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Generalized Maxwell Love numbers
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By elementary methods, I study the Love numbers of a homogeneous, incompress-

ible, self–gravitating sphere characterized by a generalized Maxwell rheology, whose

mechanical analogue is represented by a finite or infinite system of classical Maxwell

elements disposed in parallel. Analytical, previously unknown forms of the complex

shear modulus for the generalized Maxwell body are found by algebraic manipula-

tion, and studied in the particular case of systems of springs and dashpots whose

strength follows a power–law distribution. We show that the sphere is asymptoti-

cally stable for any choice of the mechanical parameters that define the generalized

Maxwell body and analytical forms of the Love numbers are always available for

generalized bodies composed by less than five classical Maxwell bodies. For the

homogeneous sphere, “real” Laplace inversion methods based on the Post–Widder

formula can be applied without performing a numerical discretization of the n–th

derivative, which can be computed in a “closed–form” with the aid of the Faà di

Bruno formula.

I. INTRODUCTION

Love numbers, named after A. E. H. Love [23, 24], represent a fundamental tool in geo-

physics. From a physical standpoint, Love numbers basically represent properly normalized

displacements and gravity potential variations in response to impulsive perturbations of a

given harmonic degree. Since Love numbers for elastic Earth models can be easily gener-

alized to the case of a linear viscoelastic rheology, they are useful to describe the response

of the Earth on a broad spectrum of time–scales. As a consequence, using the Love num-

bers technique, it is possible to address a number of relevant problems which range from
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post–glacial deformations (see e. g., [41] and references therein) to isostatic sea level varia-

tions [45], from post–seismic deformations [26, 31] to planetary tides [11], and from Earth

rotation instabilities [19, 28] to the problem of dynamic compensation of internal mass

heterogeneities [35, 42].

For an elastic, homogeneous, isotropic, incompressible and self–gravitating sphere, ex-

tremely simple analytical forms exist for the Love numbers [19, 28], obtained from the

solution of the Navier–Cauchy equilibrium equations by an harmonic analysis of stress,

displacement fields, and incremental gravity potential [10, 22]. The classic solutions pro-

vided by Lamé [20] and Thomson [48] for the elastic compressible sphere and by Darwin [8]

for the viscous incompressible sphere have been later generalized to the viscoelastic, homo-

geneous sphere [29, 54, 55] making use of the elastic–viscoelastic correspondence principle

[5, 21].

Amongst the existing closed–forms for the Love numbers, the one pertaining to the

homogeneous Maxwell sphere has played a fundamental role during the past decades [29],

since the assumption a Maxwell viscoelastic rheology largely explains some of the geo-

physical observations accompanying post–glacial rebound and long–term mantle dynamics

[30]. Current investigations in the field of global geodynamics, however, are performed

using multi–stratified Earth models compatible with seismological evidence, in which the

equilibrium equations are generally solved assuming a complex viscosity profile [46], whose

depth–dependence is varied until surface observations (geodetically observed deformations,

relative sea level and gravity field variations) are satisfactorily reproduced [30].

In this work, we go back to the homogeneous, incompressible and self–gravitating, vis-

coelastic sphere (hereinafter H–sphere), to discuss some aspects that have been apparently

unnoticed so far, possibly because of the large success of the simple (but simultaneously

realistic) Maxwell rheology, and of the ensuing numerical applications to multi–layered

models. In particular, we extend the Love numbers formalism to the case of generalized

(discrete) Maxwell bodies (hereinafter GMBs), whose properties are of particular interest

in various fields of physics [5, 25] and geophysics [33]. In general, a GMB results from

the one–dimensional arrangement of various classical Maxwell bodies (CMBs), whose ma-

terial parameters are chosen so that to reproduce physical (or geophysical) observations

[5]. Here we limit our attention to discrete finite or infinite GMBs obtained by elementary

parallel arrangement of CMBs, and we address the problem of Laplace inversion of the
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so–generalized Love numbers. More complex combinations of CMBs, such as the ladder

networks, provide fractional constitutive relationships [38] which are of particular interest

in the theory of electromagnetic systems [14]. Love numbers spectra corresponding to these

arrangements will be considered elsewhere, in view of possible geophysical applications.

