
Scheduling Techniques to avoid Contention

in Multi-core Systems

Pallavi Thummala

Department of Computer Science and Engineering

National Institute of Technology Rourkela

Rourkela-769 008, Odisha, India

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ethesis@nitr

https://core.ac.uk/display/53190369?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Scheduling Techniques to avoid Contention

in Multi-core Systems

Thesis submitted in partial fulfilment of the requirements for the degree of

Master of Technology

in

Computer Science and Engineering
(Specialization: Computer Science)

by

Pallavi Thummala
(Roll No. 212CS1095)

under the supervision of

Prof. A. K. Turuk

Department of Computer Science and Engineering

National Institute of Technology Rourkela

Rourkela, Odisha, 769 008, India

June 2014

Department of Computer Science and Engineering
National Institute of Technology Rourkela
Rourkela-769 008, Odisha, India.

Certificate

This is to certify that the work in the thesis entitled Scheduling Techniques

to avoid Contention in Multi-core Systems by Pallavi Thummala is a

record of an original research work carried out by her under my supervision and

guidance in partial fulfillment of the requirements for the award of the degree

of Master of Technology with the specialization of Computer Science in the de-

partment of Computer Science and Engineering, National Institute of Technology

Rourkela. Neither this thesis nor any part of it has been submitted for any degree

or academic award elsewhere.

Place: NIT Rourkela Dr. A. K. Turuk
Date: June 2, 2014 Associate Professor, CSE Department

NIT Rourkela, Odisha

Acknowledgment

I am grateful to numerous local and global peers who have contributed towards

shaping this thesis. At the outset, I would like to express my sincere thanks

to Prof. A. K. Turuk for his advice during my thesis work. As my supervisor,

he has constantly encouraged me to remain focused on achieving my goal. His

observations and comments helped me to establish the overall direction of the

research and to move forward with investigation in depth. He has helped me

greatly and been a source of knowledge.

I extend my thanks to our HOD, Prof. S. K. Rath for his valuable advices and

encouragement.

My sincere thanks to everyone who has provided me with kind words, a wel-

come ear, new ideas, useful criticism, or their invaluable time, I am truly indebted.

I must acknowledge the academic resources that I have got from NIT Rourkela.

I would like to thank administrative and technical staff members of the Department

who have been kind enough to advise and help in their respective roles.

Last, but not the least, I would like to dedicate this thesis to my family, for

their love, patience, and understanding.

Pallavi Thummala

Roll: 212CS1095

Author’s Declaration

I, Pallavi Thummala (Roll No. 212CS1095) understand that plagiarism is

defined as any one or the combination of the following

1. Un-credited verbatim copying of individual sentences, paragraphs or illus-

trations (such as graphs, diagrams, etc.) from any source, published or

unpublished, including the Internet sources.

2. Un-credited improper paraphrasing of pages or paragraphs (changing a few

words or phrases, or rearranging the original sentence order).

3. Credited verbatim copying of a major portion of a paper (or thesis chapter)

without clear delineation of who did or wrote what.

I have made sure that all the ideas, expressions, graphs, diagrams, etc., that

are not a result of my work, are properly credited. Long phrases or sentences that

had to be used verbatim from published literature have been clearly identified

using quotation marks.

I affirm that no portion of my work can be considered as plagiarism and I

take full responsibility if such a complaint occurs. I understand fully well that the

guide of the thesis may not be in a position to check for the possibility of such

incidences of plagiarism in this body of work.

Place: NIT Rourkela Pallavi Thummala
Date: June 2, 2014 Roll: 212CS1095

CSE Department
NIT Rourkela, Odisha

Abstract

One of the main problems in multi-core systems is the contention of shared

resources such as cache, memory controller, pre-fetcher etc. among the cores. Due

to the contention among shared resources, the processing unit’s performance is

degraded. Scheduling of applications in such a way that it reduces the contention

among shared resources is one of the promising solutions. Scheduling is considered

as an efficient and best technique as it doesn’t require any extra hardware or any

changes to be made to the OS or its underlying kernel. Scheduling can be imple-

mented at user level by using system calls. In the prior works it was considered

that the cache contention was the main cause of performance degradation and

many hardware and software techniques were found to avoid or minimize it. But

further experiments proved that the contention caused by pre-fetcher and mem-

ory controller is also having significant effect on performance degradation. Many

scheduling policies and classification schemes have been designed to find out an

efficient scheduling algorithm. Miss rate is considered to be simple yet efficient

classification scheme to classify the threads as it not only considers contention due

to cache but also the memory controller and pre-fetcher. Distributed Intensity is

the first scheduling algorithm discussed which uses miss rate to classify threads

and assign them to all cores in an efficient way so that miss rate is shared almost

equally among the cores. Then Distributed Intensity is combined with Swap algo-

rithm to further improve the performance by using dynamic optimization. Then

by further studies it is found out that miss rate cant be efficient classification

technique for memory intensive workloads. So the concepts of Contentiousness

and Sensitivity are introduced to improve the efficiency of scheduling algorithm

and to minimize the performance degradation due to contention.

