
DEVELOPMENT OF AN FPGA BASED
IMAGE PROCESSING INTELLECTUAL

PROPERTY CORE

SREEJITH M

DEPARTMENT OF ELECTRICAL

ENGINEERING

NIT ROURKELA

ROURKELA, INDIA

May 2014

http://tinyurl.com/ncnd6te
http://tinyurl.com/ncnd6te
http://www.nitrkl.ac.in

DEVELOPMENT OF AN FPGA BASED
IMAGE PROCESSING INTELLECTUAL

PROPERTY CORE

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF TECHNOLOGY

IN

DEPARTMENT OF ELECTRICAL ENGINEERING

BY

SREEJITH M

ROLL NO: 212EE1201

UNDER GUIDANCE OF

DR. (PROF). SUPRATIM GUPTA

DEPARTMENT OF ELECTRICAL ENGINEERING

NIT ROURKELA

May 2014

http://tinyurl.com/ncnd6te
http://tinyurl.com/ncnd6te
http://www.nitrkl.ac.in

Declaration of Authorship

I, Sreejith M, declare that this thesis titled, “Development of an FPGA Based

Image Processing Intellectual Property Core" and the work presented in it are

my own. I confirm that:

� This work was done wholly or mainly while in candidature for a research

degree at this University.

� Where any part of this thesis has previously been submitted for a degree

or any other qualification at this University or any other institution, this

has been clearly stated.

� Where I have consulted the published work of others, this is always clearly

attributed.

� Where I have quoted from the work of others, the source is always given.

With the exception of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I

have made clear exactly what was done by others and what I have con-

tributed myself.

Signed:

Date:

i

NIT ROURKELA

CERTIFICATE

This is to certify that the thesis entitled, “Development of an FPGA Based Im-

age Processing Intellectual Property Core" submitted by Sreejith M in partial

fulfillment of the requirements for the award of Master of Technology Degree

in Electrical Engineering with specialization in Electronics System and Com-

munication during 2013-2014 at the National Institute of Technology, Rourkela

(Deemed University) is an authentic work carried out by him under my super-

vision and guidance.

To the best of my knowledge, the matter embodied in the thesis has not been

submitted to any other university / Institute for the award of any Degree or

Diploma.

Date: Dr.(Prof). Supratim Gupta

Dept. of Electrical Engineering

National Institute of Technology

Rourkela-769008

Odisha, India

http://www.nitrkl.ac.in

Abstract

Traditional image processing algorithms are sequential in nature. When these

algorithms are implemented in a real-time system, the response time will be

high. In an embedded platform, such algorithms consumes more power be-

cause of more number of clock cycles required to execute the algorithm. With

the advent of Field Programmable Gate Arrays (FPGA), massively parallel ar-

chitectures can be developed to accelerate the execution speed of several image

processing algorithms. In this work , such a parallel architecture is proposed to

accelerate the SOBEL edge detection algorithm. The architecture is simulated

in Modelsim 10.2C student edition platform. To simulate this architecture, a

model of video acquisition system is developed. This model will convert the

incoming frames to digital composite video signals which can be processed by

the edge detection architecture. An external software developed in Matlab will

convert the frames in to hexadecimal format, and will feed the video acquisition

model. The output of the edge detection processor will be a digital composite

signal. A display module will convert the digital composite video signals in

to hexadecimal format. Then with the help of an external Matlab program, the

original image will be reconstructed. The result shown compares the sequen-

tial and parallel environments, and shows significant improvements in FPGA

based implementations. The Modelsim simulation of SOBEL based edge detec-

tion algorithm for a 256 × 256 frame, gave a result in 0.019 seconds for a clock

speed of 10MHz, where as a Matlab based simulation took 0.22 seconds to fin-

ish this operation, which is a significant acceleration.

Moreover, a new software simulation platform was developed as a part of this

project, which will let the developer to give input as image and the output will

be reproduced in the same format, while all the background processing will be

carried out in VHDL. The simulation results are shown in this simulation plat-

form. This software can be used as a simulation platform for any FPGA based

image processing operations.

This work has wider scope and applications. FPGA based edge detection sys-

tem can serve as the basic step for implementations of complex computer vision

algorithms. The implementation of fast face detection in a digital camera, fast

object tracking, policing and interactive surveillance, and finally the applica-

tions like object tracking and chasing are some of the areas where this work can

be made use of.

Acknowledgements

When I was about to start this work, my guide Dr.Supratim Gupta told: "There

are three realms of work in this world: creation, maintenance, and destruction.

There are very few people in the first category, and those belonging here can

revolutionize the world". Starting with these words, he supported and moti-

vated me through out my work. From the bottom of my heart, I would like to

express my gratitude to Dr.Supratim Gupta for all the support and inspiration.

When I lost the final ray of hope, when I was frustrated seeing nothing other

than some junk straight line graphs in my simulation, when I felt the horrible

face of uncertainty, it was my friends and fellow lab mates, who brought me

back to the world of hope. I thank them: Mathew Francis, Prathima Addanki,

Ram Prabhakar, Sajith Kumar K K, Sankar Srinivasan, and Uma Goguluth: for

the sleepless nights, support, motivation, and funny game sessions.

I thank Mr. Susanth Panigrahi and Jefri Lazarus for the stimulating discussions,

knowledge sharing sessions, and all the support that they have given me during

this work.

I thank Mr. George Tom Varghese for the help and support that he gave me to

procure the Xilinx ISE software from the department of electronics, nit Rourkela.

Last but not the least, I would like to thank my family: my parents Aravindak-

shan.U and Sathee Devi.M, for supporting me throughout my life.

Signed:

Date:

iv

“I dedicate this work to the society, to my country, and for all those who possesses a

dream to revolutionize the world "

Sreejith Markkassery

Contents

Declaration of Authorship i

Abstract iii

Acknowledgements iv

Contents vi

List of Figures x

1 Introduction And Problem Statement 1
1.1 Introduction . 1
1.2 Embedded Image processing . 2
1.3 Motivations for Hardware Image Processing 3
1.4 Parallelism . 4
1.5 Why FPGA . 5

1.5.1 Parallel operation . 5
1.5.2 Speed of execution . 6
1.5.3 Flexibility . 6
1.5.4 Low power design . 6

1.6 Selection of an FPGA board . 6
1.7 Problem Statement . 8

1.7.1 System Functionality . 8
1.7.2 System Performance . 9
1.7.3 Operating Environment . 9
1.7.4 Targeted Hardware Platform 9

1.8 Implementation Strategy . 10

2 Background on Embedded Image Processing 12
2.1 Introduction . 12
2.2 Embedded Imaging Techniques . 12

2.2.1 Real-time System . 12
2.2.2 Performance Measurements of a Real-Time System 13

vi

Contents vii

2.2.2.1 System Latency 13
2.2.2.2 System Throughput 13
2.2.2.3 System Bandwidth 14

2.2.3 Serial Vs Parallel Processing 14
2.2.4 Conversion of serial Algorithms to Parallel 15
2.2.5 Resource Vs Speed . 16
2.2.6 System Band-width Vs Resources 16
2.2.7 Band width Vs Speed . 16

2.3 FPGA System Architectures . 17
2.3.1 Standalone architecture . 17
2.3.2 Co-processor architecture 17
2.3.3 Hardware Accelerator . 18
2.3.4 Hybrid processing . 18

2.4 FPGA Computational Architectures 18
2.4.1 Stream Processing . 18
2.4.2 Systolic arrays . 19
2.4.3 Random Access Processing 20

2.5 FPGA Mapping Techniques . 21
2.5.1 Time constraints . 21

2.5.1.1 Pipe-lining . 21
2.5.1.2 Process synchronization 22

2.5.2 Band width constraints . 22
2.5.2.1 Double buffering 24
2.5.2.2 Cache Memory . 24
2.5.2.3 Row buffering . 25

2.5.3 Summary . 26

3 Design Of A VHDL Test-bench For Real-time Image Processing 27
3.1 Introduction . 27
3.2 Motivation for the Test-Bench . 27
3.3 A Real-time Video Processing System 28
3.4 Composite Video Signal . 29
3.5 VHDL as an Image Processing Platform 30
3.6 Image Processing Test Bench . 31

3.6.1 Image to Hex-Image Converter 32
3.6.1.1 Hex-Image File . 32

3.6.2 VHDL Camera Module . 33
3.6.3 VHDL Display Module . 34
3.6.4 Test Bench Output Signals 34

3.6.4.1 Clock Pulse . 35
3.6.4.2 Horizontal Synchronous Pulse 36
3.6.4.3 Vertical Synchronous Pulse 36
3.6.4.4 Data Signal . 36
3.6.4.5 Data valid signal 36

Contents viii

3.7 Summary . 37

4 Real-time Video Edge Detection System Design 38
4.1 Introduction . 38
4.2 Edge Detection . 39

4.2.1 Digital Approximations Of Gradient 40
4.2.2 Sobel Operator . 40

4.3 Architecture Selection/Parallel Algorithm Development 42
4.3.1 FPGA System Architecture Selection 42
4.3.2 FPGA Computational Architecture Selection 42
4.3.3 Selection of FPGA Mapping Techniques 42

4.3.3.1 Selection of Cache Memory 43
4.4 Clock Speed and Data Bus Width 43

4.4.1 Selection of Clock Speed . 43
4.4.2 Selection of Data Bus Width 44

4.5 Over all architecture . 44
4.5.1 Buffering Section . 45
4.5.2 Caching Section . 46
4.5.3 Indexing Section . 46
4.5.4 The Pip-line . 48

4.6 Simulation Results . 50
4.7 Summary . 51

5 Software Platform to Validate FPGA Based Real-Time Applications 53
5.1 Introduction . 53
5.2 Motivation for New Simulation Environment 53
5.3 Features of Realsim . 54

5.3.1 Test Bench . 54
5.3.2 Improved Visual Perception 55
5.3.3 Integrated Waveform Analysis 56
5.3.4 Hardware Simulation Reports 56

5.4 Conclusion and Future Scope . 56

6 Conclusion and Future Scope 57
6.1 Conclusion . 57
6.2 Applications and Future Scope . 58

A Realsim 1.0 Tutorial 60
A.1 System Requirements . 60
A.2 Installation . 61
A.3 Over View of Graphical User Interface 61
A.4 Simulation . 61
A.5 Viewing Results . 64

Contents ix

Bibliography 68

List of Figures

1.1 Instruction level pipeline . 3
1.2 Overall system model . 8
1.3 Implementation Strategy . 10

2.1 parallel processing . 15
2.2 Stream line processing . 19
2.3 Systolic arrays . 20
2.4 Parallelism achieved in random access processing 20
2.5 pipeline stages . 23
2.6 Global counter . 23
2.7 buffering . 24
2.8 Caching . 25
2.9 Row Buffering . 26
2.10 Row Buffering . 26

3.1 Real-time video processing system 29
3.2 Composite video signal . 30
3.3 Composite video signal . 30
3.4 Video processing test bench . 31
3.5 Hex image file . 32
3.6 Hex image file example . 33
3.7 Composite video signal generation algorithm 34
3.8 Hex image file from composite video signal 35
3.9 Simulation results . 35

4.1 Video edge detection system . 39
4.2 Sobel mask . 41
4.3 Edge detection system architecture 45
4.4 Edge detection system data flow 46
4.5 Edge detection system Indexing . 47
4.6 Sequence of operations in indexing module 48
4.7 Edge detection system Pip-line . 49
4.8 Edge detection system Pip-line . 50
4.9 Simulation of FPGA based edge detection system in realsim . . . 51

x

List of Figures xi

4.10 Simulation of FPGA based edge detection system in Modelsim . 52

5.1 Realsim test-bench view . 55

A.1 Extract Matlab run time environment 61
A.2 Initial screen of reasim . 62
A.3 The tool boxes . 62
A.4 Select the test image . 63
A.5 Input image . 63
A.6 Edge detection . 64
A.7 Simulate the edge detection . 65
A.8 Simulation Results . 65
A.9 Viewing test bench . 66
A.10 HDL simulation report . 66
A.11 Comparing HDL and Matlab output 67
A.12 Waveform analysis in realsim . 67

CHAPTER 1

Introduction And Problem Statement

1.1 Introduction

Most of the image processing algorithms are sequential in nature. High-level

languages like Mat-lab, C++, Open-CV etc. are the common platforms to de-

velop and validate such algorithms. These platforms are most suited in appli-

cations, which does not have any time restrictions. In other words, where the

response time is not so important. In real-time systems, the high level platforms

will not be a good choice due to time and resource constraints.

