
Slicing of Object-Oriented and

Aspect-Oriented Programs

Santosh Kumar Behera

Roll. 212cs3369

under the guidance of

Prof. Durga Prasad Mohapatra

Department of Computer Science and Engineering

National Institute of Technology Rourkela

Rourkela – 769 008, India

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ethesis@nitr

https://core.ac.uk/display/53190460?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Slicing of Object-Oriented and

Aspect-Oriented Programs

Dissertation submitted in

May 2014

to the department of

Computer Science and Engineering

of

National Institute of Technology Rourkela

in partial fulfillment of the requirements

for the degree of

Master of Technology

by

Santosh Kumar Behera

(Roll. 212cs3369)

under the supervision of

Prof. Durga Prasad Mohapatra

Department of Computer Science and Engineering

National Institute of Technology Rourkela

Rourkela – 769 008, India

Computer Science and Engineering

National Institute of Technology Rourkela

Rourkela-769 008, India. www.nitrkl.ac.in

Dr. Durga Prasad Mohapatra

Professor

May 23, 2014

Certificate

This is to certify that the work in the thesis entitled Slicing of Object-Oriented

and Aspect-Oriented Programs by Santosh Kumar Behera, bearing roll number

212CS3369, is a record of an original research work carried out by him under

my supervision and guidance in partial fulfillment of the requirements for the

award of the degree of Master of Technology in Computer Science and Engineering

Department. Neither this thesis nor any part of it has been submitted for any degree

or academic award elsewhere.

Durga Prasad Mohapatra prof. , CSE Dept. NIT Rourkela

Acknowledgment
First of all, I would like to express my deep sense of respect and gratitude towards

my supervisor Prof. Durga Prasad Mohapatra, who has been the guiding force

behind this work. I want to thank him for introducing me to the field of Program

Slicing and giving me the opportunity to work under him. His undivided faith in

this topic and ability to bring out the best of analytical and practical skills in people

has been invaluable in tough periods. Without his invaluable advice and assistance

it would not have been possible for me to complete this thesis. I am greatly indebted

to him for his constant encouragement and invaluable advice in every aspect of my

academic life. I consider it my good fortune to have got an opportunity to work

with such a wonderful person.

I thank our H.O.D. Prof. Santanu Kumar Rath and Prof. Durga Prasad

Mohapatra for their constant support in my thesis work. They have been great

sources of inspiration to me and I thank them from the bottom of my heart.

I would also like to thank all faculty members, PhD scholars, my seniors and

juniors and all colleagues to provide me their regular suggestions and encouragements

during the whole work.

At last but not the least I am in debt to my family to support me regularly

during my hard times.

I wish to thank all faculty members and secretarial staff of the CSE Department

for their sympathetic cooperation.

Santosh Kumar Behera

Abstract

Program slicing[1] has many applications in a software development environment

such as debugging, testing, anomaly detection, program understanding and many

more. The concept being introduced by Weiser and it was started with static slicing

calculation[1]. Talking about static slicing, it is a subset of statements of a program

which directly or indirectly affect the values of the variables computed providing a

slicing criterion. Dynamic slicing[3] is the counterpart of the static slicing i.e finding

the statements which are really affected by giving the particular input value of the

variable. Object-Oriented Program(OOP) has been the most widely used software

development technique. OOP is still popular among many companies for their

product development.There are some drawbacks of the OOP implementation. One

of them is cross-cutting concerns. Aspect-Oriented Program[23] provides separation

of cross-cutting concerns from the core modules by introducing a new unit of

modularization, called Aspect. In this project, we have developed an Approach

which creates System dependence Graph(SDG)[2] which is the intermediate

representation of an OOP and AOP, then takes that SDG as input to compute the

slice of that program with respect to slicing criterion.

