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Abstract. We present a model of endogenous formation of R&D agreements among �rms
in which also the timing of R&D investments is made endogenous. The purpose is to
bridge two usually separate streams of literature, the noncooperative formation of R&D
alliances and the endogenous timing literature. This allows to consider the formation of
R&D agreements over time. It is shown that, when both R&D spillovers and investment
costs are su¢ ciently low, �rms may �nd di¢ cult to maintain a stable agreement due to the
strong incentive to invest noncooperatively as leaders. In such a case, the stability of an
R&D agreement requires that the joint investment occurs at the initial stage, thus avoiding
any delay. When instead spillovers are su¢ ciently high, cooperation in R&D constitutes
a pro�table option, although �rms also possess the incentive to sequence their investment
over time. Finally, when spillovers are asymmetric and the knowledge mainly leaks from
the leader to the follower, to invest as follower becomes extremely pro�table, making R&D
alliances hard to sustain unless �rms strategically delay their joint investment in R&D.
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1. Introduction

Research agreements among �rms competing in the same markets have since long become
a fairly widespread form of industrial cooperation. Many countries have set up cooperative
R&D programmes for some well de�ned research areas, both at a national and at an inter-
national level. The US, for example, has created in the mid-1980s the National Cooperative
Research Act (NCRA) which aims to protect and regulate R&D alliances among �rms. Also
the EU encourages and subsidizes R&D cooperation between participants belonging to EU
countries with initiatives aimed at enhancing inter-�rm research cooperation, such as the Eu-
reka and EU Framework Programmes. Important research agreements go back to the early
eighties, such as theMicroelectronics and Computer Technology Corporation (MCC), formed
in 1982 to conduct research related to information technology, and the Bell Communications
Research created in 1984 by seven regional US telephone companies.

The economic literature provides a strong empirical evidence on the existence of such
arrangements also in more recent years, and the analysis of the e¤ects of cooperation on
innovation has emerged as an important research topic. A clear understanding of this phe-
nomenon is indeed crucial for consideration of technology and industrial policies.
As is well known, a research agreement is an alliance between �rms in order to coordinate

their research and development activities in a joint project, and to share, to some established
degree, the knowledge obtained from this common e¤ort. Therefore, the creation of such
research agreements allows the �rms not only to coordinate their research e¤orts but also to
improve information-sharing. Many reasons may push �rms to form research cartels. First,
innovation is expensive, and the possibility of cost sharing and avoidance of duplication can
strongly cut the expenses to each member. Second, the risk for a �rm that its own innova-
tion programmes will not produce valuable results is reduced since a research agreement has
greater possibilities of diversi�cation and each member can share risks with the other mem-
bers. Third, the members of a research alliance can acquire a greater competitive advantage
than nonmembers, which implies that there can be a strong danger in being left out of such
cartels (see on this topic, Baumol 1992; see also Katz and Ordover 1990, Hernan, Marin
and Siotis 2003, and Alonso and Marin 2004 for interesting empirical studies). Research
coalitions may also have socially bene�cial e¤ects, such as the internalization of technologi-
cal spillovers, which in general produces an increase in the aggregate level of R&D, and the
elimination of duplication e¤orts, which clearly leads to a reduction in research expenditures.
Departing from d�Aspremont and Jacquemin (1988) pioneering work, a number of papers

have analyzed the e¤ects of research alliances in models with endogenous R&D (see, among
others, Katz and Ordover 1990, Kamien et al. 1992, Suzumura 1992, Petit and Tolwinski,
1997, 1999). However, in these models, the creation of research agreements is exogenously
assumed.

More recently, the endogenous coalition formation literature has attempted to endogenize
the formation of R&D cartels by applying noncooperative models of coalition formation
(see Bloch 2003 and 2004, Yi and Shin 2000 and Yi 2003). Usually, in these models, at
a �rst stage R&D coalitions are assumed to set their investment to maximize their joint
pro�t, and at a second stage �rms compete individually in the product market. A crucial
aspect to assess the stability of a given structure of agreements among �rms is the sign of
the externalities of R&D investments which, in turn, depend on the level of spillovers. For
su¢ ciently high spillovers, forming a research cartel reduces the underinvestment in R&D,
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since the externalities due to the nature of public good of R&D investments are internalized.
Thus, alliances of �rms can invest more than small groups, and this, in turn, may trigger
some �rms to stay out and free ride on the existing cartels. Moreover, di¤erent R&D alliance
formation rules may yield di¤erent outcomes in terms of stability of cooperation (see, for
instance, Yi & Shin 2000). In some cases, the whole industry alliance of �rms investing in
R&D can be stable, especially if there are no synergies and if, after breaking the agreement,
all �rms end up investing as singletons (see, for instance, Yi 2003, Bloch 2003 and Marini
2008 for surveys). However, the stability of alliances is no longer guaranteed if �rms are
assumed to decide endogenously the timing of their investment
The endogenous-timing approach was �rst introduced by Hamilton and Slutsky�s (1990)

within a duopoly game. In their extensive game with observable delay, the authors describe a
two stage set-up in which, at a preplay stage, two players (duopolists) decide independently
whether to move early or late in the basic game (e.g., a duopoly quantity game). If both
players announce the same timing, that is (early, early) or (late, late), the basic game is
played simultaneously. If the players�time-announcements di¤er, the basic game is played
sequentially, with the order of moves as announced by the players. Hamilton and Slutsky�s
main results are that the two leader-follower con�gurations (with either order of play) consti-
tute pure subgame perfect equilibria of the extended game only if at least one player�s payo¤
as follower weakly dominates her corresponding payo¤ in the simultaneous game. When,
conversely, the payo¤ of a follower is lower than in the simultaneous case, the only pure
strategy subgame Nash equilibrium prescribes that both players play simultaneously the
basic game. In a symmetric duopoly with single-valued and monotone best-replies, if �rms
actions are strategic complements (with increasing best-replies) the follower�s payo¤ domi-
nates that of the leader, and therefore that of the simultaneous case. When instead actions
are strategic substitutes (with decreasing best-replies) the opposite holds and a �rst-mover
advantage arises:1

A few recent papers have introduced asymmetric spillovers in a model à la d�Aspremont
& Jacquemin (1988) by assuming that �rms sequence their R&D activities. While some of
these papers assume a given exogenous timing for the investment game (Goel 1990, Crampes
and Langinier 2003, Halmenschlager 2004, Atallah 2005, De Bondt 2007) some other papers
endogenize the timing of investment (Amir et al. 2000, Tesoriere 2008) by adopting a frame-
work à la Hamilton and Slutsky (1990). The degree of technological spillovers is thus shown
to be crucial for these games to possess strategic substitutes vs. strategic complements at-
tributes and give rise to simultaneous vs. sequential endogenous timing R&D equilibria (see
Amir et al., 2000). However, these models do not consider explicitly the possibility for �rms
to form research agreements.
Our purpose in this paper is to bridge these otherwise separate streams of literature, the

noncooperative formation of R&D agreements and the endogenous timing literature, with
the aim to study the formation of research alliances when the timing of R&D investments is
endogenous. Our approach is novel in that it allows for a far more complete picture of R&D
agreements, by considering the possible formation of these agreements over time. Firms may
prefer to wait and enter a research coalition at a subsequent moment of time. As observed by
Duso et al (2010), where an interesting empirical analysis is performed, �rms at each period

1See also Dowrick (1985), Boyer and Moreaux (1987), Amir (1995), Amir and Grilo (1995), Amir, Grilo
and Jin (1999), von Stengel (2004) and Currarini and Marini (2003, 2004) for various leader-follower and
simultaneous payo¤s comparisons.
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in time weight the bene�ts against the costs of being a research cartel member. For example,
a larger number of participants (i.e. a larger pool of learning) may increase the bene�ts of
entering a research cartel (Bloch 1995, Veugelers 1998).2 Moreover, the incentive to join an
R&D agreement is stronger in high-tech industries, due to higher gains from cooperation and
knowledge transmission (Cassiman and Veugelers 2002). These empirically relevant issues
have been neglected in theoretical studies.
Our approach aims to �ll this gap. It makes it possible to analyze whether the possibility

to cooperate in R&D across time can change the results of the existing R&D literature, in
particular, the results concerning the endogenous formation of R&D agreements.
This paper is organized as follows. Section 2 introduces the setup adopted in the paper.

Section 3 and 4 apply the model to the game à la d�Aspremont & Jacquemin (1988) with
symmetric and asymmetric R&D spillovers and present the main results. Section 5 concludes.

2. The Model

The typical approach to R&D collaboration among �rms usually assumes that at a �rst
stage a �rm can form an R&D alliance with its competitors and at a second stage the formed
alliance decides cooperatively its joint level of investment in R&D. At a third and �nal stage,
every �rm sets noncooperatively its strategic market variable, typically quantity or price, to
compete oligopolistically with all other �rms. Our aim is to introduce a variant of this
setup assuming that at the �rst stage a �rm decides not only whether to form or not an
R&D agreement, but also the timing of its investment in R&D. More speci�cally, both the
R&D agreement formation process and the timing of the investment are made endogenous.
Introducing endogenous timing basically determines at which stage a single �rm or an R&D
cartel will play its investment in R&D.

2.1. R&D Alliances & Timing Formation Game. We imagine that at a pre-play stage,
denoted with t0, every �rm sends simultaneously a message to its rival announcing both
its intention to form or not an R&D alliance as well as its preferred timing for the R&D
investment. Every �rm�s message set Mi can be denoted as:

(2.1) Mi = [(fi; jg ; t1) ; (fi; jg ; t2) ; (fig ; t1) ; (fig ; t2)] i = 1; 2 and j 6= i.

