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ABSTRACT 

Adaptive filter plays an important role in the field of digital signal processing and wireless 

communication. It incorporates LMS algorithm in real time environment because of its low 

computational complexity and simplicity. The LMS algorithm encompasses RLS (recursive least 

square), GN (Gaussian Newton), LMF (least mean fourth) and XE-NLMF algorithms, which 

provides faster convergence rate and low steady state error when compared to LMS. 

The adaptive distributed strategy is based on the incremental mode of co-operation between 

different nodes, which are distributed in the geographical area. These nodes perform local 

computation and share the result with the predefined nodes. The resulting algorithm is distributed, 

co-operative and able to respond to the real time change in environment. By using incremental 

method, algorithms such as RLS,GN, DCT-LMS and DFT-LMS produces faster convergence and 

better steady state performance than that of the LMS when simulated in the presence of Gaussian 

noise. Higher Order error algorithm like LMF, XE-NLMF and variable XE-NLMF algorithm 

produce better convergence and steady state performance under Gaussian and non-Gaussian noise. 

A spatial-temporal energy conservation argument is used to evaluate the steady state performance 

of the entire network. 

A topology named as CLMS (convex LMS) was presented which combined the effect of 

both fast and accurate filtering at the same time. Initially CLMS have parallel independent 

connection, the proposed topology consists of series convex connection of adaptive filters, which 

achieves similar result with reduced time of operation. Computer simulations corroborate the 

results. 

 

Keywords: Incremental, Adaptive, CLMS,INC DCT-LMS,INC DFT-LMS,QWDILMS,XE-

NLMF,LMF,LMS 
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 Chapter 1 INTRODUCTION 

 

Wireless Sensor Networks (WSNs) is networks composed of tiny embedded devices. Each device 

is capable of sensing, processing and communicating the local information. The networks can be 

made up of hundreds or thousands of devices that work together to communicate the information 

that they obtain [1]. In distributed signal processing Number of nodes are distributed in a 

geographical area, it collects the information or data which is present in the node. Each node 

assembles some noisy information related to a certain parameter of interest and performing local 

estimation, then share the data to the other nodes by some defined rule. The main object behind 

this is to reach the parameter of interest, which really outcomes from the node after share in the 

network. In traditional centralized solution the nodes collect the data then send it to the central 

processor for processing, the central processor process the data then finally again give back the 

estimated data to all the node. For this a powerful central processor required and a huge amount of 

communication between node and central processor required. But in case of distributed solution, 

the nodes only depends on their immediate neighbor [2]. Hence in case of distributed solution the 

amount of processing and communication reduced ( [1], [3]). 

Distributed solution has large number of application including tracking of target trajectory, 

monitoring concentration of chemical in air or water, also having application in agriculture, 

environment monitoring, disaster relief management, medical ( [1], [4]) etc. There are three mode 

of cooperation namely incremental, diffusion and probabilistic diffusion will discuss in chapter 2. 

Here we use only the incremental mode of cooperation. This chapter describes about the central 

distributed algorithm, non-distributed algorithm and the advantage of distributed over non 

distributed solution. The comparison is done on the basis of convergence rate, steady state 

performance and computational complexity. There are two type of algorithm used one is 

incremental steepest descent solution and other is incremental adaptive solution,  comparing both 

on the basis convergence rate and steady state performance the adaptive solution perform better 

than steepest descent solution. The more explanation will found in the chapter 2.each case we 

consider  the variance of noise is small i.e. Less than one, but sometime case arises where the noise 
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variance is more than that of one, than a quality aware algorithm is used in the incremental method 

to maintain the steady state performance. 

The convergence performance of LMS (least mean square) algorithm depends on the correlation 

of the input data and the Eigen value spread of the covariance matrix of the regressor data. The 

smaller Eigen value of auto-correlation matrix results in slower convergence and larger Eigen 

value limit the range of the allowed step size and thereby limit the learning abilities of the filter. 

Best convergence result when all the Eigen value equal i.e. having unit Eigen spread, this is 

possible only when auto correlation matrix is constant multiplication of identity matrix. This can 

be achieved by pre-whiten the data by passing it through pre-whiten filter which is practically not 

possible. Hence same thing will achieve by unitary transformation of data, such as DFT (discrete 

Fourier transform), and DCT (discrete cosine transform) [5].  

Adaptive algorithms based on the higher order moments of the error signal found performs better 

than that of LMS algorithm in some important application. The practical use of such type 

application is not considerable because of its lack of accuracy in the model to predict the behavior. 

One of such type of algorithm is LMF (least mean fourth) algorithm, which minimize the mean 

fourth error. It is found that the LMF algorithm outperforms than the LMS algorithm in non-

Gaussian noise case [6]. We will find the family of LMF algorithm and its performance in both 

Gaussian and non Gaussian noise case in the chapter 4.  

Generally fast filter gives higher convergence rate and accurate filter gives better steady state 

performance. An algorithm developed named CLMS (convex LMS) algorithm which consists of 

two adaptive filters connected parallel. The CLMS algorithm track initially the faster convergence 

respond, then followed the accurate response. It has advantage that it achieve both at the same 

time. It is very difficult to develop a filter which provides both at same time. Hence this algorithm 

has number of application in the distributed signal processing.  

1.1 PROBLEM STATEMENT 

Adaptive digital filtering self-adjusts its transfer function to get an optimal model for the unknown 

system based on some function of error based on the output of the adaptive filter and the unknown 

system. To get an optimal model of the unknown system it depends on the structure, adaptive 

algorithm and the nature of the input signal. System Identification estimates models of dynamic 
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systems by observing their input output response when it is difficult to obtain the mathematical 

model of the system. 

Mathematical analysis has also been extended to the transform domain adaptive filter, 

CLMS algorithm, XE-NLMF algorithm and variable XE-NLMF algorithm. This work has 

examined the convergence conditions, steady-state performance, and tracking performance. The 

theoretical performance is confirmed by computer simulations. The performance is compared 

between the original adaptive filter algorithms and different other algorithm like incremental 

adaptive solution, incremental RLS, incremental GN, incremental CLMS, XE-NLMF and 

incremental variable XE-NLMF algorithm. Since a specific method mention previously in one 

adaptive filter algorithm may achieves good performance, but may not perform well in another 

adaptive filter algorithm, hence we will examine the number of methods in adaptive filter to find 

the better one.  

In wireless sensor network the fusion center provides a central point to estimate parameters 

for optimization. Energy efficiency i.e. low power consumption, low latency, high estimation 

accuracy and fast convergence are important goals in estimation algorithms in sensor network. 

Depending on application and the resources, many algorithms are developed to solve parameter 

estimation problem. One approach is the centralized approach in which the most information to be 

present when making inference. However, the main drawback is the drainage of energy resources 

to transmit all observation to fusion center at every iteration. So this is wasting energy at idle time 

interval. Hence there was a need to find an approach that avoids the fusion center all together and 

allows the sensors to collaboratively make inference. This approach is called as the distributed 

scheme. Distributed computation of algorithms among sensors reduces energy consumption of the 

overall network, by tradeoff between communication cost and computational cost. In order to make 

the inference procedure robust to nodal failure and impulsive noise, robust estimation procedure 

should be used. Optimization of sensor locations in a network is essential to provide 

communication for a longer duration. In most cases sensor placement needs to be done in hostile 

areas without human involvement, e.g. by air deployment. The aircraft carrying the sensors has a 

limited payload, so it is impracticable to randomly drop thousands of sensors over the ROI. Thus, 

the objective must be performed with a fixed number of sensors. The air deployment may introduce 

uncertainty in the final sensor positions. These limitations motivate the establishment of a planning 

system that optimizes the WSN deployment process. 
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In the field of signal processing and communication Adaptive Filtering has a tremendous 

application such as non-linear system identification, forecasting of time-series, linear prediction, 

channel equalization, and noise cancellation. Adaptive digital filtering self-adjusts its transfer 

function to get an optimal model for the unknown system based on some function of error based 

on the output of the adaptive filter and the unknown system. To get an optimal model of the 

unknown system it depends on the structure, adaptive algorithm strategy and the nature of input 

signal.  

System Identification estimates models of dynamic systems by observing their input output 

response when it is difficult obtain the mathematical model of the system.  

DSP-based equalizer systems have become ubiquitous in many diverse applications 

including voice, data, and video communications via various transmission media. Typical 

applications range from acoustic echo cancellers for full-duplex speakerphones to video de-

ghosting systems for terrestrial television broadcasts to signal conditioners for wire line modems 

and wireless telephony. The effect of an equalization system is to compensate for transmission-

channel impairments such as frequency-dependent phase and amplitude distortion. Rather for 

correcting for channel frequency-response ambiguity, cancel the effects of Multipath signal and to 

reduce the inter-symbol interference. So, construction of Equalizer to work for the above 

specifications is always a challenge and an active field of research.  

On-line system identification or identification of complex systems is a major area of 

research from last several years. To abstract a new solution to some long standing necessities of 

automatic control and to work with more and more complex system to satisfy stricter design 

criteria and to fulfill previous points with less and less a priori knowledge of the unknown system. 

In this context a great effort is being made within the system identification towards the 

development of nonlinear models of real processes with less no of mathematical complexity, less 

no of input sample, faster matching and better convergence. This has been verified by MATLAB 

simulation version 2013. 
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1.2 THESIS LAYOUT 

 

Chapter 2 describes the fundamental of incremental adaptive strategies in distributed network with 

practical application. it describes  the  number of algorithm like incremental adaptive solution, 

incremental steepest descent solution, quality aware incremental adaptive solution etc.It also 

provides the mathematical analysis to estimate the parameter of interest and effect of noisy nodes 

on the performance of incremental adaptive algorithm. Number of simulation results carried out 

individually to compare the performance of incremental adaptive solution with steepest descent 

solution by considering the both case (noisy node and non-noisy node).Some cases where the 

variance of noise in node is more than that of one on that case a quality aware DILMS (distributed 

incremental LMS algorithm) is applicable to improve the steady state performance of   the 

algorithm. Hence this chapter provides a brief idea of effect of noisy node on the performance and 

perform a simulation to show how the Quality incremental LMS algorithm improves the 

performance with noisy node.  

In chapter 3, the transform domain incremental adaptive strategy is describe and also focus on the 

RLS (recursive least square algorithm), GN (Gaussian Newton) algorithm. The convergence of 

LMS algorithm totally depends on the Eigen value and Eigen value spread of the auto correlation 

matrix. Small Eigen value slower the convergence rate and large value effects on the stability, 

hence for better convergence all the Eigen value of the autocorrelation matrix of input regressor 

should be same [5]. To make it we should design a pre-whiten filter which is not possible 

practically. Hence how we will achieve same without using the pre-whiten filter is describe in 

chapter 3. It gives the brief idea about the unitary transformation and its effect on the performance.  

Chapter 4 describes how higher error order algorithm like LMF,NLMF,XE-NLMF and variable 

XE-NLMF algorithm outperforms than that of LMS algorithm under both Gaussian and Sub-

Gaussian noise case. It also provide few mathematically analysis for the convergence analysis of 

the algorithm. Simulations are performed to compare the higher order error algorithm with the 

standard LMS algorithm using incremental method of cooperation.  
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Chapter 5 describes the CLMS (convex LMS) algorithm using incremental method. Generally fast 

filter gives faster convergence and accurate filter gives better steady state error performance. It is 

very difficult to design a filter which gives both. CLMS algorithm designs which consists of both 

the filter connected either in series or parallel to track the both response for different SNR case.  
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Chapter 2 INCREMENTAL 

ADAPTIVE STRATEGIES OVER 

DISTRIBUTED NETWORK 

 

In Distributed processing number of nodes are distributed in a geographical area, it extract the 

information from data collected at nodes. For example nodes distributed in a geographical area 

collects some noisy information related to a certain parameter, than share it with their neighbor  by 

some defined network topology, the aim is to reach the required parameter of interest. The 

objective is to reach the exact parameter of interest and it should same as it outcome from the 

nodes estimation in the geographical area. In a comparison Distributed solution is better than that 

of centralized solution because in centralized solution a central processor is required, nodes collect 

noisy information than send it to the central processor for process, central processor process the 

data than send back to all nodes. Hence for this a heavy communication between node and central 

processor required and a powerful central processor also required, but in distributed solution, the 

nodes only depends upon their local data and an interaction with the immediate neighbors [2]. 

Distributed solution reduces the amount of processing and communication ( [1], [3]).  

 

Fig.  1 Distributed network 
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Fig.  2 monitoring a diffusion phenomenon by a network of sensors 

 

 

2.1 Applications  

Consider there are N number of nodes are distributed in a geographical area as shown in Fig.1. 

Each node collect some noisy temperature measurements𝑇𝑖. The main goal is to give all the node 

information about the average temperature  𝑇̅ . This can be possible by using the distributed 

solution known as consensus implementation, which states that one node measurement combines 

with the measurement of the immediate neighbor node and the outcome become the nodes new 

measurement.i.e. For node 1 we can write that 

𝑥1(𝑖) ← 𝛼1𝑥1(𝑖 − 1) + 𝛼2𝑥2(𝑖 − 1) + 𝛼5𝑥5(𝑖 − 1)(𝑛𝑜𝑑𝑒 1) 

Where 𝑥1(𝑖) update measurement for node 1and  𝛼’s are appropriately chosen coefficients. 

Similarly we can apply the same update process to other nodes and repeat the process. By suitably 

choosing 𝛼 and network topology all the node finally converge to desired average temperature 𝑇̅ . 

Another Application is it is also very useful to monitor the concentration of a chemical in air or 

water by collecting the measurements in time and space by number of sensors as shown in Fig.2. 

The measurements collected from number of sensors used to estimate the parameter {𝜃1, 𝜃2, 𝜃3} 

that calculate the concentration of chemical in the environment by some diffusion equation with 

some boundary condition. e.g., 



 

17 | P a g e  
 

𝜕𝑐(𝑥, 𝑡)

𝜕𝑡
= 𝜃1

𝜕2𝑐(𝑥, 𝑡)

𝜕𝑥2
+ 𝜃2

𝜕𝑐(𝑥, 𝑡)

𝜕𝑥
+ 𝜃3𝑐(𝑥, 𝑡) + 𝑢(𝑥, 𝑡) 

Where c(𝑥, 𝑡) indicates the concentration at location x at time t [7]. Another Application of 

distributed processing is to monitoring the moving target by collecting the signal from different 

sensors, with the help of the sensors we can find the presence of the target and we can also track 

its trajectory [4]. 

Distributed network links to pc, laptop, cell phones and sensors forms backbone for future data 

communication and Network. 

 

Fig.  3 three mode of cooperation (a) incremental (b) diffusion (c) probabilistic diffusion 

 

2.2 Modes of cooperation 

The successes of any Distributed Network depends upon the mode of cooperation that used among 

the nodes. There are three mode of cooperation as shown in Fig.3. In an incremental mode of 

cooperation the information flows in one direction from one node to adjacent node. Incremental 

mode of cooperation follows a cyclic pattern among the nodes, and it requires least amount of 

power and communication [8], [9], [10]. In diffusion mode of communication the information 

flows to all the nodes connected to that node where information starts to communicate, it requires 

more power and communication than that of Incremental mode of cooperation. It is complex than 

that of incremental mode of cooperation. In case of incremental mode of cooperation if one node 

is failed than we cannot get the information that is the network fails to transmit the information, 

which is one of the disadvantage of incremental mode of cooperation but this problem can be 

solved in diffusion mode of cooperation because if one node failed than we can collect information 

from any of its connected node, since the information flows to all the connected node in case of 

diffusion mode of cooperation. But the design of Diffusion mode of cooperation is more complex 
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than that of incremental mode of cooperation and also it requires more power and communication 

than that of incremental mode of cooperation. In case probabilistic mode of cooperation the 

information flows to subset of number of nodes that is connected to a particular node .It also require 

more power and communication than that of incremental mode of cooperation. Here I used 

Incremental mode of cooperation for all my work. 

2.3 Consensus strategy 

The temperature example explain in section 2.2 represents the consensus strategy. Consensus 

strategy states that first every node collects noisy information and update itself to reach an 

individual decision about a parameter of interest. During updating period each node act as an 

individual agent i.e. there is no interaction with the other node, then according to consensus 

strategy all the node combines their estimates to converge asymptotically to the desired global 

parameter of interest [2]. 