Keywords: Scheduling; Contention; Miss rate; Sensitivity; Threads; Multi-

core systems

Contents

Certificate i

Acknowledgment ii

Author’s Declaration iii

Abstract iv

List of Figures vii

List of Tables viii

1 Introduction 2

1.1 Introduction . 2

1.2 Literature Review . 2

1.3 Motivation . 4

1.4 Objective . 4

1.5 Thesis Organization . 4

2 Background 6

2.1 Factors causing contention: . 6

2.2 The Perfect Scheduling Policy: . 9

2.3 Thread classification schemes: . 10

2.4 Basic concepts of Contention Characteristics 11

2.4.1 Contentiousness . 11

2.4.2 Sensitivity . 12

2.5 Tools used: . 13

2.5.1 AKULA Toolset . 14

2.5.2 MARSS . 15

v

2.5.3 Oprofile . 16

3 Implementation 18

3.1 Distributed Intensity . 18

3.1.1 Algorithm . 19

3.1.2 Benchmarks and Workloads 19

3.1.3 Results . 19

3.2 Swap . 23

3.2.1 Algorithm . 23

3.2.2 Benchmarks and Workloads 23

3.2.3 Results . 24

3.3 Contentiousness and sensitivity . 25

3.3.1 Experimental setup . 25

3.3.2 Benchmarks . 25

3.3.3 Results . 25

4 Conclusion 28

Bibliography 29

List of Figures

2.1 Jiang Methodology [6] . 9

2.2 Flowchart of AKULA [9] . 14

2.3 MARSS Instance [10] . 15

3.1 Comparision of schedulers . 22

3.2 comparision of swap scheduler . 24

3.3 Contentiousness vs Miss rate . 25

3.4 Sensitivity vs Miss rate . 26

3.5 Sensitivity vs Miss rate . 26

vii

List of Tables

3.1 Solo execution time . 20

3.2 Degradation matrix . 21

3.3 Miss rates . 21

3.4 Solo execution time . 21

3.5 Degradation matrix . 21

3.6 Miss rates . 21

viii

Introduction

Introduction

Literature Survey

Motivation

Objective

Thesis Organisation

Chapter 1

Introduction

1.1 Introduction

Multi-core processors have been immensely used in various fields because of

their low power consumption and good performance with low space usage on the

die which in turn decreased the heat dissipation when compared to multiproces-

sors. But as there are more than one processing unit (core) present on the same die

they have to share some of the resources which in turn causes the problem of con-

tention [1] which was not present in multiprocessors. Therefore, many measures

have been taken to minimize this disadvantage and one of the efficient techniques

was scheduling [2] [3].

The underlying OS scheduler doesn’t have any idea about the shared resources

and distributes the work among all the cores by the principle of load balancing

without considering the effects of it [4]. Therefore, there is a need of schedul-

ing algorithm that identifies the factors that cause the contention and amount of

contention [5] and nature of workloads to distribute equally among all the cores

reducing the contention and increasing the performance.

1.2 Literature Review

Zhuravlev et al. [6] described the problem of contention among shared re-

sources which is addressed by providing thread scheduling as one of the efficient

methods to minimize it. By extensive experiments, it is also found out that con-

tention due to cache [7] is not the only the performance degradation factor, but

2

1.2 Literature Review

also the contention due to the memory bus, memory controller and prefecture

also has a significant effect on performance. Different classification schemes and

scheduling policies are studied and miss rate is found out to be a simple yet effi-

cient classification scheme to divide the applications as intensive or not.

Blagodurav [8]found out that the problem of default OS scheduler is that it does

load balancing blindly without considering the characteristics of threads by co-

scheduling each thread with all other threads and it is found out that performance

is improved up to 50% when the best case is considered rather than a worst case

schedule. The concepts of different scheduling algorithms such as Distributed in-

tensity and Distributed intensity online are also mentioned.

Zhuravlev [9] mentioned the main problems of developing a scheduling algorithm

and addressed them as the implementation difficulty and the testing duration.