With the advent of Micro-controllers, it is possible to design embedded image

processing systems, which are portable, less power and time consuming. In

micro-controller/dsp processors, the algorithm execution is sequential in na-

ture. The speed of execution is greatly increased in advanced processors, which

makes use of pipe-lined, and super-scalar architectures. The advanced proces-

sors incorporates parallelism at instruction level, but the over all execution of

the algorithm will be sequential in nature. Thus a micro controller based system

can not effectively utilize the inherent parallelism involved in most of the im-

age processing algorithms. This imposes a limit on maximum processing rate.

Thus such devices are not a suitable candidate for time critical applications.

Field Programmable Gate Arrays(FPGA) on the other hand gives a platform

for parallel execution. In an FPGA based design, different hardware blocks

1

Chapter 1. Introduction And Problem Statement 2

executes the sequences of an algorithm in parallel, and thus provides quick re-

sponse and high frame rate. Since the overall operations are performed in less

number of clock cycles, the power consumption will be reduced considerably,

compared to micro-controller/dsp-processor based designs. The following sec-

tions describes the advantage of FPGA based image processing in detail.

1.2 Embedded Image processing

An embedded system is a small computer which is embedded with in an inte-

grated circuit. Such systems are designed to perform a specific tasks. Embed-

ded systems which are designed to carry out image processing operations are

known as Embedded Imaging Systems[1]. Most common example for such a

system is a digital camera. Here the pre-processing, and compression of the im-

age is done using micro controllers. Generally, the embedded image processing

systems are time critical in nature. Such systems are known as Real-Time sys-

tems. In other words, real-time systems demands response with in a specified

time, other wise the system is considered to be failed. An example for such a

system is , one used to determine the area for crash landing of an unmanned

areal vehicle(UAV), using passive sensors(Camera) .During crash landing, the

UAV has to quickly search for a suitable premiss, and should make a decision.

Such an application demands very high speed execution of image processing

algorithms. In such applications, FPGA’s can effectively replace embedded con-

trollers.

A micro-controller or a dsp processor, executes algorithm sequences sequen-

tially. The instructions will be fetched, decoded and executed. In advanced

controllers, the fetching decoding and execution will be done in a pipe-line.

This is shown in figure1.1. Super scalar architectures implements instruction

level parallelism. The concept is similar to a pipe lined architecture. In a single

clock cycle, multiple instruction will be executed using redundant functional

units with in a single processor. In super scalar architecture, multiple instruc-

tions need not be in different stages, like that in a pipe-lined CPU (central pro-

cessing unit). Using such advanced architectures, the overall execution speed

of an algorithm can be improved by a small fraction. In-order to achieve signif-

icant acceleration, different algorithm sequences has to be executed in parallel.

Chapter 1. Introduction And Problem Statement 3

FIGURE 1.1: A 5 stage instruction level pipe-line

Such a design can not be implemented in traditional micro-controller/dsp pro-

cessors.

1.3 Motivations for Hardware Image Processing

As explained in the previous section, a micro-controller/dsp processor executes

algorithm sequences sequentially. If multiple hardware circuits can be designed

to carry out different algorithm sequences in parallel, there will be considerable

increase in overall execution speed. Suppose a system has to be designed such

that the brightness of the incoming frames has to be increased. Brightness of an

image can be increased by multiplying each pixel gray level with a constant α,

and then adding a gain constant β to it as in equation1.1

g(i, j) = f(i, j)× α + β (1.1)

In a typical micro-controller/dsp processor based design, this will involve stor-

ing the frames in a buffer, and then performing the operations mentioned in

equation1.1 to each pixel gray level, in a loop. Suppose each addition instruc-

tion takes 12 clock cycle, and each multiplication instruction takes 36 clock cy-

cle, then total number of clock cycles required to process one pixel will be 48. If

the incoming frames are of size 100 × 100, then such a design will need 100 ×
100 × 48 clock cycles to process the entire frame.

Now suppose, there are 10000 adder and multiplier circuits, one cosponsoring

Chapter 1. Introduction And Problem Statement 4

to each pixel. In such a design, all the pixels can be processed in parallel. Thus

total operation can be implemented in just two clock cycles. In principle, such a

system will be 12000 times faster than that of a micro controller/dsp processor

based system. In actual designs, algorithm will be divided in to parallel blocks

and will be executed simultaneously. In a nutshell, the significant increase in

processing speed is the major motivation behind hardware image processing. If

the processing time is less, the power consumption also will be reduced. Hence

it can be concluded that hardware image processing systems give better perfor-

mance in time critical applications. In the current scenario, most of the image

processing algorithms are running in a sequential environment. Hence a re-

search in FPGA based image processing has grater significance and scope in

time critical applications.

1.4 Parallelism

Most of the image processing algorithms have inherent parallelism in them. The

processing speed can be improved by executing the sequences concurrently. In

principle, all the algorithm sequences can be implemented in a separate proces-

sor. But if each step depends on previous algorithm sequences, the processors

will have to wait for the results from previous stages. Thus the reduction in

response time of the system will be very little. For practical implementations

in a parallel architecture, algorithm should have significant number of parallel

operations. This is Known as Amdahl’s law [1] . Let ’s’ be the proportion of

total number sequences in an algorithm, that has to be executed sequentially.

Let ’p’ be the proportion of the algorithm that can be executed in parallel, using

N different processors. Then the best possible speed up that can be obtained is

given by equation1.2 [1]

Speedup ≤ s+ p

s+ p
N

=
N

1 + (N − 1)s
(1.2)

The equality can only be achieved if there are no additional overhead like com-

munication, introduced as a result of conversion of sequential algorithm to a

parallel one. In practical scenario, the actual speed up will be always less than

the number of processors N. As N increases, the execution speed also increases.

Chapter 1. Introduction And Problem Statement 5

Ideally, if N tends to infinity, the over all execution speed of the algorithm de-

pends solely on the proportion of the algorithms, that has to be executed se-

quentially. This is given in equation1.3[1]

lim
N→∞

Speedup =
1

s
(1.3)

Thus to achieve significant speed-up, the proportion of algorithms which can be

executed in parallel should be more. Most of the image processing algorithms

are parallel in nature.

1.5 Why FPGA

An FPGA based design is inherently parallel in nature. Different algorithm

sequences will be mapped to different hardware modules in a FPGA, which

operates concurrently. The main reasons for choosing FPGA as an embedded

image processing platform are as given below.

• Parallel operation

• Speed of execution

• Flexibility

• Low power design

1.5.1 Parallel operation

An embedded imaging algorithm can be implemented either using a micro-

controller/dsp-processor or using a FPGA. A micro controller is a mini com-

puter embedded in a chip, which does a specific task. The hex format instruc-

tions which are burned in to the chip will be executed sequentially and will be

decoded to control signals, to perform the required task.

From an outer perspective FPGA is a collection of logic elements which can

be electrically re wired. FPGA implements an application by developing sep-

arate hard ware for each functionality and hence such designs are inherently

Chapter 1. Introduction And Problem Statement 6

parallel[8]. Each instructions that the programmer enters will be mapped in to

a separate hardware component. Thus, such a design is suitable in those image

processing algorithms, which has significant amount of parallelism in them.

1.5.2 Speed of execution

Due to parallel nature of FPGA’s, the execution speed[8] will be considerably

increased. In practical applications, the image will be partitioned in to different

sub blocks and then each block will be processed in parallel. This will speed up

the over all algorithm. The total number of processor will be equal to number

of parallel blocks.

1.5.3 Flexibility

An FPGA based system provides full programming flexibility[8]. Current FP-

GAs have sufficient logic resources to implement even complex applications in

a single chip. Modern FPGA based systems will adaptively reconfigure accord-

ing to the different operating environments. Hence FPGA based systems are

inherently flexible.

1.5.4 Low power design

An FPGA based circuit implements several operations in one clock cycle simul-

taneously. This allow clock speed to be lowered significantly. In fact there will

be a reduction in clock speed over a serial processor of the magnitude of 2 or

more. Reduction in clock speed corresponds to reduction in dynamic power

consumption[8] of the system. Thus hence FPGA based design facilitates a low

power design.

1.6 Selection of an FPGA board

Many manufacturers sell several FPGA development boards and evaluation

boards. In particular, most boards provide some form of external memory and

Chapter 1. Introduction And Problem Statement 7

some means of interfacing with a host computer. Since image processing in-

volves large amount of parallel data manipulation, such systems should have

largest possible FPGA. Basic minimum requirements of an FPGA kit which can

be used for embedded image processing are[2]

• A codec to decode the composite video signal in to its color components

and to digitize it (common interface includes USB camera link etc.).

• Some method to display the result of image processing.

• The system must have sufficient memory to buffer one or more frames of

video data.

The above requirements are very general, and the selection of a particular board

is application dependent. The basic specifications that one has to look at while

going for an FPGA board are

• Number of pins for peripheral connections(Number of multi standard

pins)

• Logic Density

– This indicates the number of logic cells in side an FPGA. The capacity

of an FPGA is specified in terms of number of logic cells.

• Dedicated carry logic, dedicated pipe-lined multipliers, etc to increase the

execution speed

• Amount of physical memory (Distributed and Fast block ram)

• DCM (Digital Clock Manager) clock frequency range, is another parame-

ter for applications that demands high frame rate

• Availability of an embedded controller for processing serial parts of the

algorithms, and for video acquisition

• Cost and availability of support

All the above parameters are not important in all designs. But a complicated

image processing system typically makes use of all the above facilities. Thus

careful selection hardware is a vital step in any FPGA based real-time design.