The paper is organized into four sections. After reviewing in Section IIA the properties

of discrete GMBs composed by a finite number of CMBs, we consider the complex shear

modulus of a discrete, infinite GMB with mechanical parameters distributed according to

a power–law, also giving – apparently for the first time – closed forms for the viscoelastic

material functions in terms of classic special functions, reported in Section IIB. Then, in

Section IIC, the Love numbers for the H–sphere are generalized to a rheology described by

finite GMBs, also discussing their Laplace–inversion by means of traditional methods. In

the final part (Section IID), we address the problem of Laplace inversion of the generalized

Love numbers by means of Post’s formula [32]. Seen the simple structure of Love numbers

in the Laplace domain (this is a consequence of the geometrical simplicity of the H–sphere),

“closed forms” are available for the second–order Bell polynomials that enter the Faà di

Bruno formula [17], hence, in principle, the n–derivative of the Love numbers – required

in Post’s formula – is available analytically.

II. RESULTS

A. Discrete GMBs

The classical Maxwell body (CMB) is a simple mechanical system composed by a spring

connected in series with a dashpot [5, 25, 33]. The quasi–static creep or relaxation of the

CMB can be studied in the Laplace–transformed domain introducing the complex shear

modulus

µ̃(s) =
µs

s+ µ/η
, (1)

where s = x + iy is the complex Laplace variable and the material parameters µ (µ > 0)

and η (η > 0) represent the rigidity and the viscosity of the spring and of the dashpot,

respectively. The ratio

τ =
η

µ
(2)

is Maxwell relaxation time of the CMB.
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Function µ̃(s) fully describes the response of GMB, expressed by the stress–strain rela-

tionship [5]. The creep compliance J(s) and relaxation modulus G(s), which represent the

response of the GMB to a unit stress and strain, respectively, are in fact related to µ̃(s)

by G(s) = 2µ̃(s)/s and J(s) = 1/2sµ̃(s) (see e. g. [25]). Functions J(s) and G(s), also

referred to as material functions of the CMB, are not independent one from each other,

being linked by the reciprocity relation J(s)G(s) = 1/s2 (e. g. [25]).

By the combination rule for mechanical analogues [5, 34], the complex shear modulus

of a discrete GMB composed by N CMBs disposed in parallel is

µ̃(s) ≡
N

∑

n=1

µ̃n(s) (3)

where, from (1), the complex shear modulus of the of the n−th CMB is

µ̃n(s) =
µns

s+ µn/ηn

, (4)

with rigidity µn > 0 and viscosity ηn > 0. The constant

τn =
ηn

µn

(5)

represents the Maxwell relaxation time of the n–th CMB component (hereinafter, it will

be assumed that times τn’s are distinct).

In terms of τn, the complex shear modulus of a N–elements GMB reads

µ̃(s) =
N

∑

n=1

µns

s + 1/τn
, (6)

showing that µ̃(0) = 0 and that µ̃(s) has exactly N isolated poles for s ∈ R
−, located at

sn = −1/τn. From

∂µ̃(s)

∂s
=

N
∑

n=1

µn/τn
(s+ 1/τn)2

(7)

and by the positivity of µn and ηn, it follows that µ̃(s) is strictly monotonic for s ∈ R.

These properties show that the N zeros of µ̃(s) are interlacing the poles in s ∈ R
−

0 [25].

Since the k–th derivative of the complex shear modulus is

µ̃(k)(s) = (−1)k+1 k!

N
∑

n=1

µn/τn
(s+ 1/τn)k+1

, (8)

µ̃(s) is a C∞ function for s ∈ R
+
0 (i. e., it is infinitely differentiable along the real positive

axis), which ensures the applicability of the “real” Post–Widder Laplace inversion method
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to the Love numbers problem for the homogeneous sphere, as we will discuss in Section

IID below. In addition, since

(−1)k µ̃(k)(s) ≤ 0, s ∈ R
+
0 , (9)

we note that µ̃(s) is a completely monotonic function (e. g. [25]).

The limit of (6) for N 7→ ∞ is not straightforward. For instance, it is clear that an

infinite GMB composed of identical springs (µn = µ0) and dashpots (ηn = η0) combined

in parallel does not have a finite complex shear modulus (i. e., series (6) is divergent).

This shows that finite values of µ̃(s) can be obtained only with appropriate combinations

of elastic and viscous elements, with varying strengths. A case study will be investigated

in the next section.

