

Since ≈P is a congruence with respect to static process algebraic operators, from the equali-
ties above we derive that:

[[Ci,K]]tc;#C,Ci,K;Ci

Ci,BCi
/ECi,K /ϕCi,async(OALICi) / (Name − VCi;C)

≈P
[[Ci,K,BK − {Ci}]]tc;#C,K,BK ;Ci

Ci,BCi
/

n
∪

l=1,l 6=i
(HK,Cl

∪ EK,Cl
) /ECi,K /ϕCi,async(OALICi) / (Name − VCi;C)

Since
n
∪

l=1,l 6=i
HK,Cl

⊆ (Name−VCi;C), by definition of totally closed semantics the right-hand

term of the last equality is ≈P -equivalent to:

[[K,BK ]]tc;#C,K,BK

Ci,BCi
/

n
∪
l=1

EK,Cl
/ (Name − VCi;C)

≈P
[[K,BK ]]tc;#C,K,BK

Ci,BCi
/EK,BK

/ (Name − VCi;C)

Since the hiding operation hides all the actions but the interactions from Ci attached to C,
this term is ≈P -equivalent to [[K,BK ]]tc;#C,K,BK

A /EK,BK
/ (Name − VCi;C). Therefore, we

have shown that [[K ′]]tc;#C
C,BC

≈P [[Ci]]
tc;#C
C,BC

.

∗ Case II: [[Ci]]
pc;wob
A satisfies P. The proof straightforwardly derives from case I; in particular,

K ′ turns out to be isomorphic to [[K,BK ]]tc;#K,BK ;Ci

A .

∗ Case III: [[K]]pc;wob
A satisfies P. The proof straightforwardly derives from case i and case I;

in particular, K ′ turns out to be isomorphic to [[K,BK ]]tc;#K,BK ;K
A .

∗ Case IV: no AEI in the star satisfies P. It is sufficient to apply the same arguments as the
previous case and then observe that K ′ does not satisfy P.

• Let the result hold for a certain m ≥ 0 and suppose that the abstract enriched flow graph of A has
m + 1 cycles. Since the cycle covering algorithm κ of condition 2 is total, let Y = {C1, . . . , Cn} be a
cyclic union in CU(κ) that directly interacts with at most one cyclic union in CU(κ). In the following,
we let I = {Cg} ∪ FC1,...,Cn if there exists Cg satisfying condition 2.c, and I = FC1,...,Cn otherwise.

Now, we replace the AEIs C1, . . . , Cn with a new AEI C whose behavior is isomorphic to:
[[Y]]tc;#Y;IA / (Name − ∪

C′∈I
VC′;A) / ∪

C′∈I
(HC′,Y ∪ EC′,Y)

thus obtaining an architectural description A′ such that:

1. [[C]]pc;wob
A′ satisfies P iff so does at least one AEI in Y. Indeed, one such AEI exists in Y iff,

by virtue of conditions 2.b and 2.c, I includes an AEI C ′ that P-interoperates with Y such that

5



[[C ′]]pc;wob
A satisfies P, which means that [[Y]]tc;#Y;C

′

A / (Name−VC′;A) / (HC′,Y ∪EC′,Y) satisfies P
and hence so does [[C]]pc;wob

A′ because P does not contain any free use of negation.

2. C preserves condition 1. In fact, let K be an arbitrary AEI attached to C because it was previ-
ously attached to an AEI Cj of FC1,...,Cn . It holds that C is P-compatible with K and vice versa.
On C side, we have that in A:

([[Cj ]]
pc;#K
A ‖S(Cj ,K;A) [[K]]

tc;#Cj

Cj ,BCj
) / (HCj ,K ∪ ECj ,K) ≈P [[Cj ]]

pc;wob
A

from which it follows that in A′:
([[C]]pc;#K

A′ ‖S(C,K;A′) [[K]]tc;#C
C,BC

) / (HC,K ∪ EC,K) ≈P [[C]]pc;wob
A′

because ≈P is a congruence with respect to static process algebraic operators.

On K side, it can be similarly shown that from:

([[K]]
pc;#Cj

A ‖S(K,Cj ;A) [[Cj ]]
tc;#K
K,BK

) / (HK,Cj
∪ EK,Cj

) ≈P [[K]]pc;wob
A

we derive that:
([[K]]pc;#C

A′ ‖S(K,C;A′) [[C]]tc;#K
K,BK

) / (HK,C ∪ EK,C) ≈P [[K]]pc,wob
A′

because Cj P-interoperates with the other AEIs in Y due to condition 2.b.