Chapter 1. Introduction And Problem Statement 8

1.7 Problem Statement

The objective of this project is to develop a hardware architecture to implement

video edge detection algorithm. The work will be focussed on image process-

ing operations over a single frame, which can be easily extended to multiple

frames. The architectures should be developed with an aim to implement it in

Zynq - 7000 SOC (System on Chip) FPGA board. The specifications of the tar-

geted IP core are given below. The schematic description of the overall problem

is given in figure1.2

FIGURE 1.2: Overall system model

1.7.1 System Functionality

The developed hardware system should be able to capture continuous video

stream from a digital camera and should be able to process it to detect edges in

each frame. The threshold value to detect edges should be adaptively computed

for each frame. The system should display the processed frames on a display

device with detected edges distinguished with white color. In the simulation

Chapter 1. Introduction And Problem Statement 9

environment a model should be developed, to simulate the functionality of a

digital camera (Acquisition System). The image data should be converted in to

signals, that are identical to the signals from a digital camera. FPGA based im-

age processing module should be simulated in software platform. This module

should accept inputs from the simulation model of acquisition system, should

produce the edge detected frame, and should display it in image/video format

in a Graphical User Interface (GUI). The GUI should allow users to analyse the

output wave forms and data flow.

1.7.2 System Performance

The performance of the system is evaluated by the number of frames the system

can process per second. The targeted performance is 50 frames per second for

256 × 256 frames, which is far above the frame rate that can be obtained in a

sequential environment like Matlab (In Matlab it is 10 to 12 frames per second).

The clock speed of the system has to be designed according to the targeted

system speed. Pipe-lining method will be adopted to achieve higher speeds,

at comparatively lower clock speeds[11]. Another important measurement of

system performance is system latency. It is the difference between the time

at which pixels are fed in to the system and and time at which a completely

processed pixels are obtained at the output. The system is expected to have a

latency less than 0.009 seconds.

1.7.3 Operating Environment

In principle, the system should be able to detect edges in all conditions. But due

to time constraints of the project the operating environment is fixed at natural

day light conditions. A good constant light is assumed and the pre-processing

modules to compensate for bad light will not be implemented as a part of this

project.

1.7.4 Targeted Hardware Platform

The targeted hardware platform is Zynq-7000-SOC FPGA Evaluation board.

This board has a in built video acquisition system (VITA 2000 Image sensor),

Chapter 1. Introduction And Problem Statement 10

and dedicated IP cores to acquire frames to main memory. The board has a

physical memory of 1 GB, which is sufficient for most of the image processing

applications. The board has an inbuilt HDMI (High Definition Media Interface)

Codec(Coder Decoder) which can be utilized for HD (High Definition) display

of processed outputs. In this project, the inbuilt video acquisition and arm pro-

cessor will be made use of to detect the edges.

1.8 Implementation Strategy

The overall project is split in to four phases as in figure1.3.

In the first phase, the system functionality and performance parameters were

FIGURE 1.3: Project Implementation Strategy

established. Literature on standard embedded imaging techniques(Chapter2)

was conducted. Furthermore, a study on FPGA and its application in embed-

ded image processing was carried out. The embedded image processing tech-

niques(Chapter2), to realize the performance parameters were identified and

short listed in this phase. Exceptional cases in which the system fails, were iden-

tified and documented.

Chapter 1. Introduction And Problem Statement 11

The second and third phase will be carried out in parallel. In the second phase,

the image processing algorithm was selected. The sequences of algorithm that

can be converted in to parallel were estimated(Chapter4). Based on this esti-

mation, FPGA system architecture was selected(Chapter2). At this stage a com-

parative study was carried out to estimate the speed up achieved by parallel

processing.

The next phase is FPGA architecture selection. This was done in parallel with

the phase two. Based on the parallel algorithm developed, suitable FPGA sys-

tem architecture(Chapter2) was selected. Thereafter, the FPGA computational

architecture(Chapter2) was selected based on the established system perfor-

mance measurements .Next step in this phase was to select the FPGA mapping

techniques(Chapter2) so as to meet the timing and band width constraints.

The last phase of the project is system implementation and simulation. The

overall architecture was be implemented in VHDL, and was simulated using

ModelSim and Xilinx ISE(Chapter4). A test bench was developed, to model

the image acquisition system and this model sourced the actual edge detection

architecture(Chapter3). A detailed system testing was carried out in this phase

and the variations from the expected results were mitigated in each iteration.

Moreover, a new software platform was developed to effectively simulate the

overall FPGA architecture(Chapter5). The new simulator will show the result

in image format, unlike the traditional VHDL simulators like modelsim and

Xilinx ISE.

CHAPTER 2

Background on Embedded Image Processing

2.1 Introduction

An image processing algorithm implemented in an embedded platform is known

as embedded image processing. There are two types of embedded image pro-

cessing systems. Hardware and software based. Hard ware embedded systems

are relatively faster and mostly designed using an FPGA . Since FPGA’s are re-

configurable, the same flexibility to that of a software based embedded system

with an improved speed can be achieved, but at the expense of increased cost

and difficulty level in system design.This chapter briefly describes the general

properties of an embedded imaging system.

2.2 Embedded Imaging Techniques

2.2.1 Real-time System

A real-time system[1] is one in which the response to an event must occur

within a time limit, otherwise the system is considered to have failed. From an

Image processing perspective, a real-time imaging system is one that acquires

images, processes those image to produce some results, and then utilize this

results for further processing. The response to the event should occur with in

12

Chapter 2. Embedded Imaging Techniques 13

the specified time. The examples are Robot vision system, in which captured

images will be analyzed to find out obstacles in its path.

Real-time systems are categorized into two types: hard and soft real time.In

a hard real-time system, the system is considered to be failed if the response

doesn’t happen with in the specified time. The crash landing of an unnamed

areal vehicle is an example . If the landing site is not determined with in a

specified time, the system is considered to be failed. On the other hand, a soft

real-time system is one in which system will not be completely failed , even if

the responses are late. An example is video transmission via the internet. If a

frame is delayed or not decoded properly then it will exacerbate the quality of

the video.

2.2.2 Performance Measurements of a Real-Time System

2.2.2.1 System Latency

In simple words latency[1] of an embedded imaging system is the difference

between the the time at which a pixel is read and the time at which it is dis-

played after internal processing. Lesser the latency the better the system is.

One method to improve the latency is to increase the system clock speed. But

this would result in larger power consumption. Another and most efficient

method is to implement a multi-stage pipeline. A pipeline is collection of paral-

lel hardware units, which simultaneously processes different pixels at the same

time.

2.2.2.2 System Throughput

The system throughput is synonymous to system band width. From the per-

spective of an embedded imaging system, system throughput is the number

of pixels processed in a single clock pulse. More than one pixel operation will

demand more time, and lesser clock speed. This will reduce overall system

speed, but the throughput will be increased. Increased system throughput can

be achieved through multi-stage Pipe-lined designs(Chapter5). In such designs,

while the current pixels is in it’s last processing stage, the previous one might be

in the penultimate stage. Thus the number of pixels processed in a single clock

Chapter 2. Embedded Imaging Techniques 14

cycle will depend on the number of pipe-line stages. The individual pipe-line

stages should posses equal timings, to achieve maximum throughput.

2.2.2.3 System Bandwidth

System band width is defined as the total memory usage of the system in one

clock cycle. In embedded imaging Systems, frames will be stored in a buffer.

The pixels will be accessed from this main memory, and will be processed and

written back in to the memory. Such a system will have frequent memory ac-

cesses to fetch a single pixel, and to write back the processed pixel. Frequent

memory access will create pixel bottlenecks, and will increase the system la-

tency. High system band width will adversely affect the system efficiency. The

system band width can be optimized using cache memories. The pixels can be

fetched as packets of four or eight, and can be stored in cache memories. Access

of cache memories are faster than that of main memories like block ram.

2.2.3 Serial Vs Parallel Processing

Sequential image processing platforms are based on serial computer architec-

ture. Such a serial processor operates by fetching the instructions sequentially,

and by decoding it in to arithmetic and logic operations. This task will be per-

formed by the ALU (Arithmetic Logic Unit). The rest of the CPU (central pro-

cessing unit)feed ALU with necessary data. A compiler will compile the algo-

rithm in to sequence of instructions, and these instructions will be decoded by

the CPU(Central Processing Unit) and ALU during each clock cycle. The basic

operation of the CPU is therefore to fetch an instruction from memory, decode

the instruction to determine the operation to perform, and execute the instruc-

tion.

An image processing algorithm consists of a sequence of image processing op-

erations. This is a form of temporal parallelism. This parallel nature can be

utilized with a pipe-lined multiple processor architecture as shown below in

the figure 2.1 . The data passes through each processor while it proceeds. In

other words each processor applies its operations on the data and passes it to

next stage. Considerable amount of acceleration can be achieved if processors

Chapter 2. Embedded Imaging Techniques 15

don’t have to wait for the input from any other stages.If the algorithm has sig-

nificant amount of sequential operations, one processor will have to wait for the

result of other. This will incur additional communication overhead. However,

the system throughput can improve since the first processor is processing data

while a part of the data is being processed in the second processor. Data will be

sent to the output device, before the completion of total operations, to reduce

the system latency .

FIGURE 2.1: A processor array used to execute operations in parallel

2.2.4 Conversion of serial Algorithms to Parallel

An algorithm can be implemented in a massively parallel architecture, only if it

has significant amount of sequences that can be executed in parallel. Algorithm

sequences which has inter dependencies , will create bottle necks and additional

communication overhead. Thus it is important to convert all possible sequential

algorithm sequences in to parallel ones. Once the parallel sequences are iden-

tified, each sequence will be mapped to a hardware architecture/circuit. This

process will be repeated for all the identified parallel processes. In the next step,

these mapped sub-circuits will be integrated, and the miscellaneous communi-

cation overhead between each sub-circuit will be investigated. Aggregation of

all individual circuit will collectively produce the desired result.

After establishing the overall architecture for parallel sequences of the algo-

rithm, next stage will be the design of sequential part. Here the communication

over head between the parallel blocks will be estimated. The communication

channel and protocol between parallel and sequential processors will be de-

signed. A detailed description such techniques are presented in chapter5. The

integration between the parallel and sequential processors is critical. There will

be stealth interactions between two modules, which were not identified during

Chapter 2. Embedded Imaging Techniques 16

the initial stages. These faults should be mitigated iteratively. Rigorous integra-

tion testing is essential in each iteration.

2.2.5 Resource Vs Speed

In an FPGA based design, the availability of resource is a key factor. FPGA

resources are specified in terms of logic density. It indicates the number of

logic cells inside an FPGA. The more the resources, higher will be the speed.

Moreover, if the selected board has dedicated carry logic, pipe-lined multipli-

ers and ALUs, the execution speed will be further improved. The improved

speed comes with high cost. The high-end FPGAs with advanced resources,

are highly expensive. Hence a trade-off between the cost and speed will have

to be maintained.

2.2.6 System Band-width Vs Resources

In an embedded image processing design, high system band width will lead to

increased system latency, and hence will create pixel bottle necks. The system

band width can be minimized, if the the high speed memory resources in an

FPGA are sufficiently high. A large cache memory will considerably reduce the

number of frequent access to main memories, and will save the system band

width. A design with cache memories to hold both data and results is highly

efficient.

2.2.7 Band width Vs Speed

The system band width and speed of operation are inversely proportional to

each other. Higher bandwidth will result in higher system latency and the sys-

tem will be sluggish. System speed can be improved by increasing the clock

speed. But the clock speed should be synchronized with the incoming data

stream, other wise data will be lost. Furthermore, the clock speed should be

sufficient to complete a pixel operation in a single stage of a multi stage pipe-

lined design.

Chapter 2. Embedded Imaging Techniques 17

2.3 FPGA System Architectures

An FPGA system architecture defines the overall structure of the system, that

is going to be implemented. The selection of this architecture depends on the

proportion of sequences in an algorithm that can be executed in parallel. At the

architecture selection stage of a project, available FPGA system architectures

should be short listed.

