
Software Fault Prediction

using

Object-Oriented Metrics

Lov Kumar

Department of Computer Science and Engineering

National Institute of Technology Rourkela

Rourkela-769008, Odisha, India

June 2014

CORE Metadata, citation and similar papers at core.ac.uk

Provided by ethesis@nitr

https://core.ac.uk/display/53190344?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Software Fault Prediction

using

Object-Oriented Metrics

Thesis submitted in partial fulfillment of the requirements for the degree of

Master of Technology

in

Computer Science and Engineering
(Specialization: Software Engineering)

by

Lov Kumar
(Roll No.- 212CS3371)

under the supervision of

Prof. S. K. Rath

Department of Computer Science and Engineering

National Institute of Technology Rourkela

Rourkela, Odisha, 769 008, India

June 2014



Department of Computer Science and Engineering

National Institute of Technology Rourkela

Rourkela-769 008, Odisha, India.

Certificate

This is to certify that the work in the thesis entitled Software Fault Prediction

using Object-Oriented Metrics by Lov Kumar is a record of an original

research work carried out by him under my supervision and guidance in partial

fulfillment of the requirements for the award of the degree of Master of Technology

with the specialization of Software Engineering in the department of Computer

Science and Engineering, National Institute of Technology Rourkela. Neither this

thesis nor any part of it has been submitted for any degree or academic award

elsewhere.

Place: NIT Rourkela (Prof. Santanu Ku. Rath)
Date: June 1, 2014 Professor, CSE Department

NIT Rourkela, Odisha



Acknowledgment

I am grateful to numerous local and global peers who have contributed towards

shaping this thesis. At the outset, I would like to express my sincere thanks to

Prof. Santanu Ku. Rath for his advice during my thesis work. As my supervisor,

he has constantly encouraged me to remain focused on achieving my goal. His

observations and comments helped me to establish the overall direction to the

research and to move forward with investigation in depth. He has helped me

greatly and been a source of knowledge.

I am very much indebted to Prof. Santanu Ku. Rath, for his continuous

encouragement and support. He is always ready to help with a smile. I am also

thankful to all the professors at the department for their support.

I would like to thank all my friends and lab-mates for their encouragement and

understanding. Their help can never be penned with words.

I must acknowledge the academic resources that I have got from NIT Rourkela.

I would like to thank administrative and technical staff members of the Department

who have been kind enough to advise and help in their respective roles.

Last, but not the least, I would like to dedicate this thesis to my family, for

their love, patience, and understanding.

Lov kumar

Roll-212cs3371

iii



Abstract

Fault-prediction techniques aim to predict the fault prone software modules

in order to streamline the effort to be applied in the later phases of software de-

velopment. Many fault-prediction techniques have been proposed and evaluated

for their performance using various performance criteria. However, due to the

lack of compiling their performances in proper perspective, one significant issue

about the viability of these techniques has not been adequately addressed. In

this study, an adaptive cost evaluation framework is proposed that incorporates

cost drivers for various fault removal phases, and performs a cost-benefit analysis

for the misclassification of faults. Accordingly, our study focuses on investigat-

ing two important and related research questions regarding the viability of fault

prediction. First, for a given software product, whether performing fault predic-

tion analysis is economically effective or not?. In case of an positive affirmation,

then emphasis is provided on how to choose a fault prediction technique for an

overall improved performance in terms of cost-effectiveness. In this study, Object-

Oriented software metrics have been considered to provide requisite input data

to design a classifier using statistical, machine learning and hybrid methods of

soft computing. This work, also extends the study on finding the effectiveness

of feature reduction techniques. From the obtained results, it is observed that

performing fault prediction is quite desirable for those software systems, when the

percentage of faulty modules are below the range of certain threshold value.

Keywords: ANN, ANGA, CSA, GA, linear regression, logistics regression,

MNPSO, NGA, NCSA, NPSO, Naive Bayes, polynomial regression, PCA, PSO,

SVM, RSA, Software fault estimation, software metrics.
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Chapter 1

Introduction

Fault prediction is necessary in software development life cycle in order to reduce

the probable software failure and is carried out mostly during initial planning to

identify fault-prone modules. Fault prediction not only gives an insight to the need

for increased quality of monitoring during software development but also provides

necessary tips to undertake suitable verification and validation approaches that

eventually lead to improvement of efficiency and effectiveness of fault prediction.

Effectiveness of a fault prediction is studied by applying a part of previously known

data related to faults and predicting its performance against other part of the fault

data. Several researchers have worked on building prediction models for software

fault prediction but less emphasis has been given on the study of effectiveness of

fault prediction.

Present day software development is mostly desired to be based on Object-

Oriented (OO) paradigm. The quality of OO software can be best assessed by the

use of software metrics. A number of metrics have been proposed by researchers

and practitioners to evaluate the quality of software. Some of the software metrics

available in literature are as follows: Abreu MOOD metric suite [1], Bansiya

and Davis (QMOOD metrics suite) [2], Bieman and Kang [3], Briand et al. [4],

Etzkorn et al. [5], Halstead [6], Henderson-sellers [7], Li and Henry [8], McCabe [9],

Tegarden et al. [10], Lorenz and Kidd [11] and CK metric [12] suite.

These metrics help to verify the quality attributes of a software such as effort

and fault proneness. The usefulness of these metrics lies in their ability to predict

the quality of the developed software. In practice, software quality mainly refers
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1.1 Literature Review Introduction

to FURPS model such as functionality, usability, reliability, Portability and sup-

portability. This study mostly focus on the aspect of improving reliability of a

software by reducing the number of faults in the software.

In order to estimate the reliability of a class, several traditional methods are

available in literature. But less importance has been given on using machine

learning techniques. Artificial intelligence techniques, a subset of machine learn-

ing methods have the ability of computer, software and firmware to measure the

properties of a class, that human beings recognize as intelligent behavior. These

methods are able to approximate the non-linear function with more precision.

Hence they can be applied for quality estimation in order to achieve better accu-

racy.

1.1 Literature Review

This section presents a review of literature on the application of software metrics.

Table 1.1 shows the summary of Empirical Literature on software metrics.

Basili et al., [13] experimentally analyzed the impact of CK metric suite in fault

prediction. Briand et al., [14] found out the relationship between fault and the met-

rics using univariate and multivariate logistic regression models. Tang et al., [16]

investigated the dependency between CK metric suite and the Object-Oriented

system faults. Emam et al., [18] conducted empirical validation on Java applica-

tion and found that export coupling has great influence with faults. Khoshgoftaar

et al., [21], Hochman [22] conducted experimental analysis on telecommunication

model and found that artificial neural network (ANN) model is give accurately

output than other discriminant model. In their approaches, nine software metrics

were used for modules developed in procedural paradigm. Since then, ANN mod-

els have taken a rise in their usage for prediction modeling. Hence, in this study,

different ANN models are used for fault prediction of embedded software.

Also few researchers have presented cost based evaluation models for predicting

the effectiveness of fault prediction. In this section, the study related to the

measure of cost effectiveness for fault prediction has been tabulated in Table 1.2.

3



1.1 Literature Review Introduction

Table 1.1: Summary of literature on reliability prediction using software Metrics
suite

Study Software
Metrics
tested

Dependent
variable

Summary of Results

Basili et al.
(1996) [13]

All CK
metrics

Fault Prone-
ness

Correlated WMC, DIT, NOC, RFC and
CBO with defects for eight academic
projects.

Chidamber et
al. (1998) [14]

All CK
metrics

design ef-
fort, rework
effort and
productivity

Found that Low LCOM and High CBO ac-
counted for lower productivity, greater re-
work and design effort in case of three finan-
cial service applications.