Let consider another example to understand the consensus strategy properly. Let each node has a 

data vector 𝑦𝑘 and a data matrix𝐻𝑘. For some unknown vector 𝑤0 the noisy and distorted 

measurement  𝑦𝑘 is given by 

𝑦𝑘 = 𝐻𝑘𝑤
0 + 𝑣𝑘 

Each node estimate for 𝑤0  by using its local data {𝑦𝑘, 𝐻𝑘} .for estimate, the node should evaluate 

the local cross correlation vector 𝜃𝑘 = 𝐻𝑘
∗𝑦𝑘 and its autocorrelation matrix𝑅𝑘 = 𝐻𝑘

∗𝐻𝑘. Then, 

the local estimate for 𝑤0 can be found from 𝑤̂𝑘 = 𝑅𝑘
−1𝜃𝑘 .similarly each node should estimate its 

local estimation, then a consensus iteration apply to all node to calculate 𝑅̂ and 𝜃 defined by as 

follows 

𝑅̂ =
1

𝑁
∑ 𝑅𝑘
𝑁
𝑘=1    And   𝜃 =

1

𝑁
∑ 𝜃𝑘
𝑁
𝑘=1  

A global estimate of 𝑤0 is given by𝑤̂ = 𝑅̂−1𝜃. For all practical proposes, a least square 

implementation is an offline or non-recursive solution. A difficulty is come when one particular 

node collect one more data and updating for the optimal solution 𝑤0 without repeating the prior 

process and iteration. The offline averaging limits the consensus solution, especially when the 

network having limited communication resources [2]. 
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2.4 Contribution  

 

When consider the forgoing issues (real time adaption with environment, low computation and 

communication complexity), we consider a Distributed LMS (least mean square) algorithm, since 

the computational complexity is less for both computation and communication. This algorithm 

solves the problem of new entry of data, it responds the data and also update it. The advantage of 

distributed algorithm than that of consensus strategy is it does not require of intermediate 

averaging as is done in consensus strategy. It also not required two different time scales. The 

distributed adaptive solution is the advance version or extension of adaptive filter, it is totally 

model independent i.e. it can be used without any knowledge of statistics of data. Generally 

adaptive filter responds to real time data and varies with statistical properties of data, distributed 

algorithm just extend this property to network domain [2]. The main purpose of this algorithm is: 

1) Using distributed adaptive algorithm optimization technique to inspire the family of 

incremental adaptive algorithm [11]. 

2) Using incremental algorithm develop an interconnected network such that it is able to 

respond the real time data and also shows adaptive nature in variation with the statistical 

properties of the data as follow: 

a) Each time node receives a new information and that information is used by node to 

update its local estimation parameter of interest. 

b) After local estimation finished, the estimated parameter share with the immediate 

neighbors of node and repeat the same process to the other node in the network. 

3) Distributed processing task is challenging, since it contain “system of systems” ,that 

process the data cooperatively manner both in time and space. In distributed algorithm 

different nodes converge at different MSE (mean square error) levels, which reflects the 

statistical diversity of data and the different noise levels [2]. 
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Fig.  4  Distributed network with N nodes accessing space time data 

2.5 ESTIMATION PROBLEM AND ADAPTIVE DISTRIBUTED SOLUTION 

 

There has been lots of work we can found in the literature solving distributed optimization problem 

using incremental method. In distributed algorithm a cost function can be decomposes into sum of 

individual cost functions using incremental procedure. The procedure can be explained below in 

the context of MSE. 

Consider a network with N nodes as shown in Fig.4. Each node has access to time realizations 

{𝑑𝑘(𝑖), 𝑢𝑘,𝑖} of zero mean spatial data{𝑑𝑘, 𝑢𝑘},𝑘 = 1,2,⋯ , 𝑁, where 𝑑𝑘 is a scalar and 𝑢𝑘 is a row 

regression vector of size 1×𝑀. 

                        𝑈 ≜ 𝑐𝑜𝑙{𝑢1, 𝑢2, … , 𝑢𝑁}(𝑁 × 𝑀)       (2.5.1) 

                       𝑑 ≜ 𝑐𝑜𝑙{𝑑1, 𝑑2, … , 𝑑𝑁}(𝑁 × 1)             (2.5.2) 

The above quantities collect data from all N nodes. The main objective is to estimate the vector w 

of size M× 1 that solves 

                                                              𝐽(𝑤)𝑤
𝑚𝑖𝑛                         (2.5.3) 

 

Where 𝐽(𝑤) represents the cost function denotes the MSE, given as follows: 

                                                         J (w) =E‖𝑑 − 𝑈𝑤‖2                                            

(2.5.4) 

Where E is the expectation operator .The optimal solution 𝑤0 can be found by using the 

othogonality condition given by 
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𝐸‖𝑑 − 𝑈𝑤‖2 = 0       (2.5.5) 

The solution to the above normal equation given by 

𝑅𝑑𝑢= 𝑅𝑢𝑤
0                (2.5.6) 

Where  𝑅𝑢=E𝑈∗𝑈  (𝑀 ×𝑀)  , 𝑅𝑑𝑢 =E𝑈∗𝑑=∑ 𝑅𝑑𝑢,𝑘
𝑁
𝑘=1       (2.5.7) 

But the solution obtained from equation (2.5.6) is not distributed in nature since for this solution 

we required to access the global information {𝑅𝑢, 𝑅𝑑𝑢} One way to do this is process it centrally 

than pass the information to all the nodes, but for this we require a heavy communication betweet 

node and central processor , also require huge amount of power.It also not adaptive in nature with 

respect to the environment. This is the reason why we go for the distributed solution, which reduces 

the communication burden and  the amount of power required for communication [1].In this 

project we totally focus on the incremental mode of coperation, where each node produces its local 

estimation and share it with the immdeate neighbor node at a time. 

2.5.1 Steepest Descent Solution 

To work out distributed solution, the first fundamental knowledge of steepest descent required. 

Then apply it in the incremental solution. The cost function can be decomposes for each nodes 

given by: 

 J (𝑤) =∑ 𝐽𝑘(𝑤)
𝑁
𝑘=1       (2.5.8) 

Where 𝐽𝑘(𝑤) is given by 

                                              𝐽𝑘(𝑤) ≜ 𝐸|𝑑𝑘 − 𝑢𝑘𝑤|
2                (2.5.9) 

                                                         = 𝜎𝑑,𝑘
2 − 𝑅𝑢𝑑,𝑘𝑤 − 𝑤

∗𝑅𝑑𝑢,𝑘 + 𝑤
∗𝑅𝑢,𝑘𝑤             (2.510) 

And the second order quantities are defined by 

𝜎𝑑,𝑘
2 = 𝐸|𝑑𝑘|

2,  𝑅𝑢,𝑘 = 𝐸𝑢𝑘
∗𝑢𝑘, and 𝑅𝑑𝑢,𝑘 = 𝐸𝑑𝑘𝑢𝑘

∗               (2.5.11) 

The above explanation represents that J (w) can be expressed as sum of N different cost functions 

𝐽𝑘(𝑤), one for each node k. the weight update equation used in  the steepest descent solution for 

determining 𝑤0 given by; 
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𝑤𝑖 = 𝑤𝑖−1 − 𝜇[∇𝐽(𝑤𝑖−1)]
∗ , 𝑤−1 = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 

      = 𝑤𝑖−1 − 𝜇∑ [∇𝐽𝑘(𝑤𝑖−1)]
∗𝑁

𝑘=1  

      = 𝑤𝑖−1 + 𝜇∑ (𝑅𝑑𝑢,𝑘 − 𝑅𝑢,𝑘𝑤𝑖−1)
𝑁
𝑘=1                          (2.5.12) 

Where 𝜇 > 0 is properly chosen step size parameter, 𝑤𝑖 is used to estimate 𝑤0 at iteration 𝑖, and 

∇𝐽(𝑤𝑖−1) represents the gradient vector of 𝐽(𝑤) with respect to w calculated at 𝑤𝑖−1 .For small 

value of 𝜇 ,𝑤𝑖 → 𝑤0 as 𝑖 → ∞  for using any initial condition. 

 

 

Fig.  5  Data processing in adaptive distributed structure 

Consider a cycle define among nodes  in such a way such that it visit every node once over the 

network topology and only access to its immediate neighbor as shown in Fig.5. Let 𝜓𝑘
(𝑖)

 represents 

the local estimate of 𝑤0 at node k and at time i. Let assume that node k access data 𝜓𝑘−1
(𝑖)

 , which 

is estimate of of 𝑤0  at node k-1 and time 𝑖 in the defined cycle,  at each time instant  𝑖 we start 

with initial condition 𝜓0
(𝑖) = 𝑤𝑖−1   at node 1(i.e. recent global estimate 𝑤𝑖−1 for  𝑤0), and process 

cyclically across the nodes, then at the end of the process we found that the local estimate at node 
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N will coincide at 𝑤𝑖 from (2.5.12).i.e., 𝜓𝑁
(𝑖) = 𝑤𝑖.In the other words the above implementation 

equivalent to: 

{

𝜓0
(𝑖) = 𝑤𝑖−1

𝜓𝑘
(𝑖) = 𝜓𝑘−1

(𝑖) − 𝜇𝑘[∇𝐽𝑘(𝑤𝑖−1)]
∗,   𝑘 = 1,2,⋯ ,𝑁

𝑤𝑖 = 𝜓𝑁
(𝑖)

              (2.5.13) 

In the steepest descent solution the iteration for 𝜓𝑘
(𝑖)

 over the spatial index k. 

2.5.2 Incremental Steepest Descent Solution 

The equation mentioned in equation (2.5.13) is cooperative in nature, since here each node k using 

information from immediate neighbor node for estimation process, still it is not pure cooperative 

in nature, because still each node require a global information 𝑤𝑖−1 to calculate∇𝐽𝑘(𝑤𝑖−1). In order 

to make it totally cooperative in nature we have to use the incremental gradient algorithm. In 

incremental gradient algorithm each node uses the local estimate 𝜓𝑘−1
(𝑖)

 from node k-1 to find the 

partial gradient∇𝐽𝑘(∙), as opposite to  𝑤𝑖−1. Then by using the incremental adaptive algorithm we 

can rewrite the equation (2.5.13) as: 

{

ψ0
(i) = wi−1

ψk
(i) = ψk−1

(i) − μk[∇Jk(ψk−1
(i))]

∗
,   k = 1,2,⋯ , N

wi = ψN
(i)

              (2.5.14) 

The above cooperative scheme represents a total distributed solution [2]. The above scheme shows 

that each node truly depends only upon its immediate neighbor for communication purpose, there 

is no global information required. That’s why it saves both communication and energy resources. 

2.5.3 Incremental Adaptive Solution 

The incremental adaptive solution as shown in equation (2.5.14) depends on the cross correlation 

matrix and autocorrelation matrix 𝑅𝑑𝑢,𝑘 and 𝑅𝑢,𝑘 ,which is used to calculate the local gradients∇𝐽𝑘. 

An adaptive incremental solution (2.5.14) can be used to replacing the second order moments 

{𝑅𝑑𝑢,𝑘, 𝑅𝑢,𝑘} by some approximation as follows [2]: 

𝑅𝑑𝑢,𝑘 ≈ 𝑑𝑘(𝑖)𝑢𝑘,𝑖
∗, 𝑅𝑢,𝑘 ≈ 𝑢𝑘,𝑖

∗𝑢𝑘,𝑖                  (2.5.15) 
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By using the data {𝑑𝑘(𝑖), 𝑢𝑘,𝑖} at time 𝑖, the equation given in (2.5.15) lead to an adaptive 

distributed incremental algorithm, or simply a distributed incremental LMS algorithm of the 

following form: 

For each time  𝑖 ≥ 0, repeat: 

K=1,⋯ ,𝑁 

{

ψ0
(i) = wi−1

ψk
(i) = ψk−1

(i) − μk[∇Jk(ψk−1
(i))]

∗
,   k = 1,2,⋯ , N

wi = ψN
(i)

              (2.5.16) 

The operation of algorithm given in (2.5.16) well explained in the Fig.5. At each time 𝑖 the node 

uses its local data {𝑑𝑘(𝑖), 𝑢𝑘,𝑖} and the estimated weight ψk−1
(i)

 taken from its adjacent node to 

perform the following three tasks:  

1) Calculate the local error quantity:𝑒𝑘(𝑖) = 𝑑𝑘(𝑖) − 𝑢𝑘,𝑖𝜓𝑘−1
(𝑖)

; 

2) Update the weight by using the equation:𝜓𝑘
(𝑖) = 𝜓𝑘−1

(𝑖) + 𝜇𝑘𝑒𝑘(𝑖); 

3) Pass the update weight information of node k to the neighbor node k+1. 

2.6 PERFORMANCE ANALYSIS 

It is important to know how the incremental adaptive solution works. The study of interconnected 

node is very challenging because of the following reasons: 

1) Each node distributed in the geographical area must influence by statistics of its local data 

{𝑅𝑑𝑢,𝑘, 𝑅𝑢,𝑘}. 

2) Each node distributed in the geographical area influence by their neighbor through the 

incremental mode of cooperation. 

3) Each node distributed in the geographical area also influence by the local noise with 

variance𝜎𝑣,𝑘
2. 

In steady state number of nodes distributed in the geographical area affected by the whole network 

and also somewhere affected by the local statistics of the data. When the step size decreases 

asymptotically than both the quantities MSD (mean square deviation), EMSE (excess mean square 

error) approach zero for every node in the network [2]. 
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In order to perform the performance analysis we should go through the energy conservation 

relation. We have to apply the energy conservation relation for space dimension, since distributed 

adaptive algorithm involves both space and time variable. In the network number of nodes are 

distributed and each node can stabilize at individual MSE value, hence energy conservation 

relation can flow across interconnected filters. In order to calculate the individual node 

performance, weighting will be used to decouple the equation and calculate the estimated quantity 

of interest in steady states [2]. 

2.6.1 Data Model and Assumption 

To do the performance analysis the data model and assumption is needed for adaptive algorithm. 

The data model and assumption for the data model {𝑑𝑘(𝑖), 𝑢𝑘,𝑖} is given by 

1) The desired unknown vector 𝑤0 relates {𝑑𝑘(𝑖), 𝑢𝑘,𝑖} as 

𝑑𝑘(𝑖) = 𝑢𝑘,𝑖𝑤
0 + 𝑣𝑘(𝑖)         (2.6.1) 

Where 𝑣𝑘(𝑖) is white noise sequence with variance  𝜎𝑣,𝑘
2 and independent of{𝑑𝑙(𝑗), 𝑢𝑙,𝑗}; 

2) 𝑢𝑘,𝑖 is independent of 𝑢𝑙,𝑖 for k≠ 𝑙(𝑠𝑝𝑎𝑡𝑖𝑎𝑙 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑒); 

3) 𝑢𝑘,𝑖 is independent of 𝑢𝑘,𝑗 for 𝑖 ≠ 𝑗 (𝑡𝑖𝑚𝑒 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑒). 

The model given in (2.6.1) used in different application and here it is used to estimate the unknown 

vector 𝑤0, this is referred to as the stationary model. Here we can study for only the stationary 

case, the distributed adaptive algorithm (2.5.16) can also useful to study for the non-stationary 

case. For simplification purpose we assume the regressor as spatially and temporal independent. 

