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ABSTRACT

Trust is a basic soft-security condition influencing interactive and cooperative behaviors in online communities. Several
systems and models have been proposed to enforce and investigate the role of trust in the process of favoring successful
cooperations while minimizing selfishness and failure. However, the analysis of their effectiveness and efficiency is a
challenging issue. This paper provides a formal approach to the design and verification of trust infrastructures used in
the setting of software architectures and computer networks supporting online communities. The proposed framework
encompasses a process calculus of concurrent systems, a temporal logic for trust, and model checking techniques. Both
functional and quantitative aspects can be modeled and analyzed, while several types of trust models can be integrated.
Copyright c© John Wiley & Sons, Ltd.
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1. INTRODUCTION

Cooperation is a key factor behind the success and the
growth of service- and user-centric online communities
sharing and exchanging remotely user-generated contents,
services, and resources, possibly among unknown partici-
pants without the assistance of (trusted) third parties [1].
Trust and reputation systems provide explicitly means
to favor cooperation in spite of typical obstacles, like,
e.g., selfishness, malicious behaviors, and mistrust towards
unknown users. Whenever these systems are based on
computational notions of trust, the metrics provided help
to estimate the subjective reliance on the ability, integrity,
honesty and disposition of each user, possibly making such
an estimation available to the community with the aim of
making explicit a collective notion of reputation [2]. Even
more important, trust and reputation are defined not only to
give a representation of the public trustworthiness of users,
but also to provide enabling and advantageous conditions
for participating actively in the community.

The design and verification of communicating systems
and of trust systems is not an easy task as it depends on
several, orthogonal aspects. On one hand, architectures
of communicating elements are concerned with several
issues, ranging from the communication protocols to the
dynamic composition of mobile components [3, 4, 5]. On
the other hand, analogous difficulties are concerned with
the definition of trust systems, which can be centralized

or distributed, could rely on the presence of a trusted
third party, may use first-hand or second-hand reputation
systems employing (non-)linear adjustment mechanisms,
can involve explicit (based, e.g., on voting) or implicit
evaluation means, and so on. The variety of obstacles to
cooperation, like selfishness, lack of motivation, and free-
riding, and of attacks, like slandering, self-promoting, and
sybil, make the analysis of the effectiveness and efficiency
of such systems a challenging issue [6].

In this paper, we propose a formal framework
encompassing three fundamental capabilities. First, it
supports the functional modeling of the behavior of
cooperative, concurrent, and distributed systems by
means of a process algebraic architectural description
language. Second, it includes a mathematical paradigm
for the specification of trust and reputation infrastructures
governing the interactions in these systems. On one
hand, behavioral modeling and trust modeling are defined
separately at the syntactic level, thus facilitating all the
design issues. On the other hand, these two different
aspects are joined automatically at the semantic level.
In particular, the computational notions of trust deriving
from the trust model are used either as side conditions
enabling specific functional behaviors, or as metrics
governing prioritized and/or probabilistic behaviors based
on trust. Third, the proposed framework enables the
formal verification of the effectiveness and efficiency of
the policies based on the trust infrastructures and used
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to stimulate cooperation and to contrast attacks. The
separation of concerns surveyed above favors the execution
of sensitivity analysis aimed at evaluating the properties of
the system architecture and of the trust model. The formal
specification of trust-based properties relies on a temporal
logic for trust that extends classical state-based and action-
based logics, while the verification of such properties is
guaranteed by tool-supported model checking techniques.

The paper is organized as follows. In the rest of this
section, we introduce a real-world case study, which
accompanies the presentation of the formal framework
as a running example, through which we show how to
apply our approach in practice. In Section 2, we present
the syntax for a calculus of concurrent processes and
the syntax for a specification language of trust systems.
Then, we define a unifying formal semantics, which
subsumes the definition of specific labeled state-transition
systems. Quantitative extensions of the semantics are
also considered for dealing with trust-based prioritized
and probabilistic behaviors. Moreover, to emphasize the
flexibility of the proposed approach, we show how to
integrate in our framework a well-known formal model
of trust, that is Subjective Logic [7]. In Section 3, we
define a temporal logic for specifying trust properties that
can be model checked through standard techniques, while
in Section 4 conclusions about related work and future
directions terminate the paper. A preliminary version of
this work has been presented at the IFIP Trust Management
conference [8].

1.1. Running Example

As a real-world example, we consider an incentive-
based cooperation model for wireless and mobile user-
centric environments that has been proposed recently [9].
Basically, in such a model we have users providing
services, called requestees, and recipients of such services,
called requesters. For the sake of simplicity, in the
following we assume that each user behaves either as
requester or as requestee. The cooperation model is based
on the integration of two mechanisms, trust management
and virtual currency, which are used in a process entailing
four phases:

1. the requester looks for a service provided by the
other members of the community and then sends a
request to the chosen requestee;

2. the two parties negotiate parameters and cost of the
transaction;

3. if an agreement is reached, then the requestee
provides the negotiated service while the requester
pays for it;

4. both parties evaluate the quality of experience and
provide feedback.

In each phase, trust is used to govern choices and
to provide incentives for both parties, e.g., by making
offered quality of service and related cost directly
dependent on trust. The objective consists of inducing a

prosocial attitude to collaboration while isolating selfish
and cheating behaviors.

In the following, we abstract away from the details of
the specific incentive strategies. Rather, we concentrate
on showing how to employ our approach in order
to model a scenario like the one surveyed above,
specify the underlying trust and reputation models,
and perform model checking based sensitivity analysis
aiming at demonstrating the influence of each policy and
configuration parameter chosen by the involved parties.

2. MODELING TRUST SYSTEMS

In this section, we show how to define separately
functional behavior of the system and trust infrastructure.
In both cases, we present formal syntax, semantics, and
examples related to our running case study. Then, we show
how to extend the semantics in a quantitative setting in
which trust is used as a metric governing prioritized and
probabilistic behaviors. Finally, as an example, we show
how to integrate the well-known trust model based on
Subjective Logic [7] in such a framework.

From the modeling standpoint, by following principles
inspired by architectural description languages [5], we
distinguish between process behaviors, which describe
behavioral patterns, and process instances, which represent
specific entities exhibiting a certain behavioral pattern.
Analogously, we separate the definition of individual
entities from the specification of their parallel composition
and communication interface. This separation of concerns,
which is intended to facilitate compositional reasoning,
is applied also to distinguish the description of a system
of interacting entities from the specification of the
infrastructure governing any interaction based on trust. The
objective is a general improvement of usability concerning
the modeling issues of the different aspects that come into
play in the specification of trust-based distributed systems.