3. If A′ is cyclic, then condition 2 is preserved. In fact, let CU ′(κ) be the set of cyclic unions for
A′ obtained from CU(κ) by replacing in each original cyclic union every occurrence of C1, . . . , Cn

with C. Every cyclic union in CU ′(κ) that does not include C has a corresponding topologically
equivalent cyclic union in CU(κ).

Now, consider a cyclic union X ′ ∈ CU ′(κ) formed by the AEIs H1, . . . ,Hm, C. Then, CU(κ) in-
cludes a cyclic union X formed by the AEIs H1, . . . ,Hm, Cj , where Cj ∈ FC1,...,Cn

. By virtue of
condition 2.b:

[[X ]]
tc;#X ;Cj

A / (Name − VCj ;A) / (HCj ,X ∪ ECj ,X ) ≈P [[Cj ]]
pc;wob
A

Since ≈P is a congruence with respect to static process algebraic operators:

[[X ′]]tc;#X
′;C

A′ / (Name − VC;A′) / (HC,X ′ ∪ EC,X ′) ≈P [[C]]pc;wob
A′

Therefore, if FH1,...,Hm,C = ∅, then condition 2.a is preserved; otherwise, if C ∈ FH1,...,Hm,C , then
C preserves condition 2.b and so does each Hl ∈ FH1,...,Hm,C − {C} as from:

[[X ]]tc;#X ;Hl

A / (Name − VHl;A) / (HHl,X ∪ EHl,X ) ≈P [[Hl]]
pc;wob
A

we derive that:
[[X ′]]tc;#X

′;Hl

A′ / (Name − VHl;A′) / (HHl,X ′ ∪ EHl,X ′) ≈P [[Hl]]
pc;wob
A′

because Cj P-interoperates with its cyclic union.

Now, let us consider condition 2.c and assume that no AEI in the frontier of X satisfies P. If, by
virtue of condition 2.c, there is Hg ∈ X such that [[Hg]]pc;wob

A satisfies P and Hg P-interoperates
with X , then, by virtue of the same arguments used for Hl, we immediately derive that Hg

P-interoperates with X ′, thus preserving condition 2.c.

On the other hand, if Cj is such that [[Cj ]]
pc;wob
A satisfies P, then we have shown that [[C]]pc;wob

A′

satisfies P and P-interoperates with X ′. Hence, C preserves condition 2.c in the case it does not
belong to the frontier of X ′.

4. The abstract enriched flow graph of A′ has at most m cycles.

Then, by the induction hypothesis, the theorem holds for [[A′]]pc;#A
′

bbm . Since P does not contain any

free use of negation, we immediately derive that the theorem holds also for [[A]]pc;#Abbm .

3 Behavioral Variations

We continue by extending the result to behavioral variations, i.e., to instances of an AT whose observable
behaviors conform to each other according to weak bisimilarity ≈B as defined in [1, 2].

Corollary 5.1 of [2] Let A be an architectural description and P ∈ Ψ be a property for which the two
conditions of Thm. 5.1 of [2] hold. Whenever≈B⊆≈P , then for each AT instanceA′ that strictly behaviorally

conforms to A it turns out that [[A′]]pc;#A
′

bbm satisfies P iff so does [[C]]pc;wob
A for some C ∈ A.

6



Proof Due to behavioral conformity, [[A′]]pc;#A
′

bbm ≈B [[A]]pc;#Abbm up to an injective relabeling function that

matches local interactions occurring in A′, A, and P. Therefore, [[A′]]pc;#A
′

bbm ≈P [[A]]pc;#Abbm up to the same

relabeling function, because ≈B⊆≈P , and hence [[A′]]pc;#A
′

bbm satisfies P iff so does [[A]]pc;#Abbm . The result then
follows from Thm. 5.1 of [2].

4 Exogenous Variations

We now extend the result to topological variations of exogenous nature, which take place at the topological
frontier formed by architectural interactions as explained in [1, 2]. Following the notation used in [2], we
denote by SFC1,...,Cn

the semi-frontier of a set of AEIs {C1, . . . , Cn}; moreover, we consider partially/totally
semi-closed interacting semantics, in which architectural interactions are left visible, and the related P-semi-
compatibility and P-semi-interoperability checks, together with the notion of exo-coverability.