They proposed AKULA toolset that eases the work of developers by providing

API and by making debugging easier without any modification done to kernel or

by using any system calls.

Avadh patel et al. [10] proposed a full system simulator MARSS is described which

includes QEMU to provide cycle accurate simulation of many x86 core processors

of same or different processing capacities. It can also emulate hardware like caches,

interconnects, input output devices and chips. It has the ability to run many OS

on the emulated hardware without any modifications done to them.

Blagodurav et al. [11] described the usage of hardware performance counters and

instruction sampling is addressed which can be used by scheduling algorithms to

take wise decision to minimize the contention problem. Clavis scheduler was de-

veloped to show the user level scheduling that can be done on Linux system by

using the information provided by performance counters.

Zhuravlev et al. [12] did a on contention aware scheduling techniques and negative

and positive impacts of shared resources. If resources are shared between multi

threaded applications which share data among their threads then an increased

in performance was observed. The OS thread level scheduler has to be changed

according to the scenario for CMPs to take advantage of sharing the resources.

3

1.5 Thesis Organization

1.3 Motivation

Multi-core processors are advantageous and are growing rapidly even though

they have the disadvantage of contention for shared resources because of their low

power consumption and heat dissipation [5]. So there is a need of minimizing

the contention problem and still improving the performance of multi-core pro-

cessors. Scheduling of threads is one of the efficient solutions to minimize the

contention. So there is a need of developing effective scheduling techniques to

be used by underlying OS scheduler to minimize the contention problem among

shared resources.

1.4 Objective

To develop an efficient thread scheduling technique to minimize the problem

of contention among shared resources such as cache interconnects memory bus and

prefetcher by the help of data collected in hardware counters [13] and performance

monitoring tools which increases the performance of a multi-core processor.

1.5 Thesis Organization

Organization of thesis is done as following: Chapter-2 describes the basic con-

cepts for this thesis. Chapter-3 discusses the scheduling techniques that uses miss

rate as the classification scheme and their comparison with default OS scheduler.

The scheduling techniques that uses two other metrics contentiousness and sen-

sitivity are discussed and miss rate is proved to be non efficient metric when the

workload is CPU intensive . Finally Chapter 4 concludes with the summary of

work done.

4

Background

Factors causing Contention

The perfect Scheduling policy

Classification schemes

Tools used

Chapter 2

Background

2.1 Factors causing contention:

Firstly, cache contention was considered as the major factor in performance degra-

dation, but later by various experiments, it was found that contention of the

memory bus, memory controller [14] and prefetcher hardware is also countable.

Though it is not possible to find out how much degradation is caused by which

resource individually as all are interrelated, a rough estimate was done by using

an experimental system which consists of a server with two sockets [8]. A DRAM

controller is shared between the sockets and in each socket four cores share a

memory controller, whereas a pair of cores among the four cores share a LLC.

By this experimental setup, it was easy to find out the approximate degradation

of each resource by placing the threads on different cores and calculating their

performance when compared to their solo performance.

The Experiments are done first without prefetching hardware enabled, and the

values are calculated for each resource.

Solo PF OFF: the application is made to run alone when the preaching is not

enabled.

SameCache PF OFF: The application is run along with the interfering appli-

cation by sharing the last level cache when the prefetching is not enabled.

6

2.1 Factors causing contention:

DiffCache PF OFF: The application is run along with the interfering applica-

tion by sharing the same socket, but not the last level cache when the prefetching

is not enabled.

DiffSocket PF OFF: The application is run along with the interfering appli-

cation on different socket when the prefetching is not enabled.

Then to calculate the prefetcher contention the whole experiments were again

conducted with prefetching hardware enabled

Solo PF ON: the application is made to run alone when the prefetching is en-

abled.

SameCache PF ON: The application is run along with the interfering appli-

cation by sharing the last level cache when the preaching is not enabled.

DiffCache PF ON: The application is run along with the interfering applica-

tion by sharing the same socket, but not the last level cache when the prefetching

is not enabled.

DiffSocket PF ON: The application is run along with the interfering applica-

tion on different socket when the prefetching is not enabled.

Degradation in performance due to Contention of DRAM Controller

The applications are made to run on two cores of different sockets so that they

share only DRAM controller then the degradation due to DRAM controller was

calculated by using the following formula

DRAM contention = DiffSocket PF OFF−Solo PF OFF
Solo PF OFF

7

2.1 Factors causing contention:

Degradation in performance due to Contention of FSB

The applications are executed on cores of same socket but on cores sharing dif-

ferent last level caches so that they share the front side bus then the degradation

due to FSB can be calculated by using the formula

FSB Contention =DiffCache PF OFF−DiffSocket PF OFF
Solo PF OFF

Degradation in performance due to Contention of cache

The applications are executed on cores sharing same LLC then the degradation

due to cache can be calculated using the following formula.