B. A power–law, discrete GMB

We consider, as a case study, the response of a GMB with moduli following a power–law

distribution, with

µn =
µ∗

np
, p ∈ N, µ∗ > 0, (10)

ηn =
η∗

nq
, q ∈ N, η∗ > 0, (11)

where µ∗ and η∗ are a reference rigidity and viscosity, whose ratio defines the time constant

τ ∗ =
η∗

µ∗
. (12)

The two–parameters GMBs described by (10) and (11) are particularly useful since

closed–form expression are available for the complex shear modulus in the case N = ∞, as

we will show below. This implies, in particular, a closed–form for the material functions

J(s) and G(s), which are generally not available for finite arrangements of mechanical

analogues. At the same time, a power–law distribution of material parameters is sufficiently

general to be potentially useful for numerical applications in physics and geophysics. An

example has been recently given by Spada [46], who has employed this distribution to

study the Love numbers of a multi–stratified Earth model and has anticipated one of these

analytical forms in the particular case (p = 0, q = 2). Here the mathematical aspects
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presented in [46] are considered more in detail and extended to any value of the integer

exponents p and q. The case (p, q) ∈ R will be investigated in a follow–up study.

It is now convenient to normalize the complex shear modulus

m(s) ≡ µ̃(s)

µ∗
, (13)

which, using (10) and (11) with (3) and (4), gives

m(z; p, q) =

N
∑

n=1

z

npz + nq
, (14)

with

z ≡ sτ ∗ ∈ C. (15)

For finite values of N and arbitrary distribution of moduli, the series (14) cannot be

summed to provide a closed–form complex shear modulus. However, a general result that

can be easily established valid for all N values (including N = ∞), is

m(
1

z
; q, p) =

1

z
m(z; p, q), (16)

showing that the modulus of a given GMB can be obtained from that of a complementary

GMB, in which springs (with distribution determined by p) and dashpots (q) are inter-

changed. As a consequence of the symmetry–duality relationship (16), the summation of

(14) can be limited to p ≤ q.

For a GMB composed by an infinite number of CMBs, the normalized complex shear

modulus is

M(z; p, q) = lim
N 7→∞

m(z; p, q), (17)

with m(z; p, q) given by (14). Hence we are interested in the study of the series

M(z; p, q) =

∞
∑

n=1

z

npz + nq
, p, q ∈ N, (18)

for which the conditions of convergence (divergence) are the same as for the series
∑

∞

n=1 1/(npz + nq). Since 1/|npz + nq| < 1/nq and
∑

∞

n=1 1/nq is convergent for q ≥ 2,

by the Weierstrass M–test for the series of complex functions (see e. g. [13]), the (uniform)

convergence of (18) in this range of q values is proved. By a similar argument, it can be

easily shown that a further condition of convergence is p ≥ 2. Hence, we conclude that
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sufficient condition for the uniform convergence in the whole complex plane of M(z; p, q)

is

(p, q) ∈ A, A = {p ≥ 2} ∪ {q ≥ 2}. (19)

The divergence of (18) for (p, q) /∈ A can be shown in a straightforward way.

The poles of M(z; p, q) are found at

zn = −nq−p, (20)

hence they are simple and, for p 6= q they are countably infinite (in the particular case

p = q, the infinite GMB degenerates into a CMB with Maxwell time τ ∗, with M(z; p, q)

showing a single pole z1 = −1). For any p and q value, the poles are zn ∈ R−, and, from the

general properties of complex modulus µ̃(s), discussed in Section IIA, they are interlaced

with the zeros of M(z; p, q). Points z = −∞ and z = 0 are accumulation points of poles for

q > p and q < p, respectively. It is also of interest to observe that, in the limit for z 7→ ∞,

M(z; p, q) is only determined by the strength of the springs (this is physically sound, since

the limit z 7→ ∞ corresponds to the small times limit). In fact, from (18) one obtains

lim
z 7→∞

M(z; p, q) = ζ(p), (21)

where ζ is Riemann zeta function [1]. Hence, M(z; p, q) is bounded at z = ∞ only for

p ∈ A.

With the help of tables of series [13] and of an algebraic manipulator, it is straightforward

to verify that closed–form expressions for M(z; p, q) exist in the case of discrete GMB with

N = ∞. As discussed in Section IIA, they can be used to obtain closed–forms for the

material functions J(s) and G(s) of the GMB, which are usually not available for finite

values of N . These analytical formulas are useful since they allow for a compact expression

of M(z; p, q) but their complexity, also manifest from the infinite number of poles and

the presence of accumulation points of poles along the real negative axis, can make the

Laplace inversion of Love numbers in the time domain practically problematic, as it will

be discussed in Section IIC.