2.1. Modeling Individual Processes

We start the presentation of our trust calculus (TC, for
short) by introducing the grammar for the operators used to
specify individual process terms, which represent process
behaviors modeling behavioral patterns. We denote with
Name the set of visible action names, ranged over by
a, b, . . ., and we use the fresh name τ to represent invisible,
internal actions.

The set of process terms of TC is generated through the
following syntax:

P ::= 0 | a . P | τ . P | P +Q | a.P ∓ b.Q | B

where:

• 0 represents the inactive, terminated process term.
• a . P (resp., τ . P ) denotes the process term that

executes a (resp., τ ) followed by the behavior of
P .
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• P +Q represents a nondeterministic choice
between process terms P and Q.

• a.P ∓ b.Q, which is called trusted choice operator,
denotes an external, guarded choice based on trust.

• B represents a process constant equipped with
a defining equation of the form B

def
= P , which

establishes that process constant B behaves as
process term P , thus enabling the possibility of
defining recursive behaviors.

In the following, we restrict ourselves to consider guarded
process terms, i.e., all of the (finite) occurrences of
process constants are immediately preceded by the action
prefix operator. Before detailing the interpretation of these
operators, we introduce the underlying semantic model,
which is based on classical labeled transition systems.

Definition 1
A labeled transition system (LTS) is a tuple (S, s0, L,R)
where S is a finite set of states, of which s0 represents
the initial one, L is a finite set of labels, and R ⊆ S ×
L× S is a finitely-branching transition relation, such that

(s, l, s′) ∈ R is denoted by s
l
−−→ s′.

Let Act = {τ} ∪Name ∪ {a | a ∈ Name} be the set
of actions. Then, the behavior of process term P is defined
by the smallest LTS (S, s0, L,R) such that S represents
the set of process terms of TC (with P being the initial
state s0), L = Act , and the transitions in R are obtained
through the application of the operational semantics rules
of Table I. In the following, we denote with [[P ]] the
semantics of process term P and we assume Act ranged
over by α, . . ..

The semantic rules for prefix, nondeterministic choice,
and recursion are standard, while the trusted choice
operator establishes that a.P ∓ b.Q executes either a
followed by P or (a decorated version of) b followed byQ.
The intuition is that this operator is used to communicate
one of two possible actions to another process and that the
choice will be guided by the trust towards such a process: if
trust is beyond a certain threshold, then the offered action is
a, otherwise it is b. The isolated semantics of this operator
offers both actions, as the identity of the interacting process
is still unknown, but it uses a decoration to distinguish
which action is to be considered in the absence of sufficient
trust.

Example 1
With respect to our running example, let us model the
behavior of a generic (potentially dishonest) requester,
possibly interacting with n requestees, and the behavior
of a generic requestee, possibly interacting with m
requesters. The process terms describing the requester and
requestee behavioral patterns are reported in Table II.

A process instance, called entity, is an element
exhibiting the behavior associated to a process term. The
kernel [[I]] of the semantics of an entity I belonging to the
behavioral pattern defined by process term P is given by
[[P ]] (i.e., the semantics of P ), in which every action α is

renamed to I.α [5]. With abuse of terminology, we say
that I is of type P , and we write I.B to specify that the
behavior of I in the current state is given by the process
term associated to B.

Example 2
In our running example, we consider a system with a single
requester, modeled by the entity ReqA of type Requester ,
and three requestees, which are represented by the entities
Req1, Req2, and Req3, each one of type Requestee .

2.2. Modeling Trust and Reputation

The execution of the interactions in which every entity
in a system is involved depends strictly on the trust
infrastructure describing the trust relationships within the
community. Hence, before introducing the semantics for
interaction, we first define formally such an infrastructure
with respect to a set S of individual entities, by assuming
that each entity name is unique to avoid ambiguity.

Let IName = {I.a | I ∈ S ∧ a ∈ Name} be the set
of interacting action names, denoting the actions through
which the entities communicate via synchronization, and
T be the domain of trust values. Even if in principle we
may adopt any trust domain by adequately defining the
semantics of the structures manipulating trust values, for
the sake of presentation in the following we assume T to
be a totally ordered set, the maximum (resp., minimum)
value of which is denoted by > (resp., ⊥).

A trust system is a tuple consisting of a set S of
interacting processes and of the following structures:

• Trust table tt : S × S → T, such that tt [I; J ]
denotes the direct trust of entity I towards entity
J as a result of previous interactions between them.
Each row tt [I; ] is initialized with the dispositional
trust of I , which is the initial willingness of I to
trust unknown users.

• Recommendation table rt : S × S × S → T, such
that rt [I; J ;K] contains either the trust value
recommended by I about J to K, or the special
symbol δ to specify that I does not provide
recommendations about J to K.

• Trust threshold function tth : S → T, such that
tth(I) represents the minimum amount of trust
(towards other entities) required by I to execute a
trusted interaction.

• Trust variation function tv : IName → T, such
that tv(I.a) is the trust feedback that I associates
to the execution of an interaction via action a.

• Trust function tf : S × S → T, such that tf (I, J)
computes the trust of I towards J according to
a trust formula taking into account direct trust
(deriving from the trust table) and reputation
(deriving from the recommendation table).

We implicitly assume that the trust system is
parameterized with respect to a given type of service,
and that several, mutual independent structures are needed
when modeling a system that includes different types of
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Table I. Semantics rules.

prefix a . P
a
−−→P τ . P

τ
−−→P

choice
P

α
−−→P ′

P +Q
α
−−→P ′

Q
α
−−→Q′

P +Q
α
−−→Q′

trusted choice a.P ∓ b.Q
a
−−→P a.P ∓ b.Q

b

−−→Q

recursion B
def
= P

P
α
−−→P ′

B
α
−−→P ′

Table II. Specification of the requester and requestee behavioral patterns

Requester
def
= send req 1.Wait1 + · · ·+ send req n.Waitn

Wait i
def
= rec accept i.Servicei + rec refuse i.Requester 1 ≤ i ≤ n

Servicei
def
= pay i.Requester + not pay i.Requester 1 ≤ i ≤ n

Requestee
def
= rec req 1.Decision1 + · · ·+ rec req m.Decisionm

Decisioni
def
= send accept i. τ.Payment i ∓ send refuse i.Requestee 1 ≤ i ≤ m

Payment i
def
= rec pay i.Requestee + not rec pay i.Requestee 1 ≤ i ≤ m

services, each one requiring separate trust information.
In this case, every action must be parameterized as well
with respect to the service type, in order to guide each
interaction among entities according to the related trust
information. We now explain in detail every structure of
the trust system.