2.6.2 Weighted Energy Conservation Relation 

Weight error vector at time 𝑖 𝜓̃𝑘
(𝑖)
≜ 𝑤0 − 𝜓𝑘

(𝑖)
                (2.6.2) 

A priori error 𝑒𝑎,𝑘(𝑖) ≜ 𝑢𝑘,𝑖𝜓̃𝑘−1
(𝑖)

                    

 (2.6.3) 

A posterior error 𝑒𝑝,𝑘(𝑖) ≜ 𝑢𝑘,𝑖𝜓̃𝑘
(𝑖)

         (2.6.4) 

Output error 𝑒𝑘(𝑖) ≜ 𝑑𝑘(𝑖) − 𝑢𝑘,𝑖𝜓𝑘−1
(𝑖)

        (2.6.5) 
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The vector 𝜓̃𝑘
(𝑖)

 measures the difference between the weight estimated at node k and the optimum 

weight  𝑤0. The signal 𝑒𝑘(𝑖) represents the estimation error, the estimation error related to the a 

priori error by using the data model (2.6.1) as 

𝑒𝑘(𝑖) = 𝑑𝑘(𝑖) − 𝑢𝑘,𝑖𝜓𝑘−1
(𝑖) = 𝑢𝑘,𝑖𝑤

0 + 𝑣𝑘(𝑖) − 𝑢𝑘,𝑖𝜓𝑘−1
(𝑖)

 

         =𝑒𝑎,𝑘(𝑖) + 𝑣𝑘(𝑖)          (2.6.6) 

Now 𝐸|𝑒𝑘(𝑖)|
2 = 𝐸|𝑒𝑎,𝑘(𝑖)|

2
+ 𝜎𝑣,𝑘

2                             (2.6.7) 

The interested parameter such as MSD (mean square deviation), MSE (mean square error) and the 

EMSE (excess mean square error) can be evaluate at steady state as follows: 

𝜂𝑘 ≜ 𝐸‖𝜓̃𝑘−1
∞
‖
2
(𝑀𝑆𝐷)          (2.6.8) 

𝜍𝑘 ≜ 𝐸|𝑒𝑎,𝑘(∞)|
2
 (𝐸𝑀𝑆𝐸)                     (2.6.9) 

𝜉𝑘 ≜ 𝐸|𝑒𝑘(∞)|
2 = 𝜍𝑘 + 𝜎𝑣,𝑘

2(𝑀𝑆𝐸)                               

(2.6.10) 

The weight norm for a vector x and a Hermitian positive definite matrix Σ > 0 is given by ‖𝑥‖Σ
2
≜

𝑥∗Σx. Then, under the assumed data condition we have 

𝜂𝑘 = 𝐸 ‖𝜓̃𝑘−1
(∞)
‖
𝐼

2

 , 𝜍𝑘 =  𝐸 ‖𝜓̃𝑘−1
(∞)
‖
𝑅𝑢,𝑘

2

                                     (2.6.11) 

The weighted a priori and a posteriori local error signal for each node k given by: 

𝑒𝑎,𝑘
Σ(𝑖) ≜ 𝑢𝑘,𝑖Σ𝜓̃𝑘−1

(𝑖)
 𝑎𝑛𝑑  𝑒𝑝,𝑘

Σ(𝑖) ≜ 𝑢𝑘,𝑖Σ𝜓̃𝑘
(𝑖)
                           (2.6.12) 

Where Σ  Hermitian positive definite matrix, can be chosen freely. Using algorithm (2.5.16) 

subtracting 𝑤0  On both side we get; 

𝜓̃𝑘
(𝑖)
= 𝜓̃𝑘−1

(𝑖)
− 𝜇𝑘𝑢𝑘,𝑖

∗𝑒𝑘(𝑖)                             (2.6.13) 

Multiplying (2.6.13) both side from left by 𝑢𝑘,𝑖Σ  then we get; 
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𝑢𝑘,𝑖Σ  𝜓̃𝑘
(𝑖)
= 𝑢𝑘,𝑖Σ  𝜓̃𝑘−1

(𝑖)
− 𝜇𝑘‖𝑢𝑘,𝑖‖Σ 

2
𝑒𝑘(𝑖)                             (2.6.14) 

From (2.6.12) we get 

𝑒𝑝,𝑘
Σ(𝑖) = 𝑒𝑎,𝑘

Σ(𝑖) − 𝜇𝑘‖𝑢𝑘,𝑖‖Σ 
2
𝑒𝑘(𝑖)                                                 (2.6.15) 

From (2.6.15) we get  

𝑒𝑘(𝑖) =
1

𝜇𝑘‖𝑢𝑘,𝑖‖Σ 
2 (𝑒𝑎,𝑘

Σ(𝑖) − 𝑒𝑝,𝑘
Σ(𝑖))                               (2.6.16) 

Substituting (2.6.16) into (2.6.13) and rearranging terms, we get 

𝜓̃𝑘
(𝑖)
+
𝑢𝑘,𝑖

∗𝑒𝑎,𝑘
Σ(𝑖)

‖𝑢𝑘,𝑖‖Σ 
2 = 𝜓̃𝑘−1

(𝑖)
+
𝑢𝑘,𝑖

∗𝑒𝑝,𝑘
Σ(𝑖)

‖𝑢𝑘,𝑖‖Σ 
2                             (2.6.17) 

Equating the weighted norms of both side, the cross terms are cancelled out and the energy terms 

are  

‖𝜓̃𝑘
(𝑖)
‖
Σ

2

+
|𝑒𝑎,𝑘

Σ(𝑖)|
2

‖𝑢𝑘,𝑖‖Σ 
2 = ‖𝜓̃𝑘−1

(𝑖)
‖
Σ

2

+
|𝑒𝑝,𝑘

Σ(𝑖)|
2

‖𝑢𝑘,𝑖‖Σ 
2                           (2.6.18) 

The above equation represents the space-time weighted energy conservation relation, which shows 

how energies of several variable related to each other in space and time. 

Now by substituting (2.6.15) into (2.6.18) and rearranging terms we get; 

‖𝜓̃𝑘
(𝑖)
‖
Σ

2

= ‖𝜓̃𝑘−1
(𝑖)
‖
Σ

2

− 𝜇𝑘𝑒𝑎,𝑘
Σ∗𝑒𝑘 − 𝜇𝑘𝑒𝑘

∗𝑒𝑎,𝑘
Σ + 𝜇𝑘

2|𝑢𝑘|Σ
2|𝑒𝑘|

2             (2.6.19) 

Using (2.6.6) and taking expectation of both side  we get 

𝐸 ‖𝜓̃𝑘
(𝑖)
‖
Σ

2

= 𝐸 ‖𝜓̃𝑘−1
(𝑖)
‖
Σ

2

− 𝜇𝑘𝐸𝑒𝑎,𝑘
Σ∗𝑒𝑘 − 𝜇𝑘𝑒𝑘

∗𝐸𝑒𝑎,𝑘
Σ + 𝜇𝑘

2𝐸|𝑢𝑘|Σ
2
|𝑒𝑎,𝑘|

2
          (2.6.20) 

Using (2.6.12) and weighted error norm definition, we can expand the (2.6.20) in terms of regressor 

data and weighted error vector as follows: 
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𝐸 ‖𝜓̃𝑘
(𝑖)
‖
Σ

2

= 𝐸 ‖𝜓̃𝑘−1
(𝑖)
‖
Σ

2

− 𝜇𝑘𝐸𝜓̃𝑘−1
∗
Σ𝑢𝑘

∗𝑢𝑘𝜓̃𝑘−1 − 𝜇𝑘𝐸𝜓̃𝑘−1
∗
𝑢𝑘

∗𝑢𝑘Σ𝜓̃𝑘−1 +

𝜇𝑘
2𝐸𝜓̃𝑘−1

∗
𝑢𝑘

∗𝑢𝑘Σ𝑢𝑘
∗𝑢𝑘𝜓̃𝑘−1 + 𝜇𝑘

2𝜎𝑣,𝑘
2𝐸‖𝑢𝑘‖Σ

2
                          (2.6.21) 

We know that ‖𝑥‖2𝐴 + ‖𝑥‖
2
𝐵 = ‖𝑥‖

2
𝐴+𝐵 , by using this (2.6.21) can be rewritten as 

𝐸 ‖𝜓̃𝑘
(𝑖)
‖
Σ

2

= 𝐸 (‖𝜓̃𝑘−1
(𝑖)
‖
Σ′

2

) + 𝜇𝑘
2𝜎𝑣,𝑘

2𝐸|𝑢𝑘|Σ
2
                          (2.6.22) 

Where the term Σ′ represents the stochastic weighted matrix given by 

Σ′ = Σ − 𝜇𝑘(𝑢𝑘
∗𝑢𝑘Σ + Σ𝑢𝑘

∗𝑢𝑘 + 𝜇𝑘
2‖𝑢𝑘‖Σ

2
𝑢𝑘

∗𝑢𝑘)                         (2.6.23) 

Since 𝑢𝑘 is the independence regressor data we can write as 

𝐸 (‖𝜓̃𝑘−1
(𝑖)
‖
Σ′

2

) = 𝐸 ‖𝜓̃𝑘−1
(𝑖)
‖
EΣ′

2

                           (2.6.24) 

Again rewrite (2.6.22) and (2.6.23) as 

𝐸 ‖𝜓̃𝑘
(𝑖)
‖
Σ

2

= 𝐸 (‖𝜓̃𝑘−1
(𝑖)
‖
Σ′

2

) + 𝜇𝑘
2𝜎𝑣,𝑘

2𝐸|𝑢𝑘|Σ
2
                           (2.6.25) 

Σ′ = Σ − 𝜇𝑘(𝑢𝑘
∗𝑢𝑘Σ + Σ𝑢𝑘

∗𝑢𝑘 + 𝜇𝑘
2‖𝑢𝑘‖Σ

2
𝑢𝑘

∗𝑢𝑘)               (2.6.26) 

Where Σ′ is now a deterministic matrix. 

2.6.3 Gaussian Data 

Equation (2.6.25) is represent as a spatial variance relation which allows as to perform the steady 

state performance for every node k. From (2.6.42) it is clear that Σ′ totally regressor dependent, 

hence the study of the behavior of network depend on the following three parameter: 

𝑅𝑢,𝑘 = 𝐸𝑢𝑘
∗𝑢𝑘,   E‖𝑢𝑘‖Σ

2
= 𝑇𝑟(𝑅𝑢,𝑘Σ), and E‖𝑢𝑘‖Σ

2
𝑢𝑘

∗𝑢𝑘                         (2.6.27) 

But for the evaluation of E‖𝑢𝑘‖Σ
2
𝑢𝑘

∗𝑢𝑘 the input regressor should be non-Gaussian data, but 

initially we assume Gaussian data for simplicity, hence assume that {𝑢𝑘}  arise from circular 

Gaussian distribution and introduce the Eigen decomposition 𝑅𝑢,𝑘 = 𝑈𝑘Λ𝑘𝑈𝑘
∗ , where 𝑈𝑘 is a 

unitary matrix and Λ𝑘 is a diagonal matrix with eigen value of 𝑅𝑢,𝑘. 
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Now let the transformed quantities are  

𝜓̅𝑘 ≜ 𝑈𝑘
∗𝜓̃𝑘,  𝜓̅𝑘−1 ≜ 𝑈𝑘

∗𝜓̃𝑘−1,  𝑢̅𝑘 ≜ 𝑢𝑘𝑈𝑘 ,  Σ̅ ≜ 𝑈𝑘
∗Σ𝑈𝑘,  Σ̅′ ≜ 𝑈𝑘

∗𝛴′𝑈𝑘             (2.6.28) 

We know that 𝑈𝑘 is unitary and ‖𝜓̃𝑘−1‖Σ
2
= ‖𝜓̅𝑘−1‖Σ̅

2
 𝑎𝑛𝑑 ‖𝑢𝑘‖Σ

2
= ‖𝑢̅𝑘‖Σ̅

2
 ,by using this 

(2.6.25) and (2.6.26) can be written in the form 

𝐸‖𝜓̅𝑘‖Σ̅
2
= 𝐸‖𝜓̅𝑘−1‖Σ̅′

2
+ 𝜇𝑘

2𝜎𝑣,𝑘
2𝐸‖𝑢̅𝑘‖Σ̅

2
                            (2.6.29) 

Σ̅′ = Σ̅ − 𝜇𝑘𝐸(𝑢̅𝑘
∗𝑢̅𝑘Σ̅ + Σ̅𝑢̅𝑘

∗𝑢̅𝑘) + 𝜇𝑘
2𝐸‖𝑢̅𝑘‖Σ̅

2
𝑢̅𝑘

∗𝑢̅𝑘                           (2.6.30) 

𝐸‖𝜓̅𝑘‖Σ̅
2
= 𝑇𝑟(Λ𝑘Σ̅) and 𝐸𝑢̅𝑘

∗𝑢̅𝑘 = Λ𝑘                  (2.6.31) 

𝐸‖𝑢̅𝑘‖Σ̅
2
𝑢̅𝑘

∗𝑢̅𝑘 = Λ𝑘𝑇𝑟(Σ̅Λ𝑘) + 𝛾Λ𝑘Σ̅Λ𝑘                             (2.6.32) 

𝛾 = 1  For circular complex data and 𝛾 = 2  for real data. Now putting (2.6.31) and (2.6.32) into 

(2.6.29) and (2.6.30) we get 

𝐸‖𝜓̅𝑘‖Σ̅
2
= 𝐸‖𝜓̅𝑘−1‖Σ̅′

2
+ 𝜇𝑘

2𝜎𝑣,𝑘
2𝑇𝑟(Λ𝑘Σ̅)                 (2.6.33) 

Σ̅′ = Σ̅ − 𝜇𝑘(Λ𝑘Σ̅ + Σ̅Λ𝑘) + 𝜇𝑘
2(Λ𝑘𝑇𝑟(Σ̅Λ𝑘) + 𝛾Λ𝑘Σ̅Λ𝑘)                (2.6.34) 

We can choose Σ̅′𝑎𝑛𝑑 Σ̅ according to our wish, hence we can chose in such a way, such that both 

are become diagonal. Let we introduce the 𝑀 × 1 column vectors 

𝜎 ≜ 𝑑𝑖𝑎𝑔{Σ̅},  𝜎′ ≜ 𝑑𝑖𝑎𝑔{Σ̅′} ,   𝜆𝑘 ≜ 𝑑𝑖𝑎𝑔{Λ𝑘}                 (2.6.35) 

Where the 𝑑𝑖𝑎𝑔{ } notation will be used in two ways first a diagonal matrix whose entries are 

the vector of 𝜆 and a vector containing main diagonal of  Λ. 

Using this concept (2.6.34) can be rewritten as  

𝜎 = (𝐼 − 2𝜇𝑘Λ𝑘 + 𝛾𝜇𝑘
2Λ𝑘

2)𝜎̅ + 𝜇𝑘
2(𝜆𝑘

𝑇𝜎)𝜆𝑘 = 𝐹̅𝑘𝜎                (2.6.36) 

Where the coefficient matrix 𝐹̅𝑘 is defined by 

𝐹̅𝑘 ≜ 𝐼 − 2𝜇𝑘Λ𝑘 + 𝛾𝜇𝑘
2Λ𝑘

2 + 𝜇𝑘
2𝜆𝑘𝜆𝑘

𝑇
                  (2.6.37) 
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The expression (2.6.33) becomes 

𝐸‖𝜓̅𝑘‖𝑑𝑖𝑎𝑔{𝜎̅}
2
= 𝐸‖𝜓̅𝑘−1‖𝑑𝑖𝑎𝑔{𝐹𝑘𝜎̅}

2
+ 𝜇𝑘

2𝜎𝑣,𝑘
2(𝜆𝑘

𝑇𝜎̅)                (2.6.38) 

𝐸 ‖𝜓̅𝑘
(𝑖)
‖
𝜎̅𝑘

2

= 𝐸 ‖𝜓̅𝑘−1
(𝑖)
‖
𝐹𝑘𝜎̅𝑘

2

+ 𝜇𝑘
2𝜎𝑣,𝑘

2(𝜆𝑘
𝑇𝜎̅𝑘)                (2.6.39) 

2.6.4 Steady State Behavior 

Let  𝑝̅𝑘 ≜ 𝜓̅𝑘
(∞)
 𝑎𝑛𝑑 𝑔𝑘 ≜ 𝜇𝑘

2𝜎𝑣,𝑘
2𝜆𝑘

𝑇(𝑎 𝑟𝑜𝑤 𝑣𝑒𝑐𝑡𝑜𝑟). Then for 𝑖 → ∞, the equation (2.6.55) 

can be written as 

𝐸‖𝑝̅𝑘‖𝜎̅𝑘
2
= 𝐸‖𝑝̅𝑘−1‖𝐹̅𝑘𝜎̅𝑘

2
+ 𝑔𝑘𝜎𝑘,   𝑘 = 1,2,⋯ ,𝑁                (2.6.40) 

Now the performance measurement quantities are as follows: 

𝜂𝑘 =  𝐸‖𝑝̅𝑘−1‖𝑞
2
,   𝑞 ≜ 𝑑𝑖𝑎𝑔{𝐼}(𝑀𝑆𝐷)                  (2.6.41) 

𝜁𝑘 = 𝐸‖𝑝̅𝑘−1‖𝜆𝑘
2
,   𝜆𝑘 = 𝑑𝑖𝑎𝑔{Λ𝑘}(𝐸𝑀𝑆𝐸)                 (2.6.42) 

𝜉𝐾 = 𝜁𝑘 + 𝜎𝑣,𝑘
2(𝑀𝑆𝐸)                    (2.6.43) 

Now by iterating the (2.6.40) we can get a set of N coupled equalities 

𝐸‖𝑝̅1‖𝜎̅1
2
= 𝐸‖𝑝̅1‖𝐹̅1𝜎̅1

2
+ 𝑔1𝜎1  

𝐸‖𝑝̅2‖𝜎̅2
2
= 𝐸‖𝑝̅2‖𝐹2𝜎̅2

2
+ 𝑔2𝜎2  

⋮  

𝐸‖𝑝̅𝑘−2‖𝜎̅𝑘−2
2
= 𝐸‖𝑝̅𝑘−3‖𝐹𝑘−2𝜎̅𝑘−2

2
+ 𝑔𝑘−2𝜎𝑘−2                (2.6.44) 