Cache Contention = SameCache PF OFF−DiffCache PF OFF
Solo PF OFF

Degradation in performance due to prefetched hardware

The performance degradation due to prefetching hardware can be calculated

by the difference between the degradation caused by all resources and the degra-

dation caused by contention due to FSB, cache and DRAM controller. The total

degradation can be calculated as

Total Degradation = SameCache PF ON−Solo PF ON
Solo PF ON

Prefetcher contention is calculated as

Prefetcher contention = TotalDegradation−DRAMContention−FSBContention−

CacheContention

Finally. Results showed that contention due to cache was not only the domi-

nant cause, but the contention of bus, memory controller and prefetcher hardware

also has a significant effect on performance degradation.

8

2.2 The Perfect Scheduling Policy:

2.2 The Perfect Scheduling Policy:

Scheduling policy is one of the important components of a scheduling algorithm.

The perfect scheduling policy proposed by jiang [15] is used to calculate the best

and worst schedules. The performance degradation which an application experi-

ences when it is made to run along with some other application is called as co-run

degradation experienced by that application and the vice versa is called co-run

degradation caused by that application.

After the co-run degradations of all applications are found out a graph is

drawn with applications as nodes and their co-run degradations as the weights

of the edges between them. If A and B are considered as two applications, then

the weight of the edge between them is calculated by adding co-run degradations

caused by each on the other. After the graph is drawn by finding the minimum

weight among the edges to find the best schedule

The below graph shows a sample graph drawn with 4 applications and the best

and worst schedules of them.

Figure 2.1: Jiang Methodology [6]

9

2.3 Thread classification schemes:

2.3 Thread classification schemes:

Thread classification schemes are the most important components of a contention

aware scheduling algorithm. They are necessary to know which application should

run with which application so that the contention is less by considering the char-

acteristics of applications and the classes to which they are classified. To know

which one of the classification schemes is more efficient they are compared with

each other by using the perfect policy defined in the previous section as their

scheduling policy.

By comparing the classification schemes with each other we get only the rela-

tive performance of them. In order to get their actual performance and efficiency

results there is a need of finding the optimal scheme and compare them with that

scheme. The optimal scheme should have results of degradation , that are ac-

tually caused by applications on real world systems. To get this result , certain

benchmarks are considered and made to run with each other by considering two

applications at a time and the degradations are noted down. Then the applica-

tions are made to run alone and execution time is noted down. Then the actual

degradation is measured by the difference of above two experiments results.

Mainly four types of classification schemes have been used widely which uses

the information collected by stack-distance profiles.

� SDC

� Animal Classes

� Miss rate

� Pain

Miss rate and pain are considered to be efficient schemes, but the pain metric as

it considers the concepts of sensitivity (The amount of cache taken away by other

applications because of co-running) and intensity (The amount of cache taken

away from other applications because of co-running with them) it is more complex

to be calculated online. So the Miss rate is considered as efficient classification

10

2.4 Basic concepts of Contention Characteristics

scheme as it is a simple metric and one more advantage is that it’s unlike SDC

considers not only the contention of cache, but also the contention of the other

shared resources. Therefore, in algorithms where the parameters to classify are

calculated online miss rate is simple and efficient.

Whereas in algorithms where the parameters are not calculated online, but are

calculated prior to scheduling, Stack-distance profile data (extra misses because

of co-running) is used.

2.4 Basic concepts of Contention Characteristics

Contentiousness and sensitivity are the two characteristics to measure the con-

tention of applications [16]. Miss rate was used as a metric to decide whether the

application is contentious or not and the highly contentious. But this conclusion

is not always true because there are some applications where they occupy large

amount of cache and uses the cache for long time without any misses. Such ap-

plications have low miss rate but they are highly contentious because they doesnt

allow other applications which are co- running with them to use the resources.

And miss rate cannot accurately calculate the bandwidth contention also. for ex-

ample the applications which stream the data online doesnt need the cache much

but they use use the bus vastly which cause the bandwidth contention and it is

ignored by miss rate. Therefore miss rate is not an efficient metric to find the

whether a memory intensive workload is highly contentious or not.

