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Abstract. Epistemologists  have  debated  at  length  whether  scientific  discovery is  a 
rational and logical process. If it is, according to the Artificial Intelligence hypothesis,  
it should be possible to write computer programs able to discover laws or theories; and 
if such programs were written, this would definitely prove the existence of a logic of  
discovery.  Attempts in this direction, however, have been unsuccessful: the programs 
written by Simon’s group, indeed, infer famous laws of physics and chemistry;  but  
having found no new law, they cannot properly be considered discovery machines. The 
programs written in the «Turing tradition», instead, produced new and useful empirical 
generalization, but no theoretical discovery, thus failing to prove the logical character 
of  the  most  significant  kind  of  discoveries.  A  new  cognitivist  and  connectionist 
approach by Holland, Holyoak, Nisbett and Thagard, looks more promising. Reflection 
on their proposals helps to understand the complex character of discovery processes,  
the  abandonment  of  belief  in  the  logic  of  discovery by logical  positivists,  and the 
necessity of a realist interpretation of scientific research.

1. The problem of Scientific Discovery

Is Scientific discovery a rational activity, is there a method for it, or a “logic” to 
be followed? There has been a long debate on this question among philosophers 
of  science,  with  people  like  Francis  Bacon,  John  Stuart  Mill  and  Hans 
Reichenbach answering “yes”,  and no less important characters, such as William 
Whewell, Albert Einstein, Carl Hempel, and Sir Karl Popper, answering “no”. 

No wonder it  is  so,  since the question is  torn between the horns of a 
seemingly inescapable dilemma: on the one hand, discovery must be rational, for 
we  honour  great  discoverers  like  Newton,  Lavoisier,  Einstein,  etc.,  as 
exceptionally  rational  minds,  not  as  lucky,  or  sensitive,  or  super-naturally 
endowed people.  But if the process of discovery is rational, mustn’t it therefore 
follow rational criteria and rules, hence a logic? On the other hand, it is well 
known that chance, luck, and insight often play an important role in discovery 
(as it happened, for instance, with Kekulé’s discovery of the hexagonal structure 
of benzene, which was prompted by a dream).1 And above all, if discovery were 
just a matter of rule following, why couldn’t anyone learn the necessary rules 
and become a great  scientist?  Or why couldn’t  the scientists  themselves  just 
follow the  logic  of  discovery  and program in  advance  new discoveries,  and 
rapidly achieve such results  as a cure for cancer,  or the cold fusion of atom, 
which while sorely needed still elude the efforts of researchers?2

It  might  be  thought  that  a  logic  of  discovery  is  a  necessary  but  not 
sufficient  condition  for  the  success  of  research;  still,  no  one  so  far  has 

21

mailto:mario.alai@libero.it


satisfactorily shown what this logic is, or codified its rules. No doubt, Bacon  
and  Mill  provided  clear  examples  of  such  rules,  respectively  through  the 
“tables”  of  presence,  absence  and  degrees,  and  through  the  canons  of  
concordance,  difference,  concomitant  variation  and  residues,  and  something 
similar  did  Whewell  and John Herschel.  But  these  are  simply  guidances  to 
induction  as  empirical  generalization,  allowing  to  discover  empirical 
regularities or positive correlations among known factors. As acknowledged by 
Mill,3 they have little to say when it comes to the discovery of unknown entities  
or forces, of representations of unobservable levels of reality,  or of unifying  
theories. In other words, they have little to say concerning the most important  
discoveries,  such  as  the  theory  of  gravitation,  the  atomic  theory,  the  
electromagnetic  theory,  the relativity theory,  and so on. The same is true,  a 
fortiori,  of  Reichenbach’s  method  for  searching  for  a  limit  of  relative 
frequencies.4 

Peirce’s abductive logic, on the other hand, supposedly leads to discover 
causes or explanations beyond the level of empirical data; 5 but as pointed out 
by  Laudan  and  Pera,6 abduction  does  not  lead  to  the  idea  of  the  relevant  
concepts or hypotheses, but rather presupposes it; abduction, therefore, is to be  
considered more a logic of pursuit than of discovery.7

If  one  accepts  the  hypothesis  that  machines  can  be  built  to  perform the 
intelligent tasks of the human mind,8 one ipso facto sides with the supporters of 
the logic of discovery:  for on the one hand discovery is certainly one of the 
tasks of human intelligence,  and on the other hand mechanical processes are  
algorithms,  and  algorithms  follow  a  logic.  Thus,  if  a  machine  could  run  a 
process of discovery,  there would be at least one logic of discovery,  the one  
followed by that machine. Supporters of the hypothesis that machines can be  
built to perform the same tasks  by the same processes as human intelligence9 

would claim even more,  namely that the machine’s logic of discovery could  
also be the same logic  followed by human researchers.  Moreover,  Artificial  
Intelligence would seem here to offer a unique opportunity for empirical testing  
of a  philosophical  conception:  believers  in the logic of discovery can prove  
their  point  simply  by producing  a  machine  that  actually  makes  discoveries.  
Needless to say, people have seized this opportunity, even if judgement on their  
outcomes  crucially  depends,  as  it  turns  out,  on  what  is  meant  by  “actually 
making discoveries”.10

2. The Bacon Programs and Simon’s Approach

This is precisely what Herbert Simon (philosopher of science, computer scientist 
and Nobel  laureate  for  Economics)  tried  to  do,  together  with his  co-workers 
(among whom Pat Langley, Gary Bradshaw and Jan Zytkow authored with him 
the  panoramic  volume  Scientific  Discovery.  Computational  Explorations  of  
Creative Processes).11 They produced computer programs intended to show that 
scientific discovery is just  problem solving,  that problem solving is a rational 
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activity, that it has a logic, and that it can be mechanized. In fact, they took  this 
challenge so seriously that they chose some of the most famous discoveries in 
the history of science, in order to prove that a machine could do the same. 

The first series of their programs is significantly called “Bacon” (with 
versions  from Bacon1  through Bacon5),  after  the  philosopher  who thought  of 
mechanizing discovery to the point of making it almost independent of human 
skill.12

Bacon1 looks  for  laws  describing  regularities  in  its  body  of  data, 
following rules (“heuristics”) such as:

- if the value of a term is the same in all data clusters, assume that it  
is constant;

- if the values of two terms are linearly related in all data clusters, 
assume that such relation is constant;

- if  the values  of one term increase as the values  of another  term 
decrease, consider their product, and see whether it is constant;

- if the values of two terms increase together, consider their ratio, and 
see whether it is constant.13

In this way, Bacon1 is able to discover Kepler’s third law starting from the values 
of periods and distances of planets from the sun; Boyle’s law starting from the 
values of pressure and volume in a gas; Galileo’s law of uniform acceleration 
starting from times and distances; Ohm’s law starting from the length of a wire 
and the intensity of current.

