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ABSTRACT  

Modern IC Technology focuses on the planning of ICs considering additional space 

improvement and low power techniques. Multiplication may be a heavily used operation that 

figures conspicuously in signal process and scientific applications. Multiplication may be a 

terribly hardware intensive subject and thus we as users area unit largely involved with 

obtaining low-power, smaller space and better speed. The foremost necessary concern in 

classic multiplication largely accomplished by K-cycles of shifting and adding, is to hurry up 

underlying multi-operand addition of partial product. During this project we'll design the 

Booth multiplier using Ripple Carry Adder architecture. Additionally multipliers are 

designed for each radix-2 and radix-4. Results can show that the multiplier is able to multiply 

two 32 bit signed numbers and how this technique reduces the number of partial products, 

which is an important factor to be achieved in this project.  
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1.1 MOTIVATION                                          

 Day by day IC technology is obtaining additional advanced in terms of style and its 

performance analysis. A quicker style with lower power consumption and smaller space is 

implicit to the trendy electronic styles. Unceasing advancement in electronics style 

technology makes improved use of energy, code knowledge with success, communicate info 

way more firm, etc. significantly, several of those technologies address low-power 

consumption to fulfil the necessities of assorted transportable applications. In these 

application systems, a multiplier could be a basic arithmetic unit and wide employed in 

circuits that the multiplication method ought to be optimized properly. Multipliers typically 

have extended latency, huge space and consume substantial quantity of power. Thus low-

power number style has become a very important half in VLSI system style. Everyday new 

approaches square measure being developed to style low-power multipliers at technological, 

physical, circuit and logic levels. Since multiplier is mostly the slowest component during a 

system, the system’s performance is decided by performance of the multiplier. Additionally 

multipliers square measure the foremost space intense entity during a style. Therefore, 

optimizing speed and space of a multiplier could be a major style issue these days. However, 

space and speed square measure typically conflicting constraints in order that rising speed 

ends up in larger areas and vice-versa. Additionally space and power consumption of a circuit 

square measure linearly correlate. Therefore a compromise has got to be wiped out speed of 

the circuit for a larger improvement in reduction of space and power.  

For implementing a digital number an oversized form of pc arithmetic algorithms may be 

used. Most techniques take into thought generating a collection of partial merchandise, and so 

adding the partial merchandise along once they need been shifted. During a number to extend 

its speed, the amount of partial product to be generated ought to be reduced. A better 

illustration base effectively indicates to fewer digits. Thus, a single-digit multiplication 
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algorithmic rule necessitates fewer cycles as we tend to begin moving to a lot of higher 

radices, that mechanically ends up in a lesser variety of partial merchandise. Many algorithms 

are developed for this purpose like Booth’s algorithmic rule, Wallace Tree methodology etc. 

For the summation method many adder architectures square measure on the market viz. 

Ripple Carry Addition, Carry Look-ahead Addition, Carry Save Addition etc. however to 

scale back the facility consumption the summation design of the number ought to be 

rigorously chosen. 

1.2 MULTIPLIER DESIGN  

Multiplication is thought of to incorporates 3 basic steps: generation of partial product (PPG), 

partial product reduction (PPR), and at last at the top addition of carry propagate(CPA).In 

general we've got combinatory and ordered multiplier factor implementations. Here we have 

a tendency to area unit taking into thought the combinatory case solely, as a result of the size 

of integration currently has become large enough to begin accommodating parallel multiplier 

factor applications in digital VLSI circuits. Completely different multiplication algorithms 

vary within the approaches of generation and reduction of Partial product and also the 

addition method. So as to diminish the amount of PPs concerned and so reduce the area/delay 

of the circuit, one quantity is sometimes recoded into high-radix digit sets. One amongst the 

foremost used and widespread radix-2n algorithmic rule is that the radix-4 that features a set 

of digits given by for PPG. For PPR, 2 decisions exist which might be implemented: 

reduction by rows, which might be performed by taking into thought Associate in Nursing 

adder array and reduction by columns, which might be performed by taking into thought a 

counter array. The closing method of addition necessitates a quick adder arrangement as a 

result of it's on the crucial path. In an exceedingly few cases, last summation is delayed if it's 

valuable to stay redundant results from PPG to hold out any arithmetic operations. 
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1.3 PROGRAMMING LANGUAGE AND ANALYSIS TOOLS 