The closed–form expressions that can be obtained by Equation (18) involve classical

special functions (the derivative of the digamma function ψ(k, z) and the Riemann zeta

function ζ(s), respectively), as illustrated in Table I for low values of p and q. Definitions
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and elementary properties of these functions are found in e. g. [1]. Compact forms of

M(z; p, q) however exist also for larger values of p and q. For instance, have verified that

M(z; 0, q) = −z
q

q
∑

k=1

ψ(0,−ξk)
(1 + ξk)q−1

, q ≥ 3, (22)

with ψ(k, z) = d
dz
ψ(z) where ψ(z) is the digamma function and ξk(k = 1, . . . q) are solutions

of the algebraic equation z + (1 + ξ)q = 0. By virtue of the reciprocity relationship (16),

the complex modulus M(z; q, 0) (q ≥ 3) can be easily determined from (22).

Though we have only studied function M(z; p, q) for a limited number of p and q values,

we conjecture that algebraic manipulation can provide ‘closed–forms” for any value of

parameters p and q, though these formulas could be too complex (and the CPU time

required for manipulation exceedingly long) for being of any practical use.

TABLE I: Normalized complex modulus M(z; p, q) (18) for some GMBs wit power–law distri-

bution of moduli, characterized by low values of p and q, with (p, q) ∈ A (19). Here γ is Euler

constant (γ = 0.577215 . . .), ψ(k, z) is the k–th derivative of the digamma function, defined as

ψ(z) = Γ′(z)/Γ(z) where Γ(z) is the Euler gamma function, and ζ(s) =
∑

∞

k=1
1
ks is Riemann zeta

function [1]. Note that M(z; p, q) obeys the reciprocity–symmetry relationship (16), valid for any

N . z = zn gives the location of the poles of M(z; p, q). For (p, q) = (0, 2), M(z; p, q) can be

obtained from published tables (see e. g. Equation 4./1.421 of [13]), while for p = q, it follows

from the definition of Riemann function [1]. All the other forms have been obtained by algebraic

manipulation.

p q M(z; p, q) −zn

0 2 1/2

(

−1 + π
√
z coth π

√
z
)

n2

2 0 1/2

(

−z + π
√
z coth

π√
z

) 1

n2

1 2 γ + ψ(0, 1 + z) n

2 1 z
(

γ + ψ(0, 1 +
1

z
)
) 1

n

p p
zζ(p)

1 + z
1
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C. Generalized Love numbers for the H–sphere

At a given harmonic degree ℓ, the Laplace–transformed Love numbers for the H–sphere

can be cast in the form

L̃(s) =
Lf (ℓ)

1 + λ2µ(s)

µe

, (23)

where Lf(ℓ) is the “fluid” limit of the Love number (i. e., Lf (ℓ) = lims 7→0 L̃(s)), µ̃(s) is

the complex shear modulus of the CMB (or more generally, of the GMB) that mimics

the rheological behavior of the sphere and µe is the elastic rigidity of the sphere. With

appropriate functions Lf = Lf (ℓ), Equation (23) is useful to describe vertical and horizontal

component of displacement, and the incremental gravitational potential, for Love numbers

of both tidal and loading type [19, 28, 41]. In Equation (23), I have introduced the non–

dimensional constant

λ2 =
2ℓ2 + 4ℓ+ 3

ℓ

µe

ρga
, (24)

where ρ is the density of the sphere, a is its radius, and g is gravity at the surface (g =

4/3πGρa, G being Newton gravity constant). At a given degree ℓ, λ2 is a measure of the

ratio between elastic stress (governed by µe) and gravitational stress (described by ρga).

For the “average” Earth, µe/ρga ≈ 0.60 [57].

By substitution of (4) into (23), the Love numbers for a H–sphere with a GMB rheology

can be easily studied. The poles of L̃(s), which correspond to the zeros of 1 + λ2µ̃(s)/µe,

are all real and negative. In fact, recalling from Section IIA that µ̃(s) is monotonic for

s ∈ R, vanishes for s = 0 and has N − 1 more zeros for z ∈ R−, the zeros of 1 + λ2µ̃(s)/µe

must be found for s ∈ R−, being shifted to the left relative to those of µ̃(s) because of the

additive term ”1”.