As far as the trust function tf is concerned, its
specification strictly depends on the chosen trust model
and, as we will see, it does not affect the definition of
the semantics for interacting processes. Function tf may
be based on several different methods [10, 11, 12], an
example of which will be given with respect to our case
study. Similarly, in the following we will also show how to
map the Subjective Logic model [7] in our trust system.

Function tth is used to apply a trust-based enabling
condition for the execution of any interaction. In fact,
every kind of interaction requires a minimum level of trust
towards the other party in order to be executed. As we
will see, it plays a fundamental role in conjunction with
the trust-based choice operator. After the execution of any
interaction, function tv is used to express the feedback
needed to adjust the trust towards the entity with which
the interaction has been completed.

A specific relation exists between the values of the
trust table and the values of the recommendation table.
Typically, such a relation affects the way in which an entity
provides feedback to other entities on the basis of personal
experience, and may change drastically depending whether
the reputation system is centralized or distributed.

In a centralized scenario, we can envision a trusted third
party collecting trust information from all the entities and
contributing to construct the reputation of each entity as
perceived by the community. As a consequence, every

entity requiring a recommendation has access to such a
central repository in the same way and obtains the same
feedback.

For instance, in a very simple centralized scenario, the
recommendation provided by I about J , which is collected
centrally and made available to any other entity K, is
exactly the trust of I towards J , under the assumption
that I had some direct experience with J (otherwise the
suggested value would be simply the dispositional trust
of I). Formally, let ct : S × S → {0, 1} be the contact
table, such that ct [I; J ] = 1 if and only if entities I and J
interacted with each other (initially, ct [I; J ] = 0 for each
pair of entities in the set S). Then, the relation between
trust table and recommendation table is described by the
following equation:

rt [I; J ;K] =

{
tt [I; J ] if ct [I; J ] = 1
δ otherwise

(1)

thus assuming that all the entities recommend exactly the
trust values resulting from their own experience, if any.
Notice that rt [I; J ;K] = rt [I; J ;K′] for every pair of
entitiesK,K′, as the recommendation is managed through
a central authority sharing such an information with any
entity in the same way. It is worth observing that it is
possible to model the behavior of an entity I providing
inaccurate feedback or cheating deliberately by changing
Eq. 1 for specific values of J .

In a distributed scenario, the absence of a centralized
trusted third party has two important effects. Firstly,
different entities may have access to different information
if they are in contact with different neighbors. Secondly,
an entity may provide, for the same recommendation,
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different values to different entities. As a consequence, we
may have rt [I; J ;K] 6= rt [I; J ;K′] for K 6= K′.

Example 3
In the running example, let trust be a discrete metric such
that T = [0..10]. Initially, the trust table is as follows:

ReqA Req1 Req2 Req3

ReqA 8 8 8
Req1 2 2 2
Req2 3 3 3
Req3 5 5 5

The recommendation table is calculated by means of Eq. 1.
We do not consider self-promoting behaviors, which,
however, could be easily modeled. Moreover, even if we
assume a distributed scenario, requester and requestees are
connected without any restriction and can communicate
with each other. The trust threshold function establishes
that the requester issues requests without any reputation
constraint, tth(ReqA) = 0, and that for each requestee the
service trust threshold is equal to requestee’s dispositional
trust: tth(Req1) = 2, tth(Req2) = 3, and tth(Req3) =
5.

The trust variation function establishes that the
requester increases (resp., decreases) by one unit the
trust towards any requestee accepting (resp., refusing)
a request, namely tv(ReqA.rec accept i) = 1 and
tv(ReqA.rec refuse i) = −1 for 1 ≤ i ≤ 3. Each
requestee increases trust towards the requester in case of
paid service, tv(Req i.rec pay 1) = 1 for 1 ≤ i ≤ 3. The
first two requestees decrease trust by the same amount in
case of unpaid service, tv(Req i.not rec pay 1) = −1 for
1 ≤ i ≤ 2, while the third one is more cautious and applies
the maximum penalty, tv(Req3.not rec pay 1) = −10.
All the other actions do not imply any trust variation.

Finally, the trust formula is abstracted as follows. Let:

RecI,J = S\{{I, J} ∪ {K | rt [K; J ; I] = δ}}

be the set of entities from which I receives recommen-
dations about J . Then, the trust function is as defined in
Table III, where ρI represents the risk factor for I , i.e.,
how much of its trust towards other entities depends on
previous direct experience. The term that is multiplied by
1− ρI represents the average trust towards J resulting
from recommendations provided by third entities. For the
three requestees, in the following we assume that the risk
factor is equal to 0.5, 0.8, and 0.8, respectively.

In general, notice that the most risky profile is adopted
by the first requestee, while the third requestee is
characterized by the most cautious behavior [13].

2.3. Modeling Interacting Processes

The semantics of interacting entities arises from the
parallel composition of a set S of individual entities
following the communication rules established by a
synchronization set SS , which is a set of names of the

form I.a to J.b. In particular, action I.a to J.b denotes a
synchronization between entities I and J in which I offers
action a and J responds with action b. In this view, I.a
is the output part of the communication, J.b represents
the input counterpart, and I.a to J.b is the name of the
synchronized action.

Example 4
In the running example, the synchronization set for the
group of entities {ReqA,Req1,Req2,Req3} contains the
actions:

ReqA.send req i to Req i.rec req 1
Req i.send accept 1 to ReqA.rec accept i
Req i.send refuse 1 to ReqA.rec refuse i
ReqA.pay i to Req i.rec pay 1
ReqA.not pay i to Req i.not rec pay 1

where 1 ≤ i ≤ 3.
The system topology resulting from such a synchro-

nization set reveals that the requester may interact with
every requestee, while communications among requestees
do not occur, except for the potential exchange of rec-
ommendations. Notice that such an exchange is modeled
implicitly through the definition of the recommendation
policy. According to the trust infrastructure described in
the previous section, the system topology has the follow-
ing effect on the calculation of reputation. Each reques-
tee receives recommendations from any other requestee
who has previously interacted with the requester, while
the requester does not receive recommendations, mean-
ing that tf (ReqA,Req i) = tt [ReqA; Req i] for 1 ≤ i ≤ 3
independently of the risk factor chosen by ReqA.