The message space contains 16 di¤erent message pro�les m 2M1�M2, which, in turn, may
induce the following set of nonempty R&D timing-partitions P (m),

P = [
�
f1; 2gt1

�
;
�
f1; 2gt2

�
;
�
f1gt1 ; f2gt1

�
;
�
f1gt2 ; f2gt2

�
;
�
f1gt1 ; f2gt2

�
;
�
f1gt2 ; f2gt1

�
]:

Di¤erently from Hamilton and Slutsky�s (1990) endogenous timing game applied to a model
à la d�Aspremont and Jacquemin�s (1988) (see Amir et al. 2000), here it is assumed that
the two �rms may also form an R&D cartel at period t1 or t2.3 We assume that in order to
form a research alliance with a given timing of investment in R&D requires the unanimity
of �rms�decisions: when �rms send messages indicating both the same R&D coalition and
the same investment timing, they will sign a binding agreement to invest at the prescribed

2On average, four �rms enter a research joint venture (RJV) yearly. The average entry decreases with the
age of these RJVs (Duso et al. 2010).

3Note that allowing the two �rms to play their cooperative investment strategy at di¤erent stages, one at
period t1 and the other at period t2, does not alter the basic results of the analysis.
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time; otherwise, they will invest as individual �rms with the timing prescribed by their own
messages. Formally, for i; j = 1; 2 and j 6= i�

P (m) = f1; 2g� if mi = mj = (fi; jg ; �) and
P (m) = (fig�i ; fjg�j) if mi 6= mj.

The above rule prescribes that if both �rms agree to form the same alliance and to invest
with the same timing, the alliance will be created and thus will invest at that given time.
Conversely, if one �rm disagrees, either on the alliance or on the investment timing, both
�rms will play as singletons the R&D investment game, with the timing depending on their
message. The described R&D agreement formation rule re�ects an exclusive membership
rule, where the consensus of all members is required to complete the agreement.4 In what
follows, we formally introduce our model.

2.2. The Investment Game. Once every �rm has sent a message mi and a timing-
partition, denoted P (m) 2 P, has been induced on the set of �rms, every �rm decides
its cooperative or noncooperative investment according to the timing prescribed by P (m).
At this stage, as well as at the following stages, it is assumed that a �rm cannot manipu-
late its level of investment in order to convince its rival to renegotiate the timing-partition
decided at stage t0.

As in d�Aspremont & Jacquemin (1988) every �rm is assumed to set a �nite level of
investment xi 2 Xi � R+ a¤ecting its pro�t function via its production cost ci(x1; x2)
which, in turn, in�uences the �nal market competition between individual �rms. Denoting
with qi 2 [0;1) the �nal market competition variable (here quantity), a �rm pro�t function
can be written as �i(q (x)).
In a research agreement f1; 2g� �rms will therefore set cooperatively their level of invest-

ment at stage � = t1 or t2 i.e.

(2.2) xc
�

=
�
xc

�

1 ; x
c�

2

�
such that, for every i; j = 1; 2 and j 6= i

xc
�

i = argmax
xi

X
i=1;2

�i (q (xi; xj))

given the pro�le of quantities q = (q1; q2) which will be optimally chosen in the �nal market
stage.
If the �rms play simultaneously as singletons at stage � = t1 or t2, the appropriate equilib-

rium concept will be the Nash equilibrium x�� of the simultaneous investment game played
at stage �

(2.3) x�� = (x��1 ; x
��
2 )

such that, for every i = 1; 2 and j 6= i

x��i = argmax
xi

�i (q (xi; xj)) :

4For a discussion on which coalition formation rule may be more appropriate according to the speci�c
context, see the material contained in Hart & Kurz (1983), Yi (2003) and Ray (2007).
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When �rms play sequentially, the relevant equilibrium investment will be a Stackelberg
(subgame perfect) equilibrium, i.e. the pro�le

(2.4) x�� = (x��i ; gj (x
��
i ))

such that, for the leader (henceforth �rm i)

x��i = argmax
xi
�i (q (xi; gj (xi)))

and for the follower (�rm j), gj : Xi ! Xj is the best-reply mapping,

gj (xi) = argmax
xj
�j (q (xi; xj)) :

Note that for the investment game to be well-de�ned, all equilibria in (2.2), (2.3) and (2.4)
must exist and be unique.

2.3. The Market Game. Once the two �rms have either formed a research cartel or have
chosen their R&D investment as singletons at t1 or t2, they set their market variable in the
last stage of the game (denoted with t3). We assume competition in quantities and a unique
Cournot equilibrium among �rms, given the equilibrium level of investment xc

�
, or x�� or

x�� decided at stages 1, 2 or both. In particular, the Cournot quantity pro�le is simply the
vector

q� = (q�1; q
�
2)

such that, for every �rm i = 1; 2 and j 6= i
q�i = argmax

qi
�i(qi; q

�
j ):

2.4. Strategies. Firm strategies in the described multi-stage game can formally be ex-
pressed as follows. When the investment game is played simultaneously, either at stage t1 or
t2, every �rm i 2 N strategy set is a triple �simi = (mi; xi; qi) where, in turn, mi is �rm i-th
message, such that mi = (Si; �i) 2 (fig ; fi; jg)� (t1; t2) with Si being a nonempty coalition
selected by the �rm i, xi : Mi �Mj ! Xi is the investment choice (a mapping from the
message space to a given investment level), and qi : Xi �Xj ! R+ the output choice, i.e. a
mapping from the �rm investments to a positive level of output. When the investment game
is played sequentially, the strategy sets are triples �seqi = (mi; xi; qi) and �

seq
j = (mj; gj; qj) ;

for the i-th leader and the j-th follower respectively, where the follower investment choice is
a mapping gj :Mi �Mj �Xi ! Xj.

2.5. Stable R&D Agreements. Given the equilibrium quantities of the market game
played by �rms at stage t3, and given the level of investment decided simultaneously or se-
quentially at stages t1 and/or t2 either by the research cartel or by individual �rms, all �rms
receive a pro�t that, with a slight abuse of notation, can be denoted as �i(q� (x�(P (m))),
where q� (x�(P (m)) indicates the equilibrium quantity pro�le when an investment pro�le,
as de�ned by (2.2), or by (2.3) or �nally by (2.4) is decided by the �rms in a given partition
P (m) induced by the message pro�le m sent at stage t0.
At this stage we need to make explicit a concept of equilibrium for the message game played

at stage t0. For this purpose, we introduce two di¤erent equilibrium concepts. The �rst is
a standard Nash equilibrium of the R&D partition-timing game. The second introduces
a coalitional stability requirement, implying that a structure P (m) is stable if and only if
the message pro�le m is a strong Nash equilibrium, i.e., cannot be improved upon by an
alternative message announced by a �rm or by a group of �rms, here the grand coalition.
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Formally, when a given timing-partition P is Nash stable, the pro�le �� = (m�;q�;x�)
is a subgame perfect Nash equilibrium (SPNE) of the entire game. When, as additional
requirement, the message pro�le m played at t0 is also strong Nash, �� is again SPNE, with
the property to be Pareto-e¢ cient for the two �rms.

De�nition 1. (Nash stability) A feasible R&D timing-partition P 2 P is Nash stable if
P = P (m�), for some m� with the following properties: there exists no m

0
i 2 Mi for every

�rm i = 1; 2 and j 6= i such that
�i(q

�(x�(P (m
0

i;m
�
j))) > �i (q

� (x�(P (m�))) .

De�nition 2. (Strong Nash stability) A feasible R&D timing-partition P 2 P is strongly
stable if P = P ( bm), for some bm with the following properties:

�i(q
�(x�(P ( bm))) � �i(q�(x�(P (m0

i; bmj)))

for m
0
i 2Mi and if

�i(q
�(x�(P (m

0

i; bmj))) > �i(q
�(x�(P ( bm)))

thus
�j(q

�(x�(P (m
0

i; bmj))) < �j(q
�(x�(P ( bm)))

for i; j = 1; 2 and j 6= i:
Note that a strong Nash equilibrium message pro�le bm is both a Nash equilibrium and a

Pareto-optimum.
We are now ready to apply our framework to d�Aspremont & Jacquemin�s (1988) well-

known model.

3. Duopoly with Symmetric Spillovers

Following d�Aspremont & Jacquemin (1988), we assume a linear inverse market demand
function

P (Q) = max f0; a� bQg ;
with Q =

P2
i=1qi and a linear cost function for every �rm decreasing in R&D investment,

(3.1) ci(xi; xj) = (c� xi � �xj)
for j 6= i, and c � xi��xj. In this setup, the learning which results from investment in R&D
characterizes the production process, implying that marginal and unit costs decrease as the
investment in R&D increases. We allow for the possibility of imperfect appropriability (i.e.
technological spillovers between the �rms), by introducing a spillover parameter � 2 [0; 1].
Obviously the case of no spillovers (� = 0) may only arise in a situation of strong intellectual
protection. More frequently, however, involuntary information leaks occur due to reverse
engineering, industrial espionage or by hiring away employees of an innovative �rm. The
cases of partial to full spillovers can be modelled by setting 0 < � � 1. At this stage
the parameter � in (3.1) is assumed to be identical for all �rms. However, in Section 4,
this parameter, though exogenously given, will di¤er due to the cooperative versus non-
cooperative nature and to the timing properties of the R&D investment game.
Moreover, we assume a simple quadratic cost function for the investment in R&D given

by

Ii(xi) = 
x2i
2
;



8 MARCO A. MARINI, MARIA L. PETIT, AND ROBERTA SESTINI.

with  > 0. This guarantees decreasing returns to R&D expenditure (see e.g. Cheng 1984;
d�Aspremont and Jacquemin 1988). As a result, under Cournot competition in the product
market, and setting for simplicity b = 1, the last stage pro�t function for each �rm i = 1; 2
can be obtained as a function of (xi; xj):

(3.2) �i (q
� (xi; xj)) =

(a� c+ (2� �)xi + (2� � 1)xj)2

9
� 
2
x2i :

Note that in this setup, for su¢ ciently high R&D spillover rates (� > 1=2), there are pos-
itive R&D cartel-externalities, as the formation of a cooperative agreement a¤ects positively
all remaining �rms. Only in this case �rms�cooperative choice implies social e¢ ciency, which
instead is not guaranteed for � < 1=2.

3.1. Main Assumptions. Some assumptions are now introduced to ensure the existence
and uniqueness of all stages equilibria as well as to simplify comparative statics.