𝐸‖𝑝̅𝑘−1‖𝜎̅𝑘−1
2
= 𝐸‖𝑝̅𝑘−2‖𝐹𝑘−1𝜎̅𝑘−1

2
+ 𝑔𝑘−1𝜎𝑘−1  

⋮  

𝐸‖𝑝̅𝑁‖𝜎̅𝑁
2
= 𝐸‖𝑝̅𝑁−1‖𝐹𝑁𝜎̅𝑁

2
+ 𝑔𝑁𝜎̅𝑁                 (2.6.45) 

By choosing 𝜎𝑘−2 = 𝐹̅𝑘−1𝜎𝑘−1 and use in (2.6.44) we get 
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𝐸‖𝑝̅𝑘−2‖
2
𝐹𝑘−1𝜎̅𝑘−1

= 𝐸‖𝑝̅𝑘−3‖
2
𝐹𝑘−2𝐹̅𝑘−1𝜎̅𝑘−1

+ 𝑔𝑘−2𝐹̅𝑘−1𝜎̅𝑘−1              (2.6.46) 

𝐸‖𝑝̅𝑘−1‖
2
𝜎̅𝑘−1

= 𝐸‖𝑝̅𝑘−3‖
2
𝐹𝑘−2𝐹̅𝑘−1𝜎̅𝑘−1

+ 𝑔𝑘−2𝐹̅𝑘−1𝜎̅𝑘−1 + 𝑔𝑘−1𝜎̅𝑘−1             (2.6.47)  

By iterating in this way finally we get 

𝐸‖𝑝̅𝑘−1‖
2
𝜎̅𝑘−1

= 𝐸‖𝑝̅𝑘−1‖
2
𝐹𝑘⋯𝐹𝑁𝐹1⋯𝐹̅𝑘−1𝜎̅𝑘−1

+ 𝑔𝑘𝐹̅𝑘+1⋯𝐹̅𝑁𝐹̅1⋯𝐹̅𝑘−1𝜎𝑘−1 +

𝑔𝑘+2𝐹̅𝑘+2⋯𝐹̅𝑁𝐹̅1⋯𝐹̅𝑘−1𝜎̅𝑘−1 +⋯+ 𝑔𝑘−2𝐹̅𝑘−1𝜎𝑘−1 + 𝑔𝑘−1𝜎𝑘−1                         (2.6.48)  

We can define set of N matrix in the terms of product of 𝐹̅ matrices 

Π𝑘,𝑙 ≜ 𝐹̅𝑘+𝑙−1𝐹̅𝑘+𝑙⋯𝐹̅𝑁𝐹̅1⋯𝐹̅𝑘−1,     𝑙 = 1,2,⋯ ,𝑁                           (2.6.49) 

Here the subscripts are all mod N. Π𝑘,𝑙 work as an transition matrix for the weighting vector 𝜎𝑘−1  

to reach node k cyclically through k-1, k-2, N-1,…, k. by using  this we can rewrite 

equation(2.6.48) as 

𝐸‖𝑝̅𝑘−1‖
2
(𝐼−Π𝑘,1)𝜎̅𝑘−1

= 𝑎𝑘𝜎̅𝑘−1                             (2.6.50) 

Where the row vector 𝑎𝑘 is defined as 

𝑎𝑘 ≜ 𝑔𝑘Π𝑘,2 + 𝑔𝑘+1Π𝑘,3⋯+ 𝑔𝑘−2Π𝑘,𝑁 + 𝑔𝑘−1                (2.6.51) 

By choosing the weight vector 𝜎𝑘−1 as the solution of the linear equation(𝐼 − Π𝑘,1)𝜎𝑘−1 = 𝑞, we 

arrive at the desired expression for MSD 

𝜂𝑘 = 𝑎𝑘(𝐼 − Π𝑘,𝑙)
−1
𝑞    (𝑀𝑆𝐷)                  (2.6.52) 

Similarly by choosing 𝜎𝑘−1 as the solution of  (𝐼 − Π𝑘,1)𝜎𝜁,𝑘−1 = 𝜆𝑘  we arrive at the desired 

response of EMSE 

𝜁𝑘 = 𝑎𝑘(𝐼 − Π𝑘,𝑙)
−1
𝜆𝑘   (𝐸𝑀𝑆𝐸)                  (2.6.53) 

𝜉𝑘 = 𝜁𝑘 + 𝜎𝑣,𝑘
2    (𝑀𝑆𝐸)                   (2.6.54) 
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2.6.5 Simulation Results 

Here for simulation we take N=20 number of nodes with M=10 taps of each local filter. We take 

1000 iterations and perform 500 independent experiment to get the simulation result. The 

measurement data 𝑑𝑘
(𝑖)

 can be generated by using the data model (2.6.1) at each node and the 

vector 𝑤0=col {1, 1,…,1}/√𝑀 ,  of size M×1.the background noise is white and Gaussian with 

𝜎𝑣
2=10−3. The EMSE (Excess Mean square error), MSE (Mean square error)   and MSD (Mean 

square deviation) can be plot by using   |𝑢𝑘,𝑖(𝜓𝑘
(𝑖) − 𝑤̅0)|

2
,|𝑑𝑘(𝑖) − 𝑢𝑘,𝑖𝜓𝑘−1

(𝑖)|
2
, |(𝜓𝑘

(𝑖) −

𝑤̅0)|
2
. Here we consider each regressor of size (1×M) collecting data by observing a time-

correlated sequence {𝑢𝑘
(𝑖)} , generated as                         

  𝑢𝑘
(𝑖)=∝𝑘 𝑢𝑘

(𝑖−1)+𝛽𝑘𝑧𝑘
(𝑖)  , i>-∞ 

Here ∝𝑘∈ [0,1) , is the correlation index and 𝑧𝑘
(𝑖) is a spatially Gaussian independent process with 

unit variance and 𝛽𝑘 =√𝜎𝑢,𝑘2(1 − 𝛼𝑘2) . The resulting regressor have Toeplitz covariance 

matrices  𝑅𝑢,𝑘 , with correlation sequence 𝑟𝑘(i) = 𝜎𝑢,𝑘
2(∝𝑘)

|𝑖|, 𝑖 = 0,1,⋯ ,𝑀 − 1. The input 

regressor power profile 𝜎𝑢,𝑘
2 ∈ (0,1] , the correlation index  ∝𝑘∈ (0,1] and the Gaussian noise 

variance 𝜎𝑣,𝑘
2 ∈ (0,0.1] chosen at random. The node power profile, correlation index, node noise 

power profile and SNR as shown in Fig.6, Fig.7 and Fig.8. The transient performance of MSE 

(mean square error), EMSE (excess mean square error) and MSD (mean square deviation) as 

shown in Fig.9.Fig.10, and Fig.11.  Fig.12, Fig.13 and Fig.14 represents the MSE, EMSE and 

MSD performance node wise by taking average of last 300 experiments. The simulation results 

clear the fact that the convergence rate and steady state performance of incremental adaptive 

solution is better than that of steepest descent solution. 
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Fig.  6  Regressor power profile 

 

 

 

Fig.  7  Correlation index per node 
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Fig.  8  Noise power profile 

 

 

 

 

Fig.  9  Transient MSE performance at node 1for both incremental adaptive solution and 

stochastic steepest descent solution 
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Fig.  10  Transient EMSE performance at node 1for both incremental adaptive solution 

and stochastic steepest descent solution 

   

 

Fig.  11  Transient MSD performance at node 1for both incremental adaptive solution and 

stochastic steepest descent solution 
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Fig.  12  MSE performance node wise 

 

 

Fig.  13  EMSE performance node wise 
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Fig.  14   MSD performance node wise 

2.7 QUALITY AWARE INCREMENTAL LMS ALGORITHM FOR DISTRIBUTED 

ADAPTIVE ESTIMATION 

In the incremental adaptive algorithm the node profile not considered,  the performance can be  

detoriates if the SNR of some node is lower than the other node. To overcome this problem we 

can use the efficient step size for each node in the incremental least mean square adaptive 

algorithm. The aim behind this is to improve the robustness of the algorithm against the spatial 

variation of noise in the network. The algorithm provides improved steady state performance in 

comparison with the incremental LMS algorithm. Another method to achieve the requirement is 

assigning a suitable weight according to reliability of measurement. Initially we formulate the 

weight assigning as a constrained optimization problem, then recast it into distributed form and 

finally applied to adaptive solution problem [12]. Simulation result provide the performance of 

proposed algorithm. 

2.7.1 Effect Of Noisy Nodes 

Let there are some noisy nodes are present in the network having SNR at some node lower than 

that of the others. In this case the performance detoriates since in the incremental mode cooperation 

the nodes are connected in one direction i.e. the energy flow in one direction only, hence if one 

node found to be noisy then  it effects the performance of other. Let consider there are N=20 

number of nodes present in the network and assume that M=5, step size  𝜇 = 0.01, 𝑤0 =
1𝑀
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.let we assume that there are five nodes are there having noise variance 𝜎𝑣,𝑘
2𝜖(0,2)  in the network 

and other node have noise variance𝜎𝑣,𝑘
2𝜖(0,0.1).  Fig.15 and Fig.16 node profile of 

𝜎𝑣,𝑘
2 𝑎𝑛𝑑 𝑇𝑟{𝑅𝑢,𝑘}. Fig.17 shows the global average EMSE in both condition i.e. with present and 

absent of noisy node. The simulation result illustrate that the convergence rate and performance of 

DILMS algorithm without noisy nodes outperforms than that of DILMS algorithm with noisy 

nodes. 

 

Fig.  15  The node profile of  𝝈𝒖,𝒌
𝟐 
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Fig.  16  The node profile of 𝑻𝒓{𝑹𝒖,𝒌} 

 

Fig.  17  The global average EMSE for DILMS algorithm in different condition 
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{
𝜙𝑘,𝑖 = 𝑐𝑘,𝑘−1𝜓𝑘−1,𝑖 + 𝑐𝑘,𝑘𝜓𝑘,𝑖−1

𝜓𝑘,𝑖 = 𝜙𝑘,𝑖 + 𝜇𝑘𝑢𝑘,𝑖
∗(𝑑𝑘(𝑖) − 𝑢𝑘,𝑖𝜙𝑘,𝑖)

                   (2.7.1) 

Where {𝑐𝑘,𝑘−1, 𝑐𝑘,𝑘}𝜖ℝ are combination coefficients at node k. thus in modified version of DILMS 

algorithm each node updates with its local estimate from previous node i.e. 𝜓𝑘−1,𝑖 and estimate 

from previous time i.e.𝜓𝑘,𝑖−1. Again it should be noted that for node k=1 we have 𝑐1,0 = 𝑐1,𝑁 , for 

incremental mode of cooperation. 

Now to formulate the problem of finding combination coefficients, let we define the 𝑁 × 1 vector 

𝑐𝑘 = [𝑐𝑘,1 ,   𝑐𝑘,2, ⋯ , 𝑐𝑘,𝑁]
𝑇
𝜖ℝ𝑁 for every node k and𝑐𝑘,𝑙 = 0, 𝑙 ≠ {𝑘 − 1, 𝑘}. Now the local 

estimates for each node k is {𝜓𝑘,𝑖, 𝑖 = 0,1,⋯ } realizable for some random vector 𝜓𝑘. Now we 

should found the coefficient vector 𝑐𝑘𝜖ℝ
𝑁, by solving the equation given below; 

{       ∑ 𝐸 {‖𝜓𝑐𝑘 − 𝑤
0‖

2
}

 
𝑁
𝑘=1{𝑐1,𝑐2,⋯,𝑐𝑁}𝜖𝑅

𝑁
𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 , 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑐𝑘,𝑙 = 0  𝑓𝑜𝑟 𝑙 ∉ 𝒩𝑘,𝒩𝑘 = {𝑘 − 1, 𝑘}      

(2.7.2) 

Where 𝜓 = [𝜓1, 𝜓2, ⋯ , 𝜓𝑁] 𝑖𝑠 𝑎𝑛 𝑀 × 𝑁 random row matrix. Now we can write or decompose 

(2.7.2) at each node then the equation given by: 

{
𝐽(𝑐𝑘) = 𝐸 {‖𝜓𝑐𝑘 − 𝑤

0‖
2
}

𝑐𝑘∈𝑅
𝑁

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑐𝑘,𝑙 = 0  𝑓𝑜𝑟 𝑙 ∉ 𝒩𝑘,𝒩𝑘 = {𝑘 − 1, 𝑘}
                  (2.7.3) 

It is difficult to solve the optimization problem directly, hence let we take an assume that every 

local estimate 𝜓𝑘 is unbiased i.e. 𝐸{𝜓𝑘} = 𝑤0, hence we can say that 𝐸{𝜓} = 𝑤01𝑁
𝑇
.by using 

the bias variance decomposition we can write (2.7.3) as 

𝐽(𝑐𝑘) = 𝑐𝑘
𝑇𝑄𝜓𝑐𝑘 + ‖(1𝑁

𝑇𝑐𝑘 − 1)𝑤
0‖

2
                   (2.7.4) 

Where 𝑄𝜓 is an 𝑁 × 𝑁 matrix defined by 

𝑄𝜓 = 𝐸{(𝜓 − 𝐸{𝜓})
∗((𝜓 − 𝐸{𝜓}))}                   (2.7.5) 

Now by considering  1𝑁
𝑇𝑐𝑘 = 1 the second term of (2.7.4) totally eliminated and we can write 

(2.7.3) as  
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  𝑐𝑘
𝑇𝑄𝜓𝑐𝑘𝑐𝑘∈𝑅

𝑁
𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 , 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 1𝑁

𝑇𝑐𝑘 = 1 𝑎𝑛𝑑 𝑐𝑘,𝑙 = 0  𝑓𝑜𝑟 𝑙 ∉ 𝒩𝑘               (2.7.6)  

If we consider the DILMS algorithm mention in (2.5.16), then the dimension of the problem 

(2.7.1) reduced from N unknown to the cardinality of 𝒩𝑘, say 2, by introducing the 𝑁 × 2 

auxiliary variable 

𝑝𝑘 = [𝒯𝑘−1, 𝒯𝑘]𝑁×2                      (2.7.7) 

Where 𝒯𝑘 is an 𝑁 × 1 vector whose all component zero except k, for example𝒯2 =

[0  1  0  ⋯  0]𝑇. Since here we use the incremental method cooperation hence 𝑃1 = [𝒯1, 𝒯𝑁]. Now 

any vector that satisfy 𝑐𝑘𝑙 = 0 𝑓𝑜𝑟 𝑙 ∈ 𝒩𝑘 can be represented as ( [13], [14]); 

𝑐𝑘 = 𝑃𝑘𝑎𝑘 , 𝑤𝑖𝑡ℎ 𝑎𝑘 ∈ 𝑅
2                     (2.7.8) 

Now using (2.7.8) in (2.7.6) we get 

{
𝑓𝑘(𝛼𝑘) = 𝛼𝑘

𝑇𝑄𝜓,𝑘𝛼𝑘𝑐𝑘∈𝑅
𝑁

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑎𝑘 ∈ 𝑉𝑁 = {𝑎 ∈ 𝑅
2, 12

𝑇𝑎 = 1}
                   (2.7.9) 

Where 𝑄𝜓,𝑘 is the 2 × 2 matrix defined by 

𝑄𝜓,𝑘 = 𝑃𝑘
𝑇𝑄𝜓𝑃𝑘                    (2.7.10) 

And 12 = 𝑃𝑘
𝑇1𝑁 is a vector whose all components are 1. The solution to (2.7.9)  well defined( 

[13], [14]) given by 

𝛼𝑘
0 =

𝑄𝜓,𝑘
−112

12
𝑇𝑄𝜓,𝑘

−112
                      (2.7.11) 

By applying  similar techniques introduced in [13], we finally reach at the iterative solution 

{
𝑏𝑘,𝑖 = 𝑏𝑘,𝑖−1 − 𝜆𝑘(𝑖)Λ𝑄𝜓,𝑘𝑏𝑘,𝑖−1

𝑐𝑘 = 𝑃𝑘𝑏𝑘,𝑖
                  (2.7.12) 

Where 𝜆𝑘(𝑖) is the step-size and Λ is a 2 × 2 matrix given by 

Λ = [
0.5 −0.5
−0.5 0.5

]                    (2.7.13) 
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To derive an adaptive solution we can approximate 𝑄𝜓,𝑘 as follows 

𝑄𝜓,𝑘 ≈ (∆∅)
∗(∆∅)                    (2.7.14) 

Where (∆∅) is a 𝑀 × 2 matrix given by 

(∆∅) = [𝜓𝑘−1,𝑖 − 𝜓𝑘−1,𝑖−1       𝜓𝑘,𝑖−1 − 𝜓𝑘,𝑖−2]                (2.7.15) 

Now replacing (2.7.14) in (2.7.12) and using the modified DILMS algorithm, our QWDILMS 

algorithm represent by 

{
 
 

 
 

𝑔𝑘,𝑖 = Λ(Δ𝜙)
∗(Δ𝜙)𝑏𝑘,𝑖−1

𝑏𝑘,𝑖 = 𝑏𝑘,𝑖−1 − 𝜆𝑘(𝑖)𝑔𝑘,𝑖
𝑐𝑘 = 𝑃𝑘𝑏𝑘,𝑖

𝜙𝑘,𝑖 = 𝑐𝑘,𝑘−1𝜓𝑘−1,𝑖 + 𝑐𝑘,𝑘(𝑖)𝜓𝑘,𝑖−1

𝜓𝑘,𝑖 = 𝜙𝑘,𝑖 + 𝜇𝑘𝑢𝑘,𝑖
∗(𝑑𝑘(𝑖) − 𝑢𝑘,𝑖𝜙𝑘,𝑖)

                 (2.7.16) 

Where 𝜆𝑘(𝑖) is the normalized step size given by: 

𝜆𝑘(𝑖) = 𝛾
𝑚𝑖𝑛{𝑏𝑘,𝑖−1(1),𝑏𝑘,𝑖−1(2)}

‖𝑔𝑘,𝑖‖∞+𝜀
                  (2.7.17) 

𝛾 ∈ (0,1) and 𝜀 are constants,  ‖∙‖∞ represents the maximum norm and 𝑏𝑘,𝑖−1(𝑚) 𝑚 
𝑡ℎ 

component of 𝑏𝑘,𝑖−1. 