Briand et al.
(1999) [15]

CBO,
RFC,
LCOM

Fault Prone-
ness

Found that three CK metrics i.e., CBO, RFC
and LCOM were found to be associated with
fault proneness of classes for an industrial
case study.

Tang et al.
(1999) [16]

WMC,
RFC

Fault Prone-
ness

Found higher WMC and RFC were found
to be associated with fault proneness. They
are utilized real time systems for testing and
maintenance.

Briand et al.
(2000) [4]

All CK
metrics

Fault Prone-
ness

Observed that classes with higher WMC,
CBO, DIT and RFC were more fault prone
while classes having more children (NOC)
were less fault prone. LCOM did not account
for the defects associated with the eight aca-
demic projects studied in this analysis.

Cartwright
and Shepperd
(2000) [17]

DIT,
NOC

Defect density Observed that DIT and NOC influence defect
density in case of medium sized telecommu-
nication system.

El Emam et
al. (2001b)
[18]

All CK
metrics

Fault Prone-
ness

Found that size confound the effect of all
metrics on fault proneness for large telecom-
munication application.

Ramanath
Subra-
manyam
and M.S.
Krishnan
(2003) [19]

WMC,
CBO,
DIT

Defects They find that the effects of these metrics
on defects vary across the samples from two
programming languages C++ and Java.

Olague et al.
(2007) [20]

All CK
metrics

Fault Prone-
ness

They explore the ability of three metrics i.e.,
CK metrics, MOOD and QMOOD suites to
predict fault-prone classes using defect data
for six versions of Rhino, an open-source im-
plementation of JavaScript written in Java.

4



1.2 Software Metrics Introduction

Table 1.2: Fault prediction effectiveness based on Cost evaluation model

Author Cost evaluation criteria
Jiang et al., [23] Introduced cost curve based on Receiver Op-

erating Characteristic (ROC).
Mende et al., [24] Introduced a performance measure (Popt) and

compared prediction model with an optimal
model. Popt accounted module size to eval-
uate the performance of a fault-prediction
technique.

Mende et al., [25] Proposed two strategies namely AD (effort-
aware binary prediction) and DD (effort-
aware prediction based on defect density) to
include the notion of effort awareness into
fault-prediction techniques.

Arisholm et al., [26] Proposed a cost performance measure - Cost
Effectiveness (CE), a variation of lift charts
where the x-axis contains the ratio of lines of
code instead of modules.

In this study, linear regression, polynomial regression, logistic regression, Naive

Bayes and SVM models have been considered so as to predict software quality by

classifying a class as faulty or not faulty .

In literature, classification models are mostly built using statistical analysis.

Neural networks (NN) have seen an explosion of interest over the years, and are

being successfully applied across a range of problem domains. When the problems

of classification, prediction, NN are being used, NN can be used as a technique

to design prediction model because it is a very sophisticated modeling technique

that enables modeling of complex function. In this thesis work, software metrics

has been considered for quality estimation using various statistical and artificial

intelligence techniques.

1.2 Software Metrics

A software metric is the measurement of a individual characteristic of a program’s

efficiency or performance and also used to measures the attributes of software prod-

ucts and processes. At present, software development based on Object-Oriented

(OO) Paradigm is becoming more and more pronounced. The Object-Oriented

5



1.2 Software Metrics Introduction

paradigm for the software development differs from traditional procedural so the

traditional metrics can not be applied on OO software.

A number of OO software metrics have been proposed by researchers and

practitioners to evaluate the quality of OO software. The most commonly used

metric suites are: Abreu MOOD metric suite [1], Bansiya and Davis (QMOOD

metrics suite) [2], Bieman and Kang [3], Briand et al. [4], Etzkorn et al. [5],

Halstead [6], Henderson-sellers [7], Li and Henry [8], McCabe [9], Tegarden et

al. [10], Lorenz and Kidd [11] and CK metric [12] suite. Table 1.3 gives the basic

definitions of software metric.

Table 1.3: Software metrics

Software
Metric

Description

WMC Summation of the complexities of all class methods
NOC Number of immediate sub-classes subordinate to a class in the

class hierarchy
DIT Maximum height of the class hierarchy

CBO Number of other classes to which it is coupled
RFC A set of methods that can potentially be executed in response

to a message received by an object of that class
LCOM Measures the dissimilarity of methods in a class via instanced

variables
NOM Number of methods defined in a class
NOA Number of attribute defined in a class
NOAI Counts the number of attribute which are inherited by all

member subclasses.
NOMI Counts the number of method which are inherited by all mem-

ber subclasses.
Fan-in It defines as the summation of number of local flows into that

procedure and the number of data structures from which that
procedure retrieves information.

Fan-out It defines as the summation of number of local flows out of
that procedure and the number of data structures that the
procedure updates

NOPM Number of private methods in a class
NOPA Number of private attribute in a class
NOP̄M Number of public methods in a class
NOP̄A Number of public attribute in a class
NLOC it is used to measure the size of a program by counting the

number of lines in the text of the source code.

6



1.3 Performance evaluation parameters Introduction

1.3 Performance evaluation parameters

The following sub-sections give the basic definitions of the performance parameters

used for fault prediction.

Table 1.4: Confusion matrix to classify a class as faulty and not-faulty

Non-Faulty Faulty
Non-Faulty True Negative (TN) False Positive (FP)
Faulty False Negative (FN) True Positive (TP)

The confusion matrix are categories into four category :

i. True positives (TP) are the number of modules correctly classified as faulty

modules.

ii. False positives (FP) refer to not-faulty classes incorrectly labeled as faulty

classes.

iii. True negatives (TN) correspond to not-faulty modules correctly classified as

such.

iv. Finally, false negatives (FN) refer to faulty classes incorrectly classified as

not-faulty classes.

These are the performance parameter used to measures the classification tech-

niques.� Precision

It is used to measure the degree to which the repeated measurements under

unchanged conditions show the same results.

Precision =
TP

FP + TP
(1.1)� Recall

Recall indicates the how many of the relevant item that are to be identified.

it is represented as:

Recall =
TP

FN + TP
(1.2)

7



1.4 Motivation Introduction� F-Measure

F-Measure combine the precision and recall numeric value to give a single

score, which is defined as the harmonic mean of the recall and precision.

F-Measure is expressed as:

F −Measure =
2 ∗Recall ∗ Precision

Recall + Precision
(1.3)� Specificity

Specificity focus on how effectively a classifier identifies the negative labels.

It is defined as:

Specificity =
TN

FP + TN
(1.4)� Accuracy

Accuracy measure is the proportion of predicted fault prone modules that

are inspected out of all modules. It is defined as:

Accuracy =
TN + TP

TP + TN + FP + FN
(1.5)

1.4 Motivation

The majority of software bugs are small in nature, which cause large inconvenience

that can be worked around by the user. Some noticeable cases wherein a simple

mistake can affect millions and even cause injury and leads to loss of life. Software

code, written by humans has a probability that every piece of software has fault

or undocumented features. That is, the software does not meet the requirements.

These faults can be due to bad design, problem misunderstanding, or just simple

error just like a typo in a book. Unlike a book is read by a human who can

usually infer the meaning of a misspelled word, the software is read by computers,

which are comparatively stupid, and will perform what they are instructed to do.

