
1

Project On

DESIGN OF BOOTH

MULTIPLIER USING

RIPPLE CARRY ADDER

By

Chinmay Kumar Behera(110ec0157)

Sandip Kumar Barman(110ei0235)

B.Tech 4
th

 year

Project Guide

Prof. M. Nurul Islam

Asst. Professor

 Dept. of Electronics & Communication Engineering

Submitted to

the Dept. of Electronics & Communication Engineering

National Institute of Technology, Rourkela

 NATIONAL INSTITUTE OF TECHNOLOGY, ROURKELA
 Rourkela,

 Sundargarh-769008

 Website- www.nitrkl.ac.in

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ethesis@nitr

https://core.ac.uk/display/53190387?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

 CERTIFICATE

This is to certify that the thesis entitled “DESIGN OF BOOTH MULTIPLIER USING

RIPPLE CARRY ADDER” submitted by Mr. Chinmay Kumar Behera (110EC0157)

and Mr. Sandip Kumar Barman(110EI0235), Final year students of Electronics and

communication Engineering department, in partial fulfilments of the requirements for the

award of Bachelor of Technology Degree in Electronics and Communication Engineering at

National Institute of Technology, Rourkela is an authentic work carried out by them under

my supervision and guidance.

To the best of my knowledge, the matter embodied in thesis has not been submitted to any

other university/ Institute for the award of any degree or Diploma.

Prof M. NURUL ISLAM

Department of E.C.E

National Institute of Technology

Rourkela- 769008

3

ACKNOWLEDGEMENT

We would like to articulate our profound gratitude and indebtedness to our project guide

Prof. M. Nurul Islam who has always been a constant motivation and guiding factor

throughout the project time in and out as well. It has been a great pleasure for us to get an

opportunity to work under him and complete the project successfully.

We wish to extend our sincere thanks to Prof. Dr. S. Meher, Head of our Department, for

approving our project work with great interest.

We would like to mention Mr. Deepu S P for his cooperation and constantly rendered

assistance.

An undertaking of this nature could never have been attempted without our reference to and

inspirations from the works of others whose details are mentioned in references section. We

acknowledge our indebtedness to all of them. Last but not the least, our sincere thanks to all

our friends who have patiently extended all sorts of help for accomplishing this undertaking.

Chinmay Kumar Behera Sandip Kumar Barman

 (110EC0157) (110EI0235)

 NIT Rourkela NIT Rourkela

javascript:;

4

CONTENTS
1. Introduction

1.1 Motivation

1.2 Multiplier Design

1.3Programming language and Analysis Tools Used

1.4 Research Approach

2. Adders

2.1 Adders Classification

2.2 Ripple Carry Adder

2.3 Analysis of Ripple Carry Adders

3. The Multipliers

3.1 Basic Multiplication Algorithm

3.2 Booth’s Encoding

3.3 Modified Booth’s Algorithm

4. Implementation & Results

4.1 Programs for Multipliers

4.2 Output Waveforms

5. Conclusion & Future Work

6. References

5

ABSTRACT

Modern IC Technology focuses on the planning of ICs considering additional space

improvement and low power techniques. Multiplication may be a heavily used operation that

figures conspicuously in signal process and scientific applications. Multiplication may be a

terribly hardware intensive subject and thus we as users area unit largely involved with

obtaining low-power, smaller space and better speed. The foremost necessary concern in

classic multiplication largely accomplished by K-cycles of shifting and adding, is to hurry up

underlying multi-operand addition of partial product. During this project we'll design the

Booth multiplier using Ripple Carry Adder architecture. Additionally multipliers are

designed for each radix-2 and radix-4. Results can show that the multiplier is able to multiply

two 32 bit signed numbers and how this technique reduces the number of partial products,

which is an important factor to be achieved in this project.