Contents

Certificate ii

Acknowledgment iii

Abstract iv

List of Figures viii

List of Tables x

1 Introduction 1

1.1 Motivation . 2

1.2 objective . 2

1.3 Organization of the Thesis . 3

2 Basic Concepts 4

2.1 Types of Dependencies . 4

2.2 Program Representation[2] . 5

2.2.1 Program dependency Graph (PDG) 5

2.2.2 System Dependence Graph(SDG) 6

2.3 Program Slicing . 7

2.3.1 Forward Slicing[9] . 7

2.3.2 Backward Slicing[9] . 7

2.3.3 Static slicing . 8

2.3.4 Dynamic slicing . 8

2.4 Application of Program Slicing . 9

2.4.1 Differencing the programs . 9

v

2.4.2 Debugging . 10

2.4.3 Software Maintenance . 10

2.4.4 Testing . 11

2.4.5 Refactoring . 11

2.4.6 Functional Cohesion . 11

3 Literature Survey 12

4 Slicing of Object-Oriented Program 14

4.1 Block Diagram of our Approach . 14

4.2 Creation of SDG of OOP(Java) . 15

4.2.1 Statement dependency Graph 15

4.2.2 Method dependency Graph 15

4.2.3 Class dependency Graph . 16

4.2.4 Construct the JSDG . 16

4.2.5 Example . 17

4.3 Static Slicing . 18

4.3.1 Algorithm . 19

4.3.2 Case study for the Static slicing 19

4.4 Dynamic Slicing . 20

4.4.1 Algorithm . 20

4.4.2 Case study for the Dynamic Slicing 21

4.5 Result . 21

5 Slicing of Aspect-Oriented Program 23

5.1 Basic concept of AOP . 23

5.1.1 Aspect-Oriented Programming 23

5.1.2 Feature of AOP . 24

5.2 Block Diagram of Tool . 28

5.3 Creation of SDG of AOP . 28

5.3.1 Example . 29

5.4 Compute Slicing of AOP . 32

5.4.1 Algorithm . 32

5.4.2 Case study for the Static Slicing of AOP 33

5.5 Results . 33

vi

6 Conclusion and future work 35

Bibliography 36

vii

List of Figures

2.1 Example of Data dependence and Control dependence 5

2.2 Program Dependence Graph . 6

2.3 forward and backward slicing . 8

2.4 Static and dynamic . 9

4.1 Block Diagram . 14

4.2 Java Program . 17

4.3 SDG of Java Program . 18

4.4 Notation . 18

4.5 Static Slicing Approach . 19

4.6 Static Slice with < 22, rt > . 19

4.7 Node Marking Algorithm . 20

4.8 Dynamic Slice with < 11, z > x=20,y=10 21

5.1 Cross-Cutting . 24

5.2 Example of AOP . 25

5.3 Example of Aspect . 25

5.4 Example of Point-Cut . 26

5.5 Example of Join Point . 26

5.6 Example of Advice . 27

5.7 Block Diagram of Tool . 28

5.8 Non-Aspect part of AOP . 29

5.9 Aspect part of AOP . 30

5.10 Notations used . 31

viii

5.11 SDG . 32

5.12 Sliced with criterion < x13, amnt > 33

ix

List of Tables

4.1 Performance . 22

5.1 Performance . 34

x

Chapter 1

Introduction

Program slicing[1] is the method of computing subset of statements of a program that

may affect the values at some point of interest, can be referred to as a slicing criterion.

Program slicing is an important technique that has been implemented in the field of

software development with applications such as debugging, testing, understanding

of complicated codes, anomaly detection and many others. Program slices can be

of many types such as static slicing, dynamic slicing, forward slicing, backward

slicing[9] etc. Talking about static and dynamic slices, static slicing computes slices

without considering the program input whereas dynamic slicing consider program

input values . It contains only those statements that actually affect the value of a

variable. Now to represent the input program For which we have to calculate slices

with respect to given slicing criterion, we can use various kinds of graphs such as

control flow graph (CFG), program dependence graph (PDG), system dependence

graph (SDG)[2] and many more depending upon the type of input program. For

example, if we take a program that consist of only a single function with no other

function call, then a PDG can be used as an intermediate representation. Similarly

for an input program having function calls along with a main function or to say

an Inter-procedural program, we can use SDG. This paper consider SDG approach

for representing an input program and applying different algorithm to compute slice

of object-oriented program as well as Aspect-oriented programs. In this paper we

1

Chapter 1 Introduction

develop an Approach which generates SDG of Object-Oriented program(OOP) as

well as Aspect-Oriented program(AOP) and then compute slice according to the

slicing criterion.

1.1 Motivation

Now a days the kind of software we are used in this computer world are very large

in size as well as complex in nature so that it is very difficult for understanding,

maintaining, testing and debugging the code. Mainly In order to find the bugs in

the program we are searching whole program line by line which is very much difficult

and also time taking task. To resolve these issues Mark wiser introduced an approach

i.e. program slicing which finds the interdependence statements from the program.

In all the slicing algorithms so far proposed by different researchers are about

OOP and very few are about of AOP. They have taken SDG as intermediate graph

representation for slicing but it is not stated clearly about how SDG created i.e. not

automated which takes more time in the process of compute slicing.

1.2 objective

Our main Objective of research work is to develop efficient slicing Algorithms. To

address this broad objective, we identify the following goals:

We wish to compute slices of Object-Oriented and Aspect-Oriented programs as

quick as possible. To fulfillment of this we plan to

• Construct a System Dependence Graph, which is the intermediate

representation of Object-Oriented and Aspect-Oriented Programs

• Slice the Object-Oriented and Aspect-Oriented Programs by using the SDG.