The interacting semantics of S is given by the parallel
composition of the semantics [[I]] of all the entities I ∈
S. To facilitate modeling, we represent the composed
system simply by the pool S of interacting entities, without
introducing syntactically a specific operator for parallel
composition. In the semantics rules, presented in Table IV,
P, P ′, Q,Q′, . . . are process terms representing the local
behavior [[I]] of any entity I ∈ S. A vector of local
behaviors – containing as many elements as the number
of entities in S, each one expressing the current local
behavior of the related entity – represents the global state,
denoted by P,P ′, of the composed system. Moreover,
P[P ′/P ] represents the substitution of P with P ′ in P .
This notation is not ambiguous as every entity name in S
is unique andP, P ′ express the semantic model of an entity
I whose transitions are of the form I.α.

The first semantic rule of Table IV establishes that
every entity executes its internal actions independently
from each other. On the other hand, based on the trust
information, interactions among entities occur (or do not
occur) and their execution provides feedback, see the
second and third rules of Table IV. In order to emphasize
the separation of concerns between trust modeling and
behavior modeling, the rule premises concerned with the
trust structures are specified syntactically as external side
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Table III. Trust function for the running example

tf (I, J) =

{
tt [I; J ] if RecI,J = ∅
ρI · tt [I; J ] + (1− ρI) ·

∑
K∈RecI,J

rt[K;J;I]

|RecI,J |
otherwise

conditions. Function update : T× T→ T formalizes the
effect of the interaction upon the trust between the involved
parties. To this aim, we assume T to be a numeric-valued
domain and tv(I.a) to represent the variation denoting the
trust gain/loss.

The second semantic rule requires entities I and J to
enable, respectively, the interacting actions I.a and J.b.
In such a case, if the communication is allowed, i.e.,
I.a to J.b ∈ SS , and if J is trusted enough by I , i.e.,
tf (I, J) ≥ tth(I), then the interaction is executed and,
as a post-condition, both I and J update their mutual
trust accordingly. We point out that the trust-based premise
checks the trust of I towards J (and not vice versa) because
the interaction is guided by I . Hence, synchronization is
asymmetric and is governed by the entity offering the
output counterpart of the communication.

The third semantic rule behaves essentially the same,
except that it models the case in which the communication
from I to J occurs if I does not trust J enough, see action
I.a and the premise tf (I, J) < tth(I), in compliance with
the semantics of the trusted choice operator. Notice that,
in order to consider the case in which the contact table is
necessary for the trust calculation, the update ct [I; J ] =
1 must be added to the premises to keep track of the
interaction.

The separation of concerns – between functional behav-
ior modeling and trust representation – is realized at the
syntax level and favors independent reasoning and con-
trol. All the information and policies concerning trust are
not involved syntactically in the specification of the pro-
cess terms modeling the functional behavior of systems.
Instead, they are described in a separate infrastructure,
thus facilitating modeling and then sensitivity analysis.
Functional behavior and trust management are combined
at the semantics level in a fully automatic way governed
by the operational semantic rules for parallel composition.

As far as the resulting semantic model is concerned, if
trust has a finite value domain, then a concrete treatment of
semantics is applied, meaning that the actual instantiations
of the trust parameters become part of the formal semantics
by contributing to label the states of the labeled transition
system expressing the system behavior. Such a condition
is achieved whenever trust is a finite, discrete metric, as
usual in several trust-based systems [2]. The definition of
the formal semantics of a system of interacting entities
is based on the extension of LTS taking into account in
each state the trust information affecting the application
of the semantic rules. In particular, it is worth noticing
that the variables of the trust infrastructure needed to
determine the enabled transitions are represented by the
entries of the trust and recommendation tables. For the sake

of presentation, we limit ourselves to consider the case of
the trust table, as the extension including both tables is
straightforward.

Definition 2
Given a domain V of trust variables and a domain T of
trust values, a trust labeled transition system (tLTS) is a
tuple (S, s0, L,R, T, P ) where:

• (S, s0, L,R) is a LTS.
• T is a finite set of trust predicates of the form v = k,

where v ∈ V and k ∈ T.
• P : S → 2T is a labeling function that associates a

subset of T to each s ∈ S.

The semantics of a trust system made out of a set
S = {I1, . . . , In} of entities obeying the synchronization
set SS and the trust table tt (such that V is the set of
its entries) is the smallest tLTS satisfying the following
conditions:

• each global state s ∈ S is a n-length vector of
process terms modeling the local behavior of the
entities Ij , 1 ≤ j ≤ n, such that the initial global
state s0 is associated to the vector modeling the
initial local state of each entity;

• each trust predicate in T denotes an entry in the trust
table tt ;

• the labeling function P associates a configuration
of the trust table to each state, by assuming that
the initial state of the tLTS is labeled by the
initialization of tt according to the given trust
infrastructure;

• the transitions in R are obtained through the
application of the operational semantics rules of
Table IV;

• L = IAct , ranged over by i, . . ., contains internal
actions of the form Ij .τ and interactions in SS .

Therefore, a transition (s, i, s′) ∈ R determines,
depending on the current global state s – which encodes
both the local state of each entity in the pool and the
current trust information – and the action i, the next global
state s′.

Example 5
The initial state of the tLTS related to our running
example is associated to the vector of process terms
[ReqA.Requester , Req1.Requestee , Req2.Requestee ,
Req3.Requestee] and is labeled by the trust predicates
defined in the trust table of Example 3. The transitions
departing from this state are three, which are labeled with
ReqA.send req i to Req i.rec req 1, 1 ≤ i ≤ 3, respec-
tively.
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Table IV. Semantics rules for parallel composition

P ∈ P P
I.τ
−−→P ′

P
I.τ
−−→P[P ′/P ]

P,Q ∈ P I.a to J.b ∈ SS P
I.a
−−→P ′ Q

J.b
−−→Q′

P
I.a to J.b
−−→ P[P ′/P,Q′/Q]

tf (I, J) ≥ tth(I)

tt [I; J ] = update(tt [I; J ], tv(I.a))

tt [J ; I] = update(tt [J ; I], tv(J.b))

P,Q ∈ P I.a to J.b ∈ SS P
I.a

−−→P ′ Q
J.b
−−→Q′

P
I.a to J.b
−−→ P[P ′/P,Q′/Q]

tf (I, J) < tth(I)

tt [I; J ] = update(tt [I; J ], tv(I.a))

tt [J ; I] = update(tt [J ; I], tv(J.b))

update(v, k) =

{
max (⊥, v + k) if k < 0
min(>, v + k) if k > 0

2.4. Prioritized Choice based on Trust

Trust metrics provide not only means to take binary
decisions concerned with the potential execution of an
interaction. They can also be used to govern the choice
among several alternative interactions. In this section,
we add the possibility of defining actions subject to
prioritized choice based on trust, by assuming that the
trust domain is totally ordered. Intuitively, whenever in the
same global state several such interactions are enabled and
governed by a given entity I , i.e., they represent trusted
communications whose output counterpart is offered by
I , then only the trusted interactions with the most trusted
entity – among the entities available to interact with I – can
be executed, while all the others are pre-empted. In other
words, the choice of the entity with which I interacts is
prioritized based on entity’s reputation.