Corollary 5.2 of [2] Let A be an architectural description and P ∈ Ψ be a property for which the two
conditions of Thm. 5.1 of [2] hold. Let A′ be an AT instance resulting from a strictly topologically conformant
exogenous variation of A for which the following additional conditions hold:

3. For each K ∈ A belonging to an acyclic portion or to the intersection of some cycle with acyclic portions
of the abstract enriched flow graph of A, if K is of the same type as an AEI having architectural
interactions at which the exogenous variation takes place, then K is P-semi-compatible with every
C ∈ BK − CUAK .

4. IfA′ is cyclic, thenA′ is exo-coverable by κ and, for each Cj ∈ SFC1,...,Cn
with {C1, . . . , Cn} ∈ CUA(κ),

if Cj is of the same type as an AEI having architectural interactions at which the exogenous variation
takes place, then Cj P-semi-interoperates with the other AEIs in {C1, . . . , Cn}.

Then [[A′]]pc;#A
′

bbm satisfies P iff so does [[C]]pc;wob
A for some C ∈ A.

Proof We show that A′ satisfies the two conditions of Thm. 5.1 of [2], from which the result will immediately
follow:

• A′ satisfies condition 1. Consider an AEIK ∈ A′ belonging to an acyclic portion or to the intersection of

some cycle with acyclic portions of the abstract enriched flow graph of A′, and an AEI C ∈ BK−CUA
′

K .
We distinguish among the following four cases:

– Both AEIs are in A. On the one hand, if K is not an AEI having architectural interactions at
which the exogenous extension takes place, then K is P-compatible with C by virtue of condition 1
applied to A. On the other hand, if K is an AEI having architectural interactions at which the
exogenous extension takes place, then by virtue of condition 3 it holds that K is P-semi-compatible
with C in A, from which we derive that K is P-compatible with C in A′.

– K ∈ A and C is an additional AEI. By hypothesis, in A there is an attachment between an
AEI K ′ and corr(C), such that K ′ is of the same type as K and corr(C) ∈ BK′ − CUAK′ . Then,
by virtue of condition 3, K ′ is P-semi-compatible with corr(C), from which it follows that K is
P-compatible with C.

– K is an additional AEI and C ∈ A. By hypothesis, in A there is an attachment between an
AEI C ′ and corr(K), such that C ′ is of the same type as C and C ′ ∈ Bcorr(K) − CUAcorr(K).
Then, by virtue of condition 1, corr(K) is P-compatible with C ′, from which it follows that K is
P-compatible with C.

– Both K and C are additional AEIs. By hypothesis, in A there are two attached AEIs corr(K) and
corr(C) such that, by virtue of condition 1 applied to A, corr(K) is P-compatible with corr(C).
As a consequence, K is P-compatible with C.

7



• If A′ is cyclic, then A′ satisfies condition 2. We first observe that A′ satisfies condition 2.a because, by
virtue of condition 4, the exogenous variation of κ applied to A′ cannot generate a single cyclic union
with empty frontier.

Now, suppose that CUA
′

K is a cyclic union generated by the exogenous variation of κ. By virtue of
condition 4, we distinguish between the following two cases:

– If K is in A, then CUA
′

K = CUAK and each Ci ∈ FCUA′
K

belongs to SFCUA
K

. Then, by virtue of

condition 4 or by virtue of condition 2.b applied to A, Ci P-interoperates with the other AEIs of

CUA
′

K . Hence, CUA
′

K satisfies condition 2.b. For the same reason, if CUAK satisfies condition 2.c,

then so does CUA
′

K .

– IfK is an additional AEI, then CUA
′

K is strictly topologically equivalent to CUAcorr(K) ∈ CU
A(κ). By

means of an argument similar to the one applied above, it follows that CUA
′

K satisfies condition 2.b

because so does CUAcorr(K), and that if CUAcorr(K) satisfies condition 2.c, then so does CUA
′

K .

5 Endogenous Variations

We further extend the result to endogenous variations, which take place inside the topological frontier as
explained in [1, 2]. Following [2], we consider the notion of endo-coverability.