2.3.1 Standalone architecture

In this architecture the entire application is implemented using an FPGA based

parallel processor[1]. Several hardware blocks will execute different sequences

of the algorithm concurrently . The maximum benefit can be extracted if the

significant portion of the algorithm can be executed in parallel. Such architec-

tures provides maximum speed of operation and higher efficiency. In general

such architectures are known as massively parallel architecture. This project is

implemented in a stand alone massively parallel architecture.

2.3.2 Co-processor architecture

In complicated image processing algorithms, there will be sequences, which

will have to wait for the execution of previous or future sequences. If such

sequential operations are implemented using a parallel processor, it will exac-

erbate situation because of the communication overhead. In these scenarios a

co-processor architecture[1] can be utilized. Major chunk of the algorithm will

be executed by parallel processor and the sequential part will be implemented

in a serial processor. Proper communication protocol has to be defined between

two processors. Parallel processor will be an FPGA based processor and gener-

ally the sequential processor will be micro-controller based.

Chapter 2. Embedded Imaging Techniques 18

2.3.3 Hardware Accelerator

This architecture can be utilized when most of the algorithm sequences has

inter-dependencies[1]. As a result, most of the sequences will have to be ex-

ecuted sequentially. In this kind of designs, a sequential processor will do the

major chunk of algorithm and some operations which can be executed in par-

allel will be fed to parallel processor. The communication overhead between

parallel and serial processors should be properly addressed. Best example of

such an architecture is floating point processor associated with high end pro-

cessors. The complex floating point arithmetic operations will be executed by a

dedicated processor, and the result will be passed on to a cache memory, which

will be shared between both the processors (serial and parallel).

2.3.4 Hybrid processing

This architecture is similar to a co-processor architecture except the fact that the

algorithm load will be equally shared between the serial and parallel proces-

sors. This architecture can be utilized in situations where only inner most loops

of a sequential algorithm can be executed in parallel.[1].

2.4 FPGA Computational Architectures

The computational architecture defines how the computational aspects of the

algorithm are implemented. In other words it describes how each image pro-

cessing operations are performed inside an FPGA. The selection of computa-

tional architectures are application dependent. The incoming data rate, inter

dependencies in algorithm sequences, system architecture of an FPGA, avail-

able resources etc. are some key parameters that has to be considered while

selecting computational architectures.

2.4.1 Stream Processing

In any embedded vision application, the data is captured using a digital camera.

One method to process the incoming frames are to store them in a frame buffer

Chapter 2. Embedded Imaging Techniques 19

and then process each frame in parallel. But in this case the number of memory

access will be large and consequently the response time will increase. If the

pixels do not have dependency with previous one, they can be processed on

the fly. In other words the pixels can be processed while they are being read

from the camera. This processing is known as stream processing[1]. To reduce

the response time, maximum processing has to be done while streaming the

image. A pictorial representation of stream processing is given figure2.2

FIGURE 2.2: Stream line processing

One of the main disadvantages of stream processing is fixed clock rate. The

clock rate is constrained by the input frame rate. If the clock rate is slower

than the input frame speed, several frames will be lost. System latency will be

minimum in stream processing.

2.4.2 Systolic arrays

A systolic array is a one or 2 dimensional array of processors, in which data

will be processed at the time of streaming, and will be passed between adjacent

processors. A systolic array[7] differs from stream processing in the direction

of data flow. In the later it is unidirectional, whereas in the former data can be

moved in both the directions. Thus if a preceding pixel has any dependency on

the current pixel, it will be fed back to the previous processor stage. Compared

to the stream processing, the communication overhead is large because of the

feedback involved. The operations will be performed in each clock cycle. This

kind of architecture is mostly used in object detection and tracking applications.

The figure2.3 shows a pictorial description of systolic arrays[11].

Chapter 2. Embedded Imaging Techniques 20

FIGURE 2.3: Computational architecture using systolic arrays

2.4.3 Random Access Processing

In a random access processing[2] method, the pixels can be accessed anywhere

from the frame. To achieve this, a frame buffer should be implemented. The

incoming frames will be accumulated in the buffer and any pixels form this

buffer may be processed randomly. This kind of architecture is useful when

algorithm has significant portion of sequences, which cannot be executed in

parallel. This kind of processing is equivalent to a sequential data processing.

One of the added advantages is that there will not be any hard constraint on

the system clock as in the case of stream processing. But system latency will be

more, due to frequent and large number of memory access.

Data parallelism can be achieved by partitioning different parts of the image to

separate processors. This needs multiple copies of the hardware block, corre-

sponding to each image part. Each part of the image will be in the local buffer

of its corresponding hardware block. Implementation of parallelism in random

access processing is shown in figure2.4. In this example the frame is divided in

to four parts.

FIGURE 2.4: Example of parallel processing using random access architecture

Chapter 2. Embedded Imaging Techniques 21

2.5 FPGA Mapping Techniques

FPGA mapping techniques describes how efficiently each image processing op-

erations are mapped on to FPGA resources. In other words, these are the stan-

dard techniques adopted to achieve desired system performance in terms of

speed, memory and resources. During the architecture selection phase of the

project, a detailed list of constraints and method to improve the system effi-

ciency will be short-listed. Three major constraints has to be addressed, while

mapping sequential algorithm sequences in to an FPGA. These are:

• Time constraints

• Bandwidth Constraints

• Resource constraints

The resource utilization depends on the efficiency of the design. It has to be

taken care at the logic design level. Following sections describes standard tech-

niques used to address first two constraints.

2.5.1 Time constraints

In real-time applications incoming data rate is one of the major constraint. The

data processing has to be done at pixel rate or faster to prevent the data lose.

Low level pipe-lining[7] is one of the technique used to overcome this difficulty.

2.5.1.1 Pipe-lining

Pipe-lining splits an operation in to smaller stages, and completes the operation

in several stages[3] [1]. As a result the propagation delay in a single stage or

the delay in a single clock cycle will be reduced. Since only a portion of the

operation is implemented in a single clock cycle, the over all clock speed can be

increased. Thus to complete one operation, more than one cycle will be needed.

If this hardware is duplicated, multiple pixels can be processed at a time. The

number of pixels that can be processed simultaneously depends on the total

Chapter 2. Embedded Imaging Techniques 22

stages in a pipe-line.

As an example consider the below equation.

y = ax2 + bx+ c

= (a× x+ b)× x+ c (2.1)

The above equations can be implemented using one,two and four stage pipes

as shown in 2.5. But the optimum latency can be achieved by a 2 stage pipe

as it improves the system throughput. In figure2.5, the two stage pipeline is

most efficient. This is because the addition and multiplication operations are

evenly distributed between two stages. In the case of four stage pipeline, stages

one and three has multiplication operations, where as stages two and four has

addition operations. A multiplication operation need more time than an addi-

tion operation. In other words, distribution of stage timing is not even. This

will generate imbalance, and will increase the system latency. This effect can be

mitigated by re-timing the sequences. In this technique, a part of multiplication

operation from stage one will be completed in stage two. So proper selection of

number of pipe-line stages is most important in FPGA designs.

2.5.1.2 Process synchronization

If all of the external events driving the system follows a specific pattern and if

the processing time or latency is evenly distributed among the operations, then

global scheduling[1] can be used. This can be accomplished by using a global

event counter[1] which synchronizes and schedules the events, as shown in

Figure 2.6. The various operations are then scheduled by determining when

each operation requires its data and matching the count.

2.5.2 Band width constraints

The incoming frames should be partially or completely stored in most of the im-

age processing operations. Current FPGA systems have large off chip memory

resources. But the inefficient use of these resources will lead to a poor system

Chapter 2. Embedded Imaging Techniques 23

FIGURE 2.5: Pipe-lining example. Top: Performing the clock cycle in one stage;
middle: implementation using a two-stage pipeline; bottom: Spreading the

calculation over four stages.[1]

FIGURE 2.6: Synchronization of events using global scheduling

Chapter 2. Embedded Imaging Techniques 24

design. If the system off-chip memory is frequently used , it will affect the re-

sponse time of the system as well as system latency. Techniques used to mitigate

memory constraints are summarized in below sections.

2.5.2.1 Double buffering

Double buffering[1] is used in FPGA mapping to reduce number of memory

operations. It is used between two successive image processing operations to

avoid the bottle neck, when using a shared memory. This technique is mostly

used with pipe lining or with random access processing. Data will be pro-

cessed on the fly, and will be loaded to buffer for random access processing.

This technique fits exactly in between the steam and random access processing

path. It uses two connected memory banks, as shown in Figure 2.7. The up-

stream process captures data from input and writes one of the memory banks.

Downstream process reads the data in parallel from the other bank and dis-

plays it. When the frame is complete, the role of the two banks will be reversed,

so that the data just uploaded by the upstream will be now available for the

downstream process. Consequently one frame period will be added to system

latency.

FIGURE 2.7: Double Buffering

2.5.2.2 Cache Memory

A cache memory[7] is a high speed memory located close to the processor,

which holds most frequently used data or results of the previous operations.

Chapter 2. Embedded Imaging Techniques 25

It acts as a high speed buffer. The advantage of such memory is that the data

access will be considerably faster compared to off chip memories, and hence

the response time will be considerably improved.

On an FPGA, a cache can be used to improve the system latency. In most of the

designs each processing element will be accompanied with a cache memory.

Hence the system band width will be considerably reduced. In some config-

urations there will be a data cache and result cache to store normal data and

the computed results. In some applications, the cache is placed beside the pro-

cessor and the main memory, as shown in 2.8, with accesses made to the cache

rather than the memory.

FIGURE 2.8: Caching as an interface to memory

2.5.2.3 Row buffering

One of the method in which caching is implemented in image processing op-

erations is row buffering[1]. Consider 3×3 window filter as in figure2.9– each

output pixel is a function of 8 neighbouring pixel in the window. In normal

implementation each pixel should be sequentially read from off chip memory

to calculate the current pixel value (each clock cycle for stream processing) and

each pixel must be read nine times as the window slides through the image. To

reduce the number of memory accesses, each pixel which are required in suc-

cessive clock cycles can be buffered in a register and those can be accessed from

the buffer. In row buffering the pixels that has to be accessed from the previ-

ous 2 rows will be buffered. This is explained in the figure 2.10. A 3×3 filter

Chapter 2. Embedded Imaging Techniques 26

FIGURE 2.9: General row scanning in an image processing design

spans three rows, the current row and two previous rows; so two row buffers

are necessary to cache the pixels of previous rows. This is pictorially explained

in figure2.10

FIGURE 2.10: Row buffering using cache memory

2.5.3 Summary

Selection of the FPGA mapping technique is application dependent. a subset

of the available techniques should be selected and used appropriately in all

the designs. The selection of mapping technique is done at the design stage

of the process. Some times to achieve, higher efficiency a combination of all

these techniques will be used (Hybrid techniques). Complex image processing

operations make use of hybrid techniques.

CHAPTER 3

Design Of A VHDL Test-bench For Real-time Image

Processing

3.1 Introduction

A real-time [2] system is one in which the response for an input or an event

should occur with in a predefined time limit, else the system is considered to

be filed. From an image processing perspective the real-time system should

process the incoming frames and produce or extract the desired features with in

the specified time limit. To achieve maximum performance, the real-time image

processing systems are designed as hard ware systems, in which the parallelism

is well exploited.