Inspired by [14], we use the syntactic notation ā to
express an action a subject to prioritized choice. Hence,
the syntax of TC is enriched with the production ā.P ,

whose semantics rule is ā.P
ā
−−→P . From now on, we

assume that the set Act of action names includes also the
set {ā | a ∈ Name}.

Basically, priorities come into play in the semantics for
interacting processes, where we have to express formally
the pre-emption rule, as formalized in the semantics rule
defined in Table V. In particular, the rule states that
a prioritized interaction governed by entity I towards
entity J is enabled only if J is the most trusted entity
among those with which I can communicate through a
prioritized action. The trust level associated with the most
trusted entity available to interact with prioritized actions
offered by I in the current global state P is calculated
by function pri(P, I). If several prioritized interactions
are enabled, or interactions that are not subject to the
priority mechanism are enabled too, then the choice is
nondeterministic. Similarly, the choice among interactions
governed by different entities is nondeterministic too.

Example 6
In our running example, let us replace every action

ReqA.send req i, where 1 ≤ i ≤ 3, with the prioritized
counterpart, ReqA.send req i.

According to the trust table illustrated in Example 3,
in the initial global state, defined in Example 5, the
three requestees are chosen nondeterministically as they
have the same reputation. Assume, e.g., to follow the
path in which Req1 is chosen, whose first action is
ReqA.send req 1 to Req1.rec req 1, which is followed
by Req1.send accept 1 to ReqA.rec accept 1, by virtue
of which we derive the trust update tt [ReqA; Req1] = 9,
see the trust rules illustrated in Example 3. Then, as a
consequence of the prioritized choice based on reputation,
the next request by ReqA is issued deterministically to
Req1 again.

2.5. Probabilistic Choice based on Trust

In this section, assuming to deal with a totally-ordered
numeric-valued trust domain, we model choices solved
probabilistically, where trust towards entities is interpreted
as a probabilistic weight used to guide the choice among
trusted interactions. To this aim, it is not necessary to
enrich the syntax of TC with probabilistic information,
which instead is extracted from the trust infrastructure.
On the other hand, the semantics for interacting processes,
expressed by tLTS, must be extended to represent
probabilistic moves. The resulting semantic model
combines probabilistic and nondeterministic choices. In
particular, the choice among actions governed by a given
entity I , i.e., its internal actions and the interactions of
the form I.a to J.b, is probabilistic, while the choice
among actions governed by different entities is left
nondeterministic.

Definition 3
A probabilistic LTS (pLTS) is a tuple (S, s0, L,R) where
S is a finite set of states, of which s0 represents the initial
one, L is a finite set of labels, and R ⊆ S × L× (0, 1]×
S is a finitely-branching transition relation, for which there
exists a partition L/B induced by an equivalence relation
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Table V. Semantics for trust-based prioritized communication

P,Q ∈ P I.a to J.b ∈ SS P
I.ā
−−→P ′ Q

J.b
−−→Q′

P
I.a to J.b
−−→ P[P ′/P,Q′/Q]

tf (I, J) = pri(P, I) ≥ tth(I)

tt [I; J ] = update(tt [I; J ], tv(I.a))

tt [J ; I] = update(tt [J ; I], tv(J.b))

pri(P, I) = max{tf (I, J) | ∃I.a to J.b ∈ SS ∧ ∃P,Q ∈ P ∧ ∃P ′, Q′. P
I.ā
−−→P ′ ∧Q

J.b
−−→Q′}

B such that for all s ∈ S and C ∈ L/B:∑
{| p | ∃l ∈ C, s′ ∈ S. (s, l, p, s′) ∈ R |} ∈ {0, 1}

where the summation returns 0 whenever the multiset
is empty. Transition (s, l, p, s′) ∈ R is denoted by

s
l,p
−−→ s′.

This definition extends Def. 1 by adding a probability
value to the label of each transition. In particular, the
outgoing transitions of any given state s are grouped into
bundles defined by partition L/B, while the probabilities
associated to the transitions departing from s within any
bundle C define a probability distribution.

This model has strong similarities with Markov
Decision Processes (MDPs), in which the transition
relation is R : S → 2L×Dist(S), where Dist(S) denotes
the set of probability distributions over S. In fact, the
two models coincide if we restrict MDPs to assume R :
(S × L)→ Dist(S) - i.e., only one possible distribution
is associated to an action name for a given state - and pLTS
to assume that each C ∈ L/B is a singleton, thus denoting
that a probability distribution is associated to the possible
derivatives of the transitions labeled with the same action
name.

A trust probabilistic labeled transition system (tpLTS) is
a tLTS whose underlying LTS is replaced by a pLTS. The
semantics of a trust system made out of a pool S of entities
obeying the synchronization set SS and the trust table tt is
defined as in the case of tLTS with the following additional
condition. For each I ∈ S, we denote with IActI the
subset of IAct including only action I.τ and actions of
the form I.a to J.b, for some a, b ∈ Name and J in the
pool. Then, relation B is such that (i, j) ∈ B if and only
if ∃I ∈ S. i, j ∈ IActI . Intuitively, for each global state,
all the outgoing transitions representing actions governed
by an entity I are grouped into a bundle, while every
bundle – one for each entity governing at least an action
enabled in the global state – is associated to a probability
distribution. In the following, we show how to calculate
such a distribution. To this aim, we recall that the trust
towards J is used as a weight to compute the probability of
any interaction with J . However, trust is not a probability
value, thus a normalization must be taken into account.
First, we define a function trust : IAct → T that returns
the trust towards the entity with which a given interaction
is completed. By default, we assume that internal actions
are associated with the maximum trust level, as we may

interpret them as self-interactions. Hence, we have:

trust(i) =

{
> if i = I.τ
tf (I, J) if i = I.a to J.b

Then, the overall trust associated to the bundle of actions
governed by I in a given global state P is calculated as
follows:

T (P, I) =
∑
{| trust(i) | i ∈ IActI ∧ ∃P ′.P

i
−−→P ′ |}

The execution probability of an action i ∈ IActI in a global
state P is calculated as the ratio between its associated
trust level trust(i) and the overall trust T (P, I). Formally,
the tpLTS modeling the interacting semantics of a pool

S is obtained by replacing transition P
i
−−→P ′ in the

conclusion of every semantics rule of Table IV with

P
i,trust(i)/T (P,I)
−−−−−−−−−−−−→ P ′, where i ∈ IActI .