2

Chapter 1 Introduction

1.3 Organization of the Thesis

The rest of the thesis is organized as follows:

1. Chapter 1: In this chapter we have discussed about the introduction to

Program Slicing, motivation and objective of our research.

2. Chapter 2: In this chapter we have discussed the basic concepts which are

useful in our research.

3. Chapter 3: In this chapter we present the literature review where we have

described some existing works on Program Slicing.

4. Chapter 4: In this chapter we present our proposed Approach for Slicing of

Object-Oriented Program.

5. Chapter 5: In this chapter we present our proposed Approach for Slicing of

Aspect-Oriented Program.

6. Chapter 6:At last we concluded in this chapter..

3

Chapter 2

Basic Concepts

In the field of program slicing[1] lots of basic concepts have been used by several

researchers. In our innovative world many new concepts have been introduced

by different researchers. For extending program slicing, many algorithms have

been proposed to enhance the efficiency of program slicing. This chapter provides

definition and detailed explanation with examples of several basic concepts. This

chapter also mentions many more applications of program slicing.

2.1 Types of Dependencies

There are different types of dependencies present in any program, following are the

detail explanation about that dependencies

• Data dependence[1]: In this dependence the program statement depends

on the data of the preceding statements of the program.

• Control dependence[1]: A statement is control dependence on the preceding

statement if the out come of that preceding statement determines whether the

former statement should be executed or not.

The following example shows the data dependence and control dependence:

4

Chapter 2 Basic Concepts

Figure 2.1: Example of Data dependence and Control dependence

From the above program statement s6 is data dependant on the statement s3

and the statement s7 is control dependant on the statement s5.

2.2 Program Representation[2]

Normally if we slice the program directly from the code, is not that much of easy,

so make easy to understand and to slice many researchers have been proposed

different intermediate representation of the program. Then applying different slicing

algorithm on this intermediate representation to compute the slice according to

the given slicing criterion. There are many different types of intermediate Graph

representation but here in this section explain the detail about Program dependency

Graph (PDG) and System dependence Graph (SDG).

2.2.1 Program dependency Graph (PDG)

A PDG[2] explicitly represents both control and data dependencies in a single

program representation. A PDG representation of a program is a graph in which

the nodes represent the statements, and the edges represent inter- statement data or

control dependencies. The program dependence graph G of a program P is defined

as the graph G= (N, E), where each n ∈ N represents set of statement of the program

P and E represents set of edges that shows the dependence among the statements.

5

Chapter 2 Basic Concepts

PDG contains two kind of directed edges: Control dependence edge and Data

dependence edges.

Figure 2.2: Program Dependence Graph

The above shows the PDG of the program mentioned in bellow and also shows

the control dependencies and data dependencies within this PDG.

2.2.2 System Dependence Graph(SDG)

In PDG there is no representation of procedure call, i.e. the PDG cannot handle the

procedure calls. Hence the PDG helps for those program having only one procedure

only. So the System Dependences Graph (SDG)[2] is the another representation of

the program in which we can Represent all the feature of PDG as well as can handle

procedure call. i.e. we can say SDG is the collection of number of PDGs. The

technique for construction of an SDG is that of first construction a PDG for every

method, including the main method and then adding extra dependence edges which

connects the various sub-graphs together.

Mainly PDGs are added with the following kinds of the new edges to construct

SDG

• call edge[6,7]: Edge is added from call site vertex to corresponding procedure

entry vertex.

6

Chapter 2 Basic Concepts

• parameter-in edge[6,7] : Edge is added from each actual in vertex to

corresponding formal-in vertex.

• parameter-out edge[6,7] : Edge is added from each formal-out vertex to

corresponding actual-out vertex.

2.3 Program Slicing

For testing and maintaining the software, we need to reduce the complexity of the

program. For that purpose the whole program need to be broken into sub-parts.

Program slicing helps in this regards. Program slicing was first introduced by

Weiser[1] in 1979. It is an analysis and transformation technique which uses the

dependency relationship among the statements for identifying the part of a program

that affects or gets affected by appoint of interest. This point of interest is known

as the slicing criteria. Subset of the program statements those influence or get

influenced by the variable which is given in the slicing criteria are added to the slice.

Generally, for the construction of program slice we need to define a slicing criterion.

A slicing contains a set < s, v >, where s denotes the statement number and v

denotes the variable of program[1].

There are many types of program slicing and bellow we have discussed some of

them

2.3.1 Forward Slicing[9]

It computes all those parts that might be affected by the slicing criterion, using their

dependence on the slicing criterion.