A.1 (Quantity stage constraint). (a=c) > 2.

A.2 (Pro�t concavity and best-reply contraction property).  > 4=3.

A.3 (Boundaries on R&D e¤orts) For every �rm, Xi = [0; c]. Moreover, for � < 1=2:
 > a(2��)(�+1)

4:5c
and for � > 1=2:  > a(�+1)2

4:5c
.

As explained in detail in the Appendix, assumption A.1 simply ensures that the last
stage Cournot equilibrium quantities for both �rms are unique and interior, with associated
positive pro�ts.
Assumption A.2 guarantees both the strict concavity of every �rm non cooperative payo¤

(3.2) in its own investment xi (guaranteed for  > 8
9
) as well as a contraction property on

every �rm best-replies gi(xj), which requires that  > 4
3
.

Assumption A.3 prescribes a compact R&D investment set for every �rm and imposes
some Inada-type conditions to obtain interior investment equilibria in all noncooperative
(simultaneous or sequential) and cooperative R&D games (see Amir et al. 2000, Amir et al.
2011, Tesoriere 2008 and Stepanova and Tesoriere 2011).5

Note that by assumption A.2 every �rm payo¤ is strictly concave in its own investment
choice and thus best-replies are single-valued and continuous. Investment spaces are com-
pact by A.3 and therefore a Nash equilibrium exists by Brower �xed-point theorem. The
contraction property implied by A.2 ensures uniqueness of the Nash equilibrium x��. The
existence of a Stackelberg equilibrium x�� - a subgame perfect Nash equilibrium (SPNE) of
the sequential R&D game - is guaranteed by both �rm continuous payo¤s and continuous
best-replies, thus implying that a �rm as leader faces a continuous maximization problem
over a closed set. Then, by the Weierstrass theorem, a SPNE equilibrium exists. Its unique-
ness is generically ensured by the fact that �rm best-replies are single-valued and monotone
and all �rm payo¤s are strictly monotone in their rival investment. In fact, for every i = 1; 2
with j 6= i, by A.1 and by (3.2)

@�i (q
� (x))

@xj
=
2

9
(2� � 1) (a� c+ 2xi � xj � �xi + 2�xj) ? 0 for � ?

1

2
:

5For a detailed description of the consequences occurring to the simultaneous investment game when these
boundaries are violated, see, for instance, Amir (2011).
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Hence, along the best-reply gj(xi) of its rival�s, no multiple argmax are possible for a i-th
�rm acting as leader. The follower �rm will instead act à la Nash and, by the property of
best-replies, its investment choice will be uniquely de�ned. Moreover, the strict concavity of
every �rm pro�t, under the additional constraint that the two �rms select the same collusive
investment, implies that also the joint R&D cartel pro�t is strictly concave. In this case,
this is maximized by a unique investment pro�le x.
In the next section we characterize all stable R&D agreements with endogenous timing

reached by the two �rms. We then extend the symmetric set-up to the case of asymmetric
spillovers. This can o¤er a broader view on a recent stream of literature concerning the en-
dogenous timing under asymmetric spillovers (De Bondt and Vandekerckhove 2008, Tesoriere
2008).

3.2. Cooperative R&D. The R&D cartel made of all �rms N = f1; 2g (i.e. the grand
coalition) investing cooperatively in R&D is assumed to maximize the sum of �rms�pro�ts,
i.e.

(3.3)
2P
i=1

�i (q
� (x (f1; 2g� ))) =

2P
i=1

�
1

9
[a� c+ (2� �)xi + (2� � 1)xj]2 � 

x2i
2

�
:

where x =(xi; xj) is any arbitrary pro�le of R&D investment carried out simultaneously by
the two �rms either at � = t1 or at � = t2, for i = 1; 2 and j 6= i. Following much of the
literature, we will assume henceforth that the level of investment that maximizes (3.3) is
equal for every �rm, i.e., is such that xc

�

i = x
c�

j .
6

Maximizing the pro�t of the R&D cartel in (3.3), and given the constraint of symmetric
behaviour, a �rm cooperative investment can be easily obtained as

(3.4) xc
�

i (f1; 2g
� ) =

2(a� c)(1 + �)
9 � 2(1 + �)2

with an associated (equal split) equilibrium pro�t

(3.5) �Ci
�
q�
�
xc

�

(f1; 2g� )
��
=

(a� c)2
9 � 2(1 + �)2 :

3.3. Noncooperative Simultaneous R&D. Di¤erentiating (3.2) and exploiting the sym-
metry of �rm payo¤s, the noncooperative level of investment can be obtained as

(3.6) x��i (f1g
� ; f2g� ) = 2(a� c)(2� �)

9 � 2(2� �)(1 + �)
for � = 1; 2, with the noncooperative equilibrium pro�t of every �rm i given by:

�Ni (q
� (x�� (f1g� ; f2g� ))) = (a� c)2(9 � 2(� � 2)2)

(9 � 2(2� �)(1 + �))2 :

By the Pareto-e¢ ciency of xc
�

i (f1; 2g
� ) (for the two �rms) we can establish the following

Lemma.

Lemma 1. Under high (low) spillover rate � > 1
2
(� < 1

2
) the cooperative investment level

is higher (lower) than the simultaneous Nash investment level, i.e. xc
�

i > x��i (xc
�

i < x��i ).

Proof. See the Appendix. �
6As shown by Salant and Sha¤er (1998,1999), for certain values of the parameters, the joint pro�t maxi-

mization may easily imply unequal R&D investments for the two �rms.
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3.4. Sequential R&D Investment Game. Using again (3.2) we can easily obtain the
best-reply of the j-th �rm playing as follower the investment game:

(3.7) gj(xi) =
2(2� �)(a� c� (1� 2�)xi)

9 � 2(� � 2)2 :

Therefore the leader and the follower equilibrium investment levels are given by

x��i
�
figt1 ; fjgt2

�
=
2 (2� �) (a� c) (3 + 2�2 � 2) (6� + 3 � 2�2 � 4)

�

x��j
�
figt1 ; fjgt2

�
=
2 (2� �) (a� c) �

�
where

� =
�
26� � 20 � 12� � 4�2 + 12�3 + 92 � 4�4 � 8�2 + 8

�
and

�= 160 � 2162+813+32�5�8�6��4 (20 + 16)+�3 (64 � 64)
+�

�
2162 � 224 + 32

�
+�2

�
24 � 542 + 56

�
�32

with associated equilibrium pro�ts given by

�Li
�
q�
�
x��

�
figt1 ; fjgt2

���
=
(a� c)2  (6� + 3 � 2�2 � 4)2

�

�Fj
�
q�
�
x��

�
figt1 ; fjgt2

���
=
(a� c)2(9 + 8� � 2�2 � 8)�2

�2

Comparing R&D equilibrium investment levels under assumptions A.1-A.3, we can state
the following:

Proposition 1. (i) When �rm R&D investments are strategic substitutes (� < 1
2
) there

exists a ��() and a  such that, for � < ��() and  < ,

x��i > x��i > xc
�

i > x
��
j :

(ii) When �rm R&D investments are strategic substitutes (� < 1
2
) and � � ��() or  � 

x��i > x��i > x��j � xc�i :
(iii) When �rm R&D investments are strategic complements (� > 1

2
),

xc
�

i > x
��
i > x��j > x��i

for i = 1; 2 and j 6= i.

Proof. See the Appendix. �
The above proposition provides a full ranking of �rm equilibrium investment levels, as

it combines the well-known results by d�Aspremont and Jacquemin (1988), who compare
cooperative and simultaneous noncooperative R&D levels, with Amir et al. (2000) analysis,
focussing on sequential vs. simultaneous noncooperative outcomes. Lemma 1 has already
proven that for low (high) spillover rates x��i < xc

�

i (x
c�

i > x
��
i ) which, combined with Amir�s

et al. (2000) results, implies that x��i > x��i > xc
�

i (xc
�

i > x��i and x��i > x��j > x��i ).
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Proposition 1 completes this ranking by also including the cooperative investment levels. It
can be noticed (see expression (3.7)) that the level of spillover is crucial to determine the
slope of the follower�s best-reply in the investment game. Thus, when the spillover rate is very
low (case (i)), the follower�s best-reply is extremely steep (and negatively sloped) and this
strongly contracts its equilibrium investment, which is thus even lower than that resulting
under a cooperative agreement. A �rm investing as leader at stage t1 can therefore pro�tably
expand its investment, and this occurs in particular when the cost of the investment (which
depends on ) is very low and an investor is very unlikely to be imitated (low �). Under
such circumstances, being a leader may become more pro�table than investing cooperatively.
When instead spillover rates start to increase, the cooperative investment overcomes that
of the follower, although the leader�s investment remains very high. Finally, for � > 1=2,
cooperation implies the e¢ cient and highest level of R&D investment, regardless of the level
of investment costs.
In what follows we perform some comparisons of the �rm payo¤s obtained in the di¤erent

investment games by combining the results of Lemma 1 and Proposition 1 above, with Amir�s
et al. (2000) analysis. We recall that in Amir�s et al. (2000) paper, the following ranking is
established for simultaneous and sequential payo¤s in the symmetric case:

(3.8) �Li (x
��) > �Ni (x

��) > �Fj (x
��) for � <

1

2

(3.9) �Fj (x
��) > �Li (x

��) > �Ni (x
��) for � >

1

2
where L, N and F denote the leader/Nash simultaneous/follower roles, respectively, in the
di¤erent R&D investment games.7 By the e¢ ciency of the pro�le xc

�
, we also know that

�Ci
�
xc

� �
> �Ni (x

��). Moreover, the following lemma proves that for � < 1
2
(� > 1

2
) a follower

(leader) payo¤ can never be greater than that of a �rm in a cooperative agreement.

Lemma 2. Under high (low) spillovers � > 1
2
(� < 1

2
) the pro�t of a �rm in an R&D

agreement is always higher than the pro�t of a leader (follower), namely, �Ci
�
xc

� �
> �Li (x

��)

(�Ci
�
xc

� �
> �Fj (x

��)).