Example 7
Let us apply the new semantics to our running
example. For every global state including the local state
ReqA.Requester , the bundle of interactions governed by
entity ReqA, which contains actions ReqA.send req i,
with 1 ≤ i ≤ 3, is associated to a probability distribution
expressing that a requestee is chosen probabilistically on
the basis of requestee’s reputation. For instance, according
to the trust table illustrated in Example 3, in the initial
global state, defined in Example 5, the three requestees are
chosen with probability 8

24
each.

Finally, we point out that the probabilistic model of
choice can coexist with the prioritized model of choice.
Basically, if both are applied, for each entity I the related
bundle of actions enabled in a certain global state is
determined by following the priority based mechanism,
and only later the associated probability distribution is
calculated.

2.6. Integration with Subjective Logic

Even if in the previous sections we have dealt with
numeric-valued trust opinions, several different trust
models can be embedded in the proposed framework,
depending on the way in which the structures of the trust
system of Section 2.2 are defined. To put in evidence such
a level of flexibility, here we show how to integrate (a
fragment of) Subjective Logic [7] in our framework.

In Subjective Logic, trust is expressed through belief
triples of the form (b, d, u), where the three components
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sum up to 1 and represent belief, disbelief, and uncertainty,
respectively. Several operators are defined to manage
trust opinions, among which we consider consensus
(denoted by ⊕), which formalizes the aggregation
of opinions, and discounting (denoted by ⊗), which
formalizes trust chaining, which is useful to combine
trust towards recommenders with trust reported by their
recommendations.

The embedding requires the following modifications in
the syntax and semantics of the trust system. First, as
an immediate consequence of the representation of trust
opinions, the trust values in the domain T become belief
triples. The most interesting effect of this variation is
on the trust variation function tv , which associates each
interaction to the related trust opinion. For instance, in a
very simple scenario in which an interaction denotes either
success, modeled through the triple ( 1

2
, 0, 1

2
), or failure,

modeled through the triple (0, 1
2
, 1

2
), then these two triples

represent the actual codomain for function tv . In general,
more specific triples can be related to interactions denoting
intermediate levels of satisfaction between these two
limiting results. Then, the trust function tf , which merges
personal experience and recommendations, is defined by
taking the consensus of the user own trust and every
discounted recommended trust opinion:

tf (I, J) = tt [I; J ] ⊕
∑

K∈RecI,J

tt [I;K] ⊗ rt [K; J ; I]

where summation is over the operator ⊕ and no risk factor
is used.

Finally, we need to update accordingly the semantics
of the operations performed in the side conditions of the
semantics rules of Table IV. In particular, the comparison
operators ≥ and ≤ are extended to deal with belief triples.
The simplest interpretation of this extension consists of
extracting the belief components of the triples, which
are then compared through the classical comparison
operators. Similarly, the definition of function update ,
which formalizes the adjustment of trust by virtue of a new
opinion, is given in terms of the consensus operator:

update(t1, t2) = t1 ⊕ t2

By virtue of these assumptions, the obtained result is
an integrated model in which functional behavior of the
system and trust are defined, respectively, in terms of a
process algebraic specification language and Subjective
Logic. As we will see in the next section, an integrated
model such as this can be analyzed dynamically through
model checking techniques.

3. MODEL CHECKING TRUST

In this section, we show how to perform model checking
based verification whenever the formal semantics of a
trust system of interacting processes is based on tLTS.

First, we notice that the tLTS model represents an instance
of doubly labeled transition systems [15], and of Kripke
transition systems [16]. Hence, it is possible to employ
temporal logics for such systems in order to define a
trust logic for specifying both conditions based on the
actions labeling the transitions and requirements based on
the trust information labeling the states. We call such a
language trust temporal logic (TTL). In particular, TTL
embodies features of the classical branching-time state-
based Computation Tree Logic [17] and of its action-based
variant ACTL [18].

TTL includes the definition of state formulas, which are
applied to states of a tLTS, and path formulas, which are
applied to sequences of transitions of a tLTS. The syntax
of TTL is defined as follows:

Φ ::= true | i | v ≥ k | Φ ∧ Φ | ¬Φ | Aπ | Eπ
π ::= ΦA1U Φ | ΦA1UA2 Φ

where v = tt [I; J ], with I and J entity names, k ∈
T, i ∈ IAct , and A1,A2 ⊆ IAct . Inspired by other
logics merging action/state-based predicates [19], atomic
propositions are either actions or trust predicates of the
form v ≥ k, where variable v denotes any entry of the trust
table and k belongs to the trust domain. State formulas are
ranged over by Φ. Intuitively, a state satisfies the atomic
proposition i if it enables a transition labeled with i, while
it satisfies the atomic proposition v ≥ k if it is labeled
with a trust predicate that assigns to v a value greater
than (or equal to) k. Composite state formulas are obtained
through the classical connectives. The operators A and
E denote the universal and existential path quantifiers. A
state satisfies Aπ (resp., Eπ) if every path (resp., at least
one path) departing from such a state satisfies the path
formula π. Path formulas are ranged over by π, while U
is the indexed until operator. Intuitively, a path satisfies the
until formula ΦA1U Φ′ if the path visits a state satisfying
Φ′, and visits states satisfying Φ while performing only
actions in A1 until that point. Similarly, the until formula
ΦA1UA2 Φ′ is satisfied by a path if the path visits a
state satisfying Φ′ after performing an action in A2, and
visits states satisfying Φ while performing only actions
in A1 until that point. We observe that a path satisfying
ΦA1UA2 Φ′ must include a transition to a state satisfying
Φ′, while this is not required for ΦA1U Φ′ if the initial
state of the path satisfies Φ′.

Similarly as argued in the previous section, if the states
of the tLTS include reputation-based information deriving
from the recommendation table, we can enrich TTL with
reputation-based state predicates.

Now, let us define formally some notion about paths
with respect to a tLTS (S, s0, L,R, T, P ). A path σ is
a (possibly infinite) sequence of transitions of the form:

s0

i0
−−→ s1 . . . sj−1

ij−1

−−→ sj . . . where sj−1

ij−1

−−→ sj ∈ R
for each j > 0. Every sj in the path is denoted by σ(j).

Moreover, let sj
A
−−→ sj+1 if and only if ij ∈ A ⊆ L.