 

 



 

43 | P a g e  
 

 

Fig.  18  Block diagram of proposed algorithm 

Now we can perform a simulation result to study the MSD (mean square deviation) and EMSE 

(excess mean square) performance of the DILMS algorithm with noisy nodes, without noisy nodes 

and the QWDILMS algorithm. The average MSD can be defined as 

𝑀𝑆𝐷 =
1

𝑁
∑𝐸 {‖𝑤0 − 𝜓𝑘−1,𝑖‖

2
}

𝑁

𝑘=1

 

Let 𝛾 = 0.01 𝑎𝑛𝑑 𝜀 = 10−5. Here we formed 100 individual experiments and averaged. The 

EMSE and MSD performance of all the three algorithm shown in Fig.19 and Fig.20. 
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Fig.  19  The EMSE performance of DILMS algorithm with and without noisy nodes and 

QWDILMS Algorithm 

 

 

Fig.  20  The MSD performance of DILMS algorithm with and without noisy nodes and 

QWDILMS Algorithm 

The simulation results reveals that the quality aware incremental LMS algorithm outperforms the 

DILMS algorithm in a sense of steady state performance and the performance of QWDILMS 
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algorithm increased about 7dB in comparison with the DILMS algorithm with noisy nodes. The 

disadvantage of the QWDILMS algorithm is its convergence rate. The advantage is the 

QWDILMS algorithm improves the robustness against the spatial variation SNR at different node.  

2.7.3 Conclusion 

Here we can draw two conclusion first the convergence rate and steady state performance of the 

incremental adaptive solution outperforms than that of the incremental steepest descent solution. 

Second one is in the case presence of noisy nodes having variance more than one,  by applying 

quality aware incremental algorithm we can improve the steady state performance up to the level 

reached by the incremental algorithm without noisy nodes. The simulation result shows the 

effectiveness of the both DILMS and QWDILMS algorithm. We can also modify the QWDILMS 

algorithm structure to improve the convergence rate. 
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Chapter 3 FREQUENCY DOMAIN 

INCREMENTAL STRATEGIES 

OVER DISTRIBUTED NETWORK 

 

The convergence rate of LMS (Least mean square) type filter is dependent on the Autocorrelation 

matrix of the input data and on the eigen value spread of the covariance matrix of the regressor 

data [5]. The mean square error (MSE) of an adaptive filter using LMS algorithm decreases with 

time as sum of the exponentials, whose time constants are inversely proportional to the eigen value 

of the auto correlation matrix of input data [15]. The smaller eigen value of autocorrelation matrix 

of the input results slower convergence mode and larger eigen values limit on the maximum 

learning rate that can be chosen without encountering stability problem. Best convergence and 

learning rate results when all the eigen values of the input autocorrelation matrix are equal i.e. 

Autocorrelation matrix should be in the form of a constant multiplication with the identity matrix 

[5]. 

Practically the input data’s are colored and the Eigen values of autocorrelation matrix vary from 

smallest to the largest. The filter response can be improved by prewhitening the data, but for this 

the autocorrelation of the input data should be known. It is difficult to know the autocorrelation of 

the input data. It can be achievable by using unitary transformation, such as discrete cosine 

transform (DCT), discrete Fourier transform (DFT) etc. These transformation have de-correlation 

properties that improves the convergence performance of LMS for correlated input data [5]. 

Transform domain (which is also called frequency domain) can be applied in two ways one is 

block wise frequency domain algorithm other is non-block wise frequency domain algorithm [16]. 

In block wise frequency domain algorithm a block of input data is first transformed then input to 

the incremental LMS algorithm and in non-block or real time algorithm the data are continuously 

transformed by a fixed data-independent transform to de-correlate the input data [15]. DFT-LMS 

algorithm was first introduced by Narayan belongs to a simplest algorithm family because of the 
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exponential nature [17]. But in many practical situation it was found that DCT-LMS performs 

better than that of DFT-LMS and other transform domain [15].In this paper we interpret the 

incremental LMS using DCT/DFT algorithm and found that it produce better convergence and 

performance than previous 

 

3.1 PREWHITENING FILTERS 

The statistics of input data required for design of a Prewhiten filter. Let assume that the input 

sequence {𝑢(𝑖)} is a zero mean and wide sense stationary, with autocorrelation function 

𝑟(𝑘) = 𝐸𝑢(𝑖)𝑢∗(𝑖 − 𝑘),   𝑘 = 0,±1,±2,⋯                   (3.1.1) 

To determine the prewhiten filter the knowledge of power spectrum and spectral factorization 

required. The  Z-spectrum of wide sense stationary process {𝑢(𝑖)} denoted by 𝑆𝑢(𝑧) and it is given 

by 

𝑆𝑢(𝑧) = ∑ 𝑟(𝑘)𝑧−𝑘∞
𝑘=−∞                        (3.1.2) 

For convergence r(k) should be exponentially bounded i.e.  

|𝑟(𝑘)| ≤ 𝛽𝑎|𝑘|                      (3.1.3) 

For 𝛽 > 0 𝑎𝑛𝑑 0 < |𝑧| < 1 the series (3.1.2) absolutely converge in the ROC: 𝑎 < |𝑧| < 𝑎−1 i.e. 

it satisfies 

∑ |𝑟(𝑘)||𝑧−𝑘| < ∞ 𝑓𝑜𝑟 𝑎𝑙𝑙  𝑎 < |𝑧| < 𝑎−1∞
𝑘=−∞                   (3.1.4) 

Since the ROC includes the unit circle, so we can say that 𝑆𝑢(𝑧) cannot have poles on the unit 

circle. Now the power spectrum of the input regressor {𝑢(𝑖)}  is given by: 

𝑆𝑢(𝑒
𝑗𝑤) = ∑ 𝑟(𝑘)𝑒−𝑗𝑤𝑘∞

𝑘=−∞                     (3.1.5) 

We know that the power spectrum has two important property, first it is hermitian symmetry  and 

second is it is nonnegative on the unit circle i.e. 𝑆𝑢(𝑒
𝑗𝑤) ≥ 0 𝑓𝑜𝑟 0 ≤ 𝑤 ≤ 2𝜋. 

The z transform satisfies the para Hermitian property i.e. 
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𝑆𝑢(𝑧) = [𝑆𝑢(
1
𝑧∗⁄ )]

∗
                      (3.1.6)  

If we replace z by 1 𝑧∗⁄  then again we get 𝑆𝑢(𝑧), which is nothing but the para Hermitian property. 

Now let 𝑆𝑢(𝑧) is a proper rational function and it does not have zeros on the unit circle so that  

𝑆𝑢(𝑒
𝑗𝑤) > 0 𝑓𝑜𝑟 𝑎𝑙𝑙 − 𝜋 ≤ 𝑤 ≤ 𝜋                    (3.1.7) 

Than by using the para Hermitian property , we can say that for every pole(or zero) at a point 𝜉, 

there must exist a pole (or zero) at point 1 𝜉∗⁄ , and there is no poles and zero’s on unit circle [5]. 

Hence the rational number 𝑆𝑢(𝑧) can be expressed as  

𝑆𝑢(𝑧) = 𝜎𝑢
2 ∏ (𝑧−𝑧𝑙)(𝑧

−1−𝑧𝑙
∗)𝑚

𝑙=1

∏ (𝑧−𝑝𝑙)(𝑧
−1−𝑝𝑙

∗)𝑛
𝑙=1

                    (3.1.8) 

The 𝑆𝑢(𝑧) can be factorized in the form  

𝑆𝑢(𝑧) = 𝜎𝑢
2𝐴(𝑧)[𝐴(1 𝑧∗⁄ )]

∗
                     (3.1.9) 

Where {𝜎𝑢
2, 𝐴(𝑧)} satisfies the following condition 

1. 𝜎𝑢
2 is a positive scalar. 

2. 𝐴(𝑧) is normalized to unity at infinity i.e. 𝐴(∞) = 1. 

3. 𝐴(𝑧) is a rational minimum phase function. 

In order to meet the normalized condition 𝐴(∞) = 1, we can take A(z) as 

𝐴(𝑧) = 𝑧𝑛−𝑚
∏ (𝑧−𝑧𝑙)
𝑚
𝑙=1

∏ (𝑧−𝑝𝑙)
𝑛
𝑙=1

                   (3.1.10) 

Let {𝑥(𝑖)} be a widesense random process with z-transform 𝑆𝑥(𝑧) and assume that it feed to a 

stable system of transfer function H(z) shown in Fig.21 than the output in the z transform can be 

written as  

𝑆𝑦(𝑧) = 𝐻(𝑧)𝑆𝑥(𝑧)[𝐻(
1
𝑧∗⁄ )]

∗
                  (3.1.11) 
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Fig.  21  filtering of wide sense stationary random process {x(i)}  by a stable linear system 

H(z) 

   

 

Now let we pass the input regressor {𝑢(𝑖)} through a filter 1 [𝜎𝑢𝐴(𝑧)]⁄  as shown in Fig.22 then 

the output process denoted by {𝑢̅(∙)}, and the z spectrum of the output process given by 

𝑆𝑢(𝑧) =
1

𝜎𝑢𝐴(𝑧)
[𝜎𝑢

2𝐴(𝑧)𝐴∗(𝑧−∗)]
1

𝜎𝑢𝐴∗(𝑧−∗)
= 1                (3.1.12) 

The autocorrelation of the sequence given by 

𝑟̅(𝑘) = 𝐸𝑢̅(𝑖)𝑢∗(𝑖 − 𝑘) = {
1 𝑖𝑓 𝑘 = 0
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                 (3.1.13) 

 

 

Fig.  22  Prewhitening of  𝒖(𝒊) by using the inverse of the spectral factor of 𝑺𝒖(𝒛) 

 

Consider a LMS filter with input is {𝑢̅(𝑖)} instead of {𝑢(𝑖)} as shown in Fig.23. Let the reference 

sequence d(i) also filter with  
1

𝜎𝑢𝐴(𝑧)
   then the weight updating is given by 

𝑤̅𝑖 = 𝑤̅𝑖−1 + 𝜇𝑢̅𝑖
∗𝑒̅(𝑖),   𝑒̅(𝑖) = 𝑑̅(𝑖) − 𝑢̅𝑖𝑤̅𝑖−1, 𝑤̅−1 = 0                    (3.1.14) 
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Where 𝑤̅𝑖 represents the resulting weight vector, {𝑑(𝑖), 𝑢𝑖} satisfies the regression model  

𝑑(𝑖) = 𝑢𝑖𝑤
0 + 𝑣(𝑖), for some unknown vector 𝑤0. The covariance matrix of the transformed 

regressor given by 

𝑅𝑢 = 𝐸𝑢̅𝑖
∗𝑢𝑖 = 𝐼 

With an Eigen value spread of unity. Hence the convergence performance of the filter improves 

relative to LMS implementation that depend on the {𝑑(𝑖), 𝑢(𝑖)}. 

 

Fig.  23  Adaptive filter implementation with a prewhitening filter 

 

3.2  UNITARY TRANSFORMATION 

The statistics of input data is very difficult to know, since the data itself not even stationary, hence 

it is not possible to design a prewhitening filter  
1

𝐴(𝑧)
 . There are another way to prewhiten the data 

, transform the regressor by some pre-selected unitary transformation, such as DCT (Discrete 

Cosine Transform)or the DFT(Discrete Fourier Transform) [5]. 
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Consider the standard LMS implementation  

𝑤𝑖 = 𝑤𝑖−1 + 𝜇𝑢𝑖
∗[𝑑(𝑖) − 𝑢𝑖𝑤𝑖−1]                    (3.2.1) 

Let T be an arbitrary unitary matrix of size 𝑀 ×𝑀, 𝑇 × 𝑇 = 𝐼, for example T could be chosen as 

DFT or DCT. Once T is selected then the transformed regressor can be written as 

𝑢̅𝑖 = 𝑢𝑖𝑇                       (3.2.2) 

The covariance matrix related to 𝑅𝑢 is given by 

𝑅𝑢 = 𝐸𝑢̅𝑖
∗𝑢̅𝑖 = 𝑇

∗𝑅𝑢𝑇                     (3.2.3) 

Let multiplying 𝑇∗ on both side of (3.2.1) we get 

𝑤̅𝑖 = 𝑤̅𝑖−1 + 𝜇𝑢̅
∗
𝑖[𝑑(𝑖) − 𝑢̅𝑖𝑤̅𝑖−1], 𝑤−1 = 0                  (3.2.4)  

The reference sequence 𝑑(𝑖) remains same, since 𝑢𝑖𝑤𝑖−1 = 𝑢̅𝑖𝑤̅𝑖−1. Since T is a unitary therefore 

𝑇∗ = 𝑇−1, the relation between between {𝑅𝑢 , 𝑅𝑢} has the similar transformation known as 

preserve eigen values(two matrices A and B are said to be similar if they related via 𝐵 = 𝑇−1𝐴𝑇 

for some invertible matrix T. This type similarity matrix preserves eigen values and both have 

same eigen values).This means that both {𝑅𝑢 , 𝑅𝑢} have same eigen values and same eigen value 

spread. Finally we can say that this type of implementation faces same problem as previous. 
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Fig.  24  Transform domain adaptive filter implementation, where T is a unitary 

transformation 

Hence to make better convergence and performance let the (3.2.4) can be written as 

𝑤̅𝑖 = 𝑤̅𝑖−1 + 𝜇𝐷
−1𝑢̅∗𝑖[𝑑(𝑖) − 𝑢̅𝑖𝑤̅𝑖−1], 𝑤−1 = 0                  (3.2.5)  

Here D is a diagonal normalization matrix introduced, now the new step size become 𝜇𝐷−1. Now 

let use a diagonal matrix 𝐷
1
2⁄  whose entries are positive square root of entries of D, multiply it 

both side of (3.2.5) we get 

𝑤𝑖
′ = 𝑤𝑖−1

′ + 𝜇𝑢𝑖
′∗[𝑑(𝑖) − 𝑢𝑖

′𝑤𝑖−1
′],   𝑤−1

′ = 0                  (3.2.6) 

Where 𝑤𝑖
′ = 𝐷

1
2⁄ 𝑤̅𝑖,     𝑎𝑛𝑑 𝑢𝑖

′ = 𝑢̅𝑖𝐷
−1

2⁄ = 𝑢𝑖𝑇𝐷
−1

2⁄                  (3.2.7) 

Now the regression covariance matrix given by 

𝑅𝑢′ = 𝐸𝑢𝑖
′∗𝑢𝑖

′ = 𝐷
−1

2⁄ 𝑇∗𝑅𝑢𝑇𝐷
−1

2⁄                     (3.2.8) 

Now the relation between{𝑅𝑢 , 𝑅𝑢′}, not have the same transformation, hence the Eigen value and 

Eigen value spread of both are different. By suitable choice of D make 𝑅𝑢′ become the identity 

matrix or a multiple of identity. 
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Let 𝑅𝑢 = 𝑈Λ𝑈∗ denote the eigen decomposition of 𝑅𝑢, and choose  T and D as 

T=U    and   D=Λ                      (3.2.9) 

Then𝑅𝑢 = Λ  𝑎𝑛𝑑 𝑅𝑢′ = 𝐼, i.e the choice of T and D decorrelate the entries of 𝑢̅𝑖 and the variances 

of the individual entries of 𝑢̅𝑖 are the {𝜆𝑘}  i.e. the eigen value of 𝑅𝑢. This choice of T is known as 

KLT (karhunen loeve transform), which is not practical, since it requires the knowledge of 𝑅𝑢. 