6

CHAPTER 1

INTRODUCTION

 MOTIVATION

 MULTIPLIER DESIGN

 PROGRAMMING LANGUAGE AND ANALYSIS TOOLS USED

 REASEARCH APPROACH

7

1.1 MOTIVATION

 Day by day IC technology is obtaining additional advanced in terms of style and its

performance analysis. A quicker style with lower power consumption and smaller space is

implicit to the trendy electronic styles. Unceasing advancement in electronics style

technology makes improved use of energy, code knowledge with success, communicate info

way more firm, etc. significantly, several of those technologies address low-power

consumption to fulfil the necessities of assorted transportable applications. In these

application systems, a multiplier could be a basic arithmetic unit and wide employed in

circuits that the multiplication method ought to be optimized properly. Multipliers typically

have extended latency, huge space and consume substantial quantity of power. Thus low-

power number style has become a very important half in VLSI system style. Everyday new

approaches square measure being developed to style low-power multipliers at technological,

physical, circuit and logic levels. Since multiplier is mostly the slowest component during a

system, the system’s performance is decided by performance of the multiplier. Additionally

multipliers square measure the foremost space intense entity during a style. Therefore,

optimizing speed and space of a multiplier could be a major style issue these days. However,

space and speed square measure typically conflicting constraints in order that rising speed

ends up in larger areas and vice-versa. Additionally space and power consumption of a circuit

square measure linearly correlate. Therefore a compromise has got to be wiped out speed of

the circuit for a larger improvement in reduction of space and power.

For implementing a digital number an oversized form of pc arithmetic algorithms may be

used. Most techniques take into thought generating a collection of partial merchandise, and so

adding the partial merchandise along once they need been shifted. During a number to extend

its speed, the amount of partial product to be generated ought to be reduced. A better

illustration base effectively indicates to fewer digits. Thus, a single-digit multiplication

8

algorithmic rule necessitates fewer cycles as we tend to begin moving to a lot of higher

radices, that mechanically ends up in a lesser variety of partial merchandise. Many algorithms

are developed for this purpose like Booth’s algorithmic rule, Wallace Tree methodology etc.

For the summation method many adder architectures square measure on the market viz.

Ripple Carry Addition, Carry Look-ahead Addition, Carry Save Addition etc. however to

scale back the facility consumption the summation design of the number ought to be

rigorously chosen.

1.2 MULTIPLIER DESIGN

Multiplication is thought of to incorporates 3 basic steps: generation of partial product (PPG),

partial product reduction (PPR), and at last at the top addition of carry propagate(CPA).In

general we've got combinatory and ordered multiplier factor implementations. Here we have

a tendency to area unit taking into thought the combinatory case solely, as a result of the size

of integration currently has become large enough to begin accommodating parallel multiplier

factor applications in digital VLSI circuits. Completely different multiplication algorithms

vary within the approaches of generation and reduction of Partial product and also the

addition method. So as to diminish the amount of PPs concerned and so reduce the area/delay

of the circuit, one quantity is sometimes recoded into high-radix digit sets. One amongst the

foremost used and widespread radix-2n algorithmic rule is that the radix-4 that features a set

of digits given by for PPG. For PPR, 2 decisions exist which might be implemented:

reduction by rows, which might be performed by taking into thought Associate in Nursing

adder array and reduction by columns, which might be performed by taking into thought a

counter array. The closing method of addition necessitates a quick adder arrangement as a

result of it's on the crucial path. In an exceedingly few cases, last summation is delayed if it's

valuable to stay redundant results from PPG to hold out any arithmetic operations.

9

1.3 PROGRAMMING LANGUAGE AND ANALYSIS TOOLS

USED

To write program for the implementation of any digital circuit there square measure varied

languages accessible, referred to as Hardware Description Language e.g. Verilog, VHDL. For

our style we've used VHDL (Very High Specific microcircuit HDL) for programming.

VHDL is one among the common techniques utilized in digital system aborning method. The

technique is enforced in program mistreatment bound package that carries out simulation and

examination of the designed system. The designer solely must describe the digital circuit

design in matter type which may take away while not the trouble to change the hardware.

VHDL is very most well-liked as a result of this system has the power to scale back value and

time, is simple to troubleshoot, portable, lots of platforms package support the VHDL operate

and high references square measure accessible. We tend to used XILINX ten.1 platform to jot

down our programs. All the RTL simulations has been done mistreatment this package solely.

Conjointly for delay report the synthesis tool embedded in Xilinx was used.

We used for Scirocco and VirSim, that square measure logic simulators, for the practicality

simulation of our style. Conjointly we tend to used Synopsys style Vision tool to estimate

power of all our arithmetic circuits. Synopsys style Vision could be a logic synthesis tool. It

takes alpha-lipoprotein styles and synthesizes them to gate-level net-lists. Conjointly it

supports each Verilog and VHDL. It will synthesize generic gates or different style libraries.