Bacon2,  instead,  searches for constant  derivatives,  rather than products 
and constants. Bacon3 applies the same heuristics as Bacon1  to bodies of data 
including more than two independent
variables,  thus discovering the ideal  gas  law from the values  of  temperature, 
pressure and volume for different quantities of a gas; Coulomb’s law from the 
values  of  two  charges,  distance  and  force  acting  between  them;  and  more 
complex versions of Kepler’s third law and Ohm’s law.14

Bacon4 can deal with cases in which data are names of objects, rather 
than numerical values for their properties. Thus, it  can rediscover Ohm’s law 
when  provided  just  with  the  names  of  different  wires  and batteries,  and  the 
values for intensity of current. It does so by adding to the heuristics of Bacon1 

and Bacon3  a new one, to the effect that when the values of a given property of 
one object (e.g. the current of one battery) vary with the related objects (e.g. with 
different wires), then it must be postulated that there is a property of these related 
objects which is responsible for such variation (e.g., conductance), and whose 
values are proportional to those of the first property (current).15 

In  this  way,  Bacon4  postulates  the  existence  of  new  unobservable 
properties, whose effects are supposedly manifested by the available data. This 
happens  also  when  it  finds  out  about  volume,  density,  index  of  refraction, 
specific heat, gravitational mass and inertial mass. The authors stress that this 
amounts to the introduction of theoretical, i.e. unobservable, properties, whereas 
an observable property would be one that may be observed or measured either 
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without instruments, or by instruments which are not considered problematic in 
the given contest. In the case of Ohm’s law, for instance, data are the names of 
objects and the values of intensity of current, hence an amperometer might be 
considered non problematic; but conductance cannot be measured either without 
instruments or with the help of an amperometer.16 

Nonetheless,  this  does  not  seem  to  be  a  full-fledged  example  of 
theorization,  since  the  new  property  is  not  embedded  in  a  whole  theory 
describing it, its nature, causes, functioning, effects, etc. Its introduction, here, is 
just matter of detecting a regularity in the behaviour of observable objects and 
properties, and ascribing to it as a cause a property which is identified just by 
means of this particular effect (exactly as one could say that since opium makes 
people sleep, it must have a virtus dormitiva)17. In fact, its values are computed 
directly from the values of the observable properties involved.18 Thus, we should 
say at most that Bacon4 takes some of the most elementary steps in the process of 
theorizing. 

Another  heuristic  tells  Bacon4 to  look  for  common  divisors  and  their 
regularities. In this way the program may be applied to chemical research, and 
starting from the proportions of weights and volumes of elements in  compounds 
it finds  the molecular and atomic weights of various elements and compounds.19 

This is not to say it discovers either the molecular or atomic theory, however; for 
it finds just numbers, and it is only in the light of our knowledge of atomistic 
chemistry that we may interpret those numbers as atomic or molecular weights.

The last version, Bacon5, was created by adding to the earlier ones the 
notion  of  physical  symmetry,  and  the  rule  that  if  a  particular  relation  holds 
among  a  set  of  variables,  (e.g.,  two  objects  with  respective  initial  and  final 
velocities), it must be presumed that it holds among variables of the same type 
(e.g., two different objects with respective initial and final velocities). Hence, on 
condition of being told which variables are of the same type, the system is able 
to  speed  up  significantly  its  search  for  regularities  (such  as  the  law  of 
conservation of momentum, Snell’s law of refraction, or Joule’s law). Bacon5  is 
thus theory-driven, i.e. it imitates those cases of actual science in which research 
is  not merely based on data,  but  on theoretic  presuppositions  as well.20 Even 
more theory-driven is a different system, Black, which has inbuilt the notion that 
certain properties are conserved, by which it can find the law of specific heat 
much faster than Bacon4.21

In spite of their vast potentialities, the Bacon programs cannot deal with 
qualitative laws, nor give structural descriptions of reality.  This greatly limits 
their  applicability,  especially  to  the  field  of  chemistry,  and to  overcome this 
weakness three new programs have been developed: Glauber, Stahl and Dalton.22 

Glauber  uses  as  data  descriptions  of  chemical  reactions  (such  as  “hydrogen 
chloride reacts with ammonia to form ammonium chloride”) and properties of 
chemicals (such as “hydrogen chloride tastes sourly”), and its heuristics instruct 
it to group in the same class the chemicals entering the same type of reaction, or 
having the same properties. Thus, it forms the classes of salts (tasting salty and 
formed by the reaction of an acid with an alkali), of acids (tasting sourly and 
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reacting with alkalis to give salts) and of alkalis (tasting bitter and reacting with 
acids to form salts).

Stahl uses the same kind of data about chemical reactions to detect the 
components of various substances: if x and y react to produce z, it infers that z is 
composed of x and y; the same if  x,  y and w react to produce z and w (in this 
case it infers that w is idle in such a reaction). Furthermore, it draws inferences 
by substituting substances with their components, and vice versa. For instance, if 
z is composed of x and y, and z reacts with q to give r and y, Stahl infers that x, 
y, and q react to produce r and y; hence (discarding y that is idle), r is composed 
of x and q. 

In this way, if fed with data about reactions interpreted as the phlogiston 
theorists did (e.g., charcoal and air react to give phlogiston, ash and air), it infers 
the  same  analysis  of  substances  given  by  the  phlogiston  theory  (e.g.,  that 
charcoal is composed of phlogiston and ash). In fact, it stumbles on some of the 
same  problems  that  puzzled  the  phlogiston  theorists,  and  that  lead  to 
modifications in their theory: when fed with the results of reactions conducted by 
Priestley in 1773, it is forced to conclude that one of the components of mercury 
is mercury itself! On the other hand, when fed with reactions as interpreted in the 
oxygen  theory,  Stahl  correctly  yields  the  nowadays  accepted  composition  of 
chemical substances.23 Nonetheless, it is clear that Stahl does not discover either 
the phlogiston or the oxygen theory, but simply  applies them: it accomplishes 
what  Kuhn  would  have  called  normal  science  tasks,24 or  perhaps  a  simple 
analytical elaboration of data.

The  same  can  be  said  about  Dalton:  starting  again  from  data  about 
reactions, and assuming that the number of molecules involved in a reaction is 
proportional to the volumes of the respective elements, it infers the molecular 
structure  of  compounds.  Moreover,  assuming  that  atoms  are  conserved  in 
reactions,  and that  molecules  are  composed of  the  smallest  number  of atoms 
compatible  with the law of conservation and the known molecular  structures, 
Dalton infers the atomic structures of elements and compounds.