We denote with Path(s) the set of paths starting in state

Security Comm. Networks ; 00:1–14 c© John Wiley & Sons, Ltd. 9
DOI: 10.1002/sec
Prepared using secauth.cls



Modeling and Verification of Trust and Reputation Systems A. Aldini

Table VI. Semantics of TTL

s |= true holds always
s |= v ≥ k iff (v = k′) ∈ P (s) ∧ k′ ≥ k

s |= i iff ∃s′ : s
i
−−→ s′ ∈ R

s |= Φ ∧ Φ′ iff s |= Φ and s |= Φ′

s |= ¬Φ iff s 6|= Φ
s |= Aπ iff ∀σ ∈ Path(s) : σ |= π
s |= Eπ iff ∃σ ∈ Path(s) : σ |= π

σ |= ΦA1U Φ′ iff ∃k ≥ 0 :

σ(k) |= Φ′ ∧ (for all 0 ≤ i < k : σ(i) |= Φ ∧ σ(i)
A1

−−→σ(i+ 1))

σ |= ΦA1UA2 Φ′ iff ∃k > 0 :
σ(k) |= Φ′ ∧ (for all 0 ≤ i < k − 1 : σ(i) |= Φ∧

σ(i)
A1

−−→σ(i+ 1)) ∧ σ(k − 1) |= Φ ∧ σ(k − 1)
A2

−−→σ(k)

s ∈ S. Then, the formal semantics of TTL is as shown in
Table VI.

TTL can be mapped to the logic UCTL [15], for
which an efficient on-the-fly model checking algorithm is
implemented. The unique non-trivial difference between
the two logics is that TTL allows for action-based
atomic propositions, while UCTL does not. The atomic
proposition i of TTL can be represented through the
UCTL until operator as follows. Denoted with false
the formula ¬true , then i is expressed by the formula
E(false ∅U{i} true), which establishes that from the
current state a transition labeled with i is enabled that leads
to a state satisfying the atomic formula true , i.e., given s

the current state, it holds that ∃s′ : s
i
−−→ s′ ∈ R.

Finally, we provide two flavors of classical operators
like next (X), eventually (F ), and always (G), depending
on the kind of until operator used. To this end, we introduce
the following notations:

XΦ = false ∅UIAct Φ
XA1Φ = false ∅UA1 Φ

EFΦ = E(true IActU Φ)
EFA1Φ = E(true IActUA1 Φ)

AFΦ = A(true IActU Φ)
AFA1Φ = A(true IActUA1 Φ)

EGΦ = ¬AF¬Φ
EGA1 = ¬AFIAct−A1 true

AGΦ = ¬EF¬Φ
AGA1 = ¬EFIAct−A1 true

For instance, EGΦ holds in s if there exists a path in
Path(s) every state of which (including s) satisfies Φ,
while EGA1 holds in s if there exists a path in Path(s)
every transition of which is labeled with an action in A1.

Example 8
With respect to our running example, we focus on the
comparison between the two limiting profiles, i.e., risky

and cautious, which characterize the behavior of the
requestees. After adequate translation of the model, the
following properties have been recast and checked both in
PRISM [20] and in NuSMV [21].

The first parameter under analysis is the risk factor
and the related impact upon the capability of being
influenced by recommendations. To this aim, we formulate
the following condition to check. Can the risky requestee
accept a request without sufficient direct trust towards
the requester? The related property is stated formally as
follows:

EF (tt [Req1; ReqA] < 2∧
Req1.send accept 1 to ReqA.rec accept 1).

The formula schema EF expresses the eventuality
of reaching a state satisfying the following
expression, i.e., the conjunction of two predicates:
the state predicate tt [Req1; ReqA] < 2 describes
the trust condition, while the action predicate
Req1.send accept 1 to ReqA.rec accept 1 formalizes
the behavior to observe in the state. The property is
satisfied, because by virtue of the assumption ρReq1 = 0.5,
positive recommendations provided to the risky requestee
can balance (and overcome the effect of) negative direct
experiences. The same property can be recast in the case
of the cautious requestee:

EF (tt [Req3; ReqA] < 5∧
Req3.send accept 1 to ReqA.rec accept 3)

which is not satisfied, thus confirming the prudent behavior
of this requestee.

An interesting analysis concerns the consequences of
a malicious behavior of the requester. The following
property:

AG(ReqA.not pay 3 to Req3.not rec pay 1→
AG(¬Req3.send accept 1 to ReqA.rec accept 3))

is satisfied, thus establishing that after experienc-
ing a cheating behavior of the requester (see action
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ReqA.not pay 3 to Req3.not rec pay 1) then the cau-
tious requestee does not trust the requester any-
more (in every future state it holds that the action
Req3.send accept 1 to ReqA.rec accept 3 cannot be
enabled). By replacing the cautious requestee with the
risky requestee, the corresponding property is violated.
Actually, not very surprisingly, even the following property
is satisfied:

EF (EGA1)

where A1 is the set of actions:

{ReqA.send req 1 to Req1.rec req 1,
Req1.send accept 1 to ReqA.rec accept 1,
Req1.τ,
ReqA.not pay 1 to Req1.not rec pay 1 }.

This means that a certain point can be reached starting
from which the requester can obtain services from the risky
requestee infinitely often without paying for any of them.
This situation is an immediate consequence of the first
property, which demonstrates that the direct mistrust of the
risky requestee towards the requester is not sufficient to
exclude the cheating behavior.

On the other hand, let us now consider a completely
honest requester. This variant can be obtained either by
eliminating from requester’s process terms any action
not pay i or, even better, by removing the related actions
from the synchronization set SS . In this scenario, we verify
whether eventually a point is reached starting from which
every issued request is accepted:

EF (AGIAct−A1)

where A1 is the set of actions:

{Req1.send refuse 1 to ReqA.rec refuse 1,
Req2.send refuse 1 to ReqA.rec refuse 2,
Req3.send refuse 1 to ReqA.rec refuse 3 }.

Such a property holds as expected.
Separating functional behavior modeling and trust

management specification allows for a clear verification
of the impact of trust policies upon specific properties
by simply adjusting the trust parameters of certain
entities. For instance, let us replace the cautious requestee
with a paranoid requestee characterized by strict trust
requirements, and then let us consider the capability of
such an entity of accepting services. To this aim, we
adjust the trust infrastructure only, by tuning ρ, tth ,
and dispositional trust for entity Req3. As an example,
with ρReq3 = 0.8, tth(Req3) = 5 (as for the cautious
requestee), and dispositional trust less than 4, we obtain
that the following property is not satisfied:

EF (Req3.send accept 1 to ReqA.rec accept 3)

meaning that the paranoid requestee does not serve any
request. The property turns out to hold if the dispositional
trust is set to 4, in which case we also observe that, given

A1 = {Req3.send accept 1 to ReqA.rec accept 3},
then the property:

E((tt [Req1; ReqA] < 10∧
tt [Req2; ReqA] < 10) IActUA1 true)

does not hold. More precisely, at least one of the other two
requestees must recommend top trust towards the requester
in order to allow the paranoid requestee to accept a request.