3.2 Motivation for the Test-Bench

Before implementing a real-time system, its validation in a software platform is

a necessity. This validations can serve as a proof of concept, in earlier stages of

the design. Moreover, if the validation is done after the hard ware implemen-

tation, it will be very difficult to trace back the design and identify the exact

problems if there are any. Another problem with direct hardware implemen-

tation is the time, effort and cost incurred while tracing back through design.

27

Chapter 3. Design Of A VHDL Test-bench For Real-time Video Processing 28

Hence in a nutshell a hardware implementation of a real-time system without

proper validation in a simulation environment will make the design inefficient

and cumbersome.

Having developed the motivation for validation of a real-time design before

hardware implementation, the next objective is to develop a generic software

model for the simulation. Hence a software model to simulate the FPGA based

image processing designs was developed. In particular, a software model was

designed to simulate a video acquisition system. This model sources the actual

edge detection processor.

3.3 A Real-time Video Processing System

The block diagram of a real-time video processing system is shown in figure

3.1a. The video will be captured by the image sensor inside the camera. A

video intellectual property (IP) core, which may be a soft-core sequential pro-

cessor or a micro-controller, will pre-process this video and will store the frames

in a buffer. The frame buffer can be a DDR3 random access memory (RAM).

The video pre-processing may include color image filtering, conversion of color

frames in to gray level, smoothing of frames to reduce noise etc. The stored

frames will be accessed by a main video processor which may be an FPGA

based parallel processor, for further processing.

The purpose of the video processor can be any image processing operation like

edge detection, face detection etc. The output of the processor will be again

written back to the frame buffer. The same video core IP will act as a driver

between external display and the frame buffer. The buffered frames will be then

sent to the external device. The figure 3.1b shows a real-time video acquisition

system [10] implemented in Zynq -7000 SOC (System on Chip) board. Here the

frame buffer is a DDR3 RAM (Double Data rate type 3 random access memory),

and is written through a DDR3 memory controller. The external device will be

connected to HDMI port of the kit. The acquisition unit includes, a VITA -2000

image sensor and a LogiCORETM IP video cores(A soft core processor) [10].

The objective of the design is to model the video acquisition system shown in

figure3.1a. Here the video acquisition system should include the camera and

Chapter 3. Design Of A VHDL Test-bench For Real-time Video Processing 29

(A) Generic (B) Specific to Zynq-7000

FIGURE 3.1: Real time video processing system

the video core IP. The design developed [13] will generate signals similar to

that of a video acquisition system.

3.4 Composite Video Signal

In order to simulate a camera module the characteristics of camera output sig-

nal has to be studied. A composite video signal[14] representing a single row

of a frame from a camera is shown in figure 3.2. As the figure indicates the

composite signal contains both the video as well as synchronization signals. At

the end of each row a horizontal synchronous pulse will be generated, which

will inform the following processor about an end of row event. At the end of

each frame a vertical synchronous pulse will be generated. Putting in another

words, a horizontal synchronous pulse will differentiate between different rows

in a frame, where as a vertical synchronous pulse will differentiate between dif-

ferent frames. There are another class of synchronization pulses which are used

to retrace from one end of the row to the beginning of the next row. In normal

FPGA based image processing systems, this event can be ignored.

The simulation model of the video acquisition system should be able to generate

a composite video signal at its output. The generated signal will be fed to the

input of FPGA based parallel processor. In digital perspective, the signals will

not be superimposed. The horizontal, vertical synchronous pulses and the data

will be given as separate inputs to the processor as in figure3.3.

Chapter 3. Design Of A VHDL Test-bench For Real-time Video Processing 30

FIGURE 3.2: Composite video signal for a single row in analog form

FIGURE 3.3: Composite video signal for a single row in digital form

3.5 VHDL as an Image Processing Platform

In an FPGA based real-time designs, the image processing algorithm should be

coded in VHDL or any other hardware description language (HDL). Thus it is

necessary to investigate about the image processing capabilities of HDL, in the

early stages of the project. The hard ware description language used for this

project will be very high speed IC hardware description language (VHDL)[8].

VHDL is a not a high level language and each instruction will map to a corre-

sponding hardware component in an FPGA. So most of the image processing

capabilities of VHDL can be extracted, if it is used as a platform in FPGA based

design. An efficient VHDL design can boost up several sequential image pro-

cessing algorithms in FPGA based systems.

Chapter 3. Design Of A VHDL Test-bench For Real-time Video Processing 31

On the other hand, the image processing capabilities of VHDL are not so great

if it is used as a modelling platform in a sequential environment. This is be-

cause unlike the high-level languages, VHDL lacks an in-built codec which can

decompress the image and read it. More over as an HDL, it has limited address-

ing techniques like pointers.

These difficulties can be overcome through the clever usage of TEXT IO pack-

age, and 2D x 2D arrays. If the image can be provided as a text file to the input

of a VHDL system, then using the above tools the image processing operations

can be implemented and simulated.

3.6 Image Processing Test Bench

In a nutshell, a video processing test bench should be able to capture frames,

should be able to generate a composite video signal and the clock pulse, and

should be able to source a video processor. To implement such a test bench in

VHDL, the video frames should be available as an input text file. Due to the

inherent inability of VHDL to read an image, an external program which con-

verts video frames to text format was developed. The same external program

will reconstruct the image from output text file, generated by the VHDL mod-

ule. The overall block diagram of the test bench [13] is as shown in figure 3.4.

FIGURE 3.4: Block diagram of a video processing test bench

Chapter 3. Design Of A VHDL Test-bench For Real-time Video Processing 32

3.6.1 Image to Hex-Image Converter

This is a Matlab program which converts the incoming video frames in to hex

image file. The video will be read in to the Matlab environment and each row

will be converted in to hex format.

3.6.1.1 Hex-Image File

This image file[13] will be generated by an external Matlab program. Each in-

tensity values in the frames will be converted in to hexadecimal values and

stored as a continuous sequence of 2 characters. For example the intensity value

8 will be stored as ‘08’ and the intensity value 255 will be stored as ‘FF’. In other

words, the intensity values will be coded as ‘00’ to ‘FF’. At the end of each row

a ‘,’ character will be inserted. A ‘*’ character will be inserted at the end of each

frame. This coding scheme is shown in figure 3.5. The hex image file generated

FIGURE 3.5: Coding scheme of a hex image file

for a 256 × 256 Lena image is shown in figure3.6. The hex-image file is shown

in a graphical user interface (GUI) that was developed as a part of the project.

Chapter 3. Design Of A VHDL Test-bench For Real-time Video Processing 33

FIGURE 3.6: Hex image file generated for a 256 × 256 Lena image

3.6.2 VHDL Camera Module

This is a program written in VHDL. The programs were developed in XILINX

ISE 14.2 and ModelSim 10.2c platforms. This program reads the input hex im-

age file sequentially and then converts the hexadecimal values in to a standard

logic vector data type of 8 bit length. Moreover, the program generates the

clock pulse required for the operation of following FPGA processor and dis-

play driver.

Every 100ns the clock pulse will toggle its state. On the rising edge of the clock

pulse the program will read a character from the input file. Program then checks

for ‘,’ and if encountered, it generates a horizontal synchronous pulse which is

of 100ns in duration. If a ‘*’ character is encountered, program will generate a

vertical synchronous pulse signal which will be of 1 clock pulse duration. If the

program encounters a valid hexadecimal character, it will be converted in to a

standard logic signal of 4 bit length. The next character will be read from the

file to produce lower 4 bits of the intensity value under process. A combination

of two characters represents a pixel intensity level in the image. The detailed

flow chart of the VHDL camera module is shown in figure 3.7.

Chapter 3. Design Of A VHDL Test-bench For Real-time Video Processing 34

FIGURE 3.7: Algorithm to generate composite video signal from hex-image file

3.6.3 VHDL Display Module

This module does the reverse process of camera module. It accepts clock, data

and synchronization signals as its input and generate hex mage file from them.

On the rising edge of the clock pulse the program will check for synchronization

pulses. Upon detection of them, they will be converted to either a ‘,’ or a ‘*’

symbol, depending on whether the vertical or horizontal synchronous pulse is

high. The data signal which is in standard logic vector will be converted in

to hexadecimal values and will be stored in hex image file. The algorithm for

display module is a shown in figure 3.8

3.6.4 Test Bench Output Signals

The main output signals of VHDL camera module are:

• A clock pulse

• Horizontal synchronous pulse

• Vertical synchronous pulse

• Data valid signal

Chapter 3. Design Of A VHDL Test-bench For Real-time Video Processing 35

FIGURE 3.8: Algorithm to generate hex image file from composite video signal

The simulation results are shown in figure 3.9 . The simulation was carried out

in XILINX ISE 14.2 platform.

FIGURE 3.9: Simulation of composite video signal using VHDL camera module

3.6.4.1 Clock Pulse

By default clock pulse is designed to toggle its state in every 100ns. As the ap-

plication demands, this value can be modified to meet the specifications. All

Chapter 3. Design Of A VHDL Test-bench For Real-time Video Processing 36

other events in camera, display and video processor module will be synchro-

nized with this clock pulse. The signal shown in red color in the simulation

results (Figure3.9) is the generated clock pulse.

3.6.4.2 Horizontal Synchronous Pulse

When the VHDL module detects an end of row event it will generate a horizon-

tal synchronous pulse. This signal is shown is in blue color in figure 3.9. The

total number of horizontal synchronous pulse will be equal to total number of

rows in the frame.

3.6.4.3 Vertical Synchronous Pulse

This signal is shown in green color in figure 3.9. The signal will go high at the

end of each frame. Total number of vertical synchronous pulses will be equal

to total number of frames in one second. The system will be reset after the

completion of each frame.

3.6.4.4 Data Signal

This is the video data signal. The data in standard logic vector format, will be

sent to the video processor. The data is of 8 bit length 3.9. The display module

will receive similar kind of data signal and will be converted in to hex format.

3.6.4.5 Data valid signal

This signal informs the following processor about the status of data signal. If

this signal is low the processor will treat the incoming data signal as invalid.

This signal will go low, if either of the horizontal or vertical synchronous pulses

are high. Signal is shown in yellow color in the figure 3.9. As long as horizon-

tal/vertical synchronous pulses are high, data valid signal will be low. Further-

more, this signal is used to indicate junk data from main processor.

Chapter 3. Design Of A VHDL Test-bench For Real-time Video Processing 37

3.7 Summary

In an FPGA based real-time design, a simulation platform is necessary for vali-

dation. Such a system provides an easy method to detect and debug the errors

and to optimize the existing design. Hence a test-bench which simulates a real-

time video acquisition system was developed and simulated. This test bench

can be used for any general purpose video processing designs. The system pa-

rameters like clock speed should be modified for specific applications.

CHAPTER 4

Real-time Video Edge Detection System Design

4.1 Introduction

The necessity of a video processing test bench, its design and simulation were

the topics covered in chapter 3. This chapter describes the design of a real time

video processing edge detection system which make use of the test bench de-

veloped in chapter 3. The design and simulation was done for a single frame.

This design can be extended to any number of frames.