2.4.1 Contentiousness

Contentiousness of an application is the degradation of performance the applica-

tion causes to the application(s) that are executing along with it because of its

high demand of shared resources [17].An application As contentiousness can be

defined using the following formula,

ContentiousnessA =
IPCBi(solo)

−IPCBi(co−run)

IPCBi(solo)

11

2.4 Basic concepts of Contention Characteristics

Contentiousness of an application A when it is executed along with Bi and the

average contentiousness can be shown as,

ContentiousnessA(corunBi) =
IPCBi(solo)

−IPCi(co−runA)

IPCBi(solo)

Average contentiousness of application A is,

ContentiousnessA(avg) =
∑n

i ContentiousnessA(corunBi)

n

An application’s contentiousness can also be defined as the amount of pressure

it can put on the shared resources. So contentiousness could be directly predicted

by the amount of shared resources that the application is using.

C = a1 × LLCusage+ b1 ×BWusage+ c1 × Prefusage

Here C is contentiousness of application , BWusage is bandwidth usage and Pre-

fusage is prefetcher usage and LLCusage is Last Level Cache usage of the appli-

cation .

The coefficients a1, b1 and c1 are used to denote the relative importance among

shared resources contentions. By the approximation of PMU’s contentiousness

can be calculated by

C = a1 × (L2LinesIn rate− L3LinesIn rate) + b1 × L3LinesIn rate

As L3LinesIn rate and L2LinesIn rate include the traffic due to prefetcher, an

extra PMU is not needed to measure the usage of prefetcher.

2.4.2 Sensitivity

Sensitivity of an application can be defined as the amount of performance degra-

dation suffered by the application because of the contentiousness of applications

which are executing along with it. Sensitivity of an application A can be defined

using the following formula,

12

2.5 Tools used:

SensitivityA =
IPCA(solo)−IPCA(co−run)

IPCA(solo)

where A’s IPC is denoted as IPCA(solo) when it is executing alone and when

it executes along with some other random programs is given by IPCA(co−run)

Sensitivity of an application A when it is executed along with Bi and the av-

erage Sensitivity can be shown as,

SensitivityA(co−runBi) =
IPCA(solo)−IPCA(co−runBi

)

IPCA(solo)

Average sensitivity of application A is,

SensitivityA(avg) =
∑n

i SensitivityA(co−runBi)

n

Sensitivity of an application can also be defined as the reliance of the applica-

tion on the shared resources.

S = a2 × LLC usage+ b2 ×BW usage+ c2 × Pref usage

where S is Sensitivity, BWusage is bandwidth usage and Prefusage is prefetcher

usage of the application.

The coefficients a1, b1 and c1 are used to denote the relative importance among

shared resources contentions. By the approximation of PMU’s sensitivity can be

calculated by

S = a2 × (L2LinesIn rate− L3LinesIn rate) + b2 × L3LinesIn rate

2.5 Tools used:

The Tools that are used to design and develop an efficient scheduling algorithm

are

13

2.5 Tools used:

2.5.1 AKULA Toolset

The main problems of developing a scheduling algorithm are addressed as the

implementation difficulty and the testing duration. AKULA toolset eases the

work of developers by providing an API and by making debugging easier without

any modification done in kernel or by using any system calls.

Figure 2.2: Flowchart of AKULA [9]

The toolset consists of three different modules namely

� Bootstrapping module: this is the module where the idea of the new

scheduling algorithm is evaluated to check whether it can be really imple-

mented. Here no benchmark program is executed for evaluation, but the

data required by the algorithm is directly provided by user by calculating it

prior to the evaluation.

� Wrapper Module: this module helps to run the algorithm in the real

world system such and no further modification is needed by it to run a real

world system and provides the same results as the evaluation results.

14

2.5 Tools used:

� Profiler Module: this module is used to find the parameters needed by

the algorithm to perform scheduling. It calculates the miss rate, degradation

matrix and solo execution times etc of the benchmark programs by using

performance monitoring tools such as Perth or pfmon.

2.5.2 MARSS

A full system simulator MARSS is described which includes QEMU and PTLsim to

provide cycle accurate simulation of many x86 core processors of same or different

processing capacities. It can also emulate hardware like caches, interconnects,

input, output devices and chips. It has the ability to run many OS on the emulated

hardware without any modifications done to them.

Figure 2.3: MARSS Instance [10]

15

2.5 Tools used:

2.5.3 Oprofile

It is a performance monitoring tool which monitors many performance events by

using the information available from hardware performance counters and supplies

it to the required user level programs to perform their tasks. It works for almost

all architectures and the events that can be monitored varies from one architecture

to another.