Hence another method is by choosing T as DFT or DCT matrices, which not give exactly a 

diagonal covariance matrix of 𝑅𝑢 , but close to diagonal i.e. 

𝑅𝑢 = 𝑇∗𝑅𝑢𝑇 ≈ 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙                   (3.2.10) 

3.2.1 General Transform Domain LMS Algorithm 

Consider a zero mean random variable d with realizations {𝑑(0), 𝑑(1),⋯ } and a zero mean 

random row vector u with realizations {𝑢0, 𝑢1, ⋯ }.the optimal weight vector 𝑤0 , that solves  

  𝐸|𝑑 − 𝑢𝑤|2𝑤
𝑚𝑖𝑛  

Can be approximated iteratively via 𝑤𝑖 = 𝑇𝑤̅𝑖, where T is some preselected unitary transformation 

and 𝑤̅𝑖 is updated as follows.  

𝜆𝑘(−1) = 𝜀(𝑎 𝑠𝑚𝑎𝑙𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑛𝑢𝑚𝑏𝑒𝑟)  𝑎𝑛𝑑 𝑟𝑒𝑝𝑒𝑎𝑡 𝑓𝑜𝑟 𝑖 ≥ 0                          (3.2.11) 

𝑢̅𝑖 = 𝑇𝑤̅𝑖 = [𝑢̅𝑖(0)   𝑢̅𝑖(1)    ⋯    𝑢̅𝑖(𝑀 − 1)     ]                 (3.2.12) 

𝑢̅𝑖(𝑘) = 𝑘𝑡ℎ 𝑒𝑛𝑡𝑟𝑦 𝑜𝑓  𝑢̅𝑖    

𝜆𝑘(𝑖) = 𝛽𝜆𝑘(𝑖 − 1) + (1 − 𝛽)|𝑢̅𝑖(𝑘)|
2,   𝑘 = 0,1,⋯ ,𝑀 − 1              (3.2.13) 

𝐷𝑖 = 𝑑𝑖𝑎𝑔{𝜆𝑘(𝑖)}                    (3.2.14) 

𝑒(𝑖) = 𝑑(𝑖) − 𝑢̅𝑖𝑤̅𝑖−1                    (3.2.15) 

𝑤̅𝑖 = 𝑤̅𝑖−1 + 𝜇𝐷
−1𝑢̅𝑖

∗𝑒(𝑖)                              (3.2.16) 

Where 𝜇 is a step size (usually small) and 0 ≪ 𝛽 < 1 
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Practically it is found that the DCT transformation is more successful in transforming 𝑅𝑢 to close 

to diagonal matrix. 

3.2.2 DFT Domain LMS Algorithm 

Consider a zero mean random variable d with realizations {𝑑(0), 𝑑(1),⋯ } and a zero mean 

random row vector u with realizations {𝑢0, 𝑢1, ⋯ }.the optimal weight vector 𝑤0  that solves  

𝐸|𝑑 − 𝑢𝑤|2𝑤
𝑚𝑖𝑛  

Can be approximated iteratively via𝑤𝑖 = 𝑇𝑤̅𝑖, where T is the unitary DFT matrix given by 

[𝐹𝑚𝑘] =
1

√𝑀
𝑒−

𝑗2𝜋𝑚𝑘

𝑀   , 𝑚, 𝑘 = 0,1,⋯ ,𝑀 − 1                             (3.2.17)     

𝑤̅𝑖 is updated as follows. The 𝑀 ×𝑀 diagonal matrix given by 

𝑆 = 𝑑𝑖𝑎𝑔 {1, 𝑒
−𝑗2𝜋

𝑀 , ⋯ , 𝑒
−𝑗2𝜋(𝑀−1)

𝑀 }                              (3.2.18) 

Start with 𝜆𝑘(−1) = 𝜖(𝑎 𝑠𝑚𝑎𝑙𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑛𝑢𝑚𝑏𝑒𝑟),𝑤−1 = 0, 𝑢̅−1 = 0, 𝑎𝑛𝑑 𝑟𝑒𝑝𝑒𝑡 𝑓𝑜𝑟 𝑖 ≥ 0 

𝑢̅𝑖 = 𝑢̅𝑖−1𝑆 +
1

√𝑀
{𝑢(𝑖) − 𝑢(𝑖 − 𝑀)}[1  1  ⋯   1]                                      (3.2.19) 

𝑢̅𝑖(𝑘) = 𝑘𝑡ℎ 𝑒𝑛𝑡𝑟𝑦 𝑜𝑓 𝑢̅𝑖  

𝜆𝑘(𝑖) = 𝛽𝜆𝑘(𝑖 − 1) + (1 − 𝛽)|𝑢̅𝑖(𝑘)|
2,   𝑘 = 0,1,⋯ ,𝑀 − 1                         (3.2.20) 

𝐷𝑖 = 𝑑𝑖𝑎𝑔{𝜆𝑘(𝑖)}                               (3.2.21) 

𝑒(𝑖) = 𝑑(𝑖) − 𝑢̅𝑖𝑤̅𝑖−1                               (3.2.22) 

𝑤̅𝑖 = 𝑤̅𝑖−1 + 𝜇𝐷
−1𝑢̅𝑖

∗𝑒(𝑖)                              (3.2.23) 

Where 𝜇 is a step size (usually small) and 0 ≪ 𝛽 < 1 

3.2.3 DCT LMS Algorithm 

Consider a zero mean random variable d with realizations {𝑑(0), 𝑑(1),⋯ } and a zero mean 

random row vector u with realizations {𝑢0, 𝑢1, ⋯ }.the optimal weight vector 𝑤0  that solves  

𝐸|𝑑 − 𝑢𝑤|2𝑤
𝑚𝑖𝑛  
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Can be approximated iteratively via𝑤𝑖 = 𝑇𝑤̅𝑖, where 𝑇 = 𝐶𝑇 and C is the DCT matrix 

[𝐶]𝑘𝑚 = 𝛼(𝑘) cos (
𝑘(2𝑚+1)𝜋

2𝑀
) ,   𝑘,𝑚 = 0,1,⋯ ,𝑀 − 1                          (3.2.24) 

𝛼(0) = 1
√𝑀
⁄ , 𝛼(𝑘) = √

2

𝑀
,   𝑓𝑜𝑟 𝑘 ≠ 0                            (3.2.25) 

𝑤̅𝑖 is updated as follows. The 𝑀 ×𝑀 diagonal matrix given by 

𝑆 = 𝑑𝑖𝑎𝑔{2 cos(𝑘𝜋 𝑀⁄ )}, 𝑘 = 0,1,⋯ ,𝑀 − 1                           (3.2.26) 

Start with 𝜆𝑘(−1) = 𝜖(𝑎 𝑠𝑚𝑎𝑙𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑛𝑢𝑚𝑏𝑒𝑟),𝑤−1 = 0, 𝑢̅−1 = 0, 𝑎𝑛𝑑 𝑟𝑒𝑝𝑒𝑡 𝑓𝑜𝑟 𝑖 ≥ 0 

𝑎(𝑘) = [𝑢(𝑖) − 𝑢(𝑖 − 1)] cos (
𝑘𝜋

2𝑀
) , 𝑘 = 0,1,⋯ ,𝑀 − 1                          (3.2.27) 

𝑏(𝑘) = (−1)𝑘[𝑢(𝑖 − 𝑀) − 𝑢(𝑖 − 𝑀 − 1)] cos (
𝑘𝜋

2𝑀
) , 𝑘 = 0,1,⋯ ,𝑀 − 1                        (3.2.28) 

𝜙(𝑘) = 𝛼(𝑘)[𝑎(𝑘) − 𝑏(𝑘)], 𝑘 = 0,1,⋯ ,𝑀 − 1                           (3.2.29) 

𝑢̅𝑖 = 𝑢̅𝑖−1𝑆 − 𝑢̅𝑖−2 + [𝜙(0)    𝜙(1)   ⋯    𝜙(𝑀 − 1) ]               (3.2.30) 

𝑢̅𝑖(𝑘) = 𝑘𝑡ℎ 𝑒𝑛𝑡𝑟𝑦 𝑜𝑓 𝑢̅𝑖  

𝜆𝑘(𝑖) = 𝛽𝜆𝑘(𝑖 − 1) + (1 − 𝛽)|𝑢̅𝑖(𝑘)|
2,   𝑘 = 0,1,⋯ ,𝑀 − 1              (3.2.31) 

𝐷𝑖 = 𝑑𝑖𝑎𝑔{𝜆𝑘(𝑖)}                               (3.2.32) 

𝑒(𝑖) = 𝑑(𝑖) − 𝑢̅𝑖𝑤̅𝑖−1                               (3.2.33) 

𝑤̅𝑖 = 𝑤̅𝑖−1 + 𝜇𝐷
−1𝑢̅𝑖

∗𝑒(𝑖)                   (3.2.34) 

By performing a simulation to compare with the convergence and performance of LMS, DCT-

LMS, DFT-LMS and Prewhitening method, it is found that the prewhitening filter gives better 

result than that of rest as shown in Fig.25 
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Fig.  25  comparison between LMS, DFT-LMS, DCT-LMS and DCT-LMS 

 

Now we apply DCT-LMS and DFT-LMS algorithm in incremental method, then we found that 

the DCT-LMS not only gives better convergence but also gives better performance than that of 

rest. In in frequency domain incremental, the process is same as the incremental method, only the 

difference is instead taking all the parameter time domain here we will take in frequency domain 

and introduce a term D in the weight updation equation. That is here first the data transform to 

frequency domain then apply to incremental strategies using the respective algorithm. The block 

diagram of frequency domain incremental strategy shown in Fig.26. 
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Fig.  26  Block diagram of frequency domain incremental LMS algorithm 

 

Now we will perform a simulation to compare the convergence rate and performance of all the 

algorithm i.e. adaptive incremental method, incremental steepest descent solution, and DCT-LMS 

and DFT-LMS algorithm using incremental method. It is found that the convergence rate and 

performance of DCT-LMS algorithm using incremental method gives better result than that of rest 

algorithm. The MSE (mean square error), EMSE (excess mean square error) and MSD (mean 

square deviation) comparison of all the algorithm as shown in Fig.27, Fig.28 and Fig.29. The MSE 

and EMSE of all the algorithm with respect to  node shown in Fig.30 and Fig.31 
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Fig.  27  Transient MSE performance at node 1 for incremental adaptive solution, 

stochastic steepest descent solution. Incremental DCT-LMS and incremental DFT-LMS 

 

.  

Fig.  28   EMSE performance at node 1 for incremental adaptive solution, incremental 

steepest descent solution. Incremental DCT-LMS and incremental DFT-LMS 
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Fig.  29   MSD performance at node 1 for incremental adaptive solution, incremental 

steepest descent solution. Incremental DCT-LMS and incremental DFT-LMS 

 

Fig.  30  MSE performance with respect to Node for all algorithm 
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Fig.  31  EMSE with respect to node for all the algorithm 

3.3 RLS ALGORITHM 

The RLS stands for recursive least square, RLS algorithm gives a more sophisticated way to 

approximate the input covariance matrix𝑅𝑢 [5]. Here we are not going through details of RLS 

algorithm, just proceed it to reach the algorithm using stochastic gradient method. Like LMS 

algorithm to find RLS algorithm we just start with the Newton’s recursion method [5]given by 

𝑤𝑖 = 𝑤𝑖−1 + 𝜇(𝑖)[𝜖(𝑖)𝐼 + 𝑅𝑢]
−1[𝑅𝑑𝑢 − 𝑅𝑢𝑤𝑖−1]                             (3.3.1) 

Let replace 𝑅𝑢 by some exponentially weighted average sample, given by; 

𝑅̂𝑢 =
1

𝑖+1
∑ 𝜆𝑖−𝑗𝑢𝑗

∗𝑢𝑗
𝑖
𝑗=0                                 (3.3.2) 

Where 𝜆 lies between, 0 ≪ 𝜆 ≤ 1. Let assume that the value of 𝜆 = 1, then the above expression 

becomes 

𝑅̂𝑢 =
1

𝑖+1
∑ 𝑢𝑗

∗𝑢𝑗
𝑖
𝑗=0                       (3.3.3) 

Choosing the value of 𝜆 is very important, by choose it less than one it requires more memory into 

the estimation of 𝑅̂𝑢. Because by choosing less than one 𝜆 would assign more weight to recent 

regressor and less weight to regressor in the remote past. By this the filter track the data in the 
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remote past and give more relevance to recent data so that changes in 𝑅𝑢 can be better tracked. 

Now let  choose step size 𝜇(𝑖) as  

𝜇(𝑖) = 1
(𝑖 + 1)⁄                       (3.3.4) 

And choosing regularization factor as  

 𝜀(𝑖) = 𝜆𝑖+1𝜖
(𝑖 + 1)⁄ , 𝑖 ≥ 0                     (3.3.5) 

By using the above data now the Newton’s recursion (2.6.140) become 

𝑤𝑖 = 𝑤𝑖−1 + [𝜆
𝑖+1𝜀𝐼 + ∑ 𝜆𝑖−𝑗𝑢𝑗

∗𝑢𝑗
𝑖
𝑗=0 ]

−1
𝑢𝑖
∗[𝑑(𝑖) − 𝑢𝑖𝑤𝑖−1]                (3.3.6) 

Now let we form a matrix 𝜙𝑖 that forms by combining the present and past data, then it can be 

write as 

𝜙𝑖 = (𝜆𝑖+1𝜀𝐼 + ∑ 𝜆𝑖−𝑗𝑢𝑗
∗𝑢𝑗

𝑖
𝑗=0 )                    (3.3.7) 

Now from the above definition of𝜙𝑖, we can write the 𝜙𝑖 in the form given by: 

𝜙𝑖 = 𝜆𝜙𝑖−1 + 𝑢𝑖
∗𝑢𝑖 , 𝜙−1 = 𝜀𝐼                    (3.3.8) 

Let    𝑃𝑖 = 𝜙𝑖
−1

, then applying the matrix inversion formula [5] we get 

𝑃𝑖 = 𝜆−1 [𝑃𝑖−1 −
𝜆−1𝑃𝑖−1𝑢𝑖

∗𝑢𝑖𝑃𝑖−1

1+𝜆−1𝑢𝑖𝑃𝑖−1𝑢𝑖
∗ ]                    (3.3.9) 

From the above recursion it is clear that for update form 𝑃𝑖−1 to 𝑃𝑖 the knowledge of recent 

regressor 𝑢𝑖 is required. The RLS algorithm can be summarize in this way given by: 

 

 

 

 

 

RLS algorithm: consider a zero mean random variable d with realizations{𝑑(0), 𝑑(1),⋯ }, 

and a zero mean random row vector u with realizations{𝑢0, 𝑢1,⋯ }. The optimal weight 

vector 𝑤0 that solves 

 𝐸|𝑑 − 𝑢𝑤|2𝑤
𝑚𝑖𝑛  

Can be approximated iteratively via the recursion 

𝑃𝑖 = 𝜆
−1 [𝑃𝑖−1 −

𝜆−1𝑃𝑖−1𝑢𝑖
∗𝑢𝑖𝑃𝑖−1

1 + 𝜆−1𝑢𝑖𝑃𝑖−1𝑢𝑖
∗
] 

𝑤𝑖 = 𝑤𝑖−1 + 𝑃𝑖𝑢𝑖
∗[𝑑(𝑖) − 𝑢𝑖𝑤𝑖−1], 𝑖 ≥ 0 

With initial condition 𝑃−1 = 𝜀
−1𝐼  𝑎𝑛𝑑 0 ≪ 𝜆 ≤ 1 
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Similarly another algorithm is there known as GN (Gauss Newton) algorithm. Here this algorithm 

not explained fully only gives the algorithm, so that we can compare it with LMS and RLS 

algorithm.  

  

  

 

 

 

 

 

 

 

Now we can perform a simulation to compare the RLS algorithm with LMS and GN algorithm. 

The Fig.32 provides the MSE comparison of RLS algorithm with the LMS algorithm, the Fig 

clearly discloses that the RLS algorithm has better convergence rate and performance than that of 

LMS algorithm.Fig.33 represents the MSE comparison of GN algorithm with the LMS algorithm. 