The tool exists within a interface and command version. The interface version is thought as

style vision and therefore the command version is referred as dc_shell-xg-t. For each space

and power estimation we tend to used style Vision. The essential steps for analyzing a style

are:

10

Analyze: This step begin checking the planning files for syntax. We can conjointly save

modules (Verilog) associate degree entities (VHDL) in an intermediate format into an area

folder.

Elaborate: we will build a style from the intermediate format files created within the previous

Analyze step.

Compile: this is often the synthesizing step, wherever we will map the planning to a gate

library or cell library.

Save: once aggregation a style we will save the synthesized style into alpha-lipoprotein or

different formats. Synthesized styles square measure elementary for making ASICS or

effecting completely different simulations for temporal order and power. After compilation

mistreatment commands like report_power or report_area we will get power and space

consequently.

1.4 RESEARCH APPROACH

Speed of the multiplier is highly dependent upon the number of partial products generated

and the adder architecture used to add these partial products. The main intention of the

project is to use booth multiplier algorithm for designing the binary multiplier with the help

of Ripple carry adder. The reason for using the booth’s algorithm is that, using booth’s

algorithm we can reduce the number of partial products during multiplication. The adder here

we have used is ripple carry adder. This adder has a very simple architecture and is very easy

to implement. As here we are dealing with high bits, this adder is very useful because of its

simple architecture. If we see overall including the adder and booth’s algorithm we get a

binary multiplier which has comparatively high speed because of less partial products and

less power consumption because of the adder architecture we have used. We have checked

the results for both signed and unsigned numbers.

11

CHAPTER 2

ADDERS

 ADDERS CLASSIFICATION

 RIPPLE CARRY ADDER

 ANALYSIS OF RIPPLE CARRY ADDER

12

2.1 ADDERS CLASSIFICATION

Addition is one in every of the foremost normally used mathematical process in silicon chip,

digital signal processor etc. It also can be used as a building block for synthesis of all

alternative arithmetic operations. Therefore, as so much because the economical

implementation of associate degree arithmetic unit is bothered, the binary adder structure

becomes an awfully essential hardware unit. In any book on pc arithmetic, we will observe

that there happens an oversized variety of quite completely different circuit architectures

relating different performance characteristics. Whereas adders is made for lots of numerical

expressions like Binary-coded decimal or excess-3, the foremost oft used adders operate

numbers that area unit binary. In sure cases wherever two's complement is being employed to

represent negative numbers, it's trivial to convert associate degree adder into associate degree

adder-subtractor.

Although several researches associated with the binary adder structures are allotted, the

studies supported their comparative performance analysis area unit solely quite few in

variety. During this project, assessments of the classified binary adder architectures area unit

given. From the large member of adders we've got, we tend to enforce the VHDL (Hardware

Description Language) code for Ripple-carry adder. Throughout consequent section, we offer

you with a quick description of the studied adder design.

2.2 RIPPLE CARRY ADDERS (RCA)

This well-liked adder design, ripple carry adder consists of cascaded full adders as shown in

figure2.1. It is shaped by cascading full adder blocks nonparallel with each other. The output

carry of 1 stage is fed on to the input carry of following stage. AN N-bit parallel adder needs

N full adders.

13

FIGURE 2.1

The given adder design isn't terribly economical once sizable amount of bits square measure

used. The gate delay will simply be calculated by inspecting the total adder circuit. we all

know that every full adder needs 3 levels of logic. Considering a 64-bit ripple-carry adder, we

all know that it's sixty four full adders, therefore the crucial path (worst case) delay is three

(from input to hold just in case of the primary adder) + sixty three * two (for carry

propagation within the later adders) = 127 gate delays.

2.3 ANALYSIS OF RIPPLE CARRY ADDER ADDERS

We know that combinational logic circuits cannot cipher the outputs instantly. There's some

delay between the time the inputs square measure sent to the circuit, and therefore the time

the output is computed.

Let's say the delay is T units of your time.