There are some major computer system failures caused by software bugs, such as:

8



1.4 Motivation Introduction� Nearly five patient deaths in the 1980’s due to bugs in “Therac-25 radiation

therapy” machine.� In 1994, nine passengers are died in helicopter crashed in Chinook (Scotland)

due to systems error in helicopter.� In mar 2002, Britain’s National Tax system overcharges 100,000 erroneous

due to fault in their software system.� In Japan’s largest banks going off line for 24 hr, Internet banking services

(IBS) being shut down for three days, delays in salary payments worth $1.5
billion into the accounts of 620,000 people and a backlog of more than 1

million unprocessed payments worth around $9 billion.� In 2011, twenty two people wrongly arrested in Australia due to fault in new

zealand $54.5 million courts computer system.� In Apr 1992, first F-22 Raptor was crashed while landing at Edwards Air

Force Base due to fault in flight controlling software system.� In 2004, A2LL software which handling social services and unemployment

in Germany transfer a payments to invalid account number due to failure in

their system.

Thus, reducing these type of failure, Software fault prediction is one of the

different strategies, which are conducted during the very beginning of software

development life cycle. Fault prediction information not only for the increasing

quality of software during the development but also give an information to un-

derstand suitable validation and verification activities in order to improve the

effectiveness.

9



1.5 Thesis Organization Introduction

1.5 Thesis Organization

The rest of thesis is organized as follow:� In Chapter-2, cost evaluation framework has been proposed which performs

cost based analysis for misclassification of faults. This Chapter also focuses

on investigating two important and related research questions regarding the

viability of fault prediction. First, for a given software product, whether

performing fault prediction analysis is economically effective or not?. In

case of an positive affirmation, then emphasis is provided on how to choose

a fault prediction technique for an overall improved performance in terms of

cost-effectiveness� In Chapter-3, artificial neural network (ANN), has been used to design a

classifier, to classify a class as faulty and not faulty. In this chapter a case

study of Eclipse JDT core has been considered for predicting the fault prone-

ness.� In Chapter-4, hybrid approach of artificial neural network and optimization

algorithms i.e., genetics algorithm (GA), clonal selection algorithm (CSA)

and Particle Swarm Optimization (PSO) have been used to design a classifier

to classifying a class as faulty and not faulty. Here also same case study of

Eclipse JDT core has been considered for predicting the fault proneness.
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Chapter 2

Effectiveness of fault prediction
Techniques

2.1 Introduction

Software fault prediction is helpful in deciding the amount of effort needed for soft-

ware development. In literature it is observed that, a good number of approaches

have been studied and evaluated on software products to determine best suitable

approach for fault prediction based on certain performance criteria (precision, re-

call, accuracy etc.). However very less significant work has been done on feasibility

of fault prediction approach. In this study, a cost evaluation framework has been

proposed which performs cost based analysis for misclassification of faults. Ac-

cordingly, this study focuses on investigating two important and related research

questions regarding the viability of fault prediction. First, for a given project, do

the developer feel that the fault prediction results useful? In case of an affirmative

answer, then it is desirable to investigate as to how to choose a fault prediction

technique for an overall improved performance in terms of cost effectiveness. The

proposed framework is used to investigate the usefulness of various fault-prediction

techniques. The investigation consisted of performance evaluation of five major

fault-prediction techniques i.e, liner regression, polynomial regression, logistics re-

gression, Naive Bayes and SVM on Eclipse JDT core. From the obtained results,

it is observed that application of fault prediction models are useful for the projects

with percentage of faulty modules less than a certain threshold.

12
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2.2 RESEARCH BACKGROUND

The following sub-sections highlight on the data set being used for fault predic-

tion. Data was normalized to obtain better accuracy and then dependent and

independent variables are chosen for fault prediction.

2.2.1 Empirical data collection

Metric suites are used and defined for different goals such as fault prediction, effort

estimation, re-usability and maintenance. In this study, the mostly commonly used

CK metric suite [27] is used for fault prediction. The metric values of the suite

were extracted using Chidamber and Kemerer Java Metrics tool (CKJM). CKJM

tools extracts OO metrics by processing the byte code of compiled Java classes.

In this study, NASA and PROMISE [28] datasets are used to evaluate the impact

of fault-prediction techniques over the fault removal cost using proposed model

(NEcost).

2.2.2 Dependent and independent variables

The goal of this study is to establish the relationship between Object-Oriented

metrics and fault proneness at the class level. In this study, a fault is used as

a dependent variable and each of the CK metric is an independent variable. It

is intended to develop a function between fault of a class and CK metrics suite

(WMC, NOC, DIT, RFC, CBO, LCOM). Fault is a function of WMC, NOC, DIT,

RFC, CBO and LCOM and can be represented as shown in the following equation:

Faults = f(WMC,NOC,DIT, CBO,RFC, LCOM) (2.1)

2.2.3 Case study

In this study, to analyze the effectiveness of the proposed approach, Ellipse JDT

core was used as a case study.

13
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2.2.4 Fault Data

To perform statistical analysis, bugs were collected from Promise data repository

[28]. Table 2.1 shows the distribution of bugs based on the number of occurrence

(in terms of percentage of class containing number of bugs) for Ellipse JDT core.

Table 2.1: Distribution of bugs in AIP version 1.6

No. of
Classes

% of bugs Number of as-
sociated bugs

791 79.33 0
138 13.84 1
31 3.10 2
15 1.50 3
8 0.80 4
2 0.20 5
4 0.40 6
3 0.30 7
3 0.30 8
2 0.20 9
997 100.00

Ellipse JDT core contains 997number of different classes in which 79.33% of

classes contain zero bugs i.e., out of 997 classes: 791 classes contains zero bugs,

13.84% of classes contain at least one bug, 3.10% of classes contain a minimum

of two bugs, 1.50% of classes contain three bugs, 0.80% classes contain four bugs,

0.20% of classes contain five and nine bugs, 0.40% classes contain six bugs, 0.30%

of classes contain seven and eight bugs.

2.3 Proposed work for fault prediction

The following sub-sections highlight on the various methods used for fault classi-

fication.

2.3.1 Linear Regression models

Linear regression is the commonly used statistical technique [29]. It is used to find

the linear (i.e., straight-line) relationship between variables.

14
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The Univariate linear regression is represented as:

Y = β1X + β0 (2.2)

where Y represent the dependent variable and X represent the independent vari-

able. β0, β1 are the constant and coefficient values respectively.

In case of multivariate linear regression, the linear regression is represented as:

Y = β0 + β1X1 + β2X2 + ......+ βpXp (2.3)

Where Xi represent the independent variable and Y represent the dependent vari-

able, β0, βi are the constant and coefficient values respectively.

2.3.2 Polynomial regression models

Polynomial regression is the commonly used statistical technique. Polynomial

models are useful in situations where the analyst knows that curvilinear effects

are present in the true response function [29]. Polynomial models are also use-

ful as approximating functions to unknown and possible very complex nonlinear

relationship.

The Univariate Polynomial regression analysis is represented as:

Y = β0 + β1X + β2X
2 + ...+ βnX

n (2.4)

where Y is dependent variable, X is independent variable and β0, β1...βn are

the constant and coefficient values respectively.