The simulation result clears the fact that the GN algorithm has better convergence rate than that of 

the LMS algorithm.Fig.34 represents the MSE performance comparison of RLS, GN and LMS 

algorithm. The result represent that the performance of RLS algorithm is better than that of GN 

and LMS algorithm.Fig.35 represents the MSE comparison of RLS,LMS and GN algorithm using 

incremental mode of cooperation and  Fig.36 and Fig.37 represents the EMSE and MSD 

comparison of all the three algorithm, form all the simulation result we get same conclusion that 

the performance of RLS algorithm is better than that of LMS and GN algorithm. 

GN algorithm: consider a zero mean random variable d with realizations{𝑑(0), 𝑑(1),⋯ }, 

and a zero mean random row vector u with realizations{𝑢0, 𝑢1,⋯ }. The optimal weight 

vector 𝑤0 that solves 

 𝐸|𝑑 − 𝑢𝑤|2𝑤
𝑚𝑖𝑛  

Can be approximated iteratively via the recursion 

𝑃𝑖 =
𝜆−1

1 − 𝛼
[𝑃𝑖−1 −

𝜆−1𝑃𝑖−1𝑢𝑖
∗𝑢𝑖𝑃𝑖−1

1 − 𝛼
𝛼 + 𝜆−1𝑢𝑖𝑃𝑖−1𝑢𝑖

∗
] 

𝑤𝑖 = 𝑤𝑖−1 + 𝑃𝑖𝑢𝑖
∗[𝑑(𝑖) − 𝑢𝑖𝑤𝑖−1], 𝑖 ≥ 0 

With initial condition 𝑃−1 = 𝜀
−1𝐼  𝑎𝑛𝑑 0 ≪ 𝜆 ≤ 1 and 0 < 𝛼 ≤ 0.1 
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Fig.  32  MSE comparison between RLS and LMS algorithm 

 

 

Fig.  33  MSE comparison between GN and LMS algorithm 
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Fig.  34  MSE comparison of RLS, LMS and GN algorithm 

 

Fig.  35  MSE performance comparison of RLS, LMS and GN algorithm using incremental 

strategies 
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Fig.  36  EMSE performance comparison of RLS, LMS and GN algorithm using 

incremental strategies 

 

Fig.  37  MSD performance comparison of RLS, LMS and GN algorithm using incremental 

strategies 
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3.4 Conclusion 

Transform domain algorithm like DCT-LMS and DFT-LMS algorithm provides a platform to 

achieve faster convergence and better steady state performance without practically implementation 

of prewhiten filter. Most practical purpose it is found that the DCT-LMS algorithm gives better 

result than that of DFT-LMS algorithm. Since it provide more accurate autocorrelation matrix of 

the input regressor of the required form mention earlier than that of other transform domain 

algorithm. Similarly the RLS algorithm and GN algorithm also provide better performance both 

in steady state and convergence than that of LMS algorithm. But the complexity of this type of 

algorithm is more than that of LMS algorithm. 
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Chapter 4 CONVERGENCE 

ANALYSIS OF VARRIABLE XE-

NLMF ALGORITHM 

 

The LMS (least mean square) algorithm has variety of practical application, since it is very simple 

to implement. It is found that for some application  the adaptive algorithm with higher order error 

signal Performs better result than that of LMS algorithm, one of the such algorithm is LMF(least 

mean forth) algorithm. It is found that this algorithm (LMF algorithm) performs better than that of 

LMS algorithm in the case of non-Gaussian additive noise. The performance of LMF algorithm 

also improves in Gaussian case by adding a square wave noise to the existing noise [6].  

Let we can perform one experiment to study the performance of LMF and LMS algorithm under 

different noise condition. First we will perform a simple simulation to study the performance of 

LMS, NLMS and LMF algorithm.  

4.1 LMF Algorithm 

Consider a zero mean random variable d with realizations {𝑑(0), 𝑑(1),⋯ } and a zero-mean 

random row vector u with realizations{𝑢0, 𝑢1, ⋯ }. The optimal weight vector that solves [5]  

  𝐸|𝑑 − 𝑢𝑤|4𝑤
𝑚𝑖𝑛                    (4.1.1) 

Can be approximated iteratively via the recursion 

𝑤𝑖 = 𝑤𝑖−1 + 𝜇𝑢𝑖
∗𝑒(𝑖)|𝑒(𝑖)|2,    𝑖 ≥ 0                   (4.1.2) 

Where 𝜇 is a positive step size (usually small) 

A simulation perform to compare the performance of LMS, NLMS and LMF algorithm. Taking 

the step size for LMS, NLMS and LMF is 0.007, 0.02 and 0.06, the result shown in Fig.38.Now 



 

68 | P a g e  
 

another simulation perform to compare the same only the change is let taking step size of LMF is 

0.02, then the output as shown inn Fig.39 

 

Fig.  38  Performance comparison of LMS, NLMS and LMF 

 

 

Fig.  39  Performance comparison of LMS, NLMS and LMF algorithm 
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The simulation results show that the performance NLMS is better than that of LMS and LMF 

algorithm under Gaussian noise case. Now let we perform another simulation by taking 

nongaussian noise and also Gaussian to compare the performance of LMS, NLMS and LMF 

algorithm. Let the input is an AR (auto regressor model), input 𝑥(𝑛) obtain from 

𝑥(𝑛) = 0.4𝑥(𝑛 − 1) + 𝑦(𝑛)                     (4.1.3) 

Where 𝑦(𝑛) is a Gaussian white process with unit variance. Let the system simulate for Gaussian, 

uniform and sinusoidal noise distribution, for all the case take𝑆𝑁𝑅 = 20.75𝑑𝐵. The step size for 

all case is given by 𝜇𝐿𝑀𝑆 = 2.571 × 10−5, 𝜇𝐿𝑀𝐹𝑢𝑛𝑖 = 2 × 10
−3, 𝜇𝐿𝑀𝐹𝑔𝑎𝑢 = 5.13 ×

10−4   𝑎𝑛𝑑 𝜇𝐿𝑀𝐹𝑠𝑖𝑛 = 3.05 × 10−3. The LMS MSE behavior same for all the noise distribution, 

since it depends only the noise variance. The LMF performance for different noise as shown in 

Fig.40. It clears that from simulation result the LMF algorithm performs better result than that of 

LMS algorithm. Same comparison can also do by performing a simulation using the incremental 

method cooperation as mentioned in (2.5.16).the simulation result shown in Fig.41. It also clearly 

reveals that the LMF algorithm performs better than that of LMS algorithm not only in Gaussian 

noise case but also nongaussian noise case. 

 

Fig.  40  performance comparison between LMF and LMS for different noise condition 
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Fig.  41  comparison of LMF and LMS algorithm for different noise condition using 

incremental method 

4.2 OPTIMIZED NORMALIZED ALGORITHM FOR SUBGAUSSIAN NOISE 

The LMF algorithm comes under the class of stochastic gradient based algorithm. The power of 

LMF lies in its faster initial convergence and lower steady state error relative to the LMS algorithm 

[18]. From previous result it is clear that it performs better in the case of sub Gaussian noise. 

Generally higher order algorithm requires a very small step size for stability, but in case of LMF 

algorithm it has of order three, hence it destroy the initial stability condition, the solution for this 

is to normalize the step size [19]. 

Here we can use two type normalized technique, in one case the step size normalized by the signal 

power known as XE-NLMF algorithm, in other case the step size normalized by combination of 

signal power and noise power. The XE-NLMF algorithm [20] represented by 

𝑤(𝑛 + 1) = 𝑤(𝑛) +
𝛾𝑥𝑒𝑒

3(𝑛)𝑥(𝑛)

𝛿+(1−𝜆)|𝑥(𝑛)|2+𝜆‖𝑒(𝑛)‖2
                   (4.2.1) 

The variable XE-NLMF algorithm [18] represented by 

𝑤(𝑛 + 1) = 𝑤(𝑛) +
𝛾𝑥𝑒𝑒

3(𝑛)𝑥(𝑛)

𝛿+(1−𝜆(𝑛))|𝑥(𝑛)|2+𝜆(𝑛)|𝑒(𝑛)|2
                  (4.2.2) 
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Where 𝛾𝑥𝑒 represents the step size. 𝑤(𝑛) Represents the filter coefficient vector of the adaptive 

filter. 𝑥(𝑛) is the input vector and 𝑒(𝑛) is the error vector. In XE-NLMF algorithm the LMF is 

normalized by signal power and error power balanced by the power parameter 𝜆.it has advantage 

that the signal power normalize the signal, while the error power reduces the outlier estimation 

error.in general both (4.2.1) and (4.2.2) can be represent by 

𝑤(𝑛 + 1) = 𝑤(𝑛) + 𝛾𝑥𝑒𝑓(𝑒(𝑛))𝑥(𝑛)                   (4.2.3) 

Where 𝑓(𝑒(𝑛)) represent the scalar function of the output estimation error. 

Some example of 𝑓(𝑒(𝑛)) given in the table 

Algorithm 𝑓(𝑒(𝑛)) 

LMS                                         e(n) 

LMF 𝑒(𝑛) 

NLMS 𝑒3(𝑛) ‖𝑥(𝑛)‖2⁄  

NLMF 𝑒3(𝑛) ‖𝑥(𝑛)‖2⁄  

XE-NLMF 𝑒3(𝑛) 𝛿 + (1 − 𝜆)‖𝑥(𝑛)‖2 + 𝜆‖𝑥(𝑛)‖2⁄  

Sign-LMS sign[𝑒(𝑛)] 

Table 1 example of 𝒇(𝒆(𝒏))  

This algorithm has great application in the dynamic channel, where the time variations of mixing 

parameter allow the algorithm changes in the channel opposed to the same algorithm with fixed 

mixing parameter. 

A simulation result can be perform to simple study the performance of fixed XE-NLMF algorithm, 

LMF algorithm, LMS and NLMS algorithm. Let the step size for LMS algorithm𝜇𝑙𝑚𝑠 = 0.007, 

the step size for other algorithms are𝜇𝑁𝐿𝑀𝑆 = 0.02, 𝜇𝐿𝑀𝐹 = 0.06, 𝜇𝑋𝐸−𝑁𝐿𝑀𝐹 = 0.5.The 

convergence performance of LMF, LMS, NLMS and XE-NLMF are shown in Fig.42. The result 

clears the fact that the convergence of fixed XE-NLMF better than that of rest. Here the value of 

𝜆 is set to 0.9. 
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Fig.  42  convergence performance of XENLMF, LMF, LMS and NLMS for 𝝀 = 𝟎. 𝟗 

4.3 VARIABLE NORMALIZED XE-NLMF ALGORITHM 

The mixing parameter 𝜆 lies in the interval [0,1] and weighted recursively to adjust the signal 

power and noise power. The error is defined as; 

𝑒(𝑛) = 𝑑(𝑛) − 𝑤𝑇(𝑛)𝑥(𝑛)                     (4.3.1) 

The error feedback quantity 𝜇(𝑛) updated according to the variable step size parameter 

𝜇(𝑛 + 1) = 𝑣𝜇(𝑛) + 𝑝(𝑛)|𝑒(𝑛)𝑒(𝑛 − 1)|                   (4.3.2) 

Where the quantity 𝑒(𝑛)𝑒(𝑛 − 1) determines the distance of 𝑤(𝑛)to the optimum weights, |∙| 

denotes the absolute value operation, 𝑝(𝑛) updated according to sum of past three samples of 

𝜆(𝑛) according to following way: 

𝑝(𝑛) = [𝜆(𝑛 − 2) + 𝜆(𝑛 − 1) + 𝜆(𝑛)]𝑎                             (4.3.3) 

𝑎 𝑎𝑛𝑑 𝑣 𝑎𝑟𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 . 

Here it is important to choose𝜆(𝑛), since it controls the signal power and error power. 

𝜆(𝑛) = 𝑒𝑟𝑓{𝜇(𝑛)}                           (4.3.4) 
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Where 𝑒𝑟𝑓{∙} is refers to error function, the main aim to take this is to restrict 𝜇(𝑛)in the 

interval[0,1]. The parameter v and a  also restricted to interval[0,1]. To avoid zero feedback we 

have to take the initial value of p is 0.5. 

This will provide automatic adjustment for  𝜆(𝑛) based on the estimation error. If the error is large 

than 𝜆  approaches to unity and provide faster adaption. While when error function is small, 𝜆 is 

adjusted to smaller value for lower steady state error. Based on this motivation the variable XE-

NLMF [18] algorithm can be express as 

𝑤(𝑛 + 1) = 𝑤(𝑛) +
𝛾𝑥𝑒𝑒

3(𝑛)𝑥(𝑛)

𝛿+(1−𝜆(𝑛))|𝑥(𝑛)|2+𝜆(𝑛)|𝑒(𝑛)|2
                             (4.3.5) 

4.3.1 Convergence Analysis 

The mean convergence analysis can be done by taking the mean of weight error deviation,𝑣(𝑛) =

𝑤(𝑛) − 𝑤∗. Considering the LMF convergence analysis in [21] and [20]. The difference equation 

for the weight error defined by: 

𝐸{𝑣(𝑛 + 1)} = [𝐼 − 3𝛾𝐸{𝛾2(𝑛)}𝑅]𝐸{𝑣(𝑛)}                              (4.3.6) 

Mean convergence of XE-NLMF can be verified by replacing 𝛾 with normalized step size as 

follows: 

𝐸{𝑣(𝑛 + 1)} = [𝐼 −
3𝛾𝑥𝑒𝐸(𝜂

2(𝑛))𝑅

(1−𝜆(𝑛))𝜎𝑥2+𝜆(𝑛)𝜎𝑒2
] 𝐸{𝑣(𝑛)}                             (4.3.7) 

Where‖𝑥(𝑛)‖2 = 𝜎𝑥
2  𝑎𝑛𝑑 ‖𝑒(𝑛)‖2 = 𝜎𝑒

2. 𝑓𝑜𝑟 𝑡𝑟[𝑅] = 𝑁𝜎𝑥
2, now we can write a general 

condition for equation (4.3.7) by: 

𝛾𝑥𝑒 <
1

3𝑁
(
(1−𝜆(𝑛))

𝜎𝜂2
+
𝜆(𝑛)𝜎𝑒

2

𝜎𝜂2𝜎𝑥2
)                               (4.3.8) 

Here we observe two conditions for stability first for 𝜆(𝑛) = 1 and second for𝜆(𝑛) = 0. Now the 

effect of 𝜆 on XE-NLMF can be shown in Fig.43.We know that the error is large during initial 

condition and then gradually decreases towards the minimum. Hence the signal power‖𝑥(𝑛)‖2, 

act as a threshold to reduce the step size when the error convergence to minimum. The combination 

(1 − 𝜆(𝑛))|𝑥(𝑛)|2 + 𝜆(𝑛)|𝑒(𝑛)|2 has advantage that the normalizing the signal power improves 
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stability and |𝑒(𝑛)|2 will decreases the outlier distribution of 𝑒3(𝑛) in the recursive updating 

equation of XE-NLMF algorithm [18]. 

 

Fig.  43   Effect of lambda in the fixed XE-NLMF 

4.4 Simulation Results 

Let an unknown system is modelled by N=10 time invariant filter with weights given by: 

𝑤∗ = [0.035 − 0.068 0.12 − 0.258 0.9 − 0.25 0.10 − 0.07 0.067 − 0.067]𝑇  

The input signal 𝑥(𝑛) is obtained by passing the white Gaussian noise  𝑢(𝑛) through an AR (auto 

regressor) model,𝑥(𝑛) = 𝑥(𝑛 − 1) + 0.6𝑢(𝑛). The signal to noise ratio for whole experiment set 

to 20dB. Two types of noise used to perform the result one the Gaussian noise and second one is 

the binary additive noise (or nongaussian noise).here we take the average of 300 experiments to 

plot the weight error norm, 10𝑙𝑜𝑔10(‖𝑤∗ − 𝑤(𝑛)‖2 ‖𝑤∗‖2⁄ ).The step size for XE-NLMF and 

variable XE-NLMF algorithm set to 0.1 and the step size for the NLMS algorithm set to be 0.2. 

Other parameters are v=0.98 and a=0.9.the convergence performance of variable XE-NLMF 

algorithm, NLMF and NLMS algorithm as shown in Fig.44. The simulation result clears that the 

variable XE-NLMF algorithm adapts faster than that of the XE-NLMF algorithm and NLMF 

algorithm. The variable XE-NLMF algorithm not only adapts faster but also producing lower 

steady state weight error norm of more than 15dB. Hence this the advantage of using variable 
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mixed power parameter for further improvement of the XE-NLMF algorithm.in the second case 

we will take binary additive noise instead of additive Gaussian noise. The Fig.45 represents the 

convergence performance of NLMS algorithm, XE-NLMF algorithm and variable XE-NLMF 

algorithm under binary additive noise case. Fig.46 represents the MSE performance of XE-

NLMF,variable XE-NLMF and NLMS algorithm using incremental adaptive solution 

algorithm.The simulation results show that for binary additive noise case the variable normalized 

XE-NLMF algorithm fast convergence and with lower steady state error. It is found that the weight 

error norm improves about 25dB over NLMS algorithm.  