3. The Turing Tradition

Among the many critics of Simon’s work25, Donald Gillies points out26 that his 
programs can simulate the discovery of  known laws, but have not been able to 
discover any new law, or solve any practical problem. But obviously,  finding 
what is already known is not making a discovery at all! (Moreover, as I have 
stressed,  they haven’t  found any  theory,  not even old ones).  Gillies  contrasts 
them with the programs produced by disciples of Alan Turing and researchers 
working in their tradition, such as Ehud Shapiro, Stephen Muggleton, Donald 
Michie, Edward Feigenbaum, Bruce Buchanan, J.R. Quinland and Ivan Bratko, 
programs  which  have  successfully  been  applied  to  the  solution  of  practical 
problems and have made new (hence actual) discoveries.27

25



For  instance,  DENDRAL,  developed  since  1965,  accomplishes  what  an 
expert chemist might do, inferring the molecular structure of organic compounds 
from their mass spectrogram. ASSISTANT has been able to diagnose various kinds 
of disease better than human specialists.  GOLEM was able in 1991 to predict the 
secondary structure of proteins from their primary structure. Primary structures, 
in fact, are easily known, but secondary structures are more important, and up to 
then they could be discovered only by long and expensive methods,  such as 
nuclear magnetic resonance or X-ray crystallography. GOLEM, instead, discovered 
a  number  of  rules  linking  certain  primary  structure  characters  to  certain 
secondary structure characters, such as:  

There is an α-helix residue at position B in protein A if:
1) the residue in B-2 is not proline,
2) the residue in B-1 is neither aromatic nor proline,
3) the residue in B is large, non-aromatic and non-lysine,
4) the residue in B+1 is hydrophobic and non-lysine,
5) the residue in B+2 is neither aromatic nor proline,
6) the residue in B+3 is neither aromatic nor proline, and it is either small 
or polar,
7) the residue in B+4 is hydrophobic and non-lysine.28

Gillies credits such rules as “new laws of nature” discovered by GOLEM. But it is 
far from clear that they qualify as such, because (a) they have a very low level of 
generality, as the above example shows, (b) as he himself concedes they fail in 
about  20% of  cases,  and therefore  (c)  it  is  dubious  that  they describe  actual 
causal relationships, as opposed to contingent statistical correlations. 

Summing up,  all  these programs produce generalizations  connecting  a 
target property (such as a secondary structure character, or a particular disease), 
to the presence or absence of symptomatic properties (such as primary structure 
characters, or symptoms manifested by patients); they do so by checking which 
symptomatic properties are present or absent when the target property is known 
to be present. This is to say, they practice, though with sophisticatedly iterated 
procedures,  nothing  but  Baconian  or  Millian  induction.  No wonder  therefore 
these programs have only discovered low level generalizations, and no theories, 
theoretical  laws,  entities  or  explanations.  Just  as  enumerative  induction,  also 
Bacon’s tables and Mill’s canons, in fact, may establish horizontal links among 
empirically known entities or properties, but no vertical links among observable 
and non-observable levels of reality.

According  to  Gillies  the  difference  between  the  approach  of  Simon’s 
group  and  that  of  Turing’s  tradition,  allowing  the  latter  to  achieve  new 
discoveries  (aside  from  the  fact  that  the  former  tries  to  repeat  historical 
discoveries,  while  the  latter  tries  to  solve  open  problems)  is  double:  first, 
Simon’s approach is “psychological”, i.e. it imitates human inferences, while that 
of Turing’s tradition is “logical”, i.e. it starts with logical (inductive) inference 
rules and sees what they can lead to; second, they differ just in the way intuitive 
pre-Fregean inferences differed from formalized Fregean inferences.29 
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Actually,  however, neither of these differences seems to hold: Simon’s 
inference procedures are obviously formalized, since they can be carried out by a 
machine; and the procedures of Baconian induction implemented in the Turing 
tradition programs are no less instances of actual human inferences than Simon’s 
heuristics. The only real difference seems to be that Baconian induction is a very 
general  (although  weak)  inferential  mechanism,  while  Simon’s  heuristics  are 
stronger, but therefore also of narrower applicability. Hence, it is hard to apply 
them to  problems  for  which  a  clear  solution  strategy  is  not  already  known. 
Simon could certainly have written programs to achieve results of the kind of 
DENDRAL, ASSISTANT or GOLEM.  Simply, he wouldn’t have thought that such results 
could  teach  much  on  the  problem  of  the  rationality  and  mechanizability  of 
scientific discovery.  

4. An Alternative Research Program

Up to this point, at any rate, the attempts based on Artificial Intelligence might 
seem to yield a negative answer to the question of the logic of discovery, quite 
against the hopes of their authors! For it would seem that scientific discovery (at 
least  in  its  most  significant  instance,  theoretical  discovery)  cannot  be 
mechanized; hence, that it does not have a logic, hence, that it is not rational. 
Actually,  these would be fallacious inferences, because there might be a logic 
even  without  explicit  rules  and  mechanizable  algorithms;  and  there  can  be 
rationality (prudential or argumentative rationality, as advocated since Aristotle 
and  up  to  Thomas  Kuhn)30 even  without  logic.  Still,  even  if  not  yielding  a 
negative  answer,  Artificial  Intelligence  would  seem utterly  unable  to  yield  a 
positive one. 

This conclusion could be avoided by suggesting that perhaps so far all the 
attempts of mechanizing discovery have failed because wrong-headed, and new 
attempts might succeed by adopting different approaches. An example could be 
the proposal advanced by John Holland,  Keith Holyoak,  Richard Nisbett  and 
Paul Thagard (henceforth HHNT) in Induction. Processes of Inference, Learning  
and  Discovery.31 They  try  to  reconstruct  the  cognitive  processes  by  jointly 
relying on cognitive science, philosophy and computer science, and describe a 
program (“PI”,  for  “processes  of  induction”)  which  purports  to  replicate  the 
crucial features of such processes. 

This approach has not yet developed into a full-fledged research program 
like that created by Simon and his group, who by a huge investment in terms of 
time and efforts produced such and articulate series of more and more complex 
programs; nor HHNT’s program has had practical applications like the expert 
systems in the Turing tradition,  yet,  due to  its  greater  complexity and newer 
conception.  Hence, this alternative approach is still  at a largely programmatic 
stage, and the program PI has  not yet made any new discovery, nor as many and 
as complex old ones as those achieved by Simon’s programs; yet, it embodies 
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new  stimulating  ideas,  and,  compared  to  earlier  attempts,  it  appears  quite 
promising for a number of reasons to be examined in the following sections. 