Suppose we wish to implement associate degree n-bit ripple carry adder. Since associate

degree n-bit ripple carry adder consists of n adders, there'll be a delay of nongovernmental

organization. This is often O(n) delay. While the adders square measure operating in parallel,

the carrys should "ripple" their means from the smallest amount vital bit and work their

thanks to the foremost vital bit. It takes T units for the perform of the right column to create it

as input to the adder within the next to right column. Thus, the carries abate the circuit,

creating the addition linear with the quantity of bits within the adder. This is not a giant

14

drawback, usually, as a result of hardware adders square measure mounted in size. They add,

say, thirty two bits at a time. There is not associate degree thanks to create an adder add an

impulsive variety of bits. It will be exhausted code, not in hardware. In effect, this is often

what makes hardware "hard". It is not suitable to alter. Even though there square measure a

set variety of bits to feature in an adder, there square measure ways that to create the adder

add a lot of quickly (at least, by a constant).

15

CHAPTER 3

THE MULTIPLIERS

 BASIC MULTIPLICATION ALGORITHM

 BOOTH’S ENCODING

 MODIFIED BOOTH’S ALGORITHM

16

3.1 BASIC ALGORITHM FOR BINARY MULTIPLICATION

A Binary number is associate degree device utilized in digital physics or in an exceedingly pc

or different electronic devices to hold out multiplication of 2 numbers represented in binary

format. It's engineered mistreatment binary adders. The foremost basic technique involves

generating a collection of partial merchandise, so summing the partial merchandise at the

same time. This method is comparable to the tactic that is instructed to lower classes’

students in class for conducting long multiplication on base-10 integers, however has been

changed here for application to a base-2 (binary) numeral system.

The rules for binary multiplication are expressed as given:

1. If the number digit is one, the number is derived down and it provides the merchandise.

2. If the number digit is zero then we have a tendency to get a product that is additionally

zero.

For planning such a number circuit we should always have the electronic equipment to hold

out or do the subsequent four things:

1. It ought to be capable of recognizing whether or not a little is zero or one.

2. It ought to be capable of shifting the left partial product.

3. It ought to be capable of adding all the partial-products to provide the merchandise as a

addition of the partial merchandise.

4. It ought to examine sign bits and if they're similar, the sign of the merchandise are going to

be a Positive illustration and if the sign bits are opposite then the merchandise are going to be

negative. The sign little bit of the merchandise that has been keep with the higher than criteria

ought to be displayed together with the merchandise.

From the higher than discussion we will observe that it's not necessary to attend till all the

partial merchandise are shaped before polishing off the add. in truth the addition of the partial

merchandise is allotted as before long as a partial product is created.

17

3.2 BOOTH’S ENCODING

Booth’s encryption or Booth's multiplication rule could be a multiplication algorithm which

might multiply 2 signed binary numbers during a two's complement notation. Booth's rule has

the power to perform fewer additions and subtractions as compared to traditional

multiplication rule. It's AN encryption method which might be accustomed minimize the no

of partial product during a multiplication method. it's based mostly upon the relation

2
n
= 2

n-1
- 2

n

Example:

0 0 1 1 1 1 1 1 0 0

 +1 -1

 +1 -1

 +1 -1

 +1 -1

 +1 -1

 +1 -1

0 +1 0 0 0 0 0 -1 0 0

Booth's algorithmic program examines consecutive bits of the N-bit number Y in signed two's

complement illustration, which has Associate in Nursing implicit bit below the smallest

amount important bit, y-1 = 0. For every bit Lolo, as i runs from zero to N-1, the bits Lolo

and yi-1 square measure thought of. Once these 2 bits square measure equal, the merchandise

accumulator P stays unchanged. Wherever Lolo = zero and yi-1 = one, the number times 2i is

additional to P; and wherever Lolo = one and yi-1 = zero, the number times 2i gets subtracted

from P. The ultimate price of P are the signed product.

The illustration of the number and products don't seem to be specified; usually, these also are

in two's complement illustration, sort of a number, however any system of numeration that

18

supports addition and subtraction can work furthermore. The order of the steps isn't

determined. Generally, it issue from LSB to mutual savings bank, beginning at i = 0; the

multiplication by 2i is then replaced by progressive shifting of the P accumulator to the

proper between steps; low bits are shifted out, and resultant additions or subtractions will

then be done simply on the best N bits of P. There square measure several variations and

optimizations on these details.

The algorithmic program is commonly delineate as changing strings of 1's within the number

to a high-order +1 and a low-order –1 at the ends of the string. once the string runs through

the mutual savings bank, there's no high-order +1, and also the web result is interpretation as

a negative of the acceptable price.