Proof. See the Appendix. �
The following two propositions complete the full ranking of �rm payo¤s in all di¤erent

cases and for all levels of spillover rates.

Proposition 2. When �rm R&D investments are strategic substitutes (� < 1
2
): (i) there

exists a ��() and a  such that, for � < ��() and  < , the pro�t obtained by a �rm
playing as leader in a sequential investment game is higher than that obtained in a cooperative
R&D agreement, and the following ranking arises

�Li (x
��) > �Ci

�
xc

� �
> �Ni (x

��) > �Fj (x
��) .

(ii) When, instead � � ��() or  �  or both, the following ranking arises:

�Ci
�
xc

� � � �Li (x��) > �Ni (x��) > �Fj (x��) :
Proof. See the Appendix. �

7In what follows we maintain the convention that �rm i indicates the leader while �rm j indicates the
follower in the sequential investment game.
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Figure 1 and 2 illustrate the e¤ect of � on the investment levels and on
�
�Ci
�
xc

� �� �Li (x��)�,
the di¤erence between the pro�t obtained by a �rm in a cooperative agreement and that
obtained by the leader in a sequential game. When �rm investments are strategic substitutes
(� < 1=2) there exists a narrow range of the spillover rate (between 0 and ��) for which
being leader, and thus expanding the investment, turns out to be extremely pro�table. This
occurs only when the cost to invest in R&D is extremely low ( < ).

[FIGURE 1 AND 2 APPROXIMATELY HERE]

The proposition that follows completes our �ndings for the model with symmetric spillovers
by comparing the �rms�pro�tability under di¤erent arrangements when R&D investments
are strategic complements.

Proposition 3. When �rm investments are strategic complements (� > 1
2
) the pro�t ob-

tained by a �rm in a cooperative R&D agreement is always higher than the pro�t obtained
by a �rm investing as follower in the sequential investment game, and the following ranking
arises

�Ci
�
xc

� �
> �Fj (x

��) > �Li (x
��) > �Ni (x

��) :

Proof. See the Appendix. �
As it can be observed in �gure 3, for � > 1=2, the highest level of investment is selected

by the research cartel. Under the sequential game the follower free-rides on the leader
investment and gains a higher pro�t. However, as shown in �gure 4, the di¤erence between
the cooperative payo¤and the follower payo¤ is positive and monotonically increasing within
the interval for � under analysis.

[FIGURE 3 AND 4 APPROXIMATELY HERE]

Finally, the next two propositions characterize all Nash and strongly stable timing-partitions
according to De�nitions 1 and 2.

Proposition 4. (Nash stability) (i) When the spillover rate � < ��(), and  < , the Nash
stable timing-partitions are given by

P (m�) = [
�
f1; 2gt1

�
;
�
f1gt1 ; f2gt1

�
]:

(ii) When 1=2 > � � ��() or  �  or both, the Nash stable timing-partitions are, instead,
given by

P (m�) = [
�
f1; 2gt1

�
;
�
f1; 2gt2

�
;
�
f1gt1 ; f2gt1

�
]:

(iii) Finally, for � 2 (1=2; 1], the Nash stable timing-partitions are given by
P (m�) = [

�
f1; 2gt1

�
;
�
f1; 2gt2

�
;
�
f1gt1 ; f2gt2

�
;
�
f1gt2 ; f2gt1

�
]:

Proof. See the Appendix. �
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It is obvious that, if we require the strong stability of timing-partitions, by symmetry
all noncooperative partitions in which �rms invest simultaneously à la Nash are Pareto-
dominated by the cooperative partitions. Forming a cooperative research agreement to
coordinate costly investments in R&D is clearly more pro�table than playing the symmetric
investment game à la Nash. If, however, � < ��(), we have proven that being leader in the
investment game yields a higher pro�t than playing cooperatively, and therefore the only
timing-partition that remains strongly stable is the grand coalition investing at time t1. A
cooperative agreement, to be stable, requires that �rms anticipate strategically their joint
investments.

Proposition 5. (Strong stability) (i) when the spillover rate � < ��() and  < , the only
strongly stable R&D timing-partition is

P( bm) = ��f1; 2gt1�� :
(ii) - (iii) When 1 � � � ��() or  �  or both, the strongly stable R&D timing-partitions
are

P( bm) = ��f1; 2gt1� ; �f1; 2gt2�� :
Proof. See the Appendix. �
Our results depart from those obtained in the previous literature. In particular, since in

our set-up �rms can form a strategic alliance to invest cooperatively in R&D, di¤erently
from Amir et al. (2000) the alliance of �rms always constitutes a SPNE of the whole game.
However, our model suggests that in forming alliances �rms have to consider carefully the
e¤ect of timing. If a group of �rms procrastinates its cooperative investment, it may risk
a defection by a partner breaking the alliance to invest as leader. To avoid this problem,
�rms have to anticipate strategically their joint investment in R&D. As illustrated in detail,
this happens only when investing in R&D is not very costly and spillovers are very low. For
higher spillovers, to discipline the stability of a research cartel is easier and time-constraints
for the investment are no longer required. Our model also shows that, without requiring
Pareto-optimality, the noncooperative simultaneous (or sequential) con�gurations are also
stable under low (high) spillover rate, � < 1=2 (� > 1=2), as already established in Amir et
al. (2000).

3.5. An Extension to n-symmetric Firms. The extension of our model to n-symmetric
�rms would allow to check the stability of more complex alliances between �rms coordinating
their investment in R&D. However, including more than two �rms in our analysis with
endogenous timing makes the model highly unmanageable. Only intuitive conclusions can
be drawn with the help of our previous analysis and some well known existing results. A �rst
observation concerns the whole industry R&D agreement (grand coalition of �rms) investing
at stage t2, i.e., using the model notation, the timing-partition P =

�
fNgt2

�
which is formed

when at stage t0 all �rms i = 1; 2; ::; n send the message mi = (fNg ; t2). This partition can
be strongly stable if every individual �rm investing as follower at stage t2 would be better
o¤ than any �rm participating to an R&D agreement investing at stage t1 as leader. Thus,
any coalition S � N of �rms that deviates from the grand coalition

�
fNgt2

�
by sending one

of these alternative messages, m
0
S = (fSg ; t2) or m

00
S = (fSg ; t1), would induce either the

simultaneous partition

(3.10) P (m
0

S) = (fSg
t2 ; fjgt2j2NnS);
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where all j-th �rms outside S are singletons or, analogously, the sequential partition

(3.11) P (m
00

S) = (fSg
t1 ; fjgt2j2NnS):

However, if �rms in coalition S cannot improve upon partition
�
fNgt2

�
by playing as leaders

in (3.11) they would not improve a fortiori by playing simultaneously in (3.11). Therefore,
if we show that in the partition (3.11) all �rms within the research cartel S (regardless
of its size) do not improve upon the cooperative partition

�
fNgt2

�
, the stability of the

grand coalition agreement is proved as a result. When investment decisions are strategic
complements, it can be proved that the payo¤ of a symmetric �rm playing as singleton
follower against the coalition S playing as leader is always higher than the payo¤ of every
�rm in S.8 Hence, given the e¢ ciency of the grand coalition, it would be impossible for any
coalition S to improve by deviating as leader, given that followers would improve even more
their payo¤s. Similarly, it can be shown that when R&D investments are strategic substitutes
(� < 1=2) a coalition S � N made of followers is beaten by individual �rms investing as
leaders, and therefore the partition

�
fNgt1

�
- made by the grand coalition of �rms investing

at stage 1- is strongly stable. The strong stability of these two cooperative timing-partitions
already observed in our duopoly model thus extends to an analogous endogenous timing
game played by n-symmetric �rms.

4. Duopoly with Asymmetric Spillovers

Introducing asymmetric spillovers equals to introducing a higher degree of realism into the
model. As is well known (see e.g. Atallah 2005), asymmetries may derive from di¤erences
in protection practices, from geographical localization (e.g. Petit et al. 2009), from product
di¤erentiation (Amir et al. 2000), or from sequential moves in the R&D game, as in R&D
models with endogenous timing (Tesoriere 2008). Other sources of asymmetry can arise from
di¤erent technological capabilities, as in Amir and Wooders (1999, 2000), where knowledge
may leak only from the more R&D-active �rm to the rival, or from a better absorption
capacity in�uencing the outcome of a technological race, as in De Bondt and Henriques
(1995).
The spillover asymmetry arising in our model stems instead from the cooperative versus

the non-cooperative nature of the R&D game and from the timing of the R&D investment
process. The parameter �i, (0 � �i � 1) will represent henceforth the incoming spillover for
�rm i = 1; 2. Moreover, let �Ni denote the �rm spillover rate under simultaneous noncoop-
erative R&D, �Ci the spillover rate under R&D cooperation, and �

L
i , �

F
j the spillover rates

for the leader and the follower in the sequential investment game, with i; j = 1; 2, i 6= j.
Our assumptions on spillovers asymmetry are based on the following considerations:
(i) When the two �rms invest simultaneously and noncooperatively at stage one or two

their spillover rate is assumed to be symmetric and lower than or equal to 0:5 (i.e., �N1 =
�N2 � 0:5). The idea is that the competition in R&D and the simultaneity of �rm decisions
do not allow for a high amount of knowledge transmission.
(ii) When a noncooperative sequential investment in R&D takes place, the spillover rate

can be though to be favorable to the �rm playing as follower and unfavorable to the �rm
playing as leader (i.e. �Fj > �Li ). In particular we shall set �Fj > 0:5 and �Li � 0:5.
A sequential order of moves in the R&D investment game implies a greater amount of

8See for a formal proof of this fact, Currarini and Marini (2003, 2004).
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knowledge leaking out from the leader to the follower than vice versa. The rationale is that
knowledge leaks also through imitation, thus leading to a strong advantage for the �rm that
is able to observe the �rst mover innovative outcome. Therefore, bene�ts from spillovers
should be lower for a �rst mover (see also Tesoriere 2008). Moreover, we assume that sector-
speci�c features determining the intensity of knowledge di¤usion a¤ect to the same extent the
incoming spillover for the leader in the sequential game (i.e. �Li ) and the incoming spillovers
for both �rms in the simultaneous noncooperative game (i.e., �Ni i = 1; 2). Therefore we
will set �Li = �

N
i .