2.3.2 Backward Slicing[9]

It contains all the statements of the program those might have affected the variable at

the statement given in the slicing criterion. Following examples explain the forward

7

Chapter 2 Basic Concepts

and backward slicing.

Figure 2.3: forward and backward slicing

2.3.3 Static slicing

Static slicing[9] is used to identify those statements of the program that potentially

contribute to the computation of the selected statements for all possible programs

inputs. Static slicing helps to understand of these parts of the program that

contribute to the computation to the selected function. As we know the static slicing

has many advantages in the process of program understanding, still it has large

subprograms because of the imprecise computation of these slices. In addition, static

slices cannot be very useful in the process of understanding of program execution

2.3.4 Dynamic slicing

Dynamic slicing[9] is used to identify those statements of the program that contribute

to the computation of the selected statements for a given program execution

(program input). Dynamic slicing may help to reduce the size of imprecise

computation of the static slice i.e. the part of the program that contributes to

the computation of the function of interest for particular program input. Mainly

size of Dynamic slices are much smaller than the static slices, thus it is be used

to understand program execution. Programmers may still have difficulties to

8

Chapter 2 Basic Concepts

understand the program and its behavior. Slicing Tool is important to divides

methods that will support the process of understanding of large software. To

understanding of large software systems, it uses an intermediate representation of a

program and then compute a slice from the graph. Following examples explain the

static and dynamic slicing.

Figure 2.4: Static and dynamic

In the Static slice with criterion < 7, x > are contains the line no. as 1,2,3,4,5,6,7.

But In the dynamic slice w.r.t criterion < 7, x > where input value of x is 5 are

contains the lines no. as 1,2,3,4,6,7.

2.4 Application of Program Slicing

This section provides various applications by using program slicing. Initially, the

program slicing was developed to create automated code decomposition tools. The

main objective of these tools was program debugging. Now-a-days the program

slicing techniques has been used in different software development processes.

2.4.1 Differencing the programs

Normally, programmers find difficulties to differentiate two programs. So program

slicing technology can be used effectively for differentiating two programs. It helps

to find all the components of different programs having different behavior and to

9

Chapter 2 Basic Concepts

produce a program that captures the semantic differences between two programs by

comparing the backward slices of the vertices in two dependence graphs. Here, the

backward slice is computed by giving a slice criterion.

2.4.2 Debugging

Debugging[24] is a process of finding and reducing the number of bugs, or defects

in the program. The problem of finding bugs in a program is always a difficult

task. The process to find a bug involves in running the program several times,

searching for each line is more time taking. In distributed systems, the problem

is more difficult because of different dependencies i.e. control dependencies, data

dependencies and also communication dependencies that might lead to additional

bugs. Program slicing was originally proposed for observing the process of debugging

carried out by programmers. Programmers virtually compute slice while debugging

codes which was difficult and time taking also. so program slicing techniques helps

to find the subset of statements according to their dependencies from which it is

easy to find bugs in an effective way.

2.4.3 Software Maintenance

Software maintenance[24] is a costly process because each changes to a program

must consider into many complex dependence relationships in the existing software.

The most challenging part in the software maintenance, are to understand various

dependencies in an existing software and to make changes to the existing software

without introducing new problems, i.e. whether a code change in a program will

make any affect to the behavior of other codes of the program. To overcome

this problem, it is important to know which variables will be depended on which

statements. This problem can be reduced by slicing technique to the software.

10

Chapter 2 Basic Concepts

2.4.4 Testing

Software maintainers are often used regression testing[24]. Regression testing deals

with re-testing of software after changes or modification. Even after the smallest

change to a part of code, extensive tests is required because it might involve running

a large number of test cases to ensure that no unwanted behavior arises due to the

change. This requires to take new test cases along with the existing test cases. Slicing

helps to reduce the number of these test cases. While decomposition slicing reduces

the need for regression testing on the complement. there may still be a substantial

number of tests to be needed on the dependent, independent and changed parts.

Slicing can be used to minimize the number of these tests.

2.4.5 Refactoring

Informally Refactoring[24] is defined as the process of improving the design of

existing software system. In this case the source code transformation takes place.

While changing each transformation is expected to preserve the behavior of system.

There is simple example of refactoring is extracting a class or a method from one class

to another. Hence for the case of refactoring program slicing makes an important

role as it is the finding the subset of statements of program those are related to each

other.

2.4.6 Functional Cohesion

Cohesion measures[24] the relatedness of the code within the component. A highly

cohesive software component means in which one function cannot be further divided

into sub-module. In a good quality of software always maintains high cohesive.