The targeted system should acquire frames from an acquisition system and

should detect edges in them. The system should be able to process 50 frames per

second, which maps to a processing time of 0.025 seconds per frame. Moreover,

the system will be designed for 480×640 resolution frames, but the experiments

and result will be shown on a 256 × 256 frame. By the selection of appropriate

clock speed, the above constraints can be met. As discussed in chapter3, the test

bench will convert the incoming video in to a virtual composite video signals,

and will feed the edge detection system. A general block diagram of the system

is as shown in figure 4.1

38

Chapter 4. Real-time Video Edge Detection System Design 39

FIGURE 4.1: Block diagram of a video edge detection system

4.2 Edge Detection

From an image processing point of view an edge is a sudden change in inten-

sity. As in the case of a one dimensional signal, a sudden change is detected

as either a maxima or a minima. Hence this sudden change can be detected by

computing a derivative image and equating each intensity level to a predefined

threshold. As an image is a two dimensional signal derivative has to be calcu-

lated along x and y direction. The resulting derivative image is a vector, in the

sense it has both magnitude and direction[6]. In order to get an approximation

of the edge just magnitude will be sufficient.

D =
√
D2

x +D2
y (4.1)

α(x, y) = arctan(
Dx

Dy

) (4.2)

where

D= The derivative image

Dx = Derivative along X direction

Dy = Derivative along Y direction

α(x, y) = Phase image

The square root and squares are difficult to compute in an FPGA platform.

Hence a better approximation of the equation 4.1 can be used as below [6]

|D| = |Dx|+ |Dy| (4.3)

Chapter 4. Real-time Video Edge Detection System Design 40

Both equation 4.1 and equation 4.3 are monotonous, which means as the left

part of the equations increases, the right part also increases monotonically. Hence

the selection of equation 4.3 as an approximation to 4.1 can be justified.

Another edge detection approach is double derivative or lapalcian[6] method.

Compared to derivative method, a double derivative is more sensitive to an

edge. But this approach is highly porn to external noise and hence the accuracy

of the output will be less. A lapacian method may produce a double edge. Thus

this method is just used as a localization technique to identify the location of the

edge.

More advanced and complex algorithms like canny edge detectors gives bet-

ter edge approximations. Canny edge detectors has considerable amount of

sequential operations. Thus it will utilize much more resources, when imple-

mented in hardware platform. Due to complexity of the algorithm, the frame

rate and system latency will be affected, but the accuracy will be improved.

4.2.1 Digital Approximations of Gradient

As an image is a two dimensional digital signal, a digital approximation for

derivatives has to be used. There are several available digital approximations

to derivative operation. Some are listed below

• Sobel mask [6]

• Roberts mask[6]

• Prewit mask[6]

Any of the above mask will be convoluted with original image to produce the

derivative pixel. In this design a SOBEL mask will be considered.

4.2.2 Sobel Operator

A SOBEL mask [6] is given in figure 4.2. The mask is designed by taking the

difference between adjacent pixels. The central pixel is given a boost by 2 to

get smoothing effect which will reduce the noise. To implement SOBEL mask

Chapter 4. Real-time Video Edge Detection System Design 41

FIGURE 4.2: A sobel mask [6]

in FPGA, the amount of parallelism in this algorithm has to be identified. From

the diagram it is clear that the partial products are independent of each other

and can be computed in parallel. Each partial product will be computed by a

dedicated hardware and will be added in parallel. Both the Dx and Dy can be

computed in parallel.

A careful observation of the mask reveals that there is no need of a dedicated

multiplier to implement the mask. Instead a multiplication by two can be car-

ried out by a simple left shift[?] and a multiplication by -1 can be carried out

by a negation operation. Multiplication by a -2 shall be implemented by first

negating the data and then left shifting it. Hence the mask can be implemented

efficiently in a VHDL platform.

Chapter 4. Real-time Video Edge Detection System Design 42

4.3 Architecture Selection/Parallel Algorithm Devel-

opment

4.3.1 FPGA System Architecture Selection

Before going in to the design of an FPGA based circuit, different system perfor-

mance parameters has to be estimated. The first and foremost step is to select

the FPGA system architecture. A SOBEL based edge detection algorithm has

considerable amount of parallelism in it. The entire masking operations along

‘x’ and ‘y’ directions can be implemented in parallel. Thus to effectively utilize

this parallelism, an architecture which is completely parallel in nature will be

selected. A standalone FPGA architecture is the best choice for this design, as

it is completely parallel. An in-depth description of FPGA system architectures

can be obtained from chapter2.

4.3.2 FPGA Computational Architecture Selection

In the next step FPGA memory (computational) architectures has to be selected.

This design involves a buffers at both input and output, to store the incoming

frames and derivative frames respectively. Hence the incoming pixels can not

be processed on the fly. The best method to access data from a buffer is random

access processing. At the same time, the path between input and out buffers

are continuous. There is no need to intermittently store the data. Hence, stream

processing can be utilized in this section. Thus in the whole design, a combina-

tion of stream and random access processing were used. Detailed descriptions

about FPGA computational architectures can be obtained in chapter2.

4.3.3 Selection of FPGA Mapping Techniques

Next stage is to identify the FPGA mapping techniques that can be used to

achieve desired system performance . In this design, pipe-lining and caching

has been used. A pip-line is implemented to accelerate the processing of the

pixels. The SOBEL mask is implemented in a pipe-line. The pipe-line has three

stages. The derivative pixel will be stored to the output cache memory in the

Chapter 4. Real-time Video Edge Detection System Design 43

third stage. While the current pixel is being stored to output cache, the deriva-

tive of the next pixel will be calculated simultaneously in the second stage of

the pipe. At the same time, a third pixel will be fetched in first stage of the pipe.

This helps the system to process to more than one pixel in one clock cycle.

4.3.3.1 Selection of Cache Memory

Caching is implemented to improve memory band width and system latency.

Here a four pixel wide cache is set-up to avoid frequent reading of data from

main memory. Basically to find out the derivative of a single pixel, nine neigh-

bouring pixels are needed (3 rows of 3 pixels). But normally the size of cache

memory is defined in powers of two. Hence a 4 pixel wide cache memory

is setup to store one row. Three such memories are designed to store three

neighbouring rows. In particular caching is implemented by row buffering

technique. Detailed descriptions about FPGA mapping techniques are given

in chapter 2

4.4 Clock Speed and Data Bus Width

4.4.1 Selection of Clock Speed

The next step in the design is to identify the clock speed [3] and data bus width

necessary for optimum performance. Clock speed defines the total system per-

formance in terms of speed and the data bus width defines the total system

band width.

Suppose the incoming frames are 256 × 256 resolution . If the system has to

process 50 frames per second then the clock speed will be calculated as

ClockSpeed = 256× 256× 50Hz ≈ 3MHz (4.4)

The clock speed selected for this design is 10MHz.

The above calculation is done with an assumption that only one pixel will be

processed in a single clock cycle. But a pipe-lined architecture process more

than one pixel per clock cycle. Thus the clock speed can be reduced by a factor,

which is proportional to the number of pixels proceed in one clock cycle. This

Chapter 4. Real-time Video Edge Detection System Design 44

information is not directly accessible. Because in one clock cycle, none of the

pixels are completely processed. A part of the the processing will be done in a

clock cycle, but multiple pixels will be processed. Moreover, additional clock

cycles, which will be required to flush the pipe-line at the end of each row, to

begin the processing of new row will have to be considered. Another factor

which influence the selection of clock speed is the operating speed of output

device. In the simulation environment, the output is written in to a file, and if

the file writing operation is slow, the data will have to wait in a buffer, which

will increase the system latency in simulation environment.

4.4.2 Selection of Data Bus Width

To calculate the minimum data bus width we have to estimate the maximum

size of the partial products. Normally image intensity values will be stored as

eight bit. The partial product operation include a multiplication by 2 and then

an addition operation. Hence maximum integer value that can be produced

in partial product is (255 × 2 + 255 + 255 = 1020) which need 10 bits to be

represented [3]. If we include another bit for sign, the intermittent data bus

width should be of atleast 11 bit.

4.5 Over all architecture

The over all architecture of the edge detection system is as shown in figure 4.3.

The entire circuit can be divided in to four parts. The buffering part, indexing

part, caching part and pipeline. The data from the test bench will be buffered

in the internal frame buffer, with one pixel in every clock pulse. This data will

be then routed to cache memory through appropriate control signals.

To calculate a derivative pixel, eight neighbouring pixels has to be fetched from

buffer. If eight read operation is performed for each result pixel, total system

bandwidth utilization will be inefficient. Hence to compensate that, four pixels

will be fetched at a time from the buffer and will be stored in a 4 byte cache.

Four pixels of previous row, present row and next row will be buffered in to 3

different cache memories, with each memory has a size of 4 bytes.

When the first row of buffer is full the test bench will generate a horizontal syn-

chronous pulse and this will enable the data path between buffer and the cache

Chapter 4. Real-time Video Edge Detection System Design 45

memory corresponding to present row (present row cache). In a similar way

data will flow from buffer to the cache memories corresponding to current and

next rows. The path from pipeline to the cache memory to hold the result pixels

will not be enabled unless the input row cache memories are full, to avoid junk

data at the result cache. When the result cache is full the 4 bytes will be written

to result frame buffer and from there data will be sent to VHDL display mod-

ule of the test bench. The sequence of events involved in data flow is shown in

figure 4.4. A red line indicates enabled path and a green line indicates disabled

path.

FIGURE 4.3: Over all edge detection system architecture

4.5.1 Buffering Section

The data flow in to the system begins from this block. The system need to access

eight neighbouring rows to compute the derivative of a single pixel. Thus pixels

can not be processed on the fly as the system has to wait for dependent pixels.

Since the buffer is being filled sequentially, the minimum wait time for system

will be the time till first three rows were fetched from test-bench. once the third

horizontal synchronous pulse is received from the test bench,the data flow to

the system will be begun .The fetching of other rows from the test bench will

be continued, while the the first three rows were being processed by the SOBEL

processor. The the buffered data will be in standard logic format. For further

processing, this will be converted to unsigned format, because of the arithmetic

Chapter 4. Real-time Video Edge Detection System Design 46

FIGURE 4.4: Over all edge detection system data flow sequences

operations inside the SOBEL processor. The fetching of data will be continued

till a vertical synchronous pulse is received from the test-bench.

4.5.2 Caching Section

The data fetched from the frame buffer will be stored in a group of three row

cache [3]. Each cache memory can hold four pixels of data. The pixels from

three consecutive rows will be fetched in to this cache. Cache memory acceler-

ates the process by reducing the number of access to main memory. The data

from cache will be then shifted serially in the pipe line for further processing.

Each pixel in a frame is eight bit wide, providing an overall size of 32 bytes for

each cache memory. A detailed descriptions of row buffering and caching are

given in chapter2

4.5.3 Indexing Section

This section routes the data from frame buffer to respective cache memory. In

an FPGA board, the acquired frames will be stored in the main memory. The

embedded processor will give the starting address of the memory locations at

Chapter 4. Real-time Video Edge Detection System Design 47

which the frames are stored. In order to avoid frequent access to main memory,

four pixels will be fetched at a time. The four pixels corresponding to previous,

present and next rows will be fetched in parallel. A counter will be incremented

by four, up on fetching of every four pixels from the frame buffer. Hence to ob-

tain next four pixels from previous row, the counter value will be added to the

base address. The same theory is applicable for current and next row pixels. To

obtain the next four pixels corresponding to the current row, the counter value,

base address and total number of columns will be added together. Similarly

for the next row pixels, the base address, counter value and the two times the

number of columns will be added together to get the starting index of next four

pixels. The operations are summarized below.