Equation 2.4 shows the Univariate Polynomial regression model for nth order

polynomial. In this report, second order polynomial is considered for finding

the relationship between fault and CK metrics of the class. The second order

polynomial is represented as:

Y = β0 + β1X + β2X
2 (2.5)

In case of multivariate second order Polynomial regression analysis, the Poly-

nomial regression of two variables is based on:

Y = β0 + β1X1 + β2X2 + β11X
2
1 + β22X

2
2 + β12X1X2 (2.6)
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2.3.3 Logistic regression model

Logistic regression is the commonly used statistical technique. Which is a kind of

regression analysis used for predicting the outcome of dependent variable based

on one or more independent variables [13] . A dependent variable can take only

two values. So the dependent variable of a class containing bugs is divided into

two groups, one group containing zero bugs and the other having at least one

bug. Logistic regression model is used to construct a prediction model for the

fault proneness of classes. In this method, metrics are used in combination. The

logistic regression model is based on the following equation:

logit[π(x)] = β0 + β1X1 + β2X2 + ...... + βmXm (2.7)

where xi represent the independent variable and logit[π(x)] represent the de-

pendent variable. It shows that logistic regression analysis is a standard linear

regression model and the dichotomous outcome in result is transformed by the

logit transform. This transform changes the range of π(x) from 0 to 1 to −∞ to

+∞, as being used for linear regression. m represents the number of independent

variables. π represents the probability of fault in the class during validation. It is

defined as:

π(x) =
eβ0+β1X1+β2X2+......+βmXm

1 + eβ0+β1X1+β2X2+......+βmXm
(2.8)

2.3.4 Naive Bayes model

Naive Bayes is one of the approach for design the classifier. It is a simple proba-

bilistic classifier which are based on applying Bayes’ theorem with strong indepen-

dence assumptions. A more descriptive term for the underlying probability model

would be ”independent feature model”.

Naive Bayes classifier also called a Bayesian classification and it is based on

Bayes’ theorem. It assumes that all the features are independent and will not

influence the estimation process. Naive Bayes classifier assigns the given object x

to class e∗ = argmaxdP (d|x) by using Bayes′ rule given below:

P (d|x) =
P (x|d)P (d)

P (x)
(2.9)
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where P (d), is the prior probability of a parameter c before having seen the

data. P (d|x) is called the likelihood. It is the probability of the data x and defined

as

P (x|d) =

m
∏

l=1

P (xl|d) (2.10)

2.3.5 Support Vector Machine model

SVM is one of the supervised machine learning model which is generally used for

classification and regression analysis. SVM model analyzes data and recognizes

the patterns involved in the data set [29]. SVM model acts as a non-probabilistic

binary linear classifier by categorizing input data into same category or the other.

SVM is generally used for minimizing the generalization error (true error) on

unseen example based on Structural Risk Minimization principle. The basic form

of SVM classifier, deals with two-class problems, in which data are separated by

the optimal hyperplane defined by a number of support vectors. Support vectors

are the subset of the training set which define the boundary values between two

classes.

The general characteristics of SVM are:� Generalizes high dimensional spaces using small training samples.� Obtains global optimum solution.� Model non-linear functional relations.

The main goal of SVM is to design a model which predicts target value of the

dataset in the testing phase. Thus SVM acts as a good candidate to design a

model in predicting fault prone modules. The general form of SVM function is

defined as:

Y
′

= w ∗ φ(x) + b (2.11)

where φ(x) is non linear transform. The main goal of this study is to calculate the

value of w and b, so the value of Y
′

can be found by minimization of regression
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risk.

Rreg(Y
′

) = C ∗

l
∑

i=0

γ(Y
′

i − Yi) +
1

2
∗ ‖w‖2 (2.12)

where γ represent the cost function,constant value C represents penalties for

estimation error (large value of C means that errors are heavily penalized whereas

a small value of C means that errors are lightly penalized ). A heavier penalty

trains the regression to minimize errors by making fewer generalizations. The

value of w can be defined in form of data points as:

w =
l

∑

j=1

(αj − α∗

j )φ(xj) (2.13)

where α and α∗ represents the Lagrange multipliers , whose value is always

greater and equal to zero i.e., α, α∗ ≥ 0. So Equation 2.11 is modified as:

(2.14)

Y
′

=
l

∑

j=1

(αj − α∗

j )φ(xj) ∗ φ(x) + b

=

l
∑

j=1

(αj − α∗

j ) ∗K(xj , x) + b

where K(xj , x) is the kernel function, that enables the dot product to be per-

formed in high-dimensional feature space using low-dimensional space data. In

literature linear, polynomial and radial basic function used as a kernel. in this

study polynomial function is used as kernel function.

2.4 Cost analysis model

This section describes the construction of a cost evaluation model, which accounts

for realistic cost required to remove a fault and computes the estimated fault

removal cost for a specific fault prediction technique based on the concept proposed

by Wagner. Certain constraints are assumed in designing this cost evaluation

model, which are as follows:

i. Different phases of testing account for varying fault removal cost.
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ii. It is not practically possible to perform unit testing on all modules.

Normalized fault removal cost approach suggested by Wagner et al., [30] has

been used to formulate the proposed cost evaluation model. Since different projects

are developed on varying platforms and in varying organization standards, the cost

varies. The normalized fault removal costs are summarized in Table 2.2.

Table 2.2: Removal costs of test techniques (in staff hour per defects)

Type Min Max Mean Median
Unit 1.5 6 3.46 2.5
System 2.82 20 8.37 6.2
Field 3.9 66.6 27.24 27

The fault identification efficiencies for different testing phases are taken from

the study of Jones [31]. The efficiencies of testing phases are summarized in Table

2.3. Wilde et al [32] have stated that more than fifty percent of modules are

usually very small in size, hence performing unit testing on these modules may

not be helpful.

Table 2.3: Fault identification efficiencies of different test phase

Type Min Max Median
Unit 0.1 0.5 0.25
System 0.25 0.5 0.65

Equation 2.15 shows the proposed cost evaluation model to estimate the overall

fault removal cost. Equation 2.16 shows the minimum fault removal cost without

the use of fault prediction. Normalized fault removal cost and its interpretation

is shown in Equation 2.17.

Ecost = Ci + Cu ∗ (FP + TP )

+ δs ∗ Cs ∗ (FN + (1− δu) ∗ TP )

+ (1− δs) ∗ Cf ∗ (FN + (1− δu) ∗ TP ) (2.15)

Tcost = Mp ∗ Cu ∗ TC

+ δs ∗ Cs ∗ (1− δu) ∗ FC

+ (1− δs) ∗ Cf ∗ (1− δu) ∗ FC (2.16)
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NEcost =
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=> 1, P erform

Testing

(2.17)

where, Ecost represents for Estimated fault removal cost of the software when

fault prediction is performed. TCost is the Estimated fault removal cost of the

software without using fault prediction approach. NEcost represents the Normal-

ized Estimated fault removal cost of the software when fault prediction is utilized.

The other notations in this cost evaluation analysis are Ci: Initial setup cost

of used fault-prediction technique, Cu: Normalized fault removal cost in unit test-

ing, Cs: Normalized fault removal cost in system testing, Cf : Normalized fault

removal cost in testing, Mp : percentage of classes unit tested, FP : Number of

false positive, FN : Number of false negative, TP : Number of true positive,

TN : Number of true negative, TC : Total number of classes, FC : Total num-

ber of faulty classes, δu : Fault identification efficiency of unit testing, δs: Fault

identification efficiency of system testing.

2.5 Experimental study

In this section, the experimental study done to find the effectiveness of fault pre-

diction techniques for the cost based evaluation framework is presented. In this

study, five techniques such as linear regression, polynomial regression, logistic re-

gression, navie bayes, and support vector machine are used to find the classification

accuracy. These five techniques is employed on Ellipse JDT core from PROMISE

data repository.