� To get all the available events in a system the following command can be

used

opcontrol –help

� And the profiling can be started by the command

opcontrol start

� The profile information can be saved to a file by the following command

opcontrol dump

� The profiler can be stopped by the command

opcontrol stop

� The data available after profiling can be shown to users in the form of a

report by the following command

opreport or opreport symbols

16

Implementation

Distributed Intensity

Swap

Contentiousness and sensitivity

Chapter 3

Implementation

The AKULA Toolset is used to implement the scheduling algorithms with the help

of its API by defining all the system calls necessary to obtain the data from the

kernel. Which in turn eases the work of the developer. The MARSS full system

simulator is used to simulate a multi-core system with 4 cores and run Linux

(Ubuntu) OS on top of it. Then the AKULA can be installed and scheduling

algorithms can be run on top of the simulated system similar to as of the real

world system.

3.1 Distributed Intensity

This algorithm uses the concept of sorting of threads according to their miss rates

and then assigning to the cores in an efficient way so that miss rate distributed

equally among the processing units. Assignment of threads are done first by ar-

ranging threads according to their miss rate in non-ascending order in an array.

Then the assignment of first thread is done to the first core of one socket, then

the assignment of second thread is done to the core of different socket and so on

until all of the sockets are assigned one thread. Then the array is reversed and

the threads are assigned in the same order so that the no socket is assigned with

more miss rate threads than others and the miss rate is equally distributed among

all cores.

18

3.1 Distributed Intensity

3.1.1 Algorithm

Algorithm 1 Algorithm 1: Runs every time at the beginning of scheduling inter-
val
1: // A boolean global array Orders[a] is initialized, every member of the array

specifies the entities browsing order at the corresponding level of the memory
hierarchy. OS gives every entity its own ID. If Orders[l]=0 then the entities
are browsed in increasing order, Order[a]=1 then the entities are browsed in
descending order.

2: for a=0;a < n.o of levels of memory hierarchy > ; a++ do
3: Orders[a] := 0;
4: all the entities of all levels are to be browsed in increasing order
5: end for
6: Applications Threads are sorted in descending order of miss rate
7: S be the sorted array of threads
8: // Application threads are spreaded among all the cores
9: while S! = φ do
10: initial thread is taken from the array(the most aggressive) t∈ S
11: DIalg() is invoked to assign the thread
12: DIalg(t,< mac >, 0)
13: Process is repeated for each interval
14: end while

3.1.2 Benchmarks and Workloads

� Two benchmarks based on their miss rates are considered

– Devil (high miss rate)

– Turtle (low miss rate)

� Three Workloads formed from three unique schedules of four applications

are used (2 devils, 2 turtles).

3.1.3 Results

Profiling:

� The benchmarks are profiled and factors are found out by using Perf:

– Solo Execution time

– Degradation Matrix

19

3.1 Distributed Intensity

Algorithm 2 Algo 2: (t, p parent, memory hierarchy level a)

1: P all is the entities array at level a+1
2: P childrn be the entities array on level l+1 in container p parent.
3: The Entities are browsed in P childrn in order Orders[a+1] and entity with

min n.o of threads allocated is found: p minimum ∈ P childrn.
4: if p minimum is a <core> then
5: // bottom of hierarchy is reached.
6: thread t is assigned to core p minimum.
7: else
8: n.o of threads allocated to p minimum are incremented
9: DIalg(t,p minimum,a + 1);
10: // DIalg()is invoked recursively for thread assignment in low hierarchy level.
11: end if
12: if threads are allocated equally to each entity p ∈P all then
13: // browsing order is reversed in this level.
14: Orders[a+1] := 6 Order[a+1]
15: end if

– Miss rate

– IPC

� Profiling is done each time with each bench mark as input and provides 4

files of above factors as output.

Results of Profiling:

Default Scheduler:

1. Solos.txt

Thread name Execution time
0 30
1 33

Table 3.1: Solo execution time

20

3.1 Distributed Intensity

2.Degradation matrix.txt:

Thread1 Thread2 Degradation
0 0 0.38118704256098573
0 1 0.49531665552043574
1 0 0.35729021361703934
1 1 0.32955678828701557

Table 3.2: Degradation matrix

3.Miss rate.txt

Thread name Miss rate
0 11.010513177133285
1 0.0

Table 3.3: Miss rates

DI Scheduler:

1. Solos.txt

Thread name Execution time
0 29
1 75

Table 3.4: Solo execution time

2.Degradation matrix.txt:

Thread1 Thread2 Degradation
0 0 0.3592374911626906
0 1 0.5103094358890173
1 0 0.7658604189036874
1 1 0.6826307624550999