PreviousRowAddress = BaseIndex+ CounterV alue

PreviousRowAddress = BaseIndex+ CounterV alue

NextRowIndex = BaseIndex+ CounterV alue+ 2×Numberofcolumns

Counter = Counter + 1 (4.5)

This way the indexing circuit maintains the continuity between the pixels being

processed by the SOBEL processor and the pixels in the frame buffer. The con-

ceptual diagram of the indexing circuit is shown in figure 4.5. The sequences of

FIGURE 4.5: Indexing Circuit

operations in indexing blocks are given in figure4.6

Chapter 4. Real-time Video Edge Detection System Design 48

FIGURE 4.6: Sequence of operations happening at indexing module

4.5.4 The Pip-line

The SOBEL mask is implemented in the pipe-line[1] section. Pipe-line, gener-

ally called as pipe has 3 × 3 registers, with each register storing three pixels of

previous, current and next row. Total size of internal registers in the pipeline

is 12 bytes. The SOBEL masks along ‘x’ and ‘x’ directions are implemented as

shown in figure 4.7 [3]. The derivatives along ‘x’ and ‘y’ directions will be com-

puted in parallel with in the pipe. The pixels from corresponding row cache

will be serially shifted in to the pipe’s internal registers. Here the coefficients

of SOBEL masks will be stored in another register banks. The sums obtained

by convolving along ‘x’ and ‘y’ directions will be computed in parallel and will

be stored in Dx and Dy registers. In the next clock cycle the modulus value of

this pixels will be calculated. This values will be stored in the |D| register. This

value will be written to result cache in the next clock cycle. While the modulus

of current pixel is being calculated, the DX and DY sum of the next pixel will be

processed. Also while the current pixel is being stored to the result cache, the

modulus value of the next pixel will be computed. Thus the pipe has 3 stages.

In first stage the DX and DY will be calculated, modulus will be calculated in

the second stage and pixels will be stored in to result cache in the third stage.

The overall pipeline architecture is shown in figure 4.7. The sequence of data

flow in the pipe-line is shown in the below figure 4.8. The red square blocks

indicate the pixel, and the red arrow indicate an enabled path. At the end of

each row of input pixels, the pipeline will be flushed. This is being done to

avoid junk data. After the flushing operation, the data path to the output cache

Chapter 4. Real-time Video Edge Detection System Design 49

FIGURE 4.7: Pipe-line Circuit

memory will be deactivated for 3 clock pulses. During these 3 clock pulses, the

data from new row will be shifted in to the pipeline. After 3 clock pulses the

pipe line will be full with new pixel data, and the path to output cache memory

will be enabled.

The pipeline will be flushed at the end of frame as well. The result row will

be written in to an output frame buffer. Four pixels in the result cache will be

directed in to the output frame buffer using indexing circuits. The operation of

indexing circuit at the output stage is similar to that of the input stage.

The derivative values from the output buffer will be fed to display module of

the test-bench. In this module, the output composite signal will be converted in

to hex-image file.

Chapter 4. Real-time Video Edge Detection System Design 50

FIGURE 4.8: Pipe-line Data flow

4.6 Simulation Results

The overall architecture explained above is simulated in Modelsim 10.2c stu-

dent edition. A new software patform was developed to integrate test-bench

and VHDL simulation under a common platform. The new simulator devel-

oped is named as realsim. The front end of the simulation was done in this

software platform. A detailed description of the realsim software is given in

chapter5 and appendix i. The figure4.9 shows the key simulation results in re-

alsim. The figure4.10 shows the key simulation results in Modelsim. The figure

shows the binary wave forms of input and output images.

The description of key results are given below.

Chapter 4. Real-time Video Edge Detection System Design 51

The developed hardware circuit took 0.019 seconds to detect the edges

of a 256 × 256 frame at the clock speed of 10 MHz. The same simula-

tion over a Matlab environment took 0.25 seconds. Thus the hardware

design is 13 times faster than the traditional sequential environment.

Considering the fact that, the hardware simulations were carried out

in ModelSim student edition, which is 100 times slower than the busi-

ness version[15], the actual hardware implementation will be several

10 times faster than the currently obtained result. The system latency

achieved is 0.0065 seconds.

FIGURE 4.9: Simulation of FPGA based SOBEL edge detection architecture in
realsim

4.7 Summary

In this chapter a real-time image edge detection architecture has been devel-

oped. The required system parameters has been estimated and the method of

implementation was discussed in preceding sections. From the result obtained,

it can be inferred that the parallel implementation of the image processing al-

gorithms will be several ten times faster than the traditional sequential designs.

Chapter 4. Real-time Video Edge Detection System Design 52

FIGURE 4.10: Simulation of FPGA based SOBEL edge detection architecture

The improvement in speed comes with additional effort, cost and complexity

associated with hardware designs. In real-time applications, FPGA based im-

age processing designs has wider scope and significance.

CHAPTER 5

Software Platform to Validate FPGA Based

Real-Time Applications

5.1 Introduction

Testing is an inevitable part of any project. In a hardware design project, the

simulation should be carried out in software platform, and its functionality

should be tested against the objectives. It is a thump rule that if a design does

not work in simulation environment, it will not work in hardware platforms as

well. Thus each of the hardware module should be separately tested against its

functionality and performance measurements. Apart from unit testing, integra-

tion testing of the hardware modules are also important as the stealth errors due

to interaction between different modules will be manifested in this phase. From

an image processing point of view, to carry out unit and integration testing, in-

put and output should be visualized as an image, rather than binary waves.

This idea led to the development of anew generic software platform for FPGA

based image processing applications.

5.2 Motivation for New Simulation Environment

Traditional HDL simulators like Modelsim, Xilinx ISE etc. shows the simulation

results in the form of binary waves. If the circuit complexity is less, it will not

53

Chapter 5. Software Platform to Validate FPGA Based Real-Time Applications 54

be much difficult to decipher the binary waves. Most of the image processing

operations are complex in nature and includes a large number of signals. Hence

it will be extremely difficult to interpret the outcomes of the image processing

operations from binary wave forms. This idea was the key motivation behind

the development of new simulation platform.

The simulation of any FPGA based image processing algorithm will have three

basic entities.

• A test bench to simulate an image acquisition system

• An image processor

• Test-bench to simulate display device

Effective integration of all the three entities is essential to make a design neat

and reproducible. The new simulator named as realsim, integrates all the above

entities, and provides advanced visual perception compared to traditional HDL

simulators.

5.3 Features of Realsim

Realsim let the developer to provide the input to the system under test, in the

form of an image. Furthermore, the output of the system will be reconstructed

from binary waves in to image format. The front end of the software is devel-

oped in Matlab-2012b, and the back end is designed in Modelsim-10.2c student

edition. The interface between Matlab and Modelsim is done using microsoft

dos shell and tcl scripts.

The main features of realsim are given below. A detailed tutorial of realsim is

given in AppendixA.

5.3.1 Test Bench

The test-bench of any FPGA based image processing operation consists of an

acquisition and display modules, as explained in chapter3. Realsim will inte-

grate both the display and acquisition modules under a common platform. The

Chapter 5. Software Platform to Validate FPGA Based Real-Time Applications 55

simulator allows users to visualize the input and output images along with the

corresponding hex-image files (Chapter3). The figure5.1 shows the input, sim-

ulation result and the test bench in a single screen.

FIGURE 5.1: View of input, output and test bench in a single screen

5.3.2 Improved Visual Perception

The simulator allow users to give input in the form of image and the output will

be generated in the same format. All the background processing will be carried

out in HDL. The simulator displays the background processing in a status bar.

Detailed tutorial of the simulator is available in AppendixA. Realsim provides

three different perceptions of input and system output.

• As an image in the image window(figure5.1)

• As a hex-image file (figure5.1)

• As binary waves

The three views helps to understand the design and underlying concepts. More-

over, it makes the back tracing and debugging of the design easier.

Chapter 5. Software Platform to Validate FPGA Based Real-Time Applications 56

5.3.3 Integrated Waveform Analysis

Realsim shows the simulation results in the form of images. In order interpret

the output in detail, ie. in terms of simulation events and deltas, the waveform

view can be selected. In this window, the output will be shown in binary wave

form.

5.3.4 Hardware Simulation Reports

Realsim provides detailed report of hardware simulation. The report will in-

clude simulation events in each simulation deltas. The reports can be made use

to debug the design in case of any errors. Moreover, realsim provides a detailed

report on input and output hex image-files.

5.4 Conclusion and Future Scope

In a nutshell, realsim provides improved visual perception and added features

compared to traditional HDL simulators. Realsim can be extended to any FPGA

based real-time image processing applications, like face detection, object track-

ing etc. Furthermore, the simulator can be enhanced by adding facilities to

incorporate real-time video inputs. In future this simulator may serve as a stan-

dard platform to validate any FPGA based real-time designs.

CHAPTER 6

Conclusion and Future Scope

6.1 Conclusion

The results obtained in this work emphasize the significance FPGA based de-

signs in real-time image processing applications. In the current scenario, most

of the real-time applications are implemented either in micro-controllers or dsp

processors. For example, most of the digital cameras in the market has a micro-

controller based pre-processing circuits. Further more, in the world of portable

devices and gadgets, it is extremely important to have less power consumption

for prolonged battery life. From an image processing perspective, speed of ex-

ecution is a direct measurement of power consumption. To achieve minimum

power consumption, the sequences should be executed in minimum number of

clock cycles. This is precisely what an FPGA based design achieves. Hence it is

the need of the era, to focus more on FPGA based image processing designs.

The improvements in speed and performance comes with additional cost and

effort in hardware designs. The hardware design need much more expertise

and resources compared to a traditional sequential design. The final target of

any FPGA based design is an ASIC (Application specific integrated circuit). The

process of converting an FPGA based design to an ASIC is time consuming

and costly. This additional effort and costs are the factors which slows down

the growth of FPGA based design in current industry (Especially Industries in

57

Chapter 6. Conclusion and Future Scope 58

India). This work could serve as a motivation and a gate way to the enticing

world of research in FPGA based computer vision.

The central highlight of the work is the design of a simulator to validate any

FPGA based real-time designs. Traditional VHDL simulators like Modelsim,

Xilinx ISE etc do not provide a platform in which the output of image process-

ing operations can be visualized. The realsim converts the output of the main

processing module from binary wave forms to image format for improved vi-

sual perception. The simulator also provides advanced features like integration

of test-benches, simulation reports etc. Concisely, this simulator is a general

purpose platform for the validation and simulation of any FPGA based real-

time image processing designs. The immediate enhancement to the simulator

will be the incorporation of the video processing facilities. This will let the

developer to give input in the form of real-time video, and see the output. Ad-

dition of this facility will be a revolutionary change in the field of FPGA based

image processing. This simulator will then serve as the basic tool for FPGA

implementation of any computer vision applications.

6.2 Applications and Future Scope

Any FPGA based real-time designs, that will be developed in future can be in-

tegrated in to realsim. An immediate enhancement to this simulator will be the

addition of video processing features. Furthermore, other edge detection algo-

rithms like lapacian of gaussian, canny edge detectors etc. will be added to the

edge detection feature of the simulator. An option to compare the performance

of similar image processing techniques will help the designer to choose the best

implementation strategy and will make the simulator more professional. In-

addition, the current design can be extended to implement more complicated

algorithms like viola-jones face detection algorithm, optical flow etc. These im-

plementations has significant amout of sequential operations in the algorithms.