Here, it may well happen as for Kuhnian paradigms:32 at the beginning, a 
new paradigm exhibits  more  promises  than  actual  achievements;  it  certainly 
doesn’t  have  as  many  confirming  experiences  and successful  applications  as 
those  yielded  by its  older  competitor  in  years  of  “normal  science”.  Still,  its 
sketchy outlines and a few exemplar solutions may be enough to give the sense 
of a new attractive way of looking at things, leading scientists to a significant 
“Gestalt switch”. For those who come to appreciate it, this new perspective in 
itself may be more important than the fact that it still needs to be fully worked 
out and applied to problem solving, for they are confident that this task can be 
accomplished in a more or less routine way. Without such a confidence, it is hard 
to see how new paradigms could attract enough interest, support and resources to 
eventually yield their remarkable successes.

Since the publication of this book, the four authors didn’t  publish any 
further joint work, but they went on  exploring developments and implications of 
the  same  general  approach  for  different  specialized  topics.  Such  further 
researches resulted in some more recent books, written individually, in couple, or 
jointly  with  different  people.  For  instance,  in  Thagard  (1988)  PI  is  newly 
discussed with a sample run applied to the wave theory of sound. Thagard (1992) 
discusses conceptual change in scientific revolutions by the aid of PI and  ECHO 
(Explanatory  Coherence  by  Harmony  Organization),  another  connectionist 
program; these programs yield here interesting reconstructions of  cases such as 
Lavoisier’s chemical revolution, Darwin’s revolution, and Wegener’s geological 
revolution.  Holyoak  and  Thagard  (1995),  devoted  to  analogy  in  creative 
thinking, introduces new programs as ACME (Analogical Constraint Mapping 
Engine) and ARCS (Analog Retrieval by Constraint Satisfaction). Still further 
contributions can be found in Holyoak and Barnden eds. (1994), Thagard (1996), 
Magnani, Nersessian and Thagard eds. (1999), Gentner, Holyoak and Kokinov 
(2001).

While  this  literature  shows  that,  because  of  the  complex  problems 
tackled, HHNT’s research program is not ready to yield practical applications, 
yet, it also shows that it has good chances of progressive expansion33 and fruitful 
development (in fact, it might be suspected that the modest success of Simon’s 
programs is due to the attempt to apply artificial intelligence to such a difficult 
question as  scientific  discovery before it  reached sufficient  maturity).  On the 
other  hand,  since here we are more  interested  in  the critical  appraisal  of  the 
general approach as such, than of its recent developments and specializations, the 
original work (Induction. Processes of Inference, Learning and Discovery), with 
its synthetic account, may still offer the best vantage point for our discussion. I 
shall then refer to it in outlining the basic ideas of this approach.

Knowledge is represented by HHNT as the construction of mental models 
of the environment.34 Environment, in turn, is described as consisting of states 
and transition functions among them: for instance, the fact that all bodies moving 
at time  t have ceased to move at time  t’ may be described as the state  S(t), in 
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which bodies move, the state S(t’), in which bodies stand still, and the transition 
function T, turning whatever moves into something still. Of course, there can be 
long chains of states and transition functions, and particularly important chains 
are those in which the initial state represents a theoretical or practical problem 
for the knowing subject, and the final state represents its solution (HHNT stress 
the importance of pragmatics in their approach). 

For HHNT the mind is like a bulletin board, on which “messages” (i.e. 
propositions)  are  posted.  More  precisely,  one  could  speak of  two sides  of  a 
bulletin board: a front side, on which currently active messages are posted (i.e. 
propositions in the working memory, currently involved in cognitive processes), 
and a back side, with non-active messages (propositions stored in the long term 
memory). In mental models states are represented by categoric messages (e.g.: 
“all  bodies  move”;  “this  body  is  moving”;  etc.),  and  transition  functions  by 
hypothetical messages, or “rules” (e.g., “if a body moves at time t, it will stand 
still at time t’”).

Beside  empirical rules,  describing  transition  functions  in  the 
environment,  there exist  also  inferential rules,  governing the construction and 
modification of models in the face of inputs from the environment. These include 
generalization  rules,  simplification  rules,  specialization  rules,  etc.  A 
generalization rule,  for instance,  prescribes that if  a message is posted to the 
effect that all members of a sample of objects of type  A have property P, then 
another message should be posted to the effect that all objects of type A have P. 
A simplification rule says that if we post an empirical rule to the effect that all  
feathered  and  large-winged  animals  fly,  and  another  to  the  effect  that  all 
feathered and small-winged animals fly, we should post another one to the effect 
that all feathered and winged animals fly. A specialization rule prescribes that if 
a counterexample is found to an empirical rule, the latter should be replaced by 
another rule allowing for that exception.

Empirical rules and categoric messages typically form chains: suppose a 
message is posted as a result of an experience input (e.g., “x barks”). If a rule is 
also posted having the content  of  such message  as its  antecedent  (e.g.,  “if  x 
barks,  then  x is  a  dog”),  then a  message  stating the  consequent  will  also be 
posted (“x is  a dog”), and so on.  Actually,  a message may be posted by the 
converging effect of more than one rule (e.g., “if  x is a fox-terrier, then  x is a 
dog”,  etc.),  and in  turn  it  may start  many chains  at  once,  depending  on the 
activated rules (e.g., “x barks”; “if x barks, then y will wake up”; “y wakes up”; 
etc.). Thus, an ever-growing number of connections is activated, in a process of 
spreading activation. In fact, the same mechanism accounts also for a spreading 
activation of concepts: the concepts involved in an active rule become active too, 
and each of them in turn activates all the other rules in which it  is involved, 
which in their turn activate other concepts, and so on. (Concepts themselves are 
conceived by HHNT, more or less as in Putnam’s account of scientific concepts, 
as  clusters  of  rules.35 A  rule  might  connect  two  concepts,  for  instance,  by 
expressing  relations  of  similarity  (cats  are  like  tigers),  of  causations  (smoke 
causes lung cancer) or of category (cats are mammals)).
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As it happens, however, there is only limited room on a bulletin board, as 
well as in the human mind. Therefore, not all potentially activated messages will 
be posted, and messages will compete for room on the board. Besides, mutually 
incompatible  messages  that  might  be  posted  will  be  in  competition  even 
independently of room scarcity. The competition takes place more or less as it 
happens on the economic market: messages and rules in a chain can be viewed as 
suppliers,  middlemen  and  consumers,  where  selling  and  buying  consists  in 
activating  or  being  activated.  When  the  final  ring  of  a  chain  constitutes  the 
successful  solution  to  a  problem  (hence  the  importance  of  the  pragmatic 
dimension in this approach), its success is comparable to profit, which is duly 
shared with each preceding ring, as each buyer pays back the goods or services 
that reached him through the chain. 