Table 3.5: Degradation matrix

3.Miss rate.txt

Thread name Miss rate
0 10.23452347865
1 0.0

Table 3.6: Miss rates

21

3.1 Distributed Intensity

Results of Simulation

Thread Name Processor Time (s) % Degrad
devil1 64.0 120.6896551724138
devil2 64.0 120.6896551724138
turtle1 101.0 34.66666666666667
turtle2 101.0 34.66666666666667

Total Length: 50.0

Max Degradation: 6.382978723404255

Average Degradation: 4.662077596996245

Top Half Degradation: 6.382978723404255

Figure 3.1: Comparision of schedulers

22

3.2 Swap

3.2 Swap

The swap algorithms works by finding the IPC per socket initially. Then it ran-

domly selects a core and then picks the core of that thread and swaps with some

other thread of a core present in another socket. then the IPC is calculated once

again. If the IPC of both groups increase then the swap is considered as valid and

threads are allowed to execute. Otherwise they are swapped back to their original

position.

3.2.1 Algorithm

Algorithm 3 Swap(thread t1,t2, e parent, hierarchy level l)

1: P all be entities array of hierarchy level a+1 choose randomly two arrays and
find the IPC (IPCprev1,IPCprev2)of them.

2: Let P children1, P children2 be the entities array at hierarchy level l+1 with
containers p parent1,p parent2.

3: browse the entities in P children1, P children2 in order Orders[a+1] and de-
termine any random entity p ran1,p ran2

4: if e ran1 and e ran2 are < core > then
5: // bottom of the hierarchy is reached
6: Choose a thread t1,t2 from each and swap them
7: end if
8: IPC(IPCnew1, IPCnew2) of P children1 and P children 2 are found out.
9: if IPCnew1 > IPCprev1 and IPCnew2 > IPCprev2 then
10: good swap and noted down
11: else
12: Discarded and threads are swapped back
13: end if

3.2.2 Benchmarks and Workloads

� Two benchmarks based on their miss rates are considered

– Devil (high miss rate)

– Turtle (low miss rate)

� Three Workloads formed from three unique schedules of four applications

are used (2 devils, 2 turtles).

23

3.2 Swap

3.2.3 Results

Simulation Results:

Thread Name Processor Time (s) % Degrad
Turtle1 35.0 2.941176470588235
Turtle2 35.0 2.941176470588235
devil1 50.0 6.382978723404255
devil2 50.0 6.382978723404255

Max Degradation: 120.6896551724138

Average Degradation: 77.67816091954023

Top Half Degradation: 120.6896551724138

Unfairness: 113.74206309334673

Figure 3.2: comparision of swap scheduler

24

3.3 Contentiousness and sensitivity

3.3 Contentiousness and sensitivity

3.3.1 Experimental setup

The benchmarks are run on the Intel(R)core (TM) i7-3770 CPU @ 3.40 GHz quad

core processor. The performance monitoring is done by Oprofile by collecting the

information from hardware performance counters.

3.3.2 Benchmarks

The PARSEC benchmark suite is used for testing whether miss rate and miss ratio

can efficiently calculate the contentiousness and sensitivity or not. The PARSEC

benchmark suite consists of various benchmarks taken from different areas like

mining, image processing etc. and are specially designed to run on multi-core

machines to find the CPU, memory and other hardware characteristics in order

to improve their performance.

3.3.3 Results

The relation between the contentiousness and miss rate is shown by the following

graph

Figure 3.3: Contentiousness vs Miss rate

25

3.3 Contentiousness and sensitivity

The relation between the sensitivity and miss rate is shown by the following

graph

Figure 3.4: Sensitivity vs Miss rate

The relation between the contentiousness and LLC LINES In is shown by the

following graph

Figure 3.5: Sensitivity vs Miss rate

26

Conclusion

Chapter 4

Conclusion

In our research work we have attempted to solve the contention problem of shared

resources in multi-core architectures through different techniques.

– Factors which cause contention and cause degradation of performance are

learned.

– Different classification schemes to classify applications and scheduling poli-

cies are learnt.

– Miss rate is found out to be easy and efficient metric to schedule workload

consisting of almost equal cpu-intensive and memory-intensive applications

– Contentiousness and sensitivity are realised as pressure and reliance of ap-

plications and are found out to be not varying according to miss rate.

– By the information obtained from PMUs the contention characteristics are

found and efficiency of contention aware algorithms is increased.

28

Bibliography

[1] T. Moseley, J. L. Kihm, D. A. Connors, and D. Grunwald, “Methods for

modeling resource contention on simultaneous multithreading processors,” in

Computer Design: VLSI in Computers and Processors, 2005. ICCD 2005.