Program slicing helps to find statements those are inter-dependencies within a

components.

11

Chapter 3

Literature Survey

In this section, we explain the survey of basic existing papers those are closely related

to our work.

Weiser[1] proposed 1st program slicing approach for the Procedural oriented

Program. According to Weiser Program Slicing is a method of decomposition

that extracts the statements from programs, those are relevant for a particular

computation. Program slicing proposed by Wiser is a kind of backward static slicing.

In this wise Approach, it is difficult to represent Pointers and Arrays.

Agarwal and Horgan[3] introduced the approach of dynamic slicing. Dynamic

Slice is similar to static one but it is constructed with respect to only one execution

of the program. It does not include the statements with respect to the slicing criteria

for the particular input.

Horwitz et al.[2] developed a system dependence graph (SDG) as an intermediate

representation for procedural programs which contain multiple procedures. They

proposed a two phase algorithm by using SDG to compute inter procedural static

slice. Larsen and Horrold extended the SDG of Horwitz [25]et al. to represent

object oriented programs. They include many object oriented features such as class,

objects, inheritance, polymorphism etc on SDG.

Mohapatra et al.[6] have developed edge marking and node marking approach for

dynamic slicing of OOP. They have used SDG of OOP for slicing. Their approaches

12

Literature Survey

are based on marking and un-marking of the edges on nodes of the graph accordingly

when dependency arises.

Zaho[13] proposed an Aspect Oriented System dependence Graph (AOSDG)

which is an extension of object oriented SDG. The AOSDG consists of two parts

i.e. one Aspect part and another non-Aspect part. They have used a special edge

to connect these two parts representing AOSDG.

Braak et al.[26] extended the AOSDG proposed by Zaho. They used two phase

algorithm to find static slice of AO program. They have not addressed the dynamic

slicing of AOP.

Sahu et al.[19] proposed the extended-ASDG as the intermediate representation

of AO program. Their EASDG is different from ASDG of Zaho in two ways. i.e. each

point cuts are explicitly represented and weaving process is represented in EASDG.

They have used node marking algorithm on the EASDG to compute dynamic slice

of AOP.

13

Chapter 4

Slicing of Object-Oriented

Program

4.1 Block Diagram of our Approach

Figure 4.1: Block Diagram

The above figure shows actually how our tool works. First we create the class file

of the java program to be sliced. Then give that class file to our tool, Then it finds

all the dependence matrix using java system dependence package (JSD package)[27].

From that matrix it creates the SDG of that java program. After creating SDG again

14

Chapter 4 Slicing of Object-Oriented Program

we give one slicing criterion, then it uses one slicing algorithm to compute slice of

the specified java program.

4.2 Creation of SDG of OOP(Java)

A Java System Dependence Graph[5] is a multi-graph which contains control and

data dependencies between the statements of a Java program. it contains classes,

methods, statements, interfaces to represent SDG of java program. Each of these

represent graph separately and combine with hierarchical manner to make complete

SDG of java program. Here the statements are lower level, then method level, like

this all are connected in a hierarchical structure within the SDG. Now we discuss

the different steps to create SDG.

4.2.1 Statement dependency Graph

Statements are the lowest level in SDG of java program. It is an atomic construct

representing a single expression in the source code of the program. A statement

representing a call to another method (a callsite) requires a special representation.

4.2.2 Method dependency Graph

It represents a single method or procedure in a program. It is just the next layer from

the statement layer. The method entry vertex connects to other members of methods

using control dependence edges. Parameter passing is obtained by using actual and

formal vertices. The called procedure has formal-in and formal-out vertices, which

use parameter variables accordingly. There is a call dependence edge which connects

between the call site and the procedure being called.

15

Chapter 4 Slicing of Object-Oriented Program

4.2.3 Class dependency Graph

It represents the classes of the program. It is the next layer to Method Dependency

Graph. It contains class entry vertex to connect the method entry vertices by

using class member edges. Here, dependent classes are connected by using class

dependence edges.

4.2.4 Construct the JSDG

Here we have taken one class named as JavaSytemDependenceGraph to find all

the information regarding different dependence as discussed previously. This class

contains different linked list for storing different nodes and the dependencies between

them. There is a class named as ConvertJsdgToGv which converts Graph using all

the information from stored matrix. Finaly we give a specific path to store the SDG

of input program

16

Chapter 4 Slicing of Object-Oriented Program

4.2.5 Example

Here we have taken the following example of java program and it creates SDG which

looks like the following.