Corollary 5.3 of [2] Let A be an architectural description and P ∈ Ψ be a property for which the two
conditions of Thm. 5.1 of [2] hold. Let A′ be an AT instance resulting from an endogenous variation of A
for which the following additional conditions hold:

3 . For each attachment in A′ from interaction o of an AEI C ′1, which belongs to an acyclic portion or
to the intersection of some cycle with acyclic portions of the abstract enriched flow graph of A′, to

interaction i of an AEI C ′2 ∈ BC′
1
− CUA

′

C′
1
, there exists an attachment in A from interaction o of an

AEI C1 of the same type as C ′1, with C1 belonging to an acyclic portion or to the intersection of
some cycle with acyclic portions of the abstract enriched flow graph of A, to interaction i of an AEI
C2 ∈ BC1

− CUAC1
of the same type as C ′2.

4 . No local interaction occurring in P is involved in attachments canceled by the endogenous variation.

5 . If A or A′ is cyclic, then A′ is endo-coverable by κ and for each cyclic union CUA
′

C generated by the
endogenous variation of κ:

(a) No local interaction of the AEIs of CUAC that P-interoperate with the other AEIs in CUAC by virtue
of condition 2 of Thm. 5.1 of [2] is involved in attachments canceled by the endogenous variation.

(b) No possibly added AEI in CUA
′

C belongs to the frontier of CUA
′

C .

(c) If C ∈ A, then [[CUA
′

C ]]
pc;#CUA′

C

CUA′
C

/H ≈P [[CUAC ]]
pc;#CUA

C

CUA
C

/H where H contains all local interactions

of the added/removed AEIs as well as those attached to them.

Then [[A′]]pc;#A
′

bbm satisfies P iff so does [[C]]pc;wob
A for some C ∈ A.

Proof We show that A′ satisfies the two conditions of Thm. 5.1 of [2], from which the result will immediately
follow thanks to condition 4 :

• A′ satisfies condition 1. Consider an AEIK ∈ A′ belonging to an acyclic portion or to the intersection of

some cycle with acyclic portions of the abstract enriched flow graph of A′, and an AEI C ∈ BK−CUA
′

K .
We distinguish between the following two cases:

8



– Both AEIs are in A. The only interesting case occurs whenever K and C are not attached in A.
In this case, by virtue of condition 3 , there exists an attachment in A of the same kind between
an AEI of the same type as K and an AEI of the same type as C, from which the result follows
by virtue of condition 1 applied to A.

– K ∈ A and C is an additional AEI, or K is an additional AEI and C ∈ A, or both K and C are
additional AEIs. It is sufficient to apply the same argument illustrated above.

• If A′ is cyclic, then A′ satisfies condition 2. Suppose that the endogenous variation of κ generates a

single cyclic union CUA
′

C with empty frontier. Then, by virtue of condition 5 .c, [[CUA
′

C ]]
pc;#CUA′

C

CUA′
C

/H ≈P

[[CUAC ]]
pc;#CUA

C

CUA
C

/H and by virtue of conditions 5 .a and 5 .b it turns out that conditions 2.a and 2.c are

preserved. In particular, we now show that if there exists Ci ∈ CUAC that, by virtue of condition 2.a
or 2.c applied to A, P-interoperates with the other AEIs in CUAC , then Ci P-interoperates with the

other AEIs in CUA
′

C . By hypothesis:

[[CUAC ]]
tc;#CUA

C ;Ci

A / (Name − VCi;A) / (HCi,CUA
C
∪ ECi,CUA

C
) ≈P [[Ci]]

pc;wob
A

By condition 5 .a, H ⊆ (Name − VCi;A). Hence, the left-hand term of this equality is P-equivalent to:

[[CUAC ]]
pc;#CUA

C

CUA
C

/H / (Name − VCi;A) / (HCi,CUA
C
∪ ECi,CUA

C
)

and to:

[[CUA
′

C ]]
pc;#CUA′

C

CUA′
C

/H / (Name − VCi;A′) / (HCi,CUA′
C
∪ ECi,CUA′

C
)

which, for the same motivations, is P-equivalent to:

[[CUA
′

C ]]
tc;#CUA′

C ;Ci

A′ / (Name − VCi;A′) / (HCi,CUA′
C
∪ ECi,CUA′

C
)

from which the result follows.

Now, suppose that CUA
′

C is a cyclic union with nonempty frontier generated by the endogenous variation
of κ. We distinguish between the following two cases:

– If CUA
′

C is equal to CUAC (resp. strictly topologically equivalent to a cyclic union Y ∈ CUA(κ)),

then CUA
′

C satisfies conditions 2.b and 2.c because so does CUAC (resp. Y).

– If CUA
′

C includes some of the added AEIs or CUAC includes some of the removed AEIs, then it is
sufficient to apply condition 5 as shown above to derive that conditions 2.b and 2.c are preserved.