 

Fig.  44  convergence performance for the variable XE-NLMF algorithm, the XE-NLMF 

algorithm (λ=0.9) and the NLMS algorithm in White Gaussian noise using incremental 

adaptive algorithm 
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Fig.  45  convergence performance of NLMS, XE-NLMF and variable XE-NLMF under 

Binary additive noise case using incremental adaptive algorithm 

 

Fig.  46  MSE performance of NLMS, XE-NLMF and variable XE-NLMF under AWGN 

case using incremental adaptive algorithm 
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Chapter 5 CONVEX COMBINATION 

OF ADAPTIVE FILTER  

 

The convex combination of adaptive filter comes into picture to improve the performance of filter 

which is not possible by a single designed filter.in such type combination a set of filters connected 

via a supervisor to achieve a universal combination and improves the filter performance in the 

MSE(mean square error) sense. The filters take part in the combination may have different order, 

different step size and different adaptive algorithm. In such type of combination the adaptive 

parameter aggregates the components of filters via convex combination, so that the resulting 

combination achieves faster convergence and higher accuracy in steady state, and also shows the 

better tracking property if the combined parameter are properly adapted [22]. 

5.1 PARALLEL INDEPENDENT STRUCTURE 

In parallel independent structure two filters are connected in parallel, having independent adaptive 

filter operation. Convex combination of two parallel independent filter [10] shown in Fig.47. Here 

two type filter are used to form the convex combination. One is the fast filter (LMS1,having large 

step size) and another is accurate filter (LMS2, having small step size). Two filters are convexly 

combined through a combining parameter𝜆(𝑖). The overall weight vector for this type of 

combination is given by 

𝑤𝑖 = 𝜆(𝑖)𝑤1,𝑖 + [1 − 𝜆(𝑖)]𝑤2,𝑖                    (5.1.1) 

Where 𝑤1,𝑖 and 𝑤2,𝑖 are individual LMS filters updates independently according the LMS updation 

method [5]given by 

𝑤𝑘,𝑖 = 𝑤𝑘,𝑖−1 + 𝜇𝑘𝑢𝑖
∗[𝑑(𝑖) − 𝑢𝑖𝑤𝑘,𝑖−1],   𝑘 = 1,2                  (5.1.2) 
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Fig.  47  convex combination of two adaptive filter 

 

Here 𝑢𝑖 is an input regressor vector of size 1 × 𝑀, variance 𝜎𝑢
2 and 𝜇𝑘 is an filter step size. The 

plant output model is given by 𝑑(𝑖) = 𝑢𝑖𝑤
0 + 𝑣(𝑖). Where 𝑣(𝑖) a gaussian is noise with variance  

𝜎𝑣
2 and 𝑤0 is a 𝑀 × 1 column vector that models the unknown plant. 

The combining parameter 𝜆(𝑖) plays an important role in the convex combination of the filter, it 

is also known as activation function [22] given by: 

𝜆(𝑖) =
1

1+𝑒−𝑎(𝑖)
                       (5.1.3) 

Where the parameter 𝑎(𝑖) is used to minimize the error 𝑒(𝑖) = 𝑑(𝑖) − 𝑢𝑖𝑒𝑖−1 and the updated 

equation for  𝑎(𝑖) given by 

𝑎(𝑖) = 𝑎(𝑖 − 1) + 𝜇𝑎𝑒(𝑖)[𝑦1(𝑖) − 𝑦2(𝑖)]𝜆(𝑖)[1 − 𝜆(𝑖)]                 (5.1.4) 

Where 𝑦𝑘(𝑖) = 𝑢𝑖𝑤𝑘,𝑖−1, 𝑘 = 1,2  and 𝜇𝑎 is the step size. The resulting algorithm is known as 

convex LMS algorithm. Let we perform a simulation to study how the convex algorithm works, 

for this purpose take𝜇1 = 0.07, 𝜇2 = 0.007, 𝜇𝑎 = 1000, 𝜎𝑢
2 = 1 𝑎𝑛𝑑 𝜎𝑣

2 = 10−3. The EMSE 

(excess mean square error) given by𝐸𝑀𝑆𝐸 = 𝐸|𝑢𝑖(𝑤
0 − 𝑤𝑖−1)|

2. Fig.2-41 represents the EMSE 

curve for convex LMS algorithm, fast filter (LMS1) and accurate filter (LMS2). The Fig.48 clearly 
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indicates that the convex combination algorithm track the transient response of the faster filter 

(LMS1) and reach the steady state performance of the more accurate filter(LMS2). Fig.49 

represents the convex combination algorithm using incremental adaptive algorithm. 

 

Fig.  48  EMSE of the LMS filter and their convex combination averaged over 200 

realization 

 

Fig.  49  EMSE of the LMS filter and their convex combination averaged over 200 

realization using incremental adaptive algorithm 
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5.2 SERIES COOPERATIVE STRUCTURE 

The CLMS algorithm having advantage over the component of the filter, but it is clear that the 

transient performance of the accurate filter is not relevant and the steady state of the fast filter is 

wasted i.e. maximum time performance of one filter totally destroyed by the combiner 𝜆. This is 

caused because of the parallel filter combination and independent operating nature of the filter. In 

this operation it awaits the accurate filter to catch up the order to quick compute. 𝜆 Can be operated 

as a switching mechanism in stationary environment. The advantage of parallel combination is 

simple design of the combiner. 

The switching time can be reduced by ad-hoc weight transfer(𝑤1 → 𝑤2). Since the accurate filter 

are corrupted by the higher gradient noise arising from the fast filter, a control mechanism required. 

 

Fig.  50   series topology 

5.3 SWITCHING ALGORITHM 

The ad-hoc weight transfer process motivated and also implemented without utilizing the control 

mechanisms. Fig.50 represents topologically series connection of the filter and now 𝜆 can be 

continuously transfer weights. The resulting algorithm is simple , inspired by incremental 

cooperative structure(INC-COOP1) [10]and can be summarized as follows: 
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{

𝑤1,𝑖 = 𝑤𝑖−1 + 𝜇1𝜆(𝑖)𝑢𝑖
∗[𝑑(𝑖) − 𝑢𝑖𝑤𝑖−1]

𝑤2,𝑖 = 𝑤1,𝑖 + 𝜇2[1 − 𝜆(𝑖)]𝑢𝑖
∗[𝑑(𝑖) − 𝑢𝑖𝑤1,𝑖]

𝑤𝑖 ← 𝑤2,𝑖

                             (5.3.1) 

 

The Fig.50 shows that the 𝜆(𝑖)𝑎𝑛𝑑 [1 − 𝜆(𝑖)] are placed inside the block 𝑤1,𝑖 𝑎𝑛𝑑 𝑤2,𝑖. The 

incremental step indicated by the dashed arrow.  Now the filters are no more independent, they are 

cooperative and balanced by the factor𝜆. Here 𝜆 not only work as a combiner but also at the same 

time decreasing the step size. 

The potential of the series combination can be improved if we implement the simultaneous 

operation. For simultaneous operation the 𝜆 should be more efficient. The algorithm for the 

simultaneous operation, inspired by incremental cooperative structure (INC-COOP2) is given by 

{
 
 

 
 𝑤1,𝑖 = 𝑤𝑖−1 + 𝜇1𝜆(𝑖)𝑢𝑖

∗[𝑑(𝑖) − 𝑢𝑖𝑤𝑖−1]

𝑤2,𝑖 = 𝑤1,𝑖 + [
𝜇1𝜆(𝑖)+[1−𝜆(𝑖)𝜇2]

1

𝛾

]

𝑤𝑖 ← 𝑤2,𝑖

                   (5.3.2) 

Where 𝛾 ∈ (0,1] is a step size contracting factor, it is used to improve the steady state performance, 

at the same time maintaining the transient performance. 𝜆 Should be design in such a way such 

that adaptive filters are operate simultaneously. 

5.3.1 Deterministic Design of the Combining Parameter 

Now we get a two type of algorithm mentioned in (5.3.1) and (5.3.2), hence we can make a fair 

comparison between this two algorithms. For this design of 𝜆 is very important, it can be chosen 

as in the case of parallel structure, as given by: 

𝜆(𝑖) =
1

1+𝑒𝑠(𝑖−𝑛)
                      (5.3.3) 

Where ‘n’ is an activation instant and‘s’ controls the curve smoothness. The choice of [𝑠, 𝑛] is 

very important for the better performance and for better meaningful comparison between two 

algorithm mentioned in (5.3.1) and (5.3.2). 
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Consider 𝑤0 =
1

√𝑀
[1  1  ⋯   1] 𝑎𝑛𝑑 𝑀 = 10 𝑤𝑖𝑡ℎ 𝑠𝑖𝑔𝑛𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝜎𝑢

2 = 1 𝑎𝑛𝑑 𝜎𝑣
2 =

10−3.let the step size for fast filter is 𝜇1 = 0.07 𝑎𝑛𝑑 𝑓𝑜𝑟 𝑎𝑐𝑐𝑢𝑟𝑎𝑡𝑒 𝑓𝑖𝑙𝑡𝑒𝑟 𝑖𝑠 𝜇2 = 0.007. for 

CLMS we have [𝑠 = 0.012, 𝑛 = 550 ] 𝑎𝑛𝑑 𝑓𝑜𝑟 𝑏𝑜𝑡ℎ  INC-COOP the value will be [𝑠 =

0.015, 𝑛 = 120 ]. for INC-COOP2 the value of 𝛾 taken is 𝛾 = 0.1. 

Note that in Fig.52 it is clear that the algorithm (5.3.1) i.e. INC-COOP1 it follow the CLMS 

algorithm as mentioned in the parallel case and reproducing the steady state performance of the 

accurate filter. At the same time the simultaneous performance algorithm mentioned in (5.3.2) i.e. 

INC-COOP2 produce faster convergence and small steady state error for same 𝜆 value. Fig.51 

represents the time revolution curve for 𝜆(𝑖) for both the algorithm. 

 

Fig.  51  Time revolution curve of  λ(i) for both CLMS and INC-COOP 
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Fig.  52  EMSE curve for the fast filter, accurate filter, CLMS, INCCOOP1 and INC-

COOP2 using incremental adaptive algorithm 

 

5.3.2 A Simple Design for the Mixing Parameter 

We know that the simple rule in case of adaptive filter is to low pass a quantity let 𝑞(𝑖) and feed 

back to it to the adaptive process, i.e. it is like this 

𝑎(𝑖) = 𝛼𝑎(𝑖 − 1) + 𝛽𝑞(𝑖)                     (5.3.4) 

Where  𝛼 𝑙𝑖𝑒𝑠 𝑏𝑒𝑡𝑤𝑤𝑒𝑛 [0,1]. Such type of concepts used in the several application of the 

adaptive filter such as step-size design, robust filtering and regularization control etc. practically 

it was found that  the value of 𝛼 𝑙𝑖𝑒𝑠 𝑏𝑒𝑡𝑤𝑤𝑒𝑛 [0.95,0.99] to perform good learning for a wide 

Signal to Noise ratio(SNR) range. The values of 𝛽 can be taken as  𝛽 = 1 − 𝛼 𝑜𝑟 < 1 − 𝛼. For 

low signal to noise ratio the value of  𝛽 taken as  𝛽 = 0.1(1 − 𝛼). Here 𝑞(𝑖) is taken as  𝑒2(𝑖), 

where 𝑒(𝑖) = 𝑑(𝑖) − 𝑢𝑖𝑤𝑖−1. The value of 𝜆𝑠(𝑖) taken in this case as 

𝜆𝑠(𝑖) =
2

1+𝑒−𝑎(𝑖)
− 1                      (5.3.5) 

𝜆𝑠 Should be lies in between [0,1] 
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Fig.  53  time evaluation of  𝝀𝒔(𝒊)  using the simple design technique for both CLMS and 

INC-COOP algorithm 

 

Fig.  54  EMSE performance for fast filter, accurate filter, CLMS, INC-COOP1 and INC-

COOP2 algorithm using simple design technique 
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3dB. Take 𝛽 = 1 − 𝛼 in the case of SNR=10dB and for the rest case take 𝛽 = 0.1(1 − 𝛼). Fig.55, 

Fig.56 and Fig.57 clearly spectacles the fact that the INC-COOP algorithm always performs better 

than that of all filter i.e than that of accurate filter, fast filter and CLMS combination. 

 

Fig.  55  EMSE performance of fast filter, accurate filter, CLMS, INC-COOP1 and INC-

COOP2 for SNR=10 dB using incremental adaptive algorithm 

 

Fig.  56  EMSE performance of fast filter, accurate filter, CLMS, INC-COOP1 and INC-

COOP2 for SNR=5 dB using incremental adaptive algorithm 
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Fig.  57  EMSE performance of fast filter, accurate filter, CLMS, INC-COOP1 and INC-

COOP2 for SNR=3 dB using incremental adaptive algorithm 

 

5.4 Conclusion 

The CLMS algorithm introduce a new background for combining adaptive filters. Motivated by 

simple though meaningful scenario, the new technique is able to naturally circumvent the 

stagnation effect without sacrificing the steady state performance. This is achieved with no extra 

complexity. The same effect in the parallel-independent case is alleviated only partially and 

relies on extra weight transfer control mechanisms. 
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Chapter 6 CONCLUSION AND 

FUTURE WORK 

6.1 Conclusion 

Distributed signal processing has wide number of application in the field of signal processing. Day 

to day number of algorithms are developed to improve the convergence rate, steady state 

performance and to reduce the computational complexity. Here in this thesis number of algorithms 

like incremental steepest descent algorithm, incremental adaptive solution, INC RLS, INC GN, 

INC LMF, INC XE-NLMF, INC variable XE-NLMF, INC CLMS, QWDILMS, INC DCT-LMS, 

INC DFT-LMS algorithms are tested to achieve the same. In case of INC RLS, INC-GN algorithm 

it achieve the goal but the computational complexity is more than that of previous. The algorithms 

are tested under different noise condition and at different SNR case it is found that the lower order 

error algorithms like INC RLS,INC GN,INC DCT-LMS,INC GN  and INC DFT-LMS perform 

better than that of LMS algorithm under Gaussian noise case, but it fails to achieve the same under 

non Gaussian noise case like under binary noise , sinusoidal noise and uniform noise. By 

experiment it is found that the higher order noise algorithm like LMF algorithm, XE-NLMF and 

variable XE-NLMF algorithm performs better than that of LMS algorithm under non Gaussian 

noise case. 

In all case we consider the SNR is uniform i.e. the variance of noise in all the node present in the 

network is less than that of one. But it not happens always practically. It is found that in number 

practical application the SNR of one or more node is less than that of other on that case the 

algorithms are fails to give better performance by using incremental adaptive strategies. To 

improve the performance the algorithms like QWDILMS developed which improves the steady 

state performance under noisy node condition by assigning special weights to each node. But the 

disadvantage of this algorithm is it only improves the steady state performance but not effects on 

the convergence rate. But by proper design the convergence rate of the QWDILMS  algorithm also 

will improve. 
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It is found that the frequency domain incremental algorithm such that INC DCT-LMS and INC 

DFT-LMS achieves both i.e. the faster convergence rate and better steady state performance than 

that of INC LMS algorithm with same computational complexity i.e O(M).but the design is little 

bit complex than that of LMS algorithm. 

In distributed signal processing one of the better developments is the CLMS algorithm. Generally 

the fast filter provides better convergence rate and the accurate filter provides better steady state 

performance, but it is very difficult to achieve the both in a single filter. Since it is very difficult 

to design and also very complex, which cannot be reliable. The CLMS algorithm achieves both, 

by connecting the two filters in parallel or in series. The simulation results provide in the chapter 

5 clarifies that the series connection achieves both in better way than that of parallel. CLMS 

algorithm provides a new platform in the field of adaptive filter to improve the performance with 

a simple connection. 

6.2 Future work 

All the algorithms are studied till now by using incremental adaptive strategies .The disadvantage 

of incremental strategy is that if one the node is failed because of any reason then we cannot 

recover back the information i.e. the process is stop there , since in incremental strategy the 

information flow is unidirectional. Hence to overcome this the study and implement of all the 

algorithm using other mode of cooperation is essential, which comes under my future work. Also 

study of kalman filter and its application to the real signal processing field, study of blind algorithm 

and its implementation using different mode of cooperation comes under in my future work. 
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