USED  

To write program for the implementation of any digital circuit there square measure varied 

languages accessible, referred to as Hardware Description Language e.g. Verilog, VHDL. For 

our style we've used VHDL (Very High Specific microcircuit HDL) for programming. 

VHDL is one among the common techniques utilized in digital system aborning method. The 

technique is enforced in program mistreatment bound package that carries out simulation and 

examination of the designed system. The designer solely must describe the digital circuit 

design in matter type which may take away while not the trouble to change the hardware. 

VHDL is very most well-liked as a result of this system has the power to scale back value and 

time, is simple to troubleshoot, portable, lots of platforms package support the VHDL operate 

and high references square measure accessible. We tend to used XILINX ten.1 platform to jot 

down our programs. All the RTL simulations has been done mistreatment this package solely. 

Conjointly for delay report the synthesis tool embedded in Xilinx was used.  

We used for Scirocco and VirSim, that square measure logic simulators, for the practicality 

simulation of our style. Conjointly we tend to used Synopsys style Vision tool to estimate 

power of all our arithmetic circuits. Synopsys style Vision could be a logic synthesis tool. It 

takes alpha-lipoprotein styles and synthesizes them to gate-level net-lists. Conjointly it 

supports each Verilog and VHDL. It will synthesize generic gates or different style libraries. 

The tool exists within a interface and command version. The interface version is thought as 

style vision and therefore the command version is referred as dc_shell-xg-t. For each space 

and power estimation we tend to used style Vision. The essential steps for analyzing a style 

are:  
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Analyze: This step begin checking the planning files for syntax. We can conjointly save                               

modules (Verilog) associate degree entities (VHDL) in an intermediate format into an area 

folder.  

Elaborate: we will build a style from the intermediate format files created within the previous 

Analyze step.  

Compile: this is often the synthesizing step, wherever we will map the planning to a gate 

library or cell library.  

Save: once aggregation a style we will save the synthesized style into alpha-lipoprotein or 

different formats. Synthesized styles square measure elementary for making ASICS or 

effecting completely different simulations for temporal order and power. After compilation 

mistreatment commands like report_power or report_area we will get power and space 

consequently. 

1.4 RESEARCH APPROACH  

Speed of the multiplier is highly dependent upon the number of partial products generated 

and the adder architecture used to add these partial products. The main intention of the 

project is to use booth multiplier algorithm for designing the binary multiplier with the help 

of Ripple carry adder. The reason for using the booth’s algorithm is that, using booth’s 

algorithm we can reduce the number of partial products during multiplication. The adder here 

we have used is ripple carry adder. This adder has a very simple architecture and is very easy 

to implement. As here we are dealing with high bits, this adder is very useful because of its 

simple architecture. If we see overall including the adder and booth’s algorithm we get a 

binary multiplier which has comparatively high speed because of less partial products and 

less power consumption because of the adder architecture we have used. We have checked 

the results for both signed and unsigned numbers.  
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2.1 ADDERS CLASSIFICATION  

Addition is one in every of the foremost normally used mathematical process in silicon chip, 

digital signal processor etc. It also can be used as a building block for synthesis of all 

alternative arithmetic operations. Therefore, as so much because the economical 

implementation of associate degree arithmetic unit is bothered, the binary adder structure 

becomes an awfully essential hardware unit. In any book on pc arithmetic, we will observe 

that there happens an oversized variety of quite completely different circuit architectures 

relating different performance characteristics. Whereas adders is made for lots of numerical 

expressions like Binary-coded decimal or excess-3, the foremost oft used adders operate 

numbers that area unit binary. In sure cases wherever two's complement is being employed to 

represent negative numbers, it's trivial to convert associate degree adder into associate degree 

adder-subtractor.  