Figure 4.2: Java Program

17

Chapter 4 Slicing of Object-Oriented Program

Figure 4.3: SDG of Java Program

Figure 4.4: Notation

4.3 Static Slicing

This section discuss the slicing of the previously generated JSDG. Here we have

taken horwitz’s[2] two pass algorithm to compute static slice. Our tool takes one

input slicing criterion i.e. statement no. show that, it slices using the JSDG by

considering that slicing criterion. Now we discuss bellow the Algorithm with taking

previous example.

18

Chapter 4 Slicing of Object-Oriented Program

4.3.1 Algorithm

Figure 4.5: Static Slicing Approach

4.3.2 Case study for the Static slicing

we have taken one Java program shown in figure 4.2 and creates it’s SDG as

previously discussed which is shown in figure 4.3. now we use static slicing approach

i.e. two pass algorithm on this and using < 22, rt > as slicing criterion. then it slices

the graph from that point towards up, those lines affects that statement. Figure 4.5

shows the sliced one.

Figure 4.6: Static Slice with < 22, rt >

19

Chapter 4 Slicing of Object-Oriented Program

4.4 Dynamic Slicing

This section discuss the slicing of the previously generated JSDG. Here we have

taken Mohapatra’s NodeMarking[6] algorithm to compute dynamic slice. Our tool

takes input slicing criterion i.e. statement no. as well as the value of the variable

show that, it slices using the JSDG by considering that slicing criterion for that

particular input value of the variable. Now we discuss the Algorithm with taking

previous example.

4.4.1 Algorithm

Figure 4.7: Node Marking Algorithm

20

Chapter 4 Slicing of Object-Oriented Program

4.4.2 Case study for the Dynamic Slicing

Now we have taken the same previous example shown in the fig.4.2 and also it

creates SDG shown in figure 4.3, then we use the node marking algorithm to compute

Dynamic slice. here the slicing criterion is ¡11,z¿ and the input values of x and y are

20,10 respectively.

first the SDG created Statically once, then updated accordingly

with the execution trace path, here the execution trace paths are

12,13,14,15,16,17,18,19,20,6,7,8,9,11,21,2,3,4,5,22. then finally it slices with

the criterion < 11, z > are 1,6,7,8,9,11,12,13,14,15,16,17,18,19,21 which are shown

by shaded in the figure 4.4

Figure 4.8: Dynamic Slice with < 11, z > x=20,y=10

4.5 Result

we have taken some of open source example of java program and then compute

slicing. The Table 4.1 shown the time taken for generating SDG as well as compute

21

Chapter 4 Slicing of Object-Oriented Program

Slicing.

Table 4.1: Performance

Programs LOC Time to

generate

SDG(ms)

Time to

generate

Static

Slice(ms)

Time to

generate

Dynamic

Slice(ms)

Binary Search

Tree

153 110 08 05

Doubly

Linked List

133 91 05 03

Elevator 85 50 02 01

22

Chapter 5

Slicing of Aspect-Oriented

Program

5.1 Basic concept of AOP

• There are some draw back of OOP implementation. One of them is

Cross-cutting conserns.

• Cross-Cutting concern : Cross-Cutting[23] concern is the part of the

program Which is scattered across multiple modules of the program.

• Logging is one of the common example of Cross-Cutting concern.

– Let’s say there is an online service provider that provide the following

services to its client: pay-per-view TV, magazines and music on demand.

The traditional OOP implementation are bellow.

5.1.1 Aspect-Oriented Programming

• The concept of AOP was developed at Xerox PARC, by Gregor Kiczales et

al.[23] in the year 1996.

23

Chapter 5 Slicing of Aspect-Oriented Program

Figure 5.1: Cross-Cutting

• AOP provides separation of Cross-Cutting concerns from the core modules by

introducing new unit of modularization called Aspect.

5.1.2 Feature of AOP

• Aspect: Aspects[23] are like classes in OOP, that contain functionalities.

• Joinpoints:Aspects cross-cut[23] object at only well-defined points, such as

at object construction,method call or member variable access points. Such

well-defined points are known as join points.

• Pointcut:The specification for naming a join point is called a Pointcut[23].

Pointcut is the collection of join points.

• Advice: Once the join points are spotted in a program, the intended

behavioral objective is defined. This behavior is called Advice.

24

Chapter 5 Slicing of Aspect-Oriented Program

Fig. 5.2, 5.3, 5.4, 5.5, 5.6 are shown all the features of AOP.

Figure 5.2: Example of AOP

Figure 5.3: Example of Aspect

25

Chapter 5 Slicing of Aspect-Oriented Program

Figure 5.4: Example of Point-Cut

Figure 5.5: Example of Join Point

26

Chapter 5 Slicing of Aspect-Oriented Program

Figure 5.6: Example of Advice

27

Chapter 5 Slicing of Aspect-Oriented Program

5.2 Block Diagram of Tool

Figure 5.7: Block Diagram of Tool

The figure shows actually how our Approach works. First we create the class file

of the Java program to be sliced. Then give that class file to our tool, Then it finds

all the dependence matrix using java system dependence package[5] (JSD package).