From above, we conclude that any (incompressible) H–sphere with GMB rheology is

stable with respect to surface or tidal loading, for perturbations of any harmonic degree

and regardless of its material properties. This also holds for N = ∞, since adding more

CMBs to the system would not change qualitatively the distribution of the zeros of µ̃(s).

This stability property is certainly violated for compressible spheres of initially constant

density, as clearly illustrated by [15] in the case of a simple CMB.

For a GMB composed of N elements, an analytical Laplace inversion of L̃(s) can only

be obtained, in principle, for N ≤ 4. This can be seen by substitution of (4) into (23),
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which provides

F (s) ≡ L̃(s)

Lf

=
1

1 + λ2
N

∑

n=1

µ′

ns

s+ 1/τn

, (25)

where µ′

n = µn/µe. Hence

F (s) =
P (s)

Q(s)
, (26)

where

P (s) =

N
∏

n=1

(

s+
1

τn

)

(27)

and

Q(s) = P (s) + λ2

N
∑

n=1

µ′

ns

[

N
∏

n′=1

n′ 6=n

(

s+
1

τn′

)

]

(28)

are degree N polynomials in the variable s.

Hence, by the Heaviside expansion theorem (see e. g., [6]), the time–domain Love

number for the GMB can be cast in the multi–exponential form

L(t) = Leδ(t) +

N
∑

n=1

Lnesnt, t ≥ 0, (29)

where δ is Dirac’s delta, sn (n = 1, . . . N) are the (real and negative) distinct roots of the

algebraic equation

Q(s) = 0, (30)

and elastic and viscoelastic components of Love number are

Le = lim
s 7→∞

P (s)

Q(s)
, (31)

and

Ln =
P (sn)

Q′(sn)
, n = 1, . . .N, (32)

respectively, where Q′ is the first derivative of Q(s). An exact solution of Equation (30)

is only possible analytically for N ≤ 4, since by the Abel–Ruffini “impossibility theorem”,

general quintic equation cannot be solved in terms of radicals (e. g., [47]). We remark that

times −1/sn bear no obvious relationship with the time constants τn, defined by (5).

The existence of closed forms for the Love numbers for GMBs with N ≤ 4 guaran-

tees the possibility of obtaining analytical results for particular GMBs of great interest in
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geophysics. This is the case of Burgers rheology, a four–parameters model which is tradi-

tionally represented by a CMB combined in series with a Kelvin–Voigt element (see e. g.,

[33]), and widely employed in the study of post–seismic deformations [26, 31], post–glacial

rebound [18, 27, 37, 56] and planetary dynamics [53]. Since it has been shown that such

disposition is mechanically equivalent to a four–elements GMB composed of two CMBs in

parallel [27], a closed–form expression of the type (29) with N = 2 is certainly possible for

the Burgers H–sphere, where the explicit relationship between Le, Ln and sn (i = 1, . . .N)

and the four free parameters of the Burgers body (µ1, µ2, η1, η2) can be obtained by lengthy

algebra, since a quartic equation is involved.

For N ≥ 5, the Laplace inversion of the Love numbers can be only performed by a

numerical evaluation of the roots of polynomial Q(s) in Equation (28), again followed by

the application of Heaviside expansion theorem. The multi–exponential form given by (29)

is therefore still formally valid for N ≥ 5, but the coefficients cannot be expressed explicitly

in terms of the mechanical parameters of the GMB.

D. Post–Widder formula and the H–sphere

The simple analytical structure of the generalized Love numbers (25) allows, at least

formally, alternative approaches to the Laplace inversion, based on ”real” methods such as

the Post–Widder (PW) formula [32, 51, 52] (a modern, detailed proof of Post’s inversion

formula can be found in [3], with a nice comment on the ill–posedness). In numerical

applications (e. g., [49]), the main advantage of PW formula is that it does not require

root–finding numerical algorithms, which can become unreliable especially for large N ,

when equation (30) may possess densely packed (and thus numerically difficult to resolve)

roots on the real negative axis [44]. In the context of this study, as we have discussed in

Section IIB, for N 7→ ∞, the roots are countably infinite and accumulation points of poles

appear, that enhances the numerical difficulties.

The PW formula requires the computation the derivatives L̃(n)(s) along the real positive

axis (hence the attribute real) and the evaluation of the limit of a sequence according to

L(t) = lim
n 7→∞

(−1)n

n!