Finally, let us consider a coalition attack by two
requestees against the third one. The condition of interest
is formulated as follows. Can malicious requestees provide
false feedback to the risky requestee thus avoiding
her/him from accepting any request? To this aim, it
is sufficient to extend the recommendation table by
setting rt [Req2; ReqA; Req1] = rt [Req3; ReqA; Req1] =
0 (while all the other entries are as usual), and then check
the TTL formula:

¬EF (Req1.send accept 1 to ReqA.rec accept 1).

This property is satisfied, thus revealing the effectiveness
of the attack. By tuning the dispositional trust of the risky
requestee, we observe that the attack can be avoided if
and only if such a parameter is set to at least 4. On the
other hand, if the false feedback is provided by Req3 only,
Req1 can accept requests (even without altering her/his
dispositional trust), but only after a successful interaction
between Req2 and ReqA. In this case, we have also
verified that extremely positive recommendations by Req2

(rt [Req2; ReqA; Req1] = 10) protect Req1 from coalition
attacks of (up to) 4 malicious requestees.

3.1. Probabilistic Model Checking

Extending model checking to the analysis of probabilistic
systems, ranging from discrete- or continuous-time
Markov chains to Markov decision processes, received
a lot of attention in the literature, and a number
of probabilistic model checking techniques as well as
probabilistic temporal logics have been proposed to cover
such an extension. In this section, we briefly discuss
how to extend TTL to deal with the analysis of ptLTS,
by following the approach implemented in the PRISM
software tool [22] to the analysis of MDPs.

While in purely probabilistic systems, like DTMCs,
verifying quantitative properties reduces to construct and
analyze the probability space over the set of (infinite)
paths, in the setting of MDPs the same approach is possible
only once any form of nondeterminism has been solved.
Every possible resolution of nondeterminism defines an
adversary, so that verifying quantitative properties of
MDPs equates to evaluate the behavior obtained under
every adversary, possibly concentrating on determining the
best- or worst-case behavior. Based on the observations of
Section 2.5, while in MDPs the adversary is responsible
for choosing an action name in each state, in the setting of
ptLTS the adversary is responsible for choosing an entity
in each state. In fact, in the semantics of TC extended
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with trust-based probabilistic choice, the unique source of
nondeterminism derives from the concurrent execution of
several entities.

Formally, a path σ through a ptLTS is a (possibly
infinite) sequence of the form:

s0

i0,p0
−−→ s1 . . . sj−1

ij−1,pj−1

−−→ sj . . .

where sj−1

ij−1,pj−1

−−→ sj ∈ R for each j > 0. Notice that
a path solves both the nondeterministic choice among the
entities enabled to perform a move at each step and the
probabilistic choice among the actions enabled by the
chosen entity. In particular, the nondeterministic choice is
governed by the adversary α, which is a function mapping
every finite path σ ∈ Path(s), whose last state is denoted
by last(σ), to the bundle of transitions associated to the
chosen entity I , namely:

{last(σ)
i,p
−−→ s′ ∈ R | i ∈ IActI}

Then, it is possible to define the probability measure
Probαs over the set of paths departing from state s and
guided by adversaryα. We skip the details of such a theory,
which, e.g., is presented in [22], and we concentrate on
the probabilistic extension of TTL, which is inspired by
Probabilistic CTL. Syntactically, the TTL path quantifiers
Aπ and Eπ, which guard any path formula, are replaced
by the probabilistic path operator:

P./pπ

where ./∈ {<,≤,=,≥, >} and p ∈ [0, 1]. Informally,
a state satisfies P./pπ if, under each adversary, the
probability of taking any path from s satisfying the path
formula π respects the condition ./ p. Formally:

s |= P./pπ iff Probαs ({σ ∈ IPath(s) | σ |= π}) ./ p

for all adversaries α, assumed that IPath(s) is the set of
infinite paths starting from s and Probαs ({σ ∈ IPath(s) |
σ |= π}) is the unique measure denoting the probability
associated to the paths in IPath(s) that satisfy π under the
adversary α. With this in view, the same theory known for
reasoning about MDPs [22] can be applied in our context.

Example 9
Let us apply the probabilistic interpretation of semantics
in the setting of the running example. By employing
the functionalities of the model checker PRISM, we can
estimate the maximum/minimum probability of satisfying
the properties considered in Example 8, based on the
best/worst strategy followed by the adversary. For instance,
the maximum probability of satisfying the first reachability
property discussed in Example 8 is 1. Then, at the end of
Example 8, we have analyzed the behavior of a paranoid
requestee replacing the third, cautious requestee, by
revealing the requirements needed to satisfy the following

property:

EF (Req3.send accept 1 to ReqA.rec accept 3).

In the probabilistic setting, we can now observe more
specifically that the maximum probability of satisfying the
path condition:

F (Req3.send refuse 1 to ReqA.rec refuse 3)

(i.e., reaching a state in which the paranoid requestee does
not accept the request) is p = 83.7%, thus confirming
quantitatively the non-cooperative character of such a
profile.

4. CONCLUSION AND RELATED WORK

This paper describes a process algebraic framework
in which trust modeling and system specification are
combined and model checking techniques are applied to
verify the effects of trust opinions and related parameters
upon cooperation in concurrent and distributed systems.

In the literature, formal methods have been used suc-
cessfully to model and analyze trust and trust relation-
ships [23, 24, 25, 26, 27, 28, 29, 30]. However, usually
these works do not integrate trust modeling with con-
current/distributed systems modeling in a unifying formal
framework. Theoretical analysis of cooperation strategies
is proposed by employing formal approaches like, e.g.,
game theory [31], and the theory of semirings [32]. The
analysis of trust chains is investigated also in a process
algebraic setting, either with a specific focus on access
control policies [33], or by employing equivalence check-
ing based analysis [34].

A natural extension of our work is concerned with
the use of reward structures expressing metrics that can
be related to trust. This is the case, e.g., of the service
cost, as well as any other parameter related to the quality
of experience that may be influenced by (or may affect)
trust. Then, similarly as done in the setting of quantitative
model checking [35, 19, 36, 22], we can employ the
probabilistic version of TTL extended with rewards to
estimate the tradeoff existing between trust and other
metrics, which is necessary to evaluate mixed cooperation
incentive strategies [13].
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