From that matrix it creates the SDG of that java program. After creating SDG

again we give one slicing criterion, then it uses one slicing algorithm to compute

slice of the specified java program.

5.3 Creation of SDG of AOP

• AOP has two part one is the Aspect part and other is the non-Aspect part[23].

• First we generate the SDG of two part separately.

• Create one pointcut table which stores the name of the pointcuts and target

methods.

• Using this pointcut table we search the target method for non-Aspect part and

then connect to the pointcut node in the Aspect part by an weaving Edge.

• Finaly we got the SDG of input AOP.

28

Chapter 5 Slicing of Aspect-Oriented Program

5.3.1 Example

Here we have taken the following example of java program and it creates SDG of

that AOP which looks like the following.

Figure 5.8: Non-Aspect part of AOP

29

Chapter 5 Slicing of Aspect-Oriented Program

Figure 5.9: Aspect part of AOP

30

Chapter 5 Slicing of Aspect-Oriented Program

Figure 5.10: Notations used

31

Chapter 5 Slicing of Aspect-Oriented Program

Figure 5.11: SDG

5.4 Compute Slicing of AOP

This section discuss the slicing of the previously generated JSDG. Here we have

taken two pass algorithm[2] to compute static slice. Our tool takes one input slicing

criterion i.e statement no. show that, it slices using the JSDG by considering that

slicing criterion. Now we discuss bellow the Algorithm with taking previous example.

5.4.1 Algorithm

Two phase Approach

• The traversal in pass one starts from desired vertex and goes backwards along

all edges except parameter-out edges.

• The traversal in pass two starts from all vertices reached in pass one and goes

backwards along all edges except call and parameter-in edges.

• The slice is the union of 2 sets of vertices.

32

Chapter 5 Slicing of Aspect-Oriented Program

5.4.2 Case study for the Static Slicing of AOP

we have taken the same previous Aspect-oriented program shown in section 5.3.1,

it has two part one Aspect part and other one non-Aspect part then we creates

SDG for that two part separately and then join these two by using weaving edge.

after creating SDG of that AOP we use two phase Approach to compute slice with

criterion < x13, amnt >, which is shown the figure with shaded portion.

Figure 5.12: Sliced with criterion < x13, amnt >

5.5 Results

We have taken some open source Examples of OOP and AOP java program and

compute slice of them then got the following results shown in the Table 5.1

33

Chapter 5 Slicing of Aspect-Oriented Program

Table 5.1: Performance

Programs classes Aspect Time to

generate

SDG(ms)

Time to

Slice(ms)

Binary Search

Tree

2 nil 110 08

Stack

implementation

2 nil 73 03

Doubly Linked

List

2 nil 91 05

Account 1 1 111 12

34

Chapter 6

Conclusion and future work

• We have generated System Dependence Graph of Object-Oriented programs

with all features,then compute static Slice using Two phase Approach[2].and

Dynamic slice using Node Marking Approach.

• We have taken some Open source Example of java program for slicing using

Our this Approach.

• Observed the time taken for constructing SDG and Slice.

• Our future work is to compute slice for Dynamic Slicing of AOP programs

using an efficient Algorithm, as well as compute slice of Distributed-OOP and

Concurrent-OOP.

35

Bibliography

[1] M. Weiser, ” Program Slicing”, Proceedings of the 5th International Conference on Software

Engineering, San Diego, California, United States, March 09-12, 1981, pages 439-449.

[2] S. Horwitz, T. Reps and D. Binkley, ”Inter-procedural Slicing using Dependence Graphs”,

[3] Agrawal, Hiralal, and Joseph R. Horgan. ”Dynamic program slicing.” ACM SIGPLAN Notices.

Vol. 25. No. 6. ACM, 1990. ACM Transactions on Programming Languages and Systems, 1990,

pages 2661.

[4] D. W. Binkley and K. B. Gallagher, ”Program slicing”, Advances in Computers, Vol-43, 1996,

pages 1-50.

[5] Walkinshaw, Neil, Marc Roper, and Murray Wood. ”The Java system dependence graph.”

Source Code Analysis and Manipulation, 2003. Proceedings. Third IEEE International Workshop

on. IEEE, 2003.

[6] Mohapatra Durga Prasad, Rajib Mall, and Rajeev Kumar. ” Node-Marking Technique for

Dynamic Slic- ing of Object-Oriented Programs”, In Proceedings of Conference on Software

Design and Architecture (SODA’04), 2004, pages 155-160.