(

n

t

)n+1

L̃(n)

(

n

t

)

(33)

[32, 51, 52] requires L̃(s) ∈ C∞ for s ∈ R+ [6]. The convergence of sequence (33) is logarith-
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mically slow, but it can be efficiently accelerated [49, 50] without seriously compromising

the performance of numerical computations – at least in the geophysical applications per-

formed so far [44, 46]. Lacking, in general, an analytical expression for L̃(n)(s), numerical

application of the PW formula requires a finite–difference discretization, a noisy numerical

operation that demands a multi–precision environment (a nice tool is offered by FMLIB

[40]) to prevent the phenomenon of catastrophic cancellation [39]. As we will show below,

L̃(k)(s) can be evaluated analytically in the present context, thus avoiding numerical the

discretization which constitutes a major limitation of the PW method.

Application of the PW inversion method to the Love number problem for the H–sphere

is feasible, since L̃(s) is smooth (i. e., L̃(s) ∈ C∞) for s ∈ R+, being µ̃(s) itself smooth in

this interval. Writing

F (s) ≡ L̃(s)

Lf (ℓ)
(34)

gives

F (s) =
1

1 + g
, (35)

with

g = g(s) ≡ λ2 µ̃(s)

µe

. (36)

The n–th derivative of F (s), required in Equation (33), can be expressed using the Faà di

Bruno chain rule formula [17, 36] for the derivative of the composite function F = F (g(s)).

Namely

F (n)(s)=
n

∑

k=0

F (k)(g)Bn,k(g
(1), g(2), . . . , g(n−k+1)), (37)

where, using (35), the k–th derivative of F with respect to g is

F (k)(g) = (−1)k k!

(1 + g)k+1
(38)

and Bn,k denotes the incomplete Bell polynomials (also known as second kind Bell poly-

nomials) [2, 7], defined as

Bn,k(x1, x2, . . . , xn−k+1)=
∑ n!

j1!j2! · · · jn−k+1!

(

x1

1!

)j1
(

x2

2!

)j2

· · ·
(

xn−k+1

(n− k + 1)!

)jn−k+1

, (39)

where the sum is over all sequences of non–negative integers j1, j2, . . . jn−k+1 which are

solutions of equations j1 + j2 + . . . = k and j1 + 2j2 + 3j3 + . . . = n.
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In the present context, a “closed–form” expression for Bell polynomials can be obtained

recalling that for a GMB with N elements, the m–th derivative of µ̃(s) is given by Equation

(8). Hence, for any integer m,

g(m)(s) = λ2(−1)m+1 m!

N
∑

n=1

µ′

n/τn
(s+ 1/τn)m+1

(40)

can be used in the right hand side of Equation (37), obtaining a fully explicit (but extremely

complex) expression for F (n)(s). In this way, the major shortcoming of the PW formula,

namely the numerical noise amplification produced by repeated differentiation of L̃(s), can

be circumvented for theH–sphere (but to the cost of very complex algebraic computations).

Therefore, the generalized Love numbers for the H–sphere can be expressed as a limit of the

sequence (33), which in principle may constitute an alternative to the classical root–finding

approach, especially for large N values.

III. CONCLUSIONS

Our main conclusions can be summarized as follows. i) In the case of discrete GMBs

composed of an infinite number of CMBs disposed in parallel, analytical forms for the com-

plex shear modulus are available in the case of material parameters distributed according

to an (integer) power–law (see Equation 10). These forms involve classic special functions,

and are moderately simple for low values of the powers. After algebraic manipulation of

several case studies, we conjecture that analytical (but exceedingly complex) moduli can al-

ways be formally determined. ii) For finite GMBs composed by limited number of elements

(in particular, N ≤ 4), the Love numbers of the H–sphere can be determined in closed

form. These Love numbers are asymptotically stable for any value of N , provided that the

H–sphere is incompressible. For N ≥ 5, standard numerical instruments can be used to

determine the poles of the Love numbers, which could however suffer from the presence of

accumulation points for the poles. Numerical difficulties in the numerical Laplace inversion

of the Love numbers are well documented even in the case such singularities do not enter

into play [44]. iii) The extremely simple algebraic form of Love numbers for the H–sphere

allows for a closed–form construction of the Bell polynomials, which enter the Faà di Bruno

formula for the n–th derivative [17]. Therefore, the numerical difficulties that follow from

the numerical discretization of the derivative [12, 50], can be partly circumvented.
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[36] Roman, S., 1980. The formula of Faà di Bruno. American Mathematical Monthly 87, no. 10,

805–809.
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