Although several researches associated with the binary adder structures are allotted, the 

studies supported their comparative performance analysis area unit solely quite few in 

variety. During this project, assessments of the classified binary adder architectures area unit 

given. From the large member of adders we've got, we tend to enforce the VHDL (Hardware 

Description Language) code for Ripple-carry adder. Throughout consequent section, we offer 

you with a quick description of the studied adder design.  

 

 

2.2 RIPPLE CARRY ADDERS (RCA)  

This well-liked adder design, ripple carry adder consists of cascaded full adders as shown in 

figure2.1. It is shaped by cascading full adder blocks nonparallel with each other. The output 

carry of 1 stage is fed on to the input carry of following stage. AN N-bit parallel adder needs 

N full adders. 
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FIGURE 2.1  

 

The given adder design isn't terribly economical once sizable amount of bits square measure 

used. The gate delay will simply be calculated by inspecting the total adder circuit. we all 

know that every full adder needs 3 levels of logic. Considering a 64-bit ripple-carry adder, we 

all know that it's sixty four full adders, therefore the crucial path (worst case) delay is three 

(from input to hold just in case of the primary adder) + sixty three * two (for carry 

propagation within the later adders) = 127 gate delays. 

2.3 ANALYSIS OF RIPPLE CARRY ADDER ADDERS  

We know that combinational logic circuits cannot cipher the outputs instantly. There's some 

delay between the time the inputs square measure sent to the circuit, and therefore the time 

the output is computed.  

Let's say the delay is T units of your time.  

Suppose we wish to implement associate degree n-bit ripple carry adder. Since associate 

degree n-bit ripple carry adder consists of n adders, there'll be a delay of nongovernmental 

organization. This is often O(n) delay. While the adders square measure operating in parallel, 

the carrys should "ripple" their means from the smallest amount vital bit and work their 

thanks to the foremost vital bit. It takes T units for the perform of the right column to create it 

as input to the adder within the next to right column. Thus, the carries abate the circuit, 

creating the addition linear with the quantity of bits within the adder. This is not a giant 
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drawback, usually, as a result of hardware adders square measure mounted in size. They add, 

say, thirty two bits at a time. There is not associate degree thanks to create an adder add an 

impulsive variety of bits. It will be exhausted code, not in hardware. In effect, this is often 

what makes hardware "hard". It is not suitable to alter. Even though there square measure a 

set variety of bits to feature in an adder, there square measure ways that to create the adder 

add a lot of quickly (at least, by a constant). 
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3.1 BASIC ALGORITHM FOR BINARY MULTIPLICATION  

A Binary number is associate degree device utilized in digital physics or in an exceedingly pc 

or different electronic devices to hold out multiplication of 2 numbers represented in binary 

format. It's engineered mistreatment binary adders. The foremost basic technique involves 

generating a collection of partial merchandise, so summing the partial merchandise at the 

same time. This method is comparable to the tactic that is instructed to lower classes’ 

students in class for conducting long multiplication on base-10 integers, however has been 

changed here for application to a base-2 (binary) numeral system.  

The rules for binary multiplication are expressed as given:  

1. If the number digit is one, the number is derived down and it provides the merchandise.  

2. If the number digit is zero then we have a tendency to get a product that is additionally 

zero.  

For planning such a number circuit we should always have the electronic equipment to hold 

out or do the subsequent four things:  

1. It ought to be capable of recognizing whether or not a little is zero or one.  

2. It ought to be capable of shifting the left partial product.  

3. It ought to be capable of adding all the partial-products to provide the merchandise as a 

addition of the partial merchandise.  

4. It ought to examine sign bits and if they're similar, the sign of the merchandise are going to 

be a Positive illustration and if the sign bits are opposite then the merchandise are going to be 

negative. The sign little bit of the merchandise that has been keep with the higher than criteria 

ought to be displayed together with the merchandise.  