RADIX-2 ALGORITHM IMPLEMENTATION

Let x be the quantity of bits of the number, and y be the quantity of bits of the multiplier:

• Draw a grid of 3 rows, every with columns for x + y + one bits. Label the lines severally A

(add), S (subtract), and P (product).

• In two’s complement notation, fill the primary x bits of every line with :

o A: the number

o S: negative of the multiplicand(2's complement format)

o P: zeroes

• Fill future y bits of every line with :

o A: zeroes

o S: zeroes

o P: the number

• Fill the last little bit of every line with a zero.

For example think about the given 2 numbers: 5 and -2.

On ending the higher than directions we'd notice the subsequent values of A, S and P.

19

A = 0101 0000 0

S = 1011 0000 0

P = 0000 1110 0

Now do each of those steps y times :

If the last 2 bits within the product are:

 00 or 11: do nothing.

 01: P = P + A. Ignore any overflow.

 10: P = P + S. Ignore any overflow.

 Arithmetically shift the merchandise right one position.

 Drop the primary (we count from right to left once handling bits) bit from the

merchandise for the ultimate result.

 Do each of those steps y times :

For Example: Find 5 × -2, with x = 4 and y = 4:

We get:

A = 0101 0000 0

S = 1011 0000 0

P = 0000 1110 0

Perform the loop four times:

1- P = 0000 1110 0. The last two bits are 00.

 P = 0000 0111 0. A right shift.

2- P = 0000 0111 0. The last two bits are 10.

 P = P+S. Right shift.

3- P = 0000 0011 0. The last two bits are 10.

 P = 1101 1001 0.

 P = P + A. Right shift.

20

4- P = 1110 1101 1. The last two bits are 11.

 P = 1111 0110 1. Right shift.

The final product is 1111 0110, which is -10.

3.3 MODIFIED BOOTH’S ALGORITHM

One of the various solutions of realizing high speed multipliers is enhancing correspondence

that helps in decreasing the quantity of ulterior calculation levels. the initial version of Booth

formula (Radix-2) had 2 specific drawbacks. They were:

• the quantity of add-subtract operations and shift operations become variable and causes

inconvenience in coming up with parallel multipliers.

• The formula becomes inefficient once there square measure isolated 1’s.

These issues square measure swamped by victimization changed Radix4 Booth formula that

scans strings of 3 bits victimization the formula given below:

1) Lengthen the sign bit one position if necessary to confirm that n is even.

2) Add a zero to the correct of the LSB of the multiplier factor.

3) akin to the worth of every vector, every Partial Product are zero, +M, -M, +2M or -2M.

The negative values of M square measure created by taking its 2’s complement. The

multiplication of M is completed by shifting M by one bit to the left (in case it’s increased

with 2). Thus, in any case, in coming up with associate degree n-bit parallel multiplier factor,

solely n/2 partial merchandise square measure generated.

21

22

CHAPTER 4

IMPLEMENTATION AND RESULTS

PROGRAMS FOR MULTIPLIERS

OUTPUT WAVEFORMS

23

4.1 PROGRAM FOR RADIX-4 MULTIPLIER

MAIN CODE FOR BOOTH MULTIPLIER

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity R4MUL_RCA is

Port (a, b : in STD_LOGIC_VECTOR (31 downto 0);

mul: inout std_logic_vector(63 downto 0);

overflow: out std_logic);

end R4MUL_RCA;

architecture Behavioral of R4MUL_RCA is

component RADIX4_ENCODER is

Port (x : in STD_LOGIC_VECTOR (31 downto 0);

arg : in STD_LOGIC_VECTOR (2 downto 0);

pp : inout STD_LOGIC_VECTOR (63 downto 0));

end component;

component fulladder

Port (a, b, cin: in STD_LOGIC;

sum, cout: out STD_LOGIC);

end component;