2.5.1 Experiment execution

In this experiment, the values tabulated in Table 2.3 have been used in design of

cost evaluation model. δu and δs show the fault identification efficiency of unit

testing and system testing, respectively. The values of δu and δs have been collected
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from the survey report “Software Quality in 2010” of Caper Jones [31]. Mp shows

the fraction of modules unit tested, obtained from the paper of Wilde [32]. The

objective is to provide the bench marks to approximate the overall fault removal

cost. This is clear from the proposed cost evaluation model that if a technique

is having high false negatives and/or high false positive, then it results in higher

fault removal cost. When this approximated cost exceeds the unit testing cost

(Tcost), it is cost effective to test all the modules at unit level instead of using

fault prediction.

start

Fault prediction technique is
selected

Confusion Metric is
constructed

Value of cost parameter is
selected

NEcost is calculated

Necost > 1

Fault prediction is
useful

Fault prediction is
not useful

End

Figure 2.1: Decision chart representation to evaluate the estimated NEcost

2.5.2 Result and Analysis

In this section, the relationship between value of metrics and the fault found in

a class is determined. The comparative study involves using six CK metrics as

input nodes and the output is the achieved fault prediction rate. Figure 2.1 shows

the flow chart for the proposed cost based evaluation framework.

Table 2.4 to Table 2.8 show the classification matrix for jdt data set for the
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applied techniques such as linear regression technique, polynomial regression tech-

nique, logistic regression technique, navies bayes classification and SVM method.� From Table 2.4, it can be observed that in case of linear regression technique,

total number of 843 (747+96) classes were classified correctly with 84.55%

accuracy rate.� From Table 2.5, it can be observed that in case of polynomial regression

technique, total number of 838 (749+89) classes were classified correctly

with 84.05% accuracy rate.� From Table 2.6, it can be observed that in case of logistic regression tech-

nique, total number of 840 (770+70) classes were classified correctly with

84.25% accuracy rate.� From Table 2.7, it can be observed that in case of navies Bayes technique,

total number of 835 (767+68) classes were classified correctly with 83.75%

accuracy rate.� From Table 2.8, it can be observed that in case of SVM technique, total num-

ber of 848 (769+79) classes were classified correctly with 85.06% accuracy

rate.

Table 2.4: After applying Linear Regression

Non-Faulty Faulty
Non-Faulty 725 66
Faulty 99 107

Table 2.5: After applying Polynomial Regression

Non-Faulty Faulty
Non-Faulty 767 24
Faulty 148 58

22



2.5 Experimental study Effectiveness of fault prediction Techniques

Table 2.6: After applying Logistic Regression

Non-Faulty Faulty
Non-Faulty 771 20
Faulty 141 65

Table 2.7: After applying Naive Bayes

Non-Faulty Faulty
Non-Faulty 767 24
Faulty 146 60

Table 2.8: After applying SVM

Non-Faulty Faulty
Non-Faulty 791 0
Faulty 186 20

Table 2.9, lists the values of obtained performance parameters for Ellipse JDT

core data set for the applied techniques. From Table 2.9, it can inferred that:� Logistics regression technique obtained promising classification rate when

compared to other four techniques, and also� It can be concluded that NEcost was less than 1 for the jdt data set for all

the five techniques. Logistic regression incurred negligibly less NEcost in

comparison to other techniques.

Table 2.9: Result of experiment for Eclipse JDT Core

Technique Specification Recall Precision F-Measure Accuracy NEcost
Linear regression 0.9166 0.8799 0.6185 0.8978 83.45 0.8943
Polynomial regression 0.9697 0.8383 0.7073 0.8992 82.75 0.8879
Logistics regression 0.9747 0.8454 0.7647 0.9055 83.85 0.8823
Naives Bayes 0.9697 0.8401 0.7143 0.9002 82.95 0.8871
SVM 1 0.8096 1 0.8948 81.34 0.8886
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2.6 Summary

Prediction models are used to classify fault prone classes as faulty or not faulty,

but less significance has been given on the usefulness of fault prediction, which

is the need of the day for researchers as well as practitioners. So cost based

measures related to fault prediction needs to be modeled. In this chapter, five

different prediction techniques i.e., linear regression, polynomial regression, logistic

regression, Naive Bayes and SVM were applied for fault prediction. Also a note

on whether using these techniques for fault prediction is useful or not in terms of

cost measure was presented.

The implementation process is carried out for a case study of Ellipse JDT

core. The results are generated using MATLAB. Here normalized data set of

CK metrics suite was used as requisite input to the prediction models. In this

study, the results suggest that, fault prediction can be useful for the projects with

percentage of faulty module less than certain threshold .
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Chapter 3

Neural Network for Fault
Prediction

3.1 Introduction

Experimental validation of software metrics in fault prediction for Object-Oriented

methods using statistical and machine learning methods is necessary. By the

process of validation the quality of software product in a software organization

is ensured. Object-Oriented metrics play a crucial role in predicting faults. In

literature, prediction models are mostly developed using statistical models. Neural

networks (NN) have seen an explosion of interest over the years, and are being

successfully applied across a range of problem domains. Indeed, anywhere that

there are problems of classification and prediction, neural networks are being used,

Neural network can be used as a prediction model because it enables modeling of

complex functions. In this study, artificial neural network (ANN) with Gradient

Descent and Levenberg Marquardt (LM) learning methods have been used to

design a classifier to classify a class as faulty or not faulty. Chidamber and Kemerer

(CK) metrics suite has been considered to provide requisite input data to design

the model. A case study of Eclipse JDT core has been considered for predicting a

comparative study of performances of three approaches. Fault prediction is found

to be useful where normalized estimated fault removal cost (NEcost) was less than

certain threshold value.
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3.2 RESEARCH BACKGROUND

The following sub-sections highlight on the data set being used for fault predic-

tion. Data was normalized to obtain better accuracy and then dependent and

independent variables are chosen for fault prediction.

3.2.1 Empirical data collection

Metric suites are used and defined for different goals such as fault prediction, effort

estimation, re-usability and maintenance. In this study, the mostly commonly

used CK metric suite [27] is used for fault prediction. The metric values of the

suite were extracted using CKJM tool. In this study, NASA and PROMISE [28]

datasets are used to evaluate the impact of fault-prediction techniques over the

fault removal cost using proposed model (NEcost).

3.2.2 Dependent and independent variables

The goal of this study is to establish the relationship between Object-Oriented

metrics and fault proneness at the class level. In this study, a fault is used as

a dependent variable and each of the CK metric is an independent variable. It

is intended to develop a function between fault of a class and CK metrics suite

(WMC, NOC, DIT, RFC, CBO, LCOM). Fault is a function of WMC, NOC, DIT,

RFC, CBO and LCOM and can be represented as shown in the following equation:

Faults = f(WMC,NOC,DIT, CBO,RFC, LCOM) (3.1)

3.2.3 Case study

In this study, to analyze the effectiveness of the proposed approach, Ellipse JDT

core was used as a case study.

3.2.4 Fault Data

To perform statistical analysis, bugs were collected from Promise data repository

[28]. Table 2.1 shows the distribution of bugs based on the number of occurrence
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(in terms of percentage of class containing number of bugs) for Ellipse JDT core.

3.2.5 Descriptive statistics and correlation analysis

This subsection gives the comparative analysis of the fault data, descriptive statis-

tics of classes and the correlation among the six metrics with that of Basili et

al. [13]. Basili et al. studied Object-Oriented systems written in C++ language.