From the higher than discussion we will observe that it's not necessary to attend till all the 

partial merchandise are shaped before polishing off the add. in truth the addition of the partial 

merchandise is allotted as before long as a partial product is created. 
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3.2 BOOTH’S ENCODING  

Booth’s encryption or Booth's multiplication rule could be a multiplication algorithm which 

might multiply 2 signed binary numbers during a two's complement notation. Booth's rule has 

the power to perform fewer additions and subtractions as compared to traditional 

multiplication rule. It's AN encryption method which might be accustomed minimize the no 

of partial product during a multiplication method. it's based mostly upon the relation  

2
n 
= 2

n-1 
- 2

n 

Example:  

0  0  1  1  1  1  1  1  0  0  

                       +1 -1  

                    +1 -1  

                 +1 -1  

              +1 -1  

           +1 -1  

        +1 -1  

0  +1  0  0  0  0  0  -1  0  0  

Booth's algorithmic program examines consecutive bits of the N-bit number Y in signed two's 

complement illustration, which has Associate in Nursing implicit bit below the smallest 

amount important bit, y-1 = 0. For every bit Lolo, as i runs from zero to N-1, the bits Lolo 

and yi-1 square measure thought of. Once these 2 bits square measure equal, the merchandise 

accumulator P stays unchanged. Wherever Lolo = zero and yi-1 = one, the number times 2i is 

additional to P; and wherever Lolo = one and yi-1 = zero, the number times 2i gets subtracted  

from P. The ultimate price of P are the signed product.  

The illustration of the number and products don't seem to be specified; usually, these also are 

in two's complement illustration, sort of a number, however any system of numeration that 
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supports addition and subtraction can work furthermore. The order of the steps isn't 

determined. Generally, it issue from LSB to mutual savings bank, beginning at i = 0; the 

multiplication by 2i is then replaced by progressive shifting of the P accumulator to the 

proper between steps; low bits are shifted out, and resultant additions or subtractions will 

then be done simply on the best N bits of P. There square measure several variations and 

optimizations on these details.  

The algorithmic program is commonly delineate as changing strings of 1's within the number 

to a high-order +1 and a low-order –1 at the ends of the string. once the string runs through 

the mutual savings bank, there's no high-order +1, and also the web result is interpretation as 

a negative of the acceptable price. 

RADIX-2 ALGORITHM IMPLEMENTATION  

Let x be the quantity of bits of the number, and y be the quantity of bits of the multiplier:  

• Draw a grid of 3 rows, every with columns for x + y + one bits. Label the lines severally A 

(add), S (subtract), and P (product).  

• In two’s complement notation, fill the primary x bits of every line with :  

o A: the number  

o S: negative of the multiplicand(2's complement format)  

o P: zeroes  

• Fill future y bits of every line with :  

o A: zeroes  

o S: zeroes  

o P: the number  

• Fill the last little bit of every line with a zero.  

For example think about the given 2 numbers: 5 and -2.  

On ending the higher than directions we'd notice the subsequent values of A, S and P.  
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A = 0101 0000 0  

S = 1011 0000 0  

P = 0000 1110 0  

Now do each of those steps y times :  

If the last 2 bits within the product are: 

 00 or 11: do nothing.  

 01: P = P + A. Ignore any overflow.  

 10: P = P + S. Ignore any overflow.  

 Arithmetically shift the merchandise right one position.  

 Drop the primary (we count from right to left once handling bits) bit from the 

merchandise for the ultimate result.  

 Do each of those steps y times :  

For Example: Find 5 × -2, with x = 4 and y = 4:  

We get:  

A = 0101 0000 0  

S = 1011 0000 0  

P = 0000 1110 0  

Perform the loop four times:  

1- P = 0000 1110 0. The last two bits are 00.  

     P = 0000 0111 0. A right shift.  

2- P = 0000 0111 0. The last two bits are 10.  

     P = P+S.  Right shift.  

3- P = 0000 0011 0. The last two bits are 10.  