6 Multiplicity Variations

We finally extend the result to multiplicity variations, which take place at and-/or-interactions as explained
in [1, 2].

Corollary 5.4 of [2] Let A be an architectural description and P ∈ Ψ be a property for which the two
conditions of Thm. 5.1 of [2] hold. Let A′ be an AT instance resulting from a multiplicity variation of A for
which the following additional conditions hold:

3̃ . No local interaction occurring in P is involved in attachments canceled by the multiplicity variation.

4̃ . No local or-interaction involved in the multiplicity variation is attached to a semi-synchronous uni-
interaction or to an input asynchronous uni-interaction.

5̃ . Each local or-interaction involved in the multiplicity variation is enabled infinitely often.

6̃ . If A or A′ is cyclic, then CUA(κ) = CUA
′
(κ).

Then [[A′]]pc;#A
′

bbm satisfies P iff so does [[C]]pc;wob
A for some C ∈ A.

9



Proof We show that A′ satisfies the two conditions of Thm. 5.1 of [2], from which the result will immediately
follow thanks to condition 3̃ :

• A′ satisfies condition 1. Consider an AEIK ∈ A′ belonging to an acyclic portion or to the intersection of

some cycle with acyclic portions of the abstract enriched flow graph of A′, and an AEI C ∈ BK−CUA
′

K .
We distinguish among the following five cases:

– Both AEIs are in A and are attached through interactions that are not subject to the multiplicity
variation. Then, K is P-compatible with C by virtue of condition 1 applied to A.

– K is in A and has an and-interaction (subject to the multiplicity variation) to which the AEI C
is attached. If C is in A, then K is P-compatible with C by virtue of condition 1 applied to A.
If C is an additional AEI, then C is of the same type as an AEI C ′ of A that is attached to K
through the same and-interaction. By virtue of condition 1, K is P-compatible with C ′, from
which we derive that K is P-compatible with C.

– K is in A and has an or-interaction (subject to the multiplicity variation) to which the AEI C
is attached. First, assume that C is in A. By virtue of condition 4̃ , both in A and in A′ the
AEI C does not raise any exception because of the attachments between K and any other AEI
attached to the or-interaction. Hence, K is P-compatible with C by virtue of condition 1 applied
to A. Second, assume that C is an additional AEI. In this case, we can apply the same argument,
observing that C is of the same type as an AEI C ′ of A that is attached to K through the same
or-interaction.

– C is in A and has an and-interaction (subject to the multiplicity variation) to which K is attached.
If K is in A, then K is P-compatible with C by virtue of condition 1 applied to A. If K is an
additional AEI, then it is of the same type as an AEI K ′ of A that is attached to C through the
same and-interaction. By virtue of condition 1, K ′ is P-compatible with C, from which we derive
that K is P-compatible with C.

– C is in A and has an or-interaction (subject to the multiplicity variation) to which the AEI K
is attached. First, assume that K is in A. By virtue of condition 4̃ , both in A and in A′ the
AEI K does not raise any exception because of the attachments between C and any other AEI
attached to the or-interaction. Moreover, by virtue of condition 5̃ , K eventually communicates
with C through the or-interaction of C. Hence, K is P-compatible with C by virtue of condition 1
applied to A. Second, assume that K is an additional AEI. In this case, we can apply the same
argument, observing that K is of the same type as an AEI K ′ of A that is attached to C through
the same or-interaction.

• A′ satisfies condition 2 because, by virtue of condition 6̃ , the set of cyclic unions generated by κ for A′
is the same as the one generated by κ for A.

References

[1] A. Aldini and M. Bernardo, “On the Usability of Process Algebra: An Architectural View”, in Theoretical
Computer Science 335:281–329, 2005.

[2] A. Aldini, M. Bernardo, and F. Corradini, “A Process Algebraic Approach to Software Architecture Design”,
Springer, 2010.

[3] M. Bernardo, E. Bontà, and A. Aldini, “Handling Communications in Process Algebraic Architectural Descrip-
tion Languages: Modeling, Verification, and Implementation”, in Journal of Systems and Software 83:1404–
1429, 2010.

[4] M. Bernardo, P. Ciancarini, and L. Donatiello, “Architecting Families of Software Systems with Process Alge-
bras”, in ACM Trans. on Software Engineering and Methodology 11:386–426, 2002.

10