(iii) When the two �rms play cooperatively and form a research cartel, they generally
also agree to share to some extent the knowledge obtained from their joint R&D e¤ort. It
seems realistic to assume that they might agree to fully share their knowledge, and therefore
their spillover rates will be symmetric and su¢ ciently high (i.e. �C1 = �

C
2 close or equal to

one). Moreover, we assume that knowledge leaks occurring mainly through imitation and
favouring the follower in a sequential game are less intense if compared with the voluntary
exchange of technological knowledge typical of a research agreement. Thus, we maintain
that �Ci > �

F
j , for i; j = 1; 2, i 6= j:

Taking into account all the above inequalities, our assumptions on the relationship among
spillover values can be summarized as follows:

(4.1) 1 � �Ci > �Fj > �Li = �Ni � 0 i = 1; 2, j 6= i
with �Li = �

N
i � 0:5 and �Fj > 0:5.

4.1. Main assumptions. Also in this section we introduce some assumptions needed to
ensure the existence and uniqueness of equilibria at all stages:

B.1 (quantity stage constraint). As in the case of symmetric spillovers, a=c > 2.

B.2 (Pro�t concavity and best-reply contraction property). Again,  > 4=3.

B.3 (Boundaries on R&D e¤orts) For every �rm i = 1; 2, Xi = [0; c] and  >
2a(�Ci +1)

2

9c
,

for 0:5 < �Ci � 1.
Assumption B.1 does not vary with respect to the symmetric case. Assumption B.2 deals

with the strict concavity of every �rm�s pro�t (3.2) with respect to own investment xi. Given
our assumptions on spillovers in the noncooperative simultaneous game, i.e. �Ni � 0:5, the
SOC requires that  > 8

9
. Likewise, the SOC for pro�t maximization in the case of a

research cartel, given that �Ci � 1, requires, in the most stringent case, that  > 8
9
as well.

The contraction properties on both �rms best-replies gi(xj) and gj(xi) introduced in section
3.1 are still valid and implied by  > 4=3 (see the Appendix). Assumption B.3 follows the
same logic of A.3. As previously discussed, from the strict concavity of pro�ts it comes out
that each best reply is single-valued and continuous. The existence of a Nash equilibrium
is therefore guaranteed. The contraction property in B.2 ensures uniqueness of the Nash
equilibrium. In order to have interior equilibria it has to hold true that:

@�i (x (q
�))

@xi
= 2(2� �j)[a� 2c(1� 2�i)] > 0

for i; j = 1; 2, i 6= j. It su¢ ces assumption B.1 for the above expression to be strictly
positive.
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4.2. Noncooperative Sequential R&D with Asymmetric Spillovers. Since only in
the case of a game with sequential moves at the investment stage our calculations di¤er from
the symmetric case analyzed in the previous sections, we shall deal henceforth extensively
with this scenario. Our main aim is to investigate whether the asymmetry in the transmission
of knowledge between �rms is relevant for the endogenous formation of research alliances.
Using an asymmetric-spillover speci�cation, every �rm�s objective function at the market

game stage is given by

�i = (a� (qi + qj))qi � (c� xi � �jxj) qi � 
x2i
2

with i; j = 1; 2 and i 6= j. Solving the game by backward induction, every �rm�s payo¤ at
the investment stage can be obtained as:

(4.2) �i (q
� (xi; xj)) =

1

9
[(a� c) + (2� �j)xi + (2�i � 1)xj]2 � 

x2i
2
:

Di¤erentiating (4.2) we get the best-reply for the follower in the investment game:

gj(xi) =
2(2� �Li )[(a� c)� (1� 2�Fj )xi]

9 � 2(2� �Li )2

Hence, the sequential equilibrium investment levels for the two �rms are given by:

x��i
�
figt1 ; fjgt2

�
=
2

9

a�c+2(a�c)C
A

�
2 + B

A
� �Fj

�
 � 2

9

�
2��Fj +(2�Fj �1)B

A

�2
x��j

�
figt1 ; fjgt2

�
=

2
�
2� �Li

� �
�+ 2�Fj

�
9 + 8�Li � 2 (�Li )

2 � 8

where A = 9 + 8�Li � 2
�
�Li
�2 � 8;

B = 2
�
2�Fj � 1

� �
2� �Li

� �
2�Li � 1

�
,

C =
�
2� �Li

� �
2�Li � 1

�
:

Let the assumptions on spillovers in equation (4.1) as well as assumptions B.1-B.3 hold.
Comparing �rm R&D equilibrium investment levels under asymmetric spillovers, we can
state:

Proposition 6. There exists a ~� 2 (0; 1=2) such that, if �Ni = �Li � ~�, then x��j � xc
�

i >

x��i > x��i . If instead �
N
i = �

L
i � ~�, then xc

�

i � x��j > x��i > x��i , for i; j = 1; 2 i 6= j.

Proof. See the Appendix. �
An illustration of this result is shown in Figure 5. To give an intuition, when spillovers are

low, the asymmetry between the incoming spillover of the leader (�Li ) and that of the follower
(�Fj ) is strong (since �

F
j is always greater than 0:5). Therefore, the leader has the lowest

incentive to invest in R&D since the high outgoing spillover e¤ect overcomes the �rst-mover
advantage e¤ect. Conversely the follower takes advantage of a high learning opportunity and
of low knowledge leaks. Moreover, in this case, the R&D investment of the follower overcomes
that of the cooperative �rm, since a competition e¤ect prevails. Conversely, when spillovers
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are high, the asymmetry between leader and follower decreases. In this case a free-riding
e¤ect may prevail for both players and the cooperative outcome may become convenient,
since cooperation between �rms succeeds in internalizing knowledge externalities.
Firms pro�ts could be compared only via numerical simulations. In what follows the

numerical values assigned to the parameters are as follows: a = 38, c = 18,  = 2. In
addition, we assume that in the case of cooperation �rms agree to share a high amount of
technological knowledge. Thus we assign a constant value �Ci = 0:8. Moreover we set the
incoming spillover of the follower such that 1 � �Ci > �Fj > 0:5 (for instance �Fj = 0:6 as in
Figures 5 and 6).
As depicted in �gure 6, there exists a value �̂ 2 (0; 1=2), such that the following payo¤

ranking emerges:
�Fj (x

��) > �Ci
�
xc

� �
> �Ni (x

��) > �Li (x
��)

for �Li = �
N
i � �̂. As a result, in this case the Nash equilibrium timing-partitions are

P (m�) = [
�
f1; 2gt2

�
;
�
f1gt2 ; f2gt2

�
];

while the strongly stable partitions are given by

P( bm) = ��f1; 2gt2�� :
When instead �L1 = �

N
i � �̂, the following payo¤ ranking comes out:

�Ci
�
xc

� �
> �Fj (x

��) > �Ni (x
��) > �Li (x

��)

and then
P (m�) = [

�
f1; 2gt1

�
;
�
f1; 2gt2

�
;
�
f1gt2 ; f2gt2

�
];

P( bm) = ��f1; 2gt1� ; �f1; 2gt2�� :
[FIGURES 5 AND 6 APPROXIMATELY HERE]

These results can be explained by considering that joint cooperative agreements across
time or at time t1 are particularly at risk when there is a strong advantage to be follower in
the R&D investment game. As a matter of fact, �rms prefer to wait and observe the rival�s
move rather then trying to reach an agreement. This happens in particular when spillovers
are extremely unbalanced (i.e. when �L1 = �

N
i � �̂) towards �rms that wait before investing,

thus conferring a strong "follower advantage".
Our �ndings complement the few existing results (Amir et al., 2000; Tesoriere, 2008)

on endogenous sequencing in R&D investment with asymmetric spillovers. In particular,
Tesoriere (2008) considers only the noncooperative case with extreme spillovers (�L1 = �

N
i = 0

and �Fj = 1). Under these values he proves that the only timing con�guration which is a
SPNE involves simultaneous noncooperative play at the R&D stage (with zero spillovers).
In contrast, in our setup the noncooperative simultaneous con�guration may not be the only
Nash stable timing-partition and in addition is never strongly stable, as �rms prefer to form
an R&D cartel than playing (suboptimally) as singletons the investment game.
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5. Concluding Remarks

This paper constitutes a �rst attempt to bridge two usually distinct streams of the eco-
nomic literature, one dealing with the endogenous formation of R&D agreements, the other
with the endogenous timing of R&D investments in a model with spillovers à la d�Aspremont
and Jacquemin (1988). This is done by introducing a new set-up in which �rms express both
their intention to form or not an alliance as well as the timing of their e¤ort in R&D. This al-
lows to assess the stability of research cartels against deviations occurring across time. Every
�rm can express its willingness to play cooperatively or noncooperatively as leader or follower
according to the circumstances. Our results show that the nature of the interaction among
the �rms in the investment game plays an important role. In particular, under symmetric
spillovers and when the level of spillovers is extremely low (and thus R&D investments are
highly substitutes) both �rms want to play the investment game as leaders and, as a result,
they may easily end up investing simultaneously either cooperatively or noncooperatively. In
this case, any cooperative agreement, to be stable, must contain a commitment to invest at
time 1. A cooperative agreement of this sort would remain stable also against deviations by
coalitions of �rms, if we include in the model a number of symmetric �rms higher than two.
When instead R&D investments are strategic complements, our model predicts that both
sequential (noncooperative) and simultaneous (cooperative) R&D con�gurations are stable
against individual deviations. However, only cooperative agreements are strongly stable
and, in this case, the timing of investment seems irrelevant for the stability of cooperation.
Finally, when spillovers are asymmetric and favourable to the �rm investing as follower,
the model shows that an R&D agreement to be stable requires that the joint investment is
strategically delayed as to avoid that a �rm may break the agreement to exploit the existing
"second-mover advantage". This occurs, in particular, when the incoming spillover of the
follower is much higher then that of the leader.