    P = 1101 1001 0.  

    P = P + A.    Right shift.  
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4- P = 1110 1101 1. The last two bits are 11.  

     P = 1111 0110 1. Right shift.  

The final product is 1111 0110, which is -10.  

 

3.3 MODIFIED BOOTH’S ALGORITHM  

One of the various solutions of realizing high speed multipliers is enhancing correspondence 

that helps in decreasing the quantity of ulterior calculation levels. the initial version of Booth 

formula (Radix-2) had 2 specific drawbacks. They were:  

• the quantity of add-subtract operations and shift operations become variable and causes 

inconvenience in coming up with parallel multipliers.  

• The formula becomes inefficient once there square measure isolated 1’s.  

 

These issues square measure swamped by victimization changed Radix4 Booth formula that 

scans strings of 3 bits victimization the formula given below:  

1) Lengthen the sign bit one position if necessary to confirm that n is even.  

2) Add a zero to the correct of the LSB of the multiplier factor.  

3) akin to the worth of every vector, every Partial Product are zero, +M, -M, +2M or -2M. 

The negative values of M square measure created by taking its 2’s complement. The 

multiplication of M is completed by shifting M by one bit to the left (in case it’s increased 

with 2). Thus, in any case, in coming up with associate degree n-bit parallel multiplier factor, 

solely n/2 partial merchandise square measure generated. 
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4.1 PROGRAM FOR RADIX-4 MULTIPLIER  

 

MAIN CODE FOR BOOTH MULTIPLIER  

 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

use IEEE.STD_LOGIC_ARITH.ALL; 

use IEEE.STD_LOGIC_UNSIGNED.ALL; 

 

entity R4MUL_RCA is 

Port (a, b : in STD_LOGIC_VECTOR (31 downto 0); 

mul: inout std_logic_vector(63 downto 0); 

overflow: out std_logic); 

end R4MUL_RCA; 

 

architecture Behavioral of R4MUL_RCA is 

component RADIX4_ENCODER is 

Port ( x : in STD_LOGIC_VECTOR (31 downto 0); 

arg : in STD_LOGIC_VECTOR (2 downto 0); 

pp : inout STD_LOGIC_VECTOR (63 downto 0)); 

end component; 

component fulladder 

Port (a, b, cin: in STD_LOGIC; 

sum, cout: out STD_LOGIC); 

end component; 
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component RCA64  is 

    Port ( a,b : in  STD_LOGIC_VECTOR (63 downto 0); 

                          

           add : out  STD_LOGIC_VECTOR (63 downto 0); 

      cout: out std_logic); 

end component ; 

 

signal arg1, arg2, arg3, arg4: std_logic_vector(2 downto 0); 

signal arg5, arg6, arg7, arg8: std_logic_vector(2 downto 0); 

signal arg9, arg10, arg11, arg12: std_logic_vector(2 downto 0); 

signal arg13, arg14, arg15, arg16: std_logic_vector(2 downto 0); 

signal tt: std_logic_vector(32 downto 0); 

signal s1,s2,s3,s4,s5,s6,s7,s8,s9,s10,s11,s12,s13,s14,s15: std_logic_vector(63 downto 0); 

signal sum1,sum2,sum3,sum4,sum5,sum6,sum7,sum8: std_logic_vector(63 downto 0); 

signal sum9,sum10,sum11,sum12,sum13,sum14,sum15: std_logic_vector(63 downto 0); 

signal y: std_logic_vector(15 downto 0); 

signal pp1, pp2, pp3, pp4, pp5, pp6, pp7, pp8 : STD_LOGIC_VECTOR (63 downto 0); 

signal pp9, pp10, pp11, pp12, pp13, pp14, pp15, pp16: STD_LOGIC_VECTOR (63 downto 