Such “profits” increase the “capital” of each message in the chain, i.e. its 
strength in the competition (or, out of metaphor, its credibility). Reversely, when 
the final ring is unsuccessful (as it does not solve the problem, or it is refuted by 
experience), it loses part of its capital, and so do all the other rings in the chain. 
In the competition for posting, the winner is determined by its capital and by the 
total capital of all the rules and messages concurring to its activation. In practice, 
the  environment’s  feed-back  gradually  reinforces  successful  beliefs  and 
extinguishes unsuccessful ones, just like  market reactions make efficient firms 
flourish and inefficient ones go bankrupt.

When it  comes  to  scientific  discovery,  it  may  concern  either  laws  or 
theories, which in HHNT’s account means either rules or models. New rules36 

may  be   generated  either  from  old  rules  or  from  data.  New  rules  may  be 
generated  from  old  rules,  for  instance,  by  applying  the  inferential  rules  of 
simplification  or  specialization:  from  a  rule  with  unnecessarily  complex 
antecedent (e.g., “if x is feathered and large-winged, then x can fly”) a new one 
is generated with a simpler antecedent (“if x is feathered and winged, x can fly”); 
from a rule to which there is a counterexample, a new rule is generated including 
the counterexample as an exception case.

Otherwise, new rules may be generated from the data, either by applying 
a generalization rule, for instance as in enumerative induction, or by abduction. 
If we observe that various objects with property  P also have property  Q, by a 
generalization rule we may generate the rule “If x is P, then x is Q”; instead, if 
we wish to explain why a given object has property Q, we may notice that it has 
also property P (and perhaps that even other objects with Q have also P); then 
we  may form the same rule, not so much on the basis of the various observed 
instances, as because such rule, coupled with the fact that the given object has P, 
would explain its having Q, thus reasoning by abduction.37

All  this  clearly  concerns  empirical  rules.  HHNT  do  not  discuss  the 
generation and evolution of inferential rules; but on the one side it is apparent 
that inferential rules are much fewer and less changeable then empirical rules; on 
the  other  side,  it  does  not  seem  impossible  that  in  the  long  run  some  new 
inferential  rule may be generated,  and may gain or lose strength by the same 
mechanisms as empirical rules, i.e. by their contribution to the final success or 
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failure of  a  chain of  messages;  after  all,  according to  HHNT, the  distinction 
between empirical and inferential rules is not a sharp one.38

While interpreting scientific  laws as rules,  HHNT interpret  theories  as 
models (that is, whole systems of rules and categoric messages), and suggest that 
analogy plays  the  central  role  in  their  discovery.39 This  is  just  natural,  since 
theories typically model non-observable systems, and how else could one figure 
out about unobservable structures, except by analogy with the observable ones?40 

If  finding a  theory for  a  particular  set  of phenomena is  to  embed them in a 
model, working by analogy means taking three steps: first, finding an already 
accepted model of a different set of phenomena as the convenient source for the 
new  model;  second,  mapping  the  various  aspects  of  the  phenomena  we  are 
investigating onto aspects of the phenomena of which we already have a model; 
third,  constructing  the  new  target model  by  positing  objects,  properties, 
relations, etc.,  as corresponding  via the above mapping to those of the source 
model. 

(Since  the  source  model  must  already  be  part  of  our  knowledge,  the 
question may arise, how it was built. If it concerns non-observable phenomena it 
was likely built by analogy,  too. If it  concerns observable phenomena, it was 
built by empirical inputs and inferences. Since a model of observable phenomena 
may be the source for an analogical model of non-observable phenomena, all 
models are ultimately based on empirical inputs).

All this is convincingly rendered in HHNT’s spreading activation account 
of cognitive processes: as we noticed, each concept is linked to other concepts by 
rules stating the existence of similarity, causality, or categorial relations between 
them;  now,  supposing  we  are  trying  to  embed  in  a  theoretical  model  the 
phenomenon that a and b are related by relation R, each of the concepts a, b and 
R will be activated, and therefore cause the activation of the various different 
concepts linked to them in the above ways. In turn, each of the newly activated 
concepts will activate others, and so on. We may find then that there is a concept 
m related to a just in the way a further concept n is related to b, and there is a 
relation Q obtaining between m and n just as R obtains between a and b. If we 
already have a full model in which mQn is embedded, i.e. if we know the full 
net of causal relationships of mQn to other concepts, this may work as a source 
model for aRb; moreover, at this point we already have a mapping between the 
phenomenon to be theorized (aRb) and the source model, and by extending such 
mapping we may begin the construction  of the target  model.  In terms of the 
bullettin board metaphor, this is to say that there is a non active model on the 
back side, that thanks to its connections to currently active concepts (a) becomes 
active, and (b) qualifies as a possible source model for the phenomenon to be 
explained. 

An example  is  supplied  by the  discovery of  the  ondulatory theory of 
sound, analyzed in Vitruvius’ writings: we wish to develop a theory of sound, 
explaining  among  other  things  the  fact  that  sound  is  reflected,  or  that  it 
propagates. The concept of reflection activates the concept of water waves and of 
rope waves, for they reflect, too. Messages like “rope waves reflect” and “water 
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waves reflect” are then posted. As a consequence, also the generalization “all  
waves  reflect”  is  posted.  But  this  generalization  could  explain  why  sound 
reflects, if sound was a kind of wave; hence, by abduction, the system goes on  
posting “sound is a wave”. More or less the same process would follow from 
the activation of the concept of propagation. Otherwise, the concept of sound 
might activate that of musical instruments, and the latter the concept of string  
instruments.  “String instruments” might  then activate “ondulatory vibration”,  
and this again would connect the idea of sound to that of waves. (Of course,  
many other  links  would  be  activated  as  well,  but  eventually  many  of  them 
would prove useless and be disactivated). 

PI, HHNT’s program, instantiates the spreading activation model of the  
mind and reproduces simple processes of discovery like the just mentioned one.  
We  shall  now  examine  some  of  the  reasons  why  it  can  be  considered  a  
promising alternative to the older attempts at mechanizing discovery. 