24

component RCA64 is

 Port (a,b : in STD_LOGIC_VECTOR (63 downto 0);

 add : out STD_LOGIC_VECTOR (63 downto 0);

 cout: out std_logic);

end component ;

signal arg1, arg2, arg3, arg4: std_logic_vector(2 downto 0);

signal arg5, arg6, arg7, arg8: std_logic_vector(2 downto 0);

signal arg9, arg10, arg11, arg12: std_logic_vector(2 downto 0);

signal arg13, arg14, arg15, arg16: std_logic_vector(2 downto 0);

signal tt: std_logic_vector(32 downto 0);

signal s1,s2,s3,s4,s5,s6,s7,s8,s9,s10,s11,s12,s13,s14,s15: std_logic_vector(63 downto 0);

signal sum1,sum2,sum3,sum4,sum5,sum6,sum7,sum8: std_logic_vector(63 downto 0);

signal sum9,sum10,sum11,sum12,sum13,sum14,sum15: std_logic_vector(63 downto 0);

signal y: std_logic_vector(15 downto 0);

signal pp1, pp2, pp3, pp4, pp5, pp6, pp7, pp8 : STD_LOGIC_VECTOR (63 downto 0);

signal pp9, pp10, pp11, pp12, pp13, pp14, pp15, pp16: STD_LOGIC_VECTOR (63 downto

0);

begin

tt<= a(31 downto 0)&'0';

arg1<=tt(2 downto 0);

arg2<=tt(4 downto 2);

arg3<=tt(6 downto 4);

arg4<=tt(8 downto 6);

25

arg5<=tt(10 downto 8);

arg6<=tt(12 downto 10);

arg7<=tt(14 downto 12);

arg8<=tt(16 downto 14);

arg9<=tt(18 downto 16);

arg10<=tt(20 downto 18);

arg11<=tt(22 downto 20);

arg12<=tt(24 downto 22);

arg13<=tt(26 downto 24);

arg14<=tt(28 downto 26);

arg15<=tt(30 downto 28);

arg16<=tt(32 downto 30);

u1: RADIX4_ENCODER port map(b(31 downto 0), arg1, pp1);

u2: RADIX4_ENCODER port map(b(31 downto 0), arg2, pp2);

u3: RADIX4_ENCODER port map(b(31 downto 0), arg3, pp3);

u4: RADIX4_ENCODER port map(b(31 downto 0), arg4, pp4);

u5: RADIX4_ENCODER port map(b(31 downto 0), arg5, pp5);

u6: RADIX4_ENCODER port map(b(31 downto 0), arg6, pp6);

u7: RADIX4_ENCODER port map(b(31 downto 0), arg7, pp7);

u8: RADIX4_ENCODER port map(b(31 downto 0), arg8, pp8);

u9: RADIX4_ENCODER port map(b(31 downto 0), arg9, pp9);

u10: RADIX4_ENCODER port map(b(31 downto 0), arg10, pp10);

u11: RADIX4_ENCODER port map(b(31 downto 0), arg11, pp11);

u12: RADIX4_ENCODER port map(b(31 downto 0), arg12, pp12);

u13: RADIX4_ENCODER port map(b(31 downto 0), arg13, pp13);

26

u14: RADIX4_ENCODER port map(b(31 downto 0), arg14, pp14);

u15: RADIX4_ENCODER port map(b(31 downto 0), arg15, pp15);

u16: RADIX4_ENCODER port map(b(31 downto 0), arg16, pp16);

s1<= pp2(61 downto 0)&"00";

s2<= pp3(59 downto 0)&"0000";

s3<= pp4(57 downto 0)&"000000";

s4<= pp5(55 downto 0)&"00000000";

s5<= pp6(53 downto 0)&"0000000000";

s6<= pp7(51 downto 0)&"000000000000";

s7<= pp8(49 downto 0)&"00000000000000";

s8<= pp9(47 downto 0)&"0000000000000000";

s9<= pp10(45 downto 0)&"000000000000000000";

s10<= pp11(43 downto 0)&"00000000000000000000";

s11<= pp12(41 downto 0)&"0000000000000000000000";

s12<= pp13(39 downto 0)&"000000000000000000000000";

s13<= pp14(37 downto 0)&"00000000000000000000000000";

s14<= pp15(35 downto 0)&"0000000000000000000000000000";

s15<= pp16(33 downto 0)&"000000000000000000000000000000";

h1: RCA64 port map(pp1, s1, sum1, y(0));

h2: RCA64 port map(sum1, s2, sum2, y(1));

h3: RCA64 port map(sum2, s3, sum3, y(2));

h4: RCA64 port map(sum3, s4, sum4, y(3));

h5: RCA64 port map(sum4, s5, sum5, y(4));

h6: RCA64 port map(sum5, s6, sum6, y(5));