Special strategy should be employed to mitigate the effects of communication

overhead.

The work presented here has wider scope and applications. The edge detec-

tion techniques are basic steps of several complex computer vision applications.

Chapter 6. Conclusion and Future Scope 59

The implementation of fast face detection in a digital camera, fast object track-

ing, policing and interactive surveillance, and finally the applications like object

tracking and chasing are some of the areas where this work can be made use of.

More importantly, this work will serve as a motivation to explore the endless

scopes of FPGA based computer vision designs.

APPENDIX A

Realsim 1.0 Tutorial

The procedure to carry out simulation in realsim 1.0 is presented in this ap-

pendix. Realsim 1.0 is a comprehensive simulation and validation environment

for FPGA based real-time image processing designs. This software platform

was developed as a part of the project "Development of FPGA based Image

processing IP core ", at embedded system and real-time laboratory, National

Institute of Technology Rourkela . The objective was to integrate the different

modules of the project and to simulate and validate the FPGA based designs.

The software was packed in to a single executable file to run in windows en-

vironments. The tutorial on how to use reasim is explained in the following

sections, starting from the installation.

A.1 System Requirements

• Processor : Any 32 bit processor

• Physical Memory : Minimum 512 MB. 2 GB recommended

• Operating system : Windows XP, Windows 7, Windows 8 32 bit

• Required soft-wares : Modelsim 10.2c or higher

• Matlab run-time environment (Comes along with the package)

60

Appendix A. Realsim 1.0 Tutorial 61

A.2 Installation

• Run install_pkg.exe

• This will extract matlab-run time environment, and will install it. It will

generate a file named realsim.exe. theis is shown in figureA.1

FIGURE A.1: Installation of realsim

• realsim.exe and associated files will be extracted in to the current direc-

tory, which can be copied to any other directories.

A.3 Over View of Graphical User Interface

• Run realsim.exe. The opening screen is shown in figureA.2.

• The top right corner has the shut down button, which will be used to

exit the program. The different tools of the software are labeled in the

figureA.3

• The input and outputs will be displayed in the process window.

• The status bar will update the status of background processes.

A.4 Simulation

• Select the test image using either the menu or the open icon as shown in

figureA.4. Direct the path to the test image. The image will be opened in

the process window as shown in figureA.5.

Appendix A. Realsim 1.0 Tutorial 62

FIGURE A.2: starting screen of realsim

FIGURE A.3: The tools and windows are labeled

Appendix A. Realsim 1.0 Tutorial 63

FIGURE A.4: Select the test image

FIGURE A.5: Input Image

Appendix A. Realsim 1.0 Tutorial 64

• Select Edge detection task from options menu as shown in figureA.6. Af-

ter that the process window title will be changed to edge detection.

FIGURE A.6: Edge detection selection

• Begin the simulation by pressing the simulate button from the tool bar

or by selecting simulate option from the simulate menu. This will open

up a progress bar, indicating the progress of the simulation. The internal

events will be displayed in the status bar, at the bottom of the screen. This

is shown in A.7.

A.5 Viewing Results

• The edge detected output will be shown in the process window as in fig-

ureA.8.

• To view the test bench, select appropriate heximage panel from the view

menu. Also this menu provides an option to see test bench as a report. To

do this select view, and then the heximage file option. This operations are

shown in figureA.9.

• To view the detailed simulation report, select HDL simulation report op-

tion from view menu. This will generate the report in a text file. This is

shown in figureA.10.

Appendix A. Realsim 1.0 Tutorial 65

FIGURE A.7: Simulation in realsim

FIGURE A.8: Viewing simulation result

Appendix A. Realsim 1.0 Tutorial 66

FIGURE A.9: Viewing the test-bench in realsim

FIGURE A.10: Viewing HDL simulation report

• There is an option in view window to see the output of the same im-

age processing operation in sequential environment. The comparison be-

tween two results can be obtained by clicking the difference option from

view menu. This is described in figureA.11.

• To see the waveform analysis of the output, and input images, select HDL

window from Modelsim Window menu. It will open up the Modelsim

Appendix A. Realsim 1.0 Tutorial 67

FIGURE A.11: Comparing HDL and Matlab output in realsim

wave editor window, in which the waveform analysis can be done. This

is shown in figureA.12.

FIGURE A.12: Wave form analysis from realsim interface

Bibliography

[1] Donald G Baily, Design for embedded image processing on FPGAS, :John Wiley

And Sons 2011

[2] Nasser Kehtarnavaz and Mark Gamadia, Real-Time Image and Video Process-

ing :From Research to Reality: Morgan And Clay pool 2006

[3] Peter J. Ashenden, Digital Design, An Embedded Systems Approach Using

VHDL:MorganKaufmann Publishers 2008

[4] Charles H. Routh, Jr Digital Systems Design Using VHDL:PWS Publishers

1998

[5] James R.Armstrong & ,F.Gail Gray VHDL Design Representation and Synthe-

sis 2nd ed :MorganKufmann Publishers 2008

[6] Rafael C. Gonzalez, Richard E. Woods, Steven L. Eddins, Digital Image Pro-

cessing Using MATLAB 2nd ed :Tata McGraw Hill Education Private Limited

2010

[7] Michel J. flinn, Computer Architecture: Pipelined and Parallel Processor Design

1st ed :Johns and Barlet publishers 1995

[8] Volnei.A.Pedroni, Digital Electronics and design with VHDL 1st ed :Mor-

ganKufmann 2008

[9] XtremeDSPTM DevelopmenPlatform:SPARTAN-3A DSP 3400A Edition User

Guid,Xilinx ,UG498 (v2.2) November 17, 2008

[10] Camera Image Processing Reference Design:Zynq-7000 All Programmable SoC

Video and Imaging Kit,Xilinx Application notes ,XAPP794 (v1.2) January 2,

2013

68

Bibliography 69

[11] Christos Kyrkou, And Theocharis Theocharides , "A Flexible Parallel

Hardware Architecture for AdaBoost-Based Real-Time Object Detection"

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI)

SYSTEMS,VOL. 19, NO. 6, JUNE 2011

[12] J. Matai, A. Irturk And R.Kastner , "Design and Implementation of an

FPGA-based Real-Time Face Recognition System" Field-Programmable Cus-

tom Computing Machines (FCCM), 2012 IEEE 20th Annual International Sym-

posium on,On page(s): 141 – 148, 2011

[13] Aitzol Zuloaga, Unai Bidarte, Jose L. Martín and Joseba Ezquerra, "Optical

Flow Estimator Using VHDL for Implementation in FPGA" Proceedings XIII

design of circuits and systems conference, on pages. 36-41, November 1998.

[14] "Composite Video Signals",

http://www-inst.eecs.berkeley.edu/ cs150/sp99/sp99/project/compvideo.htm,June

7, 2004.

[15] "Composite Video Signals",

http://www.mentor.com/company/higher_ed/modelsim-student-

edition, May 12, 2014.

	Declaration of Authorship
	Abstract
	Acknowledgements
	Contents
	List of Figures
	1 Introduction And Problem Statement
	1.1 Introduction
	1.2 Embedded Image processing
	1.3 Motivations for Hardware Image Processing
	1.4 Parallelism
	1.5 Why FPGA
	1.5.1 Parallel operation
	1.5.2 Speed of execution
	1.5.3 Flexibility
	1.5.4 Low power design

	1.6 Selection of an FPGA board
	1.7 Problem Statement
	1.7.1 System Functionality
	1.7.2 System Performance
	1.7.3 Operating Environment
	1.7.4 Targeted Hardware Platform

	1.8 Implementation Strategy

	2 Background on Embedded Image Processing
	2.1 Introduction
	2.2 Embedded Imaging Techniques
	2.2.1 Real-time System
	2.2.2 Performance Measurements of a Real-Time System
	2.2.2.1 System Latency
	2.2.2.2 System Throughput
	2.2.2.3 System Bandwidth

	2.2.3 Serial Vs Parallel Processing
	2.2.4 Conversion of serial Algorithms to Parallel
	2.2.5 Resource Vs Speed
	2.2.6 System Band-width Vs Resources
	2.2.7 Band width Vs Speed

	2.3 FPGA System Architectures
	2.3.1 Standalone architecture
	2.3.2 Co-processor architecture
	2.3.3 Hardware Accelerator
	2.3.4 Hybrid processing

	2.4 FPGA Computational Architectures
	2.4.1 Stream Processing
	2.4.2 Systolic arrays
	2.4.3 Random Access Processing

	2.5 FPGA Mapping Techniques
	2.5.1 Time constraints
	2.5.1.1 Pipe-lining
	2.5.1.2 Process synchronization

	2.5.2 Band width constraints
	2.5.2.1 Double buffering
	2.5.2.2 Cache Memory
	2.5.2.3 Row buffering

	2.5.3 Summary

	3 Design Of A VHDL Test-bench For Real-time Image Processing
	3.1 Introduction
	3.2 Motivation for the Test-Bench
	3.3 A Real-time Video Processing System
	3.4 Composite Video Signal
	3.5 VHDL as an Image Processing Platform
	3.6 Image Processing Test Bench
	3.6.1 Image to Hex-Image Converter
	3.6.1.1 Hex-Image File

	3.6.2 VHDL Camera Module
	3.6.3 VHDL Display Module
	3.6.4 Test Bench Output Signals
	3.6.4.1 Clock Pulse
	3.6.4.2 Horizontal Synchronous Pulse
	3.6.4.3 Vertical Synchronous Pulse
	3.6.4.4 Data Signal
	3.6.4.5 Data valid signal

	3.7 Summary

	4 Real-time Video Edge Detection System Design
	4.1 Introduction
	4.2 Edge Detection
	4.2.1 Digital Approximations Of Gradient
	4.2.2 Sobel Operator

	4.3 Architecture Selection/Parallel Algorithm Development
	4.3.1 FPGA System Architecture Selection
	4.3.2 FPGA Computational Architecture Selection
	4.3.3 Selection of FPGA Mapping Techniques
	4.3.3.1 Selection of Cache Memory

	4.4 Clock Speed and Data Bus Width
	4.4.1 Selection of Clock Speed
	4.4.2 Selection of Data Bus Width

	4.5 Over all architecture
	4.5.1 Buffering Section
	4.5.2 Caching Section
	4.5.3 Indexing Section
	4.5.4 The Pip-line

	4.6 Simulation Results
	4.7 Summary

	5 Software Platform to Validate FPGA Based Real-Time Applications
	5.1 Introduction
	5.2 Motivation for New Simulation Environment
	5.3 Features of Realsim
	5.3.1 Test Bench
	5.3.2 Improved Visual Perception
	5.3.3 Integrated Waveform Analysis
	5.3.4 Hardware Simulation Reports

	5.4 Conclusion and Future Scope

	6 Conclusion and Future Scope
	6.1 Conclusion
	6.2 Applications and Future Scope

	A Realsim 1.0 Tutorial
	A.1 System Requirements
	A.2 Installation
	A.3 Over View of Graphical User Interface
	A.4 Simulation
	A.5 Viewing Results

	Bibliography