5. Serial vs. Parallel Computing, Complexity, and the Lesson on Scientific 
Discovery

How  does  HHNT’s  strategy  differ  from  those  followed  by  Simon  and  by 
Turing’s disciples, and why should it fare better in the attempt to mechanize 
discovery? In order to answer these questions, it should be recalled that up to  
now computing  has  mainly  been  performed  by serial,  or  digital  computers, 
direct instantiations or descendants of the Turing machine. Yet, the alternative 
option of connectionist machines or neural networks, i.e. parallel or analogical  
computers, was considered by Turing himself,41 and is arising more and more 
interest  today.  This  distinction  matters  to  our  problems,  in  the  first  place 
because  the  brain  is  a  neural  network,  after  all,  hence  it  is  a  plausible  
suggestion  that  neural  networks  or  connectionist  machines  have  the  best  
chances  of  reproducing  cognitive  processes.  Now,  HHNT’s  approach  is  
basically a connectionist one (though with differences and qualifications). 42

A serial computer goes through one state after another; with respect to  
any given state it either is or is not in that state, without further alternatives; it  
uses a well defined set of data as an input, and given those data its output is  
easily predictable: hence, in the case of scientific research, it may be used to  
compute complex numerical or qualitative relations among known factors, but  
it  cannot  discover  structures  or  mechanisms  genuinely  unpredictable  at  the 
moment of its programming. This, as we noticed, is the limit both of Simon’s  
programs and of the programs of Turing’s tradition. 

On  the  contrary,  the  mind  may  be  in  many  states  at  once  (it  may 
entertain different beliefs or propositional attitudes, perceptual states, etc.), and  
so can connectionist systems: many messages and many chains can be activated  
at once in HHNT’s model. Moreover, the mind is gradual both with respect to a  
single state (we may have weaker or stronger beliefs, for instance) and to an  
alternative between states (we may believe P, or believe P more than not-P, or 

32



be  half-way);  the  same  happens  in  HHNT’s  system,  thanks  to  the  varying  
strength of messages, and to the gradual overturning of one message or chain  
by another. Again, mental processes are not closed elaborations of a restricted  
body of data, but open, at any time, to the influence of a potentially endless  
number of inputs, so that the final state is in no way predictable beforehand.  
Even this feature seems to be captured by connectionist machines, as well as by 
HHNT’s model of the mind. Thus, it is at least conceivable that systems of this 
kind make genuinely unforeseen discoveries.

Thus, mental processes, and discovery processes in particular, seem to  
exhibit a higher degree of complexity than traditional computers; connectionist  
systems, on the other hand, appear to have better chances to achieve a similar  
degree of complexity. This may then bear on an interesting historical problem:  
why,  after  the  idea  of  a  logic  of  discovery  had  been  supported  by  such 
epistemologists as F. Bacon and J.S. Mill, was it abandoned between ‘800 and 
‘900,  especially  by the  logical  positivists?  And why is  it  becoming  popular  
once again in our days?43 

Part of the answer may be that the logical positivists’ main problem was  
to  establish  a  neat  demarcation  between  science  and  metaphysics,  and  they 
solved  it  by  a  powerful  and  very  simple  criterion,  on  which  their  whole 
philosophy was based: verification. However, that criterion was too simple, for  
(as it  was to become clear  later  on) it  could not yield  a full  account  of the  
meaning of scientific terms, nor of the justification of hypotheses. In any case,  
it was obvious even to them from the beginning that discovery could not be  
captured by such a simple philosophy, and that may explain why they excluded  
it from their interests and from their tasks: discovery is a holistic procedure, in 
which the potentially endless aspects of a complex environment continuously 
interact  with  an  equally  open-ended  endowment  of  conceptual  structures,  
background knowledge, methods and criteria. 

With  the  liberalization  of  logical  positivism,  and even  more  with  its  
final  abandonment,  it  was  recognized  that  meaning  and  justification  were 
complex matters, and then even the equally complex matter of discovery could  
become  again  a  legitimate  question  in  philosophy  of  science.  Still,  a  
satisfactory  way  to  deal  with  such  complexity  has  yet  to  be  found.  
Acknowledging  the  holistic  and  complex  character  of  science  in  general,  
Feyerabend concluded that  there is  no logic  in  science,  and in  discovery in  
particular.  But  even  on  more  moderate  views  discovery  (as  opposed  to 
justification) is too complex to be governed by logic or rules. 44 

On the contrary,  both Simon and the researchers in Turing’s tradition  
have  gone  back  to  the  faith  that  science  (discovery,  in  this  case)  can  be 
analyzed  into  simple  processes  (Simon  came  from  the  logical  positivist 
tradition,  after  all).  But  once  again,  the  simplicity  approach  has  failed:   in  
Turing’s tradition only the elementary methods of Baconian induction are used,  
which  allow just  a  very  low level  of  discovery.  Even  Simon  has  relied  on  
relatively  simple  heuristic  methods,  but  devising  a  different  specific 
mechanism  for  each  discovery,  and  obviously  taking  inspiration  from  his  
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knowledge of  the  procedure  historically  followed or of its  results.  Thus,  his 
programs have been able to make significant “discoveries”, but only old ones. 
Following his approach, one could try to make new discoveries only by writing a 
program  that  included  a  specific  heuristic  for  each  possible  discovery,  i.e. 
potentially infinite heuristics, and running all of them each time. 

The only possible alternative, if there is one, is a program that can devise 
by itself the discovery path required by the solution of each specific problem; 
that is to say, a really  intelligent program. If for instance we could program a 
robot to turn the tap, collect water in a tub, pour soap,  dip the clothes, etc., by 
linking such procedures in a chain we could get it to do our laundry; yet,  we 
wouldn’t say it knows how to launder. We would grant that it  knows how to 
launder if just upon being ordered to launder it could go on by himself,  choosing 
the procedures  and adapting them to the situation (there may be no taps,  for 
example, and then water may have to be drawn from a well, etc.). In this case the 
robot would be more intelligent than in the first case; and it would be even more 
intelligent if we could just ask it to look after the house, and let it find out by 
itself whether to launder, or iron, or clean the floor, etc., and how. This is to say, 
intelligence  seems  to  involve  and to  be  proportional  to  the  ability  to  pursue 
ultimate goals by flexibly and adaptively choosing the means or the intermediate 
goals.

Now, it seems that this is precisely what a machine needs in order to do 
genuine  research,  without  being  previously  instructed  on  how to  make  each 
discovery: it must be able to pursue the goal “discovery”. Further, it seems that 
this is precisely what HHNT try to do, where they basically differ from both 
Simon  and  Turing’s  tradition,  and  why  their  attempt  is  likely  to  be  more 
successful: they try to devise a mechanism intelligent enough to pursue the goal 
of discovery. It is obvious that only such a mechanism may qualify as a plausible 
imitation  or  reconstruction  of  human  abilities,  and  motivate  the  claim  that 
scientific discovery is a logic or rational process in a significant sense.