They used the same CK metric suite. Logistic regression technique was employed

to analyze the relationship between metrics and the fault proneness of classes

Table 3.1: Descriptive Statistics of Classes

Basili et al [13]. WMC DIT NOC CBO RFC LCOM
Max. 99.00 9.00 105.00 13.00 30.00 426.00
Min. 1.00 0.00 0.00 0.00 0.00 0.00
Meadian 9.50 0.00 19.50 0.00 5.00 0.00
Mean 13.40 1.32 33.91 0.23 6.80 9.70
Std Dev. 14.90 1.99 33.37 1.54 7.56 63.77
Eclipse JDT core WMC DIT NOC CBO RFC LCOM
Max. 1680 8 26 156 2603 81003
Min. 0.00 1 0.00 0.00 0.00 0.00
Meadian 20 2 0.00 7.00 30 28
Mean 58.38 2.72 0.7121 12.21 76.87 364.72
Std Dev. 135.72 1.72 2.15 17.81 180.97 3230.1

The obtained CK metric values of Ellipse JDT core are compared with the

results of Basili et al. [13]. In comparison with Basili et al. the total number

of classes considered is much greater i.e., 997 classes were considered (Vs. 180 as

used by Basili et al.). Table 3.1 shows the statistical analysis of Basili et al project

and Ellipse JDT core for CK Metric indicating Max, Min, Median and Standard

deviation.

From Table 3.1, minimum values are almost same. But the maximum values

are changes i.e., in Basili et al [13]. Maximum value of WMC is 99 but in our

study, Maximum value is 1680. From Table 3.1, it is clear that the DIT metric has

low value of mean and median for Eclipse JDT core. The low value of mean and

median for DIT shows that inheritance was not consider much in both software

system.
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Table 3.2: Correlations between the Metrics of Basili et al (lower) and Ellipse JDT
core (upper)

WMC DIT NOC CBO RFC LCOM
WMC 1.00 -0.123 0.084 0.602 0.8750 0.5123
DIT 0.02 1.00 -0.051 -0.111 -0.099 -0.055
NOC 0.24 0.00 1.00 0.2753 0.0765 0.0128
CBO 0.00 0.00 0.00 1.00 0.6133 0.39
RFC 0.13 0.00 0.00 0.31 1.00 0.6642
LCOM 0.38 0.00 0.00 0.01 0.09 1.00

The dependency between metrics is computed using Pearson’s correlations (r:

Coefficient of correlation) for Ellipse JDT core. The coefficient of correlation, r,

is useful because it measures the strength and direction of the linear relationship

between two variables. It is defined as the covariance of the variables divided

by the product of their standard deviations. It also measures that allows us to

determine how certain one can be in making predictions from a certain model.

Table 3.2 shows the Pearson’s correlation analysis for the dataset. The upper

triangular matrix represents the correlations between the metrics in the Ellipse

JDT core data set, and the lower triangular matrix represents the correlations

between the metrics in the Basili et al use data sets. Correlation obtained between

WMC and RFC is 0.8750 which is highly correlated i.e., these two metrics are very

much linearly dependent on each other, and correlation between NOC and RFC is

0.0765 which indicates that they are loosely correlated i.e., there is low dependency

between these two metrics.

3.3 Proposed work for fault prediction

The following sub-sections highlight on the various neural network methods used

for fault classification.

3.3.1 Data normalization

Input feature values were normalized over the range [0,1], so as to adjust the

defined range of input feature value and avoid the saturation of neurons. In

literature, techniques such as Min-Mx normalization, Z-Score normalization and
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Decimal scaling are available for normalizing the data. In this study Min-Max

normalization [33] technique has been used to normalize the data.

Min-Max normalization performs a linear transformation on the original data.

It maps each of the actual data xi of attribute X to normalized value x′

i which lies

in the range of [0,1]. The Min-Max normalization is calculated by using equation:

Normalized(xi) = x′

i =
xi −min(X)

max(X)−min(X)
(3.2)

where max(X) and min(X) represent the maximum and minimum value of the

attribute X respectively.

3.3.2 Artificial neural network (ANN) model

ANN is used for solving problems such as classification and estimation [34]. In

this study, ANN is used for design the model for predicting software fault using

software metrics.

Input layer Hidden layer

Output layer

Figure 3.1: Artificial neural network

Figure 3.1 shows the architecture of ANN, which contains three layers i.e.,

input layer, hidden layer and output layer. Here, for input layer, linear activation

function is used i.e., the output of the input layer is treated as input of the input

layer. It is represented as:

Oi = Ii (3.3)
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For hidden and output layer, sigmoidal function or squashed-S function is used.

The output of hidden layer ‘O′

h for input of hidden layer ‘I ′h is represented as:

Oh =
1

1 + e−Ih
(3.4)

and output of the output layer ‘O′

o for the input of the output layer ‘O′

i is repre-

sented as:

Oo =
1

1 + e−Oi
(3.5)

Neural network can be represented as:

Y ′ = f(W,X) (3.6)

where Y
′

is the output vector, X is the input vector, and W is the weight vector.

The weight vector W is updated in every iteration so as to reduce Mean Square

Error (MSE). MSE is based on:

MSE =
1

n

n
∑

i=1

(y′i − yi)
2 (3.7)

where y is the actual output and y
′

is the expected output.

Different methods are available in literature to update weight vector ‘W’ such

as: Gradient descent, Newton’s method, Quasi-Newton method, Gauss Newton

conjugate-gradient method and Levenberg Marquardt method etc. In this study,

Gradient descent and Levenberg Marquardt are used for updating the weights

vector W.

Gradient descent method

Gradient descent is one of the method for updating the weights during learning

phase [35]. Gradient descent method uses first-order derivative of total error to

find the minima in error space. Normally Gradient vector G is defined as the 1st

order derivative of error function Ek and error function is represented as:

Ek =
1

2
(y′k − yk)

2 (3.8)

Gradient vector G is given as:

G =
d

dW
(Ek) =

d

dW
(
1

2
(y′k − yk)

2) (3.9)

31



3.3 Proposed work for fault prediction Neural Network for Fault Prediction

After computing the value of gradient vector G in each iteration, weighted

vector W is updated as:

Wk+1 = Wk − αGk (3.10)

where Wk+1 is the updated weights, Wk is the current weights, Gk is gradient

vector and α is the learning constant.

Levenberg Marquardt (LM) method

Levenberg Marquardt method locates the minimum of multivariate function in an

iterative manner. It is expressed as the sum of squares of non-linear real-valued

functions [36]. This method is used for updating the weights during learning phase.

It is fast and stable in terms of its executions as it is a combination of steepest

descent and Gauss Newton method. In Levenberg Marquardt the weights vector

W is updated as:

Wk+1 = Wk − (JT
k Jk + µI)−1Jkek (3.11)

where Wk+1 is the updated weights, Wk is the current weights, I is the identity

or unit matrix, J is the Jacobian matrix and µ is always positive, called combina-

tion coefficient i.e., when µ is very small it act as a Gauss Newton method and if

µ is very large then it as a Gradient descent method.

Jacobian matrix is represented as:

J=

























d
dW1

(E1,1)
d

dW2
(E1,1) · · · d

dWN
(E1,1)

d
dW1

(E1,2)
d

dW2
(E1,2) · · · d

dWN
(E1,2)

...
...

...
...

d
dW1

(EP,M) d
dW2

(EP,M) · · · d
dWN

(EP,M)

























where N is number of weights, P is the number of input patterns, and M is

the number of output patterns.
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3.4 RESULTS

In this section, the relationship between value of metrics and the fault found in

a class is determined i.e., in all AI techniques six CK metrics are considered as

input nodes and the output is the fault in the software.

The following steps are followed to design a classifier to predict faulty and

non-faulty module in the software:

Step 1. Data Collection:

Data is extracted from Promise data repository.