0); 

begin 

tt<= a(31 downto 0)&'0'; 

arg1<=tt(2 downto 0); 

arg2<=tt(4 downto 2); 

arg3<=tt(6 downto 4); 

arg4<=tt(8 downto 6); 
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arg5<=tt(10 downto 8); 

arg6<=tt(12 downto 10); 

arg7<=tt(14 downto 12); 

arg8<=tt(16 downto 14); 

arg9<=tt(18 downto 16); 

arg10<=tt(20 downto 18); 

arg11<=tt(22 downto 20); 

arg12<=tt(24 downto 22); 

arg13<=tt(26 downto 24); 

arg14<=tt(28 downto 26); 

arg15<=tt(30 downto 28); 

arg16<=tt(32 downto 30); 

u1: RADIX4_ENCODER port map(b(31 downto 0), arg1, pp1); 

u2: RADIX4_ENCODER port map(b(31 downto 0), arg2, pp2); 

u3: RADIX4_ENCODER port map(b(31 downto 0), arg3, pp3); 

u4: RADIX4_ENCODER port map(b(31 downto 0), arg4, pp4); 

u5: RADIX4_ENCODER port map(b(31 downto 0), arg5, pp5); 

u6: RADIX4_ENCODER port map(b(31 downto 0), arg6, pp6); 

u7: RADIX4_ENCODER port map(b(31 downto 0), arg7, pp7); 

u8: RADIX4_ENCODER port map(b(31 downto 0), arg8, pp8); 

u9: RADIX4_ENCODER port map(b(31 downto 0), arg9, pp9); 

u10: RADIX4_ENCODER port map(b(31 downto 0), arg10, pp10); 

u11: RADIX4_ENCODER port map(b(31 downto 0), arg11, pp11); 

u12: RADIX4_ENCODER port map(b(31 downto 0), arg12, pp12); 

u13: RADIX4_ENCODER port map(b(31 downto 0), arg13, pp13); 
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u14: RADIX4_ENCODER port map(b(31 downto 0), arg14, pp14); 

u15: RADIX4_ENCODER port map(b(31 downto 0), arg15, pp15); 

u16: RADIX4_ENCODER port map(b(31 downto 0), arg16, pp16); 

s1<= pp2(61 downto 0)&"00"; 

s2<= pp3(59 downto 0)&"0000"; 

s3<= pp4(57 downto 0)&"000000"; 

s4<= pp5(55 downto 0)&"00000000"; 

s5<= pp6(53 downto 0)&"0000000000"; 

s6<= pp7(51 downto 0)&"000000000000"; 

s7<= pp8(49 downto 0)&"00000000000000"; 

s8<= pp9(47 downto 0)&"0000000000000000"; 

s9<= pp10(45 downto 0)&"000000000000000000"; 

s10<= pp11(43 downto 0)&"00000000000000000000"; 

s11<= pp12(41 downto 0)&"0000000000000000000000"; 

s12<= pp13(39 downto 0)&"000000000000000000000000"; 

s13<= pp14(37 downto 0)&"00000000000000000000000000"; 

s14<= pp15(35 downto 0)&"0000000000000000000000000000"; 

s15<= pp16(33 downto 0)&"000000000000000000000000000000"; 

 

h1: RCA64 port map(pp1, s1, sum1, y(0)); 

h2: RCA64 port map(sum1, s2, sum2, y(1)); 

h3: RCA64 port map(sum2, s3, sum3, y(2)); 

h4: RCA64 port map(sum3, s4, sum4, y(3)); 

h5: RCA64 port map(sum4, s5, sum5, y(4)); 

h6: RCA64 port map(sum5, s6, sum6, y(5)); 
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h7: RCA64 port map(sum6, s7, sum7, y(6)); 

h8: RCA64 port map(sum7, s8, sum8, y(7)); 

h9: RCA64 port map(sum8, s9, sum9, y(8)); 

h10: RCA64 port map(sum9, s10, sum10, y(9)); 

h11: RCA64 port map(sum10, s11, sum11, y(10)); 

h12: RCA64 port map(sum11, s12, sum12, y(11)); 

h13: RCA64 port map(sum12, s13, sum13, y(12)); 

h14: RCA64 port map(sum13, s14, sum14, y(13)); 

h15: RCA64 port map(sum14, s15, mul, overflow); 

end Behavioral; 