This is why I  think such a connectionist  approach looks promising.  It 
might  be  objected  that  the  connectionist  character  cannot  make  the  real 
difference, for anyway a connectionist machine can be instantiated by a Turing 
machine.  But  first,  I  am  not  suggesting  that  the  difference  is  made  by  the 
connectionist character alone, but together with the adaptive character; second, in 
any case, what matters is the structure of the resulting procedure (i.e., that it be 
parallel, open to endless inputs at all times, complex and self-correcting, etc.), 
rather than the underlying mechanism implementing it: if we can get a Turing 
machine to work that way, so much the better!

6. Discovery and Realism: the Role of Models

To better appreciate the reasons of HHNT’s superiority, we may ask what makes 
it possible, i.e., what enables PI’s search for discovery to be self-directed. The 
answer involves at least the following two features: first, HHNT give a correct 

34



and  fruitful  characterization  of  what  discovery  consists  in  and  how  it  is  
achieved, namely, the construction of  models of reality; second, they let nature 
itself steer the program toward its goal, through a feedback mechanism. Since 
discovery is by definition finding something hitherto unknown to us, human  
programmers  cannot  possibly tell  the machine where to  turn or which ways 
(heuristics) to follow: they don’t know where one should go; only nature, so to  
speak, knows where the truth lies, and can lead the discoverer out of its maze. I  
shall examine these two features in the present and in the following section,  
respectively.

As  for  the  former  feature,  the  following  three  points  should  be 
considered.

i)  First,  researchers  may aim at discovering  either  (a)  just  empirical  
laws (as the law of constant acceleration); or (b) empirical laws connected to 
and  organized  by  theoretical  laws,  understood  as  purely  mathematical 
formulas, whose non-observative terms don’t purport to represent anything and  
lack a physical interpretation (as Maxwell equations might be understood); or  
(c)  both  empirical  and  mathematical  laws,  but  embedded  in  a  model  or 
representation  of  reality  (such  as  the  field  theory  of  electromagnetism,  the  
kinetic theory of gases, the quantum model of energy, etc.). 

Perhaps  the  distinction  between  (b)  and  (c)  is  not  a  sharp  one,  for  
seldom  mathematical  formulas  are  pure projections  from  the  data  and  are 
devoid of  any bit of interpretation.45 Yet, it is intuitively clear and plausible, 
and there is no doubt that the most important discoveries belong to kind (c),  
while  those  of  kind  (b),  even  if  achieved  independently  of  a  representative  
model,  usually  ask  for  and are  soon supplied  with  one.  For  instance,  while  
Plack’s  black-body  equation  was  first  devised  as  a  pure  uninterpreted  
projection  from  the  empirical  data  (discovery  of  kind  (b)),  it  soon  got  a  
physical  interpretation  by  the  quantum  model  of  energy  transmission 
(discovery  of  kind  (c)).  The  importance  of  kind  (c)  discoveries  is  both  
historical (for their resonance and effects) and theoretical (for their systematic,  
heuristic and cognitive power).

Hence, by setting the discovery of models as PI’s task, HHNT make at  
least a attempt to pursue discovery in its broadest extension. On the contrary,  
all the other programs are designed merely to discover regularities of kind (a)  
or (b), hence cannot be considered attempts to mechanize human discovering 
ability in its entirety.

ii) The second point concerning discovery as modelization is that even  
if we aim simply at laws as regularities, we must first decide which bodies of 
data we should consider and analyze in order to find relevant and interesting  
generalizations.  For  instance,  by considering  the values  of  pressure,  volume 
and temperature in gases, we may find that they are linked by the ideal gas law.  
But how did we come to select exactly these parameters, to the exclusion, e.g.,  
of  smell,  inflammability,  and  thousand  others?  Equally,  by  considering  the 
periods and distances from the sun of planetary orbits, we may discover that  
they are significantly related (i.e., by Kepler’s third law: the squares of times 
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are  proportional  to  the  cubes  of  mean  distances).  But  there  is  an  endless 
number  of  different  parameters  one  might  have  considered  for  similar 
relations.

In  fact,  the  search  for  regularities  is  usually  guided  by  models 
(provisional as they may be) the scientists entertain for the reality they are 
investigating. Even a vague idea of gas as consisting of particles subjected to 
mechanical  forces  will  suggest  that,  e.g.,  volume  and  pressure  may  be 
relevant and mutually dependant, while smell is not. Equally, Kepler tried out  
a number of models as a guide to find a function for planetary distances from 
the  sun:  the  model  of  planetary  spheres  nested  into  one  another  as 
respectively inscribed and circumscribed to the five regular solids; the model 
of a proportional relation between a planet’s distance from the sun, and the  
density of the metal associated with it (mercury for Mercury, lead for Venus, 
etc.);46 and more.

In many real life cases of discovery,  the hardest problem was just to  
select  the  relevant  parameters,  for  once  these  were  selected,  finding  the 
relation  holding  among  them  proved  rather  straightforward.  Now,  neither 
Simon nor Turing’s disciples say much on this question, for their programs 
may get  to  work only  after being fed with the relevant  data.  For  instance, 
Bacon3  will apply its heuristics to whatever set of data about a gas it is given 
(e.g., mass, smell, specific weight, etc.); but only when fed with the right date 
will  it  find  the  ideal  gas  law.47 Equally,  only  when  fed  with  particular 
information concerning the primary structure of proteins has GOLEM been 
able to discover the desired law concerning their secondary structure.48

On the contrary, PI tries to select the relevant parameters by itself, and 
it can do so because 
it looks for analogical models (retrieving them in its background knowledge),  
and  those  models  suggest  the  relevant  parameters.  For  instance,  in  the 
example of the theory of sound, the analogies between sound on the one hand 
and water or ropes on the other suggest a wave model for sound, and such a  
model suggests frequency, wave-length, etc., as parameters to be considered 
for discovering the laws of sound.

iii) The third reason why models are necessary is that, as pointed out  
by Hanson,49 theories and even laws are not a mere compendium of data: even 
once  the  relevant  data  are  selected,  the  law  or  theory  cannot  always  be 
straightforwardly  extrapolated  from them as  if  one  plotted  a  curve  upon a  
series of points in a Cartesian plane. For example,  although all the relevant 
data coming from Brahe’s observations were available to Kepler, he reached 
an apparently simple  result  as  his  first  law (the  planets’  orbit  is  elliptical)  
only through long efforts, trials and errors.50 