Step 2. Normalized the dataset

Normalize the dataset over the range [0,1] using Min-Max normalization

[Equation 3.2].

Step 3. Division of dataset into categories

Input data is divided into three categories i.e. training, validation and test

set.

Step 4. Model design

The model is designed considering input dataset and output dataset.

Step 5. Training of network and updating Weights

Training data set is fed into the model to train the network and weights are

updated using learning algorithm.

Step 6. Error calculation

Check the performance of the model. If satisfactory then stop, else again go

to Step 5, update the weights and then proceed.

Step 7. Validation

Trained model will be validated by giving the validation set data.
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Step 8. Testing

Finally the model is tested by feeding test set data.

3.4.1 Artificial Neural Network

ANN is an interconnected group of nodes. In this study, three layers of ANN

are considered, in which six nodes act as input nodes, nine nodes represent the

hidden nodes and one node acts as output node. ANN is a three phase network;

the phases are used for learning, validation and testing purposes. So in this article

70% of total input pattern is considered for learning phase, 15% for validation

and the rest 15% for testing. In this study six CK metrics are taken as input,

and output is the fault prediction accuracy rate. The network is trained using

Gradient descent method and Levenberg Marquardt method.

Gradient descent method

Gradient descent method is used for updating the weights using Equation 3.9 and

3.10. Table 3.3 to Table 3.4 show the classification matrix for jdt data set before

and after applying ANN.

Table 3.3: Before applying ANN

Not-Faulty Faulty
Not-Faulty 791 0
Faulty 206 0

Table 3.4: After applying ANN

Not-Faulty Faulty
Not-Faulty 790 1
Faulty 261 45

From Table 3.3 it is clear that before applying the logistic regression analysis,

a total number of 791 classes contained zero bugs and 206 classes contained at

least one bug. But after applying ANN with gradient descent method learning

method, total number of 790+45 classes are classified correctly with accuracy of

83.75%.
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Figure 3.2 shows the graph plot for variation of mean square error values

against no. of epoch (iteration).
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Figure 3.2: Mean square error Vs No. of iteration

Levenberg marquardt method

Levenberg marquardt method is the technique for updating weights. In case of

Gradient descent method, learning rate α is constant but in Levenberg marquardt

method learning rate α varies in every iteration and it consume less iteration

to train the network. Table 3.3 to Table 3.5 show the classification matrix for

eclipse jdt core data set before and after applying ANN with Levenberg marquardt

learning method.

Table 3.5: After applying ANN

Not-Faulty Faulty
Not-Faulty 741 50
Faulty 142 64

From Table 3.3 it is clear that before applying the logistic regression analysis,

a total number of 791 classes contained zero bugs and 206 classes contained at

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

Iteration No.

Me
an 

Squ
are

 err
or

Figure 3.3: Mean square error Vs No. of iteration
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least one bug. But after applying ANN with gradient descent method learning

method, total number of 741+64 classes are classified correctly with accuracy of

80.74%. Figure 3.3 shows the graph plot for variation of mean square error values

against no. of epoch or iteration. LM consumed only 3 iterations when compared

with Gradient descent method which took 1000 iterations.

3.4.2 Fault removal cost evaluation

In this cost evaluation model, the data set of Eclipse JDT core from PROMISE

repository was considered to evaluate the impact of fault prediction technique

over the fault removal cost using the proposed model for computing NEcost. To

illustrate effectiveness of our model, ANN classification techniques is considered.

The goal is to demonstrate the cost evaluation model and suggest whether fault

prediction using particular prediction technique is useful or not rather than iden-

tifying the “best” fault-prediction technique. Figure 2.1 shows the block diagram

for cost evaluation model.

Table 3.6 shows the various parameters related to cost evaluation model along

with NEcost. NEcost is the evaluation criteria used in evaluating a prediction

techniques usefulness in fault prediction. From Table 3.6, it is evident that RBFN

approach took less fault removal cost (0.8952) when compared with other ap-

proaches. From the result obtained using cost evaluation model it can be sug-

gested that the selection of a fault-prediction technique does not only depend on

the accuracy rate but it should also take into account the economics (fault removal

cost) of software. However, while developing business critical applications, where

ignoring faults can be crucial, then using fault prediction is not applicable; if it

has high false negatives. Otherwise, it may result in a poor quality outcome.

Cost based evaluation model proposed in this study, answers two main ques-

tions which are as follows:

i. Which fault prediction model is suitable among the applied techniques.

ii. For a given software product, whether performing fault prediction analysis

is economically effective or not.
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Table 3.6: Fault removal cost for Eclipse JDT core

Specification Recall Precision F-Measure Accuracy NEcost
ANN (GD) 0.9987 0.8307 0.9783 0.9070 83.75 0.8785
ANN (LM) 0.9368 0.8392 0.5614 0.8853 80.74 0.9024

3.5 Summary

System analyst use prediction models to classify fault prone class as faulty or not

faulty, which is the need of the day for researchers as well as practitioners. So more

reliable approaches for prediction needs to be modeled. In this study, ANN was

applied for fault prediction. The application of machine learning methods in fault

prediction requires enormous amount of data and analyzing this huge amount of

data is necessary with the help of a better prediction model.

Fault classification using these approaches was carried out for the Eclipse JDT

core case study, by coding in MATLAB environment. ANN with gradient de-

scent learning method obtained better fault classification when compared with

the Levenberg Marquardt (LM) learning method. So from the proposed work of

cost evaluation model, it can be noted that it is better to perform fault prediction

when NEcost is less than one.
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Chapter 4

Hybrid ANN for Fault Prediction

4.1 Introduction

Estimation of different parameters for Object-Oriented systems such as effort,

quality and risk is of major concern in software development life cycle. Major-

ity of the approaches available in literature for estimation and classification are

based on statistical analysis and neural network techniques. Also it is perceive

that numerous software metrics are consider as input for estimation. In this work,

Chidamber and Kemerer metrics suite has been considered as a input data to

design the classifier for classifying faulty and non-faulty module. Three artificial

intelligence (AI) techniques such as: hybrid approach of neural network and ge-

netics algorithm (Neuro-GA and adaptive Neuro-GA), hybrid approach of neural

network and Particle Swarm Optimization (Neuro-PSO and Modified Neuro-PSO)

and hybrid approach of neural network and Clonal Selection Algorithm (Neuro-

CSA ) are used for fault classification. A case study of Eclipse JDT core has

been considered for predicting a comparative study of performances of three ap-

proaches. Fault prediction is found to be useful where normalized estimated fault

removal cost (NEcost) was less than certain threshold value. It is observed from

the obtained results that, Adaptive Neuro-GA model obtained promising results

in terms of cost analysis when compared with other techniques.
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4.2 Research background

The following sub-sections highlight on the data set being used for fault predic-

tion. Data are normalized to obtain better accuracy and then dependent and

independent variables are chosen for fault prediction.

4.2.1 Empirical data collection

Metric suites are used and defined for different goals such as fault prediction, effort

estimation, re-usability and maintenance. In this study, the most commonly used

metric i.e., CK metric suite [27] is used for fault prediction. The metric values

of the suite are extracted using CKJM tool. This tool is being used to extract

metric values for Eclipse JDT core available in the Promise data repository [28].

The CK metric values of the Eclipse JDT core are used for fault prediction.