27

h7: RCA64 port map(sum6, s7, sum7, y(6));

h8: RCA64 port map(sum7, s8, sum8, y(7));

h9: RCA64 port map(sum8, s9, sum9, y(8));

h10: RCA64 port map(sum9, s10, sum10, y(9));

h11: RCA64 port map(sum10, s11, sum11, y(10));

h12: RCA64 port map(sum11, s12, sum12, y(11));

h13: RCA64 port map(sum12, s13, sum13, y(12));

h14: RCA64 port map(sum13, s14, sum14, y(13));

h15: RCA64 port map(sum14, s15, mul, overflow);

end Behavioral;

CODE FOR RIPPLE CARRY ADDER

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity RCA64 is

 Port (a,b : in STD_LOGIC_VECTOR (63 downto 0);

 cout: out std_logic;

 add : out STD_LOGIC_VECTOR (63 downto 0));

end RCA64 ;

architecture Behavioral of RCA64 is

begin

process(a,b)

28

variable x :std_logic_vector(64 downto 0);

begin

x(0):='0';

for i in 0 to 63 loop

add(i)<=a(i) xor b(i) xor x(i);

x(i+1):= (a(i)and b(i)) or (a(i) and x(i)) or (x(i) and b(i));

end loop;

cout<=x(64);

end process;

end behavioral;

BOOTH LOGIC CODE

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity RADIX4_ENCODER is

generic(N: integer:= 32);

Port (x : in STD_LOGIC_VECTOR (N-1 downto 0);

arg : in STD_LOGIC_VECTOR (2 downto 0);

pp : inout STD_LOGIC_VECTOR (2*N-1 downto 0));

end RADIX4_ENCODER;

29

architecture Behavioral of RADIX4_ENCODER is

begin

process(arg, x)

variable temp, temp1, temp2: std_logic_vector(N downto 0);

begin

if x(N-1)='1' then

temp:= '1'&x(N-1 downto 0);

else

temp:= '0'&x(N-1 downto 0);

end if;

if(arg="001"or arg="010") then

temp1:= temp;

elsif(arg="101" or arg="110") then

temp1:= not(temp) + "000000001";

elsif(arg="011") then

temp1:= temp(N-1 downto 0)&'0';

elsif(arg="100") then

temp2:= not(temp) + "000000001";

temp1:= temp2(N-1 downto 0)&'0';

else

temp1:= (others=>'0');

end if;

pp<= sxt(temp1, 2*N);

end process;

end Behavioral;

30

RTL SCHEMATIC

31

4.2 OUTPUT WAVEFORMS

Testbench Waveform generation using XIlinx

32

33

34

CHAPTER 6

CONCLUSION & FUTURE WORK

REFERENCES

35

CONCLUSION AND FUTURE WORK

After browsing all the toil and when facing plenty of issues, we have a tendency to managed

to complete the objectives of the project that square measure to implement Booth’s formula

for the look of a binary multiplier factor mistreatment ripple carry adder design. in any case

we have a tendency to came to a conclusion that Ripple Carry Adders square measure best

suited to our Applications. Then we have a tendency to turned our focus into the look of

Multipliers. initial of all we have a tendency to designed a Booth's Radix-4 multiplier factor.

If we have a tendency to comparison information between Radix-2 and Radix-4 booth

multipliers we have a tendency to noted that radix-4 consumes less power than radix-2, as a

result of radix-4 uses virtually a 0.5 variety of iterations than radix-2. As radix-4 appeared a

lot of appropriate for the look we have a tendency to dispensed additional analysis on radix-4

multiplier factor by mistreatment ripple carry adder design.

Further work will be dispensed on this project within the power estimation section. Power

will be calculable at the gate-level by generating gate-level netlist and conjointly the post

layout analysis will be in serious trouble this style. Another attainable direction will be

pursued for higher base encryption.

36

 REFERENCES

[1] A. D. Booth “A signed binary multiplication technique,” Quart. J.

Mech. Appl. Math., vol.4

[2] “Design, Analysis and Switching Activity based Power Estimation

of Booth Multiplier using Different adder techniques” by Arun

Kumar P.S, J K Das, Sudeendra Kumar, K K Mahapatra.

[3] “Controllability-driven power virus generation for digital

circuits” by K.Najeeb, Karthik Gururaj, V.Kamakoti.

[4] Power Compiler Manuals, www.synopsys.com