6. Appendix

Proofs of Lemmata and Propositions

Proof of Lemma 1. For every i; j = 1; 2 with j 6= i
�i
�
xc

�

i (q
�) ; xc

�

j (q
�)
�
> �i

�
x��i (q

�) ; x��j (q
�)
�
� �i

�
xc

�

i (q
�) ; x��j (q

�)
�

where the �rst inequality is due to the Pareto-e¢ ciency of xc
�
and the second by the Nash

equilibrium property. Thus, by monotone negative (positive) externalities for � < 1
2
(� > 1

2
),

it follows that xc
�
< x�� (xc

�
> x��). �

Proof of Proposition 1. (i)-(ii) For � 2 [0; 1=2), the following equation

(6.1)
�
x��j � xc

�

i

�
=
2(a� c) (2� �) �

�
� 2(a� c)(1 + �)
9 � 2(1 + �)2 = 0

can be solved for ��() = 7
5
� 3

10

p
2
p
5 + 2, which is strictly positive for  � , where

 = 16=9. Condition A.3 for � < 1=2 requires that  > a(2��)(�+1)
4:5c

and since this constraint
reaches its maximum for � = 1=2, it follows that for  2

�
a
2c
; 16
9

�
; there exists a ��() 2

[0; 1=2) for which
�
x��j � xc

�

i

�
< 0. It can be checked that the de�ned interval for  is

compatible with a market size-cost ratio a=c � 32=9. Moreover, by (6.1) for 1=2 > � > ��()
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and/or for a  > 16=9,
�
x��j � xc

�

i

�
> 0. Combining these facts with Amir�s et al. (2000)

ranking on leader-follower and Nash simultaneous investments, the results follow. (iii) For
� 2 (1=2; 1], by (6.1), it turns out that

�
x��j � xc

�

i

�
< 0: Moreover it can be easily checked

that
sign

�
x��i � x��j

�
= sign 2 (2� � 1)2 > 0

which holds for any � and, thus, also for � 2 (1=2; 1]. Again, combining the above fact with
Amir�s et al. (2000) results, the ranking between R&D investments is proven. �
Proof of Lemma 3. Suppose by contradiction that for � > 1

2

�Ci
�
xc

� �
< �Li (x

��)

and by (3.8)
�Ci
�
xc

� �
< �Li (x

��) < �Fj (x
��) :

It follows that
2P
i=1

�Ci
�
xc

� �
< �Li (x

��) + �Fj (x
��)

contradicting the e¢ ciency of pro�le xc
�

i (q
�). Similarly, let for � < 1

2

�Ci
�
xc

� �
< �Fj (x

��)

and by (3.9)
�Ci
�
xc

� �
< �Fj (x

��) < �L (x
��) :

which again implies
2P
i=1

�Ci
�
xc

� �
< �Li (x

��) + �Fj (x
��) ;

which is a contradiction. �
Proof of Proposition 2. (i) By Lemma 2 and 3 and by (3.8)-(3.9) we know that, under

low spillover rates, (� < 1
2
), either

(6.2) �Li (x
��) > �Ci

�
xc

� �
> �Ni (x

��) > �Fj (x
��) .

or

(6.3) �Ci
�
xc

� �
> �Li (x

��) > �Ni (x
��) > �Fj (x

��) :

For � 2 [0; 1=2) the following equation

(6.4) �Ci
�
xc

� �� �Li (x��) = (a� c)2
9 � 2(1 + �)2 �

(a� c)2 (6� + 3 � 2�2 � 4)2

�
= 0

has only one root ��() = 7
5
� 3
10

p
2
p
5 + 2, requiring that  < 16=9 to be positive. Since by

A.3  > a(2��)(�+1)
4:5c

and such constraint reaches its maximum for � = 1=2, we conclude that
for  2

�
a
2c
; 16
9

�
there exists a ��() 2 [0; 1=2) ensuring that the inequality

�
�Ci � �Li

�
< 0

holds true. (ii) For � 2 [0; 1=2), when either � � �� or  > 16
9
or both, it can be assessed

that

(6.5) �Ci
�
xc

� �� �Li (x��) = (a� c)2
9 � 2(1 + �)2 �

(a� c)2 (6� + 3 � 2�2 � 4)2

�
� 0:

The payo¤s ranking can therefore be completed as stated in (6.3)-(6.2) using Lemma 2 and
Amir�s et al. (2000) results. �
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Proof of Proposition 3. By Lemma 2 and 3 and by (3.8)-(3.9) we know that under
high spillover rates (� > 1

2
), either

(6.6) �Fj (x
��) > �Ci

�
xc

� �
> �Li (x

��) > �Ni (x
��)

or

(6.7) �Ci
�
xc

� �
> �Fj (x

��) > �Li (x
��) > �Ni (x

��) :

For � 2 [1=2; 1] and  2
�
a(�+1)2

4:5c
;1
�
, the equation

�
�Ci � �Fj

�
= (a�c)2

9�2(1+�)2 �
(a�c)2(9+8��2�2�8)(26��20�12��4�2+12�3+92�4�4�8�2+8)

2

�2
= 0

is solved only for � = 1=2: It can be checked that for any other spillover rate 1 � � > 1=2,
the di¤erence

�
�Ci � �Fj

�
is positive and increases monotonically in �. Only for  ! +1, it

occurs that
�
�Ci � �Fj

�
! 0. �

Proof of Proposition 4. (i) By proposition 2, for � 2 [0; ��()) < 1=2 and  <
, investing as leader at stage t1 is more pro�table for �rms than forming a cooperative
agreement. As a result, the message m =

�
f1; 2gt2

�
cannot be Nash-stable, because a �rm

i can pro�tably deviates with an alternative message m0
i = (fig ; t1), thus inducing the

timing-partition
�
figt1 ; fjgt2

�
. Similarly all sequential timing-partitions

�
figt1 ; fjgt2

�
can

pro�tably be objected by the j-th �rm who, instead of playing as follower, would prefer
to invest simultaneously. This is feasible if it sends the message m0

j = (fjg ; t1) ; and thus
induces the timing-partition

�
figt1 ; fjgt1

�
. Therefore we remain with only two partitions�

f1; 2gt1
�
and

�
f1gt1 ; f2gt1

�
that cannot be pro�tably objected by any individual �rm. (ii)

We know by proposition 2 that when � 2 [��(); 1=2) the payo¤ gained in a cooperative
agreement is higher than that obtained by a leader (follower or simultaneous) �rm, and
therefore both cooperative timing-partitions

�
f1; 2gt1

�
and

�
f1; 2gt2

�
are Nash-stable. Also

the simultaneous partition
�
f1gt1 ; f2gt1

�
cannot be objected by individual deviations. (iii)

For � 2 (1=2; 1], by proposition 3 the payo¤ gained in a cooperative agreement is the highest
obtainable by a �rm, and thus, both cooperative timing-partitions

�
f1; 2gt1

�
and

�
f1; 2gt2

�
are Nash-stable. Also the sequential partitions

�
f1gt1 ; f2gt2

�
and

�
f1gt2 ; f2gt1

�
cannot be

pro�tably objected neither by the leader nor by the follower (see proposition 3), and the
result follows. �
Proof of Proposition 5. (i) This result easily follows from proposition 2 and by the

fact that all other timing-partitions are Pareto-dominated by a cooperative agreement, with
the exception of the sequential partition

�
figt1 ; fjgt2

�
. However, since by proposition 2,

�Ni (x
��) > �Fj (x

��) for � < 1=2; the sequential partition
�
figt1 ; fjgt2

�
can pro�tably be

objected by the follower, who prefers to invest simultaneously and, that, by sending the
message m0

j = (fjg ; t1) can induce the simultaneous partition
�
figt1 ; fjgt1

�
. However, the

latter partition can, in turn, be objected by a message
�
f1; 2gt1

�
sent by both �rms, and

therefore, is not strongly stable. Finally, also the partition
�
f1; 2gt2

�
can be objected by a �rm

sending an alternative message m0
i = (fig ; t1), hence inducing the relatively more pro�table

sequential timing-partition
�
figt1 ; fjgt2

�
. (ii) By proposition 2 and 3 it follows that for

2 [��(); 1] all sequential and simultaneous Nash timing-partitions payo¤s are dominated by
cooperative agreements. As a result, the two message pro�les m = (fi; jg ; t1) ; (fi; jg ; t1))
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and m = (fi; jg ; t2) ; (fi; jg ; t2)) are both strongly undominated and the two cooperative
partitions

�
f1; 2gt1

�
;
�
f1; 2gt2

�
are both strongly stable. �

Proof of Proposition 6. Consider �rst the equilibrium investment levels under the
extreme assumptions that �Li = 0, �

N
i = 0, �Fj = 1, �

C
i = 1, i = 1; 2 with j 6= i. Thus we

obtain:

(6.8) x��i
��
�Li =0;�

F
j =1

= 2(a�c)(3�4)2
(112�1622+813�32)

and

(6.9) x��j
��
�Li =0;�

F
j =1

= 4(a�c)(9�8)
(112�1622+813�32) :

Moreover, substituting the above values for the spillover parameters into x��i and xc
�

i , as
derived in Section 3, we have that:

(6.10) x��i
��
�Ni =0

= 4(a�c)
(9�4)

and

(6.11) xc
�

i

��
�Ci =1

= 4(a�c)
(9�8)

for i = 1; 2.
Then,
(a) By simply comparing (6.10) and (6.11), we obtain that xc

�

i

��
�Ci =1

> x��i
��
�Ni =0

.

(b) Considering Eqs (6.9) and (6.8), it comes out that (x��i �x��j )
��
�Li =0;�

F
j =1

= �92�8+
16 < 0 i¤  > �4=9 + 4

p
10=9. This condition is implied by the SOC of �rm i competing a�

la Stackelberg at the R&D investment stage - evaluated at �Li = 0, �
F
j = 1 - which requires

that (�112 + 1622 � 813 + 32) < 0.
(c) Also, x��j

��
�Li =0;�

F
j =1

> xc
�

i

��
�Ci =1

i¤  > 4=3, and this is implied by assumption B.2.