 

 

CODE FOR RIPPLE CARRY ADDER 

 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

use IEEE.STD_LOGIC_ARITH.ALL; 

use IEEE.STD_LOGIC_UNSIGNED.ALL; 

entity RCA64  is 

    Port ( a,b : in  STD_LOGIC_VECTOR (63 downto 0); 

                          cout: out std_logic; 

           add : out  STD_LOGIC_VECTOR (63 downto 0)); 

end RCA64 ; 

architecture Behavioral of RCA64  is 

begin 

process(a,b) 
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variable x :std_logic_vector(64 downto 0); 

begin 

x(0):='0'; 

for i in 0 to 63 loop 

add(i)<=a(i) xor b(i) xor x(i); 

x(i+1):= (a(i)and b(i)) or (a(i) and x(i)) or  (x( i) and b(i)); 

end loop; 

cout<=x(64); 

end process; 

end behavioral; 

 

BOOTH LOGIC CODE  

 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

use IEEE.STD_LOGIC_ARITH.ALL; 

use IEEE.STD_LOGIC_UNSIGNED.ALL; 

entity RADIX4_ENCODER is 

generic(N: integer:= 32); 

Port ( x : in STD_LOGIC_VECTOR (N-1 downto 0); 

arg : in STD_LOGIC_VECTOR (2 downto 0); 

pp : inout STD_LOGIC_VECTOR (2*N-1 downto 0)); 

end RADIX4_ENCODER; 
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architecture Behavioral of RADIX4_ENCODER is 

begin 

process(arg, x) 

variable temp, temp1, temp2: std_logic_vector(N downto 0); 

begin 

if x(N-1)='1' then 

temp:= '1'&x(N-1 downto 0); 

else 

temp:= '0'&x(N-1 downto 0); 

end if; 

if(arg="001"or arg="010") then 

temp1:= temp; 

elsif(arg="101" or arg="110") then 

temp1:= not(temp) + "000000001"; 

elsif(arg="011") then 

temp1:= temp(N-1 downto 0)&'0'; 

elsif(arg="100") then 

temp2:= not(temp) + "000000001"; 

temp1:= temp2(N-1 downto 0)&'0'; 

else 

temp1:= (others=>'0'); 

end if; 

pp<= sxt(temp1, 2*N); 

end process; 

end Behavioral; 
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RTL SCHEMATIC 
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4.2 OUTPUT WAVEFORMS  

 

Testbench Waveform generation using XIlinx 

 

 

 

 

 

 



32 
 

 

 

 

 

 



33 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 



34 
 

CHAPTER 6 

 

 
CONCLUSION & FUTURE WORK  

REFERENCES  
 



35 
 

CONCLUSION AND FUTURE WORK  

After browsing all the toil and when facing plenty of issues, we have a tendency to managed 

to complete the objectives of the project that square measure to implement Booth’s formula 

for the look of a binary multiplier factor mistreatment ripple carry adder design. in any case 

we have a tendency to came to a conclusion that Ripple Carry Adders square measure best 

suited to our Applications. Then we have a tendency to turned our focus into the look of 

Multipliers. initial of all we have a tendency to designed a Booth's Radix-4 multiplier factor. 

If we have a tendency to comparison information between Radix-2 and Radix-4 booth 

multipliers we have a tendency to noted that radix-4 consumes less power than radix-2, as a 

result of radix-4 uses virtually a 0.5 variety of iterations than radix-2. As radix-4 appeared a 

lot of appropriate for the look we have a tendency to dispensed additional analysis on radix-4 

multiplier factor by mistreatment ripple carry adder design.  

Further work will be dispensed on this project within the power estimation section. Power 

will be calculable at the gate-level by generating gate-level netlist and conjointly the post 

layout analysis will be in serious trouble this style. Another attainable direction will be 

pursued for higher base encryption. 
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