Proceedings. 2005 IEEE International Conference on, pp. 373–380, IEEE,

2005.

[2] D. Chandra, F. Guo, S. Kim, and Y. Solihin, “Predicting inter-thread cache

contention on a chip multi-processor architecture,” in High-Performance

Computer Architecture, 2005. HPCA-11. 11th International Symposium on,

pp. 340–351, IEEE, 2005.

[3] A. Fedorova, M. Seltzer, and M. D. Smith, “Improving performance isolation

on chip multiprocessors via an operating system scheduler,” in Proceedings of

the 16th International Conference on Parallel Architecture and Compilation

Techniques, pp. 25–38, IEEE Computer Society, 2007.

[4] R. Knauerhase, P. Brett, B. Hohlt, T. Li, and S. Hahn, “Using os observations

to improve performance in multicore systems,” IEEE micro, vol. 28, no. 3,

pp. 54–66, 2008.

[5] J. Mars, N. Vachharajani, R. Hundt, and M. L. Soffa, “Contention aware

execution: online contention detection and response,” in Proceedings of the

8th annual IEEE/ACM international symposium on Code generation and op-

timization, pp. 257–265, ACM, 2010.

29

Bibliography

[6] S. Zhuravlev, S. Blagodurov, and A. Fedorova, “Addressing shared resource

contention in multicore processors via scheduling,” in ACM SIGARCH Com-

puter Architecture News, vol. 38, pp. 129–142, ACM, 2010.

[7] C. Xu, X. Chen, R. P. Dick, and Z. M. Mao, “Cache contention and applica-

tion performance prediction for multi-core systems,” in Performance Analysis

of Systems & Software (ISPASS), 2010 IEEE International Symposium on,

pp. 76–86, IEEE, 2010.

[8] S. Blagodurov, S. Zhuravlev, and A. Fedorova, “Contention-aware scheduling

on multicore systems,” ACM Transactions on Computer Systems (TOCS),

vol. 28, no. 4, p. 8, 2010.

[9] S. Zhuravlev, S. Blagodurov, and A. Fedorova, “Akula: a toolset for experi-

menting and developing thread placement algorithms on multicore systems,”

in Proceedings of the 19th international conference on Parallel architectures

and compilation techniques, pp. 249–260, ACM, 2010.

[10] A. Patel, F. Afram, S. Chen, and K. Ghose, “Marss: a full system simula-

tor for multicore x86 cpus,” in Proceedings of the 48th Design Automation

Conference, pp. 1050–1055, ACM, 2011.

[11] S. Blagodurov and A. Fedorova, “User-level scheduling on numa multicore

systems under linux,” in Linux Symposium, p. 81, 2011.

[12] S. Zhuravlev, J. C. Saez, S. Blagodurov, A. Fedorova, and M. Prieto, “Survey

of scheduling techniques for addressing shared resources in multicore proces-

sors,” ACM Computing Surveys (CSUR), vol. 45, no. 1, p. 4, 2012.

[13] R. Azimi, D. K. Tam, L. Soares, and M. Stumm, “Enhancing operating sys-

tem support for multicore processors by using hardware performance moni-

toring,” ACM SIGOPS Operating Systems Review, vol. 43, no. 2, pp. 56–65,

2009.

30

Bibliography

[14] D. Xu, C. Wu, and P.-C. Yew, “On mitigating memory bandwidth con-

tention through bandwidth-aware scheduling,” in Proceedings of the 19th in-

ternational conference on Parallel architectures and compilation techniques,

pp. 237–248, ACM, 2010.

[15] Y. Jiang, X. Shen, J. Chen, and R. Tripathi, “Analysis and approximation

of optimal co-scheduling on chip multiprocessors,” in Proceedings of the 17th

international conference on Parallel architectures and compilation techniques,

pp. 220–229, ACM, 2008.

[16] L. Tang, J. Mars, and M. L. Soffa, “Contentiousness vs. sensitivity: improving

contention aware runtime systems on multicore architectures,” in Proceedings

of the 1st International Workshop on Adaptive Self-Tuning Computing Sys-

tems for the Exaflop Era, pp. 12–21, ACM, 2011.

[17] M. J. Best, S. Mottishaw, C. Mustard, M. Roth, A. Fedorova, and

A. Brownsword, “Synchronization via scheduling: techniques for efficiently

managing shared state,” in ACM SIGPLAN Notices, vol. 46, pp. 640–652,

ACM, 2011.

31