(d) Finally, x��i
��
�Ni =0

> x��i
��
�Li =0;�

F
j =1

for  > 4=9 + 4
p
2=9, which, as shown above, is

always respected.
Combining all inequalities above, we have

x��j
��
�Li =0;�

F
j =1

> xc
�

i

��
�Ci =1

> x��i
��
�Ni =0

> x��i
��
�Li =0;�

F
j =1
:

We now examine the ranking of R&D investments when �Li = �
N
i = 0:5, still maintaining

the assumptions that �Fj = �
C
i = 1. We obtain:

(i) xc
�

i

��
�Ci =1

� x��i
��
�Ni =1=2

) = 3(a� c)(3 + 2) > 0.

(ii) x��i
��
�Ni =1=2

� x��i
��
�Li =1=2;�

F
j =1

= (1623 � 256:52 + 195:75 � 63:875). This expression
is strictly positive for any  � 0:35.
(iii) (xc

�

i

��
�Ci =1

� x��j
��
�Li =1=2;�

F
j =1
) = (813 � 58:52 + 45 � 18), which is strictly positive

for  > 1=2:

(iv) (x��j
��
�Li =1=2;�

F
j =1

� x��i
��
�NCi =1=2

) = 9(32 � 3 + 0:5) > 0 for  > 1=2.
It su¢ ces to take into account the conditions under A.2 as to the feasible values of 

to guarantee that all inequalities sub (i)-(iv) hold. Therefore, for �Li = �Ni = 0:5 and
�Fj = �

C
i = 1, the ranking among equilibrium investments is such that:
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xc
�

i

��
�Ci =1

> x��j
��
�Li =1=2;�

F
j =1

> x��i
��
�Ni =1=2

> x��i
��
�Li =1=2;�

F
j =1
:

Let now introduce the more general hypotheses that �Li = �
N
i < 0:5 and 1 � �Ci > �Fj >

0:5, i; j = 1; 2 j 6= i. In what follows, we show that the ranking obtained for �Li = �Ni = 0,
�Fj = �

C
i = 1 and the one obtained for �

L
i = �

N
i = 1=2, �

F
j = �

C
i = 1 are general, i.e. they

hold true for all spillover rates assumed.
First, we examine the ranking of R&D investments when �Li = �

N
i = 0:5 (and 0:5 < �

F
j <

�Ci = 1). It is easy to see that:

(1) xc
�

i

��
�Ci =1

� x��i
��
�Ni =1=2

= 3(a� c)(3 + 2) > 0:
(2) Moreover,

x��i
��
�Li =1=2;�

F
j
� x��j

��
�Li =1=2;�

F
j
=
2(1� 2�Fj )(a� c)(�Fj �  � 2)
(2 � 1)(8 + 2�F2j � 8�Fj � 9)

< 0

due to the SOC for the pro�t maximization problem when �rms compete simultaneously at
the investment stage and the constraints hold on  as stated above.
(3) Also,

xc
�

i

��
�Ci =1

� x��j
��
�Li =1=2;�

F
j
=

2(a�c)[92+(10�F2j �22�Fj +10)�16�12�F2j +32�Fj ]

(2�1)(9�8)(9�8�2�F2j +8�Fj )
> 0

due to the SOC and the assumed constraints on  (see B.2).
(4) Then, we obtain that

(x��j
��
�Li =1=2;�

F
j
� x��i

��
�Ni =1=2

) =
4(a� c)(2� �Fj )(2�Fj � 1)

3(2 � 1)(9 � 8� 2�F2j + 8�Fj )
> 0

and �nally

x��i
��
�Ni =1=2

� x��i
��
�Li =1=2;�

F
j
=

2(a�c)(2+3��Fj )(2�Fj �1)
3(2�1)(9�8�2�F2j +8�Fj )

> 0:

As a result,
xc

�

i

��
�Ci =1

> x��j
��
�Li =1=2;�

F
j
> x��i

��
�Ni =1=2

> x��i
��
�Li =1=2;�

F
j
:

The same ranking holds also for any value of �Ci such that 0:5 < �
F
j < �

C
i < 1. This can

be proven considering that

(xc
�

i � x��j )
��
�Li =1=2;�

F
j =�

C
i =�>1=2

= 2(a�c)(1�2�)[2�3+2(�1)�2�(17�4)�+17�92]
(2�1)(9�8�2�+8�) :

The above expression is strictly positive since the term in square brackets at the numerator
is negative (and decreasing in �), the second term at the denominator is the SOC for simulta-
neous competition at the investment stage (see B.2), and the third term at the denominator
is negative for any � > 0:5 due to the constraints on  (see B.2). Now, �Ci > �Fj > 0:5

implies that xCi increases as well. Thus, a fortiori, x
c�

i

��
�Ci
> x��j

��
�Li =1=2;�

F
j
. Therefore:

xc
�

i

��
�Ci
> x��j

��
�Li =1=2;�

F
j
> x��i

��
�Ni =1=2

> x��i
��
�Li =1=2;�

F
j

for any value of �Ci and �
F
j such that 0:5 < �

F
j < �

C
i < 1.

Now we consider the ranking at �Li = �
N
i = 0 and we let 0:5 < �

F
j < �

C
i � 1 Note that

xc
�

i

��
�Ci =1

� x��j
��
�Li =0;�

F
j
=

8(a�c)(3�4)(2�Fj �1)[(3�Fj �6)+4]
(9�8)(722�Fj +160�18�F2j 2�2162�32+813�48�Fj )

= 0
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i¤ �Fj = 1=2. Now, let �
C
i = 1� �, with � su¢ ciently small. It is easy to see that

@xc
�

i

@�Ci
> 0.

Therefore, xc
�

i

��
�Ci

< x��j
��
�Li =0;�

F
j =1=2

. Moreover, letting �Fj be greater than 1=2, directly

implies that xc
�

i

��
�Ci
< x��j

��
�Li =0;�

F
j
, since x��j is monotonically increasing in �Fj .

Finally, x��i
��
�Li =0;�

F
j
increases for �Fj such that 0:5 < �Fj < 1. We proceed now by

contradiction, wondering if the ranking x��i
��
�Li =0;�

F
j
> x��i

��
�Ni =0

could ever be feasible. It

is easily found that the inequality x��i > x��i contradicts the above �nding, i.e. that
x��i
��
�Li =1=2;�

F
j
< x��i

��
�Ni =1=2

at �Li = �Ni = 0:5, and �Fj > 0:5, combined with the fact

that x��i is monotonically increasing in �Li . As a result,

x��j
��
�Li =0;�

F
j
> xc

�

i

��
�Ci
> x��i

��
�Ni =0

> x��i
��
�Li =0;�

F
j
:

The fact that both x��j and x��i are monotonically decreasing in �Li = �Ni , and that,
conversely, x��i is monotonically increasing in �Li completes the proof. Figure 5 illustrates
this proposition by means of a numerical example. �

Assumptions under Symmetric Spillovers

A.1 Straightforward manipulations of �rms�payo¤s at the quantity-stage yield

(6.12) q�i = q
�
j =

1

3
[(a� c) + (2� �)xi + (2� � 1)xj]

and then

(6.13) �i (q
� (x)) =

1

9
[(a� c) + (2� �)xi + (2� � 1)xj]2 �



2
x2i :

Since � 2 [0; 1] and xi 2 [0; c], and given that for a �rm the worst investment scenario occurs
when x�i = 0, � = 0 and x

�
j = c, by (6.12) this yields

(6.14) q�i (xi = 0; xj = c; � = 0) =
1

3
[(a� 2c)] :

This condition implies that for
a > 2c

a unique interior (positive) Cournot pro�le of quantities, with associated positive equilibrium
pro�ts, always exists.

A.2 It is easily shown that the investment-stage SOCs are respected for every i = 1; 2 for

@2�i (x (q
�))

@x2i
=
1

9

�
8 + 2�2 � 8� � 9

�
< 0

which requires that

 >
2

9
(2� �)2

and then strict-concavity of �i (x (q�)) in xi is guaranteed for

 >
8

9
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for any � 2 [0; 1]. Firms�best-replies are obtained instead by setting the derivative of (6.13)
with respect to xi to zero and then solving for xi we get:

xi = gi (xj) =
2 (2� �) (a� c+ (2� � 1)xj)

(9 + 8� � 2�2 � 8) :

Moreover, since for every �rm

g0i (xj) = �
@2�i (xi (q

�) ; xj (q
�)) =@xi@xj

@2�i (x (q�)) =@x2i
= � 2 (2� � 1) (2� �)

(8 + 2�2 � 8� � 9)
increasing di¤erences of �i (xi; xj) in (xi; xj) (and then non decreasing best-replies) are im-
plied by � > 1

2
and decreasing di¤erences (and non increasing best-replies) are implied by

� < 1
2
, given that

@2�i (x (q
�))

@xi@xj
=
2

9
(2� � 1) (2� �) :

To guarantee that uniqueness of Nash equilibrium x�� (q�), a contraction condition would
serve the scope. This condition is respected for g0i (xj) < 1 when the function is increasing
and for g0i (xj) > �1; when the function is decreasing, thus requiring

(6.15) g0i (xj) = �
2 (2� � 1) (2� �)
(8 + 2�2 � 8� � 9) < 1

for � > 1
2
and

(6.16) g0i (xj) = �
2 (2� � 1) (2� �)
(8 + 2�2 � 8� � 9) > �1

for � < 1
2
.Condition (6.15) implies�

8 + 2�2 � 8� � 9
�
> �2 (2� � 1) (2� �)

which is satis�ed for

(6.17)  >
2

9
(� + 1) (2� �) :

Since the RHS in (6.17) is monotonically increasing in �, (6.17) becomes

 >
1

2
:

Condition (6.16) equals to

(6.18) �2 (2� � 1) (2� �) > �
�
8 + 2�2 � 8� � 9

�
;

and thus

(6.19)  >
2

3
(� � 1) (� � 2) :

Since the expression on the RHS of (6.19) is monotonically increasing in �, we get