Now, it is well known that (a) for any body of data there are infinite  
possible  laws  or  theories  (principle  of  empirical  underdetermination  of 
theories);  (b)  there  are  no  univocal  criteria  for  choosing  among  laws  or 
theories the most simple, or the most elegant, etc.; and (c) it may not always  
be easy to find a law or theory that is (by any criterion) simple or elegant.  
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Hence,  if  a  law  or  theory  were  a  merely  abstract  structure,  with  the  only 
constraint  procedures  to  follow,  it  couldn’t  be  pursued  by  any  computer 
program, and it would be of no concern to the epistemologists. In fact, this 
may be another reason why the logical positivists, who had an instrumentalist  
attitude toward theories and rejected Campbell’s claims on the role of models 
and analogies in science,51 showed little interest in the context of discovery 
and gave up the search for a logic of discovery.52

On the contrary, if a theory is a model representing an unknown piece 
of reality,  it must not only be coherent with its data, but also  explain them, 
and furthermore be coherent with the rest of our conceptions of reality. In this  
case, there is a complex but rational path of reasoning going back and forth 
from  data  to  hypotheses,  involving  reasons,  plausibility  considerations, 
analogies,  abductive inferences,  assumptions,  models,  etc.:  the complex but 
rational  path exemplified by the accounts of great  discoveries given by the 
historians or by the protagonists themselves. 53 This is more or less the lesson 
Aronson draws from the Flatland example: to a bidimensional being living on 
a plane suddenly appears a point, immediately enlarging to become a circle;  
the circle grows larger, then shrinks, becomes a point and disappears. If our  
being is an instrumentalist,  sticking to his  bidimensional  data,  he may find 
different formulas relating the changing dimension of the circle, its velocity,  
etc., none better than another and none explaining anything; moreover, he has 
no reason to link the phenomenon in significant generalizations with similar 
phenomena,  like the following:  a square appears,  remains  for a while,  then 
disappears.  Instead,  if  he is  a realist,  willing to entertain models  of a third  
dimension, one hypothesis naturally links and explains all the features of one  
phenomenon,  and  different  phenomena  together:  first,  a  sphere  is  passing 
through the plane, then, a cube is passing through it.54

If  this  is  true,  a  realist  interpretation  of  theories  (viewing  them  as  
representations of reality) is presupposed by any account of the rationality of 
scientific  discovery.  By  the  same  token,  no  instrumentalist  computer 
(searching for laws or theories as pure projections from empirical data, as the 
programs written by Simon’s group and in the Turing tradition) may become 
a  machine  for  discovery.  Only  a  realist  program  like  PI,  striving  to  find 
models of reality, has such a potentiality.55

(An anti-realist à la Van Fraassen may grant that models are necessary 
for  heuristic  purposes,  but  deny  any  need  to  believe  them  as  true  
representations  of reality.56 Such an objection faces the same kind of reply 
facing Van Fraassen’s position in general: how are we to explain the heuristic  
power of models,  if  they are not potentially true representations  of reality?  
This reply may be challenged in turn, but the ensuing discussion cannot be  
pursued  here).of  being  mathematically  compatible  with  its  data  (i.e.  of 
“saving  the  phenomena”),  the  process  of  discovery  would  be  a  sort  of  
mysterious pulling the rabbit out of the hat: it would be a question of lucky 
intuition, there would be no rational 
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7. Discovery and Realism: the Role of Nature

If we grant that the task of a discovery machine is finding models, how does it 
select the right model? This has to do with the second feature enabling PI to be 
autonomous  from  human  guidance:  the  fact  of  letting  nature  itself  lead  the 
program’s search for discovery. This is achieved by building into the program 
two mechanisms: the first that, triggered by empirical inputs, through spreading 
activation  produces  an  open  number  of  models  of  reality;  the  second  that, 
through the message competition and profit redistribution, is sensitive to nature’s 
feedback:  any step  taking  the  system closer  to  its  goal  (producing  a  correct 
model of reality) activates a reward feedback, strengthening that move, and vice  
versa for  steps  in  the  opposite  direction.  If  such  mechanism is  flexible  and 
adaptable  enough to  match  (to  a  certain  extent,  at  least)  the  complexity  and 
graduality of the environment, then the system should be able to lead to results 
that cannot be foreseen in advance, just as it happens with human procedures of 
discovery.  The general model,  here, is that of other well known adaptive and 
self-directed systems, such as the free market (an analogy explicitly exploited by 
HHNT), and natural selection.

Actually,  both  evolutionary  studies  and  cognitive  sciences  seem  to 
indicate  that  natural  selection  itself  has  built  into  the  human  mind  a  similar 
couple of mechanisms. Thus, it is also plausible that a program like PI is a good 
model of human abilities, including abilities to search and discover. Even this 
feature of HHNT’s approach speaks for a realist interpretation of science: if the 
evolution and choice of models is constrained by the environment’s feedback, 
then they do represent at least  some aspects of reality.  It  is as if nature used 
human or mechanical researchers to paint its own self-portrait! Moreover, if the 
attitude  of  building  models  has  been  built  into  the  human  mind  by  natural 
selection, it is plausible that such models are true representations of reality, for 
acting on the basis of true representations warrants success in the search for food, 
defence from predation and reproduction.

Once again,  anti-realists  may object  that  (a)  nature’s  feedback on the 
modelling  processes of  programs like  PI are  just  empirical  data:  hence,  such 
feedback  simply  warrants  empirical  adequacy,  and  (b)  empirically  accurate 
models shall be equally useful, for evolutionary purposes, as true models.57 Still, 
we  must  ask  how a  living  organism  or  a  computer  program  can  get  to  an 
empirically  adequate  model:  the  phenomenical  aspect  of  nature  is  extremely 
complex, and there is no chance, either for living organisms or for machines, of 
building  a  general  and  detailed  table  of  empirical  data,  yielding  particular 
predictions  for  all  kinds  of  situations,  just  by  collecting  empirical  data  and 
introducing  ad  hoc adjustments  each  time  a  prediction  is  not  born  out  by 
experience.  The  only  chance  is  to  bet  that  underneath  the  great  surface 
complexity there stand relatively simple ontologies and mechanisms that can be 
rationally understood, and try to model them; empirical predictions can then be 
deduced  from  the  models.  Now,  if  such  a  bet  were  not  generally  and 
approximately  correct,  it  would  be  surprising  that  relatively  simple  models 
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yielded arrays of predictions that are so complex, detailed, and largely born out 
by experience. Further, if such a bet were just an idle extrapolation, it would be 
surprising that natural selection had inbuilt it  into the cognitive procedures of 
highly  evoluted  organisms;  if  instead  it  is  the  main  road  for  discovery,  it 
becomes clear why programs like PI have a chance of mechanizing discovery 
that earlier programs lacked.
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