[7] Mohapatra, D. P., Mall, R., and Kumar, R. (2006). An overview of slicing techniques for

object-oriented programs. Informatica (Slovenia), 30(2), 253-277.

[8] Chen, Z., and Xu, B. Slicing object-oriented Java programs. ACM SIGPLAN Notices 36 (2001),

33-40.

[9] Tip, Frank. ”A survey of program slicing techniques.” Journal of programming languages 3.3

(1995): 121-189.

[10] MOHAPATRA D. P. Dynamic slicing of object oriented programs, PhD paper ,IIT Kharagpur

2005.

[11] Korel, Bogdan, and Janusz Laski. ”Dynamic program slicing.” Information Processing Letters

29.3 (1988): 155-163.

36

Bibliography

[12] Binkley, David W., and Keith Brian Gallagher. ”Program slicing.” Advances in Computers

43 (1996): 1-50.

[13] Zhao, Jianjun, and Martin Rinard. ”System dependence graph construction for aspect-oriented

programs.” 7HFKQLFDO 5HSRUW 0 7 (2003).

[14] Zhao, Jianjun. ”Slicing aspect-oriented software.” Program Comprehension, 2002.

Proceedings. 10th International Workshop on. IEEE, 2002.

[15] Korel, Bogdan, and Janusz Laski. ”Dynamic program slicing.” Information Processing Letters

29.3 (1988): 155-163.

[16] De Lucia, Andrea. ”Program Slicing: Methods and Applications.” scam. 2001.

[17] Harman, Mark, and Robert Hierons. ”An overview of program slicing.” Software Focus 2.3

(2001): 85-92.

[18] Binkley, David. ”The application of program slicing to regression testing.” Information and

software technology 40.11 (1998): 583-594.

[19] Madhusmita, and Durga PrasadMohapatra. ”A node-marking technique for dynamic slicing of

aspect-oriented programs.” Information Technology,(ICIT 2007). 10th International Conference

on. IEEE, 2007.

[20] http://www. graphviz. org/Documentation/dotguide. pdf, 2006.

[21] Ray, Abhishek, Siba Mishra, and Durga Prasad Mohapatra. ”A Novel Approach for

Computing Dynamic Slices of Aspect-Oriented Programs.” arXiv preprint arXiv:1403.0100

(2014).

[22] Mohapatra, Durga Prasad, et al. ”Dynamic slicing of aspect-oriented programs.” Informatica

32.3 (2008): 261-274.

[23] Kiczales, Gregor, et al. Aspect-oriented programming. Springer Berlin Heidelberg, 1997.

[24] Sasirekha, N., and M. Hemalatha. ”PROGRAM SLICING TECHNIQUES AND ITS

APPLICATIONS.” International Journal of Software Engineering and Applications 2.3 (2011).

[25] Liang, Donglin, and Mary Jean Harrold. ”Slicing objects using system dependence graphs.”

Software Maintenance, 1998. Proceedings., International Conference on. IEEE, 1998.

[26] ter Braak, Timon. ”Extending Program Slicing in AspectOriented Programming with

InterType Declarations.” 5th Twente Student Conference on IT. 2006.

[27] http://www4.comp.polyu.edu.hk/ cscllo/teaching/SDGAPI/

37

	Certificate
	Acknowledgment
	Abstract
	List of Figures
	List of Tables
	Introduction
	Motivation
	objective
	Organization of the Thesis

	Basic Concepts
	Types of Dependencies
	Program Representation[2]
	Program dependency Graph (PDG)
	System Dependence Graph(SDG)

	Program Slicing
	 Forward Slicing[9]
	 Backward Slicing[9]
	Static slicing
	Dynamic slicing

	Application of Program Slicing
	Differencing the programs
	Debugging
	Software Maintenance
	Testing
	Refactoring
	Functional Cohesion

	Literature Survey
	 Slicing of Object-Oriented Program
	Block Diagram of our Approach
	Creation of SDG of OOP(Java)
	 Statement dependency Graph
	 Method dependency Graph
	Class dependency Graph
	Construct the JSDG
	Example

	Static Slicing
	Algorithm
	Case study for the Static slicing

	Dynamic Slicing
	Algorithm
	Case study for the Dynamic Slicing

	 Result

	 Slicing of Aspect-Oriented Program
	Basic concept of AOP
	Aspect-Oriented Programming
	Feature of AOP

	Block Diagram of Tool
	Creation of SDG of AOP
	Example

	Compute Slicing of AOP
	Algorithm
	Case study for the Static Slicing of AOP

	Results

	Conclusion and future work
	Bibliography