 >
4

3
:

Therefore, for any � 2 [0; 1] the two �rms�investment best-replies gi(xj) are contractions for
 > 4

3
.
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A.3 In order to obtain interior values for the equilibrium investment level x�under symmet-
ric spillovers and in all simultaneous, cooperative and sequential games, some assumptions
are in order.
(i) Using the FOC of every �rm i = 1; 2 when playing simultaneously the investment game,

we obtain that
@�i (x (q

�))

@xi
=
2 (2� �)

9
[a� c+ (2� �)xi + (2� � 1)xj]� xi;

which, for xi = 0 becomes

(6.20)
@�i (0; xj)

@xi
=
2 (2� �)

9
[a� c+ (2� � 1)xj] > 0

for every xj 2 [0; c]. As a result, for a �rm to play xi = 0 is never a best-reply .
(ii) Secondly, when a �rm i = 1; 2 participates to a cooperative R&D agreement, its FOC

is
@�i (0; xj)

@xi
+
@�j (0; xj)

@xi
=
2 (2� �)

9
[a� c+ (2� �)xi + (2� � 1)xj]� xi+

+
2

9
(2� � 1) (a� c+ (2� �)xj + (2� � 1)xi)

which, evaluated at x =(0; xj), becomes

@�i (0; xj)

@xi
+
@�j (0; xj)

@xi
=
2

9

�
(a� c) (1 + �) + 10�xj � 4xj � 4�2xj

�
> 0

for every xj 2 [0; c]. It is thus never rational for a �rm in a cooperative agreement to play
xi = 0, no matter what the other �rm does.
(iii) For a �rm i = 1; 2 investing as a leader, the FOC is

(6.21)
@�i (xi; gj(xi))

@xi
=
@�i (xi; gj(xi))

@xi
+
@�i (xi; gj(xi))

@xj
g0j(xi) = 0:

Notice that for � > 1
2
both @�i(xi; xj)=@xj > 0 and g0j(xi) > 0 while for � <

1
2
; the opposite

holds, given that

@�i (0; gj(0))

@xi
=
(a� c) (2�2 + 4� 6� � 3) (2� 2�2 � 3) (2� �)

2 (8� + 9 � 2�2 � 8)2
> 0

for  > 4
3
, and expression (6.20) guarantees that a �rm as a leader will always invest pos-

itively at a sequential equilibrium. Moreover, since the FOC for a follower is the same as
the simultaneous Nash, at the sequential equilibrium both �rms will never play a pro�le.
x��=(0; 0). To conclude on the role of assumption A.3, we want to be sure that both �rms
will never play their full cost reduction investment (corner solution), and that instead either
their best-replies or their cooperative decisions always lie below their maximum rational level

(6.22) xi = xj =
c

� + 1
:

(i) and (iii) Under noncooperative behaviour and using (6.22), this is guaranteed whenever

@�i (x (q
�))

@xi
=
2 (2� �)

9

�
(a� c) + (2� �) c

� + 1
+ (2� � 1) c

� + 1

�
�  c

� + 1
< 0
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which is implied by

(6.23)  >
a (2� �) (� + 1)

4:5c
:

As a result, for

(6.24)  >
a (2� �) (� + 1)

4:5c
, x��i = gi(x

��
j ) and x

�� = (x��i ; gj(x
��
i ))

both simultaneous and sequential investment equilibria are interior and lie below the bound-
ary points, which occurs instead for

(6.25)  � a (2� �) (� + 1)
4:5c

, x��i =
c

� + 1
and x�� =

�
c

� + 1
;
c

� + 1

�
:

(ii) For a �rm participating to a cooperative R&D agreement, its FOC evaluated at

x =
�

c
�+1
; c
�+1

�
is

@�i (x (q
�))

@xi
+
@�j (x (q

�))

@xi
= 2(2��)

9

h
a� c+ (2� �) c

�+1
+ (2� � 1) c

�+1

i
� xi+

+
2

9
(2� � 1)

h
a� c+ (2� �) c

�+1
+ (2� � 1) c

�+1

i
< 0

which is implied by

(6.26)  >
a (� + 1)2

4:5c
:

Notice that for � < 1
2
(� > 1

2
) the cooperative constraints on  is less (more) demanding than

the noncooperative constraints. Therefore, the constraint used to avoid full cost reductions
for � > 1

2
is (6.26) while for � < 1

2
in A.3 we can use the contraint (6.23).

Assumptions under Asymmetric Spillovers

B.1 It is easily found that equilibrium quantities as function of R&D investments are
given by:

(6.27) q�i =
1

3
[(a� c) + (2� �j)xi + (2�i � 1)xj]

for i; j = 1; 2 ; i 6= j. Therefore

(6.28) �i (q
� (x)) =

1

9
[(a� c) + (2� �j)xi + (2�i � 1)xj]2 �



2
x2i :

Substituting in Eq. (6.27) or in Eq. (6.28), x�i = 0, x
�
j = c, �i = 0 and 0:5 < �j < 1, we

obtain that under asymmetric spillovers the condition

a > 2c

is again needed to guarantee an interior Cournot pro�le of equilibrium quantities, and hence
the strict positivity of equilibrium pro�ts.

B.2 Given our assumptions on spillovers at the simultaneous noncooperative R&D in-
vestment game, that is, �Ni = �Nj � 0:5, the SOC of the investment gane do not vary and
requires that, for every i = 1; 2
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(6.29)  >
2

9

�
2� �Ni

�2
:

Being the RHS of (6.29) decreasing in �Ni , we obtain that the most stringent condition on 
requires that:

 >
8

9
:

Note that this condition also guarantees that the SOC of an R&D alliance at the investment
game is respected. In this case the SOC is given by

 >
2

9

�
1 + �Ci

�2
;

and, being increasing in �Ci - and given our assumptions on �Ci - the above condition is
respected for

 >
8

9
:

When both �rms play simultaneously the investment stage, and given that �Ni = �
N
j � 0:5,

best replies are contractions for

 >
4

3
:

In addition, to guarantee the uniqueness of the sequential equilibrium, the contraction
approach applied to the follower best reply requires that

(6.30) g0j (xi) =
2 (2�j � 1) (2� �i)
(9 + 8�i � 2�2i � 8)

< 1

and given that 0:5 < �Fj < 1 and the follower�s best reply is increasing, (6.30) requires

(6.31)  >
2

9
(2� �i) (1 + 2�j � �i) :

As a result, since (6.31) is increasing in �j and decreasing in �i, the most stringent constraint
on  becomes

 >
4

3
:

B.3 First de�ne as (xi;xj) the point at which the boundary lines given by

xi = c� �ixj
xj = c� �jxi

intersect. It is easily found that:

xi =
c (1� �i)
1� �i�j

xj =
c (1� �j)
1� �i�j

Using the pro�t maximization problem for a �rm under asymmetric spillovers, we have
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@�i (x (q
�))

@xi
=
2 (2� �)

9
[(a� c) + (2� �)xi + (2� � 1)xj]� xi = 0

from which the following best-reply

gi (xj) =
2 (2� �j) (2 (a� c) + (2�i � 1)xj)�

9 + 8�j � 2�2j � 8
�

is obtained. In order to show that this best-reply lies underneath the point (xi; xj), it
su¢ ces to impose that, when the incoming spillover �i is greater that 1=2 for at least one
�rm, @�i(xi;xj)

@xi
< 0. If this condition holds true, then the equilibrium R&D investment pro�le

will lie at the interior of the full cost reduction boundary (xi; xj). More speci�cally,

@�i (x (q
�))

@xi
=
2 (2� �j)

9
[(a� c) + (2� �j)xi + (2�i � 1)xj]�  =

=
2 (2� �j)

9

�
(a� c) + (2� �j)

c (1� �i)
1� �i�j

+ (2�i � 1)
c (1� �j)
1� �i�j

�
�  c (1� �i)

1� �i�j
< 0

and, since �
(a� c) + (2� �j)

c (1� �i)
1� �i�j

+ (2�i � 1)
c (1� �j)
1� �i�j

�
= a

the inequality becomes
2a (2� �j)

9
�  c (1� �i)

1� �i�j
< 0

requiring that:

(6.32)  >
2

9

a (1� �i�j) (2� �j)
c (1� �i)

:

Since under the sequential equilibrium, 1 > �Fj > 0:5 and 0 � �Li � 0:5, the constraint in
(6.32), which is increasing in �i and decreasing in �j, boils down into the following condition
on :

(6.33)  >
a

2c
which becomes the most stringent one for �rm i. The boundary points required for an
interior equilibrium under noncooperative behavior and simultaneous moves were derived in
the previous section. By simply substituting for �Ni ; for i = 1; 2; we have

(6.34)  >
2a
�
2� �Ni

� �
�Ni + 1

�
9c

:

Moreover, since in our assumptions �Ni � 0:5, and given that (6.34) is increasing in �Ni , the
(most stringent) condition on  becomes:

(6.35)  >
a

2c
:

For a �rm entering an R&D alliance, the constraint on  does not vary with respect to
the case with symmetric spillovers, except under the assumption 0:5 < �Ci � 1. As a result,
the condition
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(6.36)  >
2a
�
�Ci + 1

�2
9c

:

boils down into:

(6.37)  >
8a

9c
:

Also in this case the constraint on  required under cooperation (eq. 6.37) is the most
stringent and therefore will be the one which has to be imposed. Finally, combining both
constraints in B.1 and in B.3 for the sequential investment game, the most demanding
condition on  is:

 > 1:

Finallly, in the noncooperative simultaneous investment stage, the same constraint on  has
to be satis�ed, whilst, under the cooperative case, it is required that:

 > 16=9

This is the most stringent condition used in the numerical simulations with asymmetric
spillovers.
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Fig 1 - R&D investment for the leader (boxed line), follower (dotted line) and cooperative �rm
(continuous line) for a = 38, c = 18,  = 1:7 and 0 � � � 1
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Fig 3 - R&D investments for the leader (boxed line), follower (dotted line) and cooperative �rm
(continuous line) for a = 38, c = 18,  = 1:7 and 1
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