4.2.2 Dependent and independent variables

The goal of this study is to establish the relationship between Object-Oriented

metrics and fault proneness at the class level. In this study, a fault is used as

a dependent variable and each of the CK metric is an independent variable. It

is intended to develop a function between fault of a class and CK metrics suite

(WMC, NOC, DIT, RFC, CBO, LCOM). Fault is a function of WMC, NOC, DIT,

RFC, CBO and LCOM and can be represented as shown in the following equation:

Faults = f(WMC,NOC,DIT, CBO,RFC, LCOM) (4.1)

4.3 Proposed work for fault prediction

The following sub-sections highlight on the various machine learning methods used

for fault classification.

4.3.1 Neural Network (NN) Model

NN are simplified models of the biological nervous system. NN is inspired by

the examination of central nervous systems. Warren et al. in 1943 created a
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computational model for neural networks based on mathematics and algorithms

[34]. This computational features involved in NN architecture can be very well

applied for fault prediction.

Neuro-GA Approach

Neuro-GA is a hybrid approach of ANN and GA [37]. In this approach, genetic

algorithm is used for updating the weight during learning phase. A neural network

with a configuration of ‘l-m-n’ is considered for estimation i.e., the network consists

of ‘l’ number of input neurons, ‘m’ number of hidden neurons, and ‘n’ number

of output neurons. The number of weights N required for this network can be

computed using the following equation:

N = (l + n) ∗m (4.2)

with each weight (gene) being a real number and assuming the number of digits

(gene length) in weights to be d. The length of the chromosome L is computed

using the following equation:

L = N ∗ d = (l + n) ∗m ∗ d (4.3)

For determining the fitness value of each chromosome, weights are extracted from

each chromosome using the following equation:

Wk =



































































if 0 <= xkd+1 < 5

−
xkd+2∗10

d−2+xkd+3∗10
d−3+....+x(k+1)d

10d−2

if 5 <= xkd+1 <= 9

+
xkd+2∗10

d−2+xkd+3∗10
d−3+....+x(k+1)d

10d−2

(4.4)

The fitness values of each chromosome is determined based on the derived fitness

function. The algorithm for deriving fitness function is as follows:

Let (̄Ii, T̄i) ; i=1,2,3....,N where
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Īi = (I1i, I2i, I3i, ...., Ili) and T̄i = (T1i, T2i, T3i, ...., Tni)

represent the respective input and output pairs of the neural network with a

configuration of l-m-n. For each chromosome Ci, i = 1, 2, 3, ...., p, belonging to the

current population Pi whose size is P . The following algorithm indicates the steps

to find the fitness value of the individual chromosomes in the population.

Algorithm for fitness function: FITGEN()

Input: Īi = (I1i, I2i, I3i, ...., Ili)

Output: T̄i = (T1i, T2i, T3i, ...., Tni)

where Īi, T̄i represent the input and output pairs of the l-m-n configuration of

neural network.

Step 1: Weights W̄i from Ci are calculated using equation 4.4.

Step 2: Considering W̄i as a constant weight, the network is trained for N

input instances and the estimate value Oi is found.

Step 3: Error Ej for each input instance j is computed using following equation:

Ej = (Tji − Oji)
2 (4.5)

Step 4: Root mean square error (RMSE) for the chromosome Ci is computed

using the following equation:

Ei =

√

∑j=N

j=1 Ej

N
(4.6)

where N is the total number of training data set.

Step 5: Fitness value for chromosome Ci using the following equation is found

out as:

Fi =
1

Ei

=
1

√∑j=N
j=1 Ej

N

(4.7)

Figure 4.1 shows the block diagram for Neuro-GA approach, which represent

the steps followed to design the model.
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Figure 4.1: Flow chart representing Neuro-GA execution

Adaptive Neuro-GA Approach

To overcome the limitation of genetics algorithm such as premature convergence

due to local optima and low convergence speed, an attempt has been made towards

the improvement of parameter such as cross over probability (Pc) and mutation

probability (Pm). In this study (Pc) and (Pm) values are adaptively decreased

to prevent disruption of very good solution. (Pc) and (Pm) values are updated

using Equation 4.8 and Equation 4.9. After implementation, it was observed that

Adaptive Neuro-GA Approach gave better result in comparison of Neuro-GA.

(Pc)k+1 = (Pc)k −
C1 ∗ n

5
(4.8)

(Pm)k+1 = (Pm)k −
C2 ∗ n

5
(4.9)

where (Pc)k+1 and (Pm)k+1 are the updated probability of cross over and mu-

tation, (Pc)k and (Pm)k are the current probability of cross over and mutation,

C1 and C2 are positive constant and n is the number of chromosome having same

fitness value.
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Neuro-PSO Approach

Neuro Particle Swarm Optimization is a hybrid approach of neural network and

Particle Swarm Optimization. In this approach, PSO is used for updating the

weight during learning phase. PSO is a population based search algorithm. It is

developed to simulate the behavior of birds in search for food on a cornfield [38]

. In this study PSO is used as back propagation algorithm to train the network.

PSO encodes the parameters of neural networks as particles and the population of

particles are referred as swarm. Here, the synaptic weights of the neural network

are initialized as particles and the PSO is applied to obtained the optimized set

of synaptic weights. In NPSO, initially particle swarm is generated with random

velocity (V) and position (X) and their fitness value is calculated using Equation

4.10.

Fi =
1

Ei

=
1

√∑j=N
j=1 Ej

N

(4.10)

Velocity (V) and position (x) of particles are updated using Equation 4.11 and

Equation 4.12.

V i
k+1 = V i

k + C1 ∗R1 ∗ (Pbestik −X i
k) + C2 ∗R2 ∗ (Gbestnk −X i

k) (4.11)

X i
k+1 = X i

k + V i
k+1 (4.12)

where� V i
k+1 and X i

k+1 are the updated velocity and position.� V i
k and X i

k are the current velocity and position.� Pbest and Gbest are the local and global best position.� C1 and C2 are positive constant, usually in between one to four.� R1 and R2 are two random function whose values lies in between zero to

one.
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Figure 4.2 shows the block diagram for NPSO approach, which represent the

steps followed to design the model.
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Figure 4.2: Flow chart representing Neuro-PSO execution

Modified Neuro-PSO Approach

In Modified Particle Swarm Optimization (MPSO) Approach training is same as

the Particle Swarm Optimization (MPSO) Approach, but a mutation phase is

incorporated just before the completion of one generation. In this study (Pm)

value is adaptively decreased to prevent disruption of very good solution. (Pm)

value is updated using Equation 4.13.

(Pm)k+1 = (Pm)k −
C ∗ n

10
(4.13)

where (Pm)k+1 is the updated probability of mutation, (Pm)k is the current

probability of mutation, and n is the generation number.

45



4.3 Proposed work for fault prediction Hybrid ANN for Fault Prediction

Neuro Clonal Selection Algorithm (NCSA) Approach

Neuro Clonal Selection Algorithm (NCSA) is a hybrid approach of neural network

and Clonal Selection Algorithm (CSA). In this approach, CSA is used for updating

the weight during learning phase. Some possible candidate solutions are generated,

antibodies will be used in the purpose function to calculate their affinity and

affinity will determine the which antibody will be cloned for the next step. Cloned

and mutated antibodies with a predefined ratio. After cloning and mutating, the

affinity value of modified antibodies are recalculated. After certain evaluations of

affinity, affinity with the smallest value is the solution closest to our problem.

The affinity values of each antibody is determined based on the derived affinity

function. The algorithm for deriving affinity function is as follows:

Let (̄Ii, T̄i) ; i=1,2,3....,N where

Īi = (I1i, I2i, I3i, ...., Ili) and T̄i = (T1i, T2i, T3i, ...., Tni)

represent the respective input and output pairs of the neural network with

a configuration l-m-n. For each antibodies Ci, i = 1, 2, 3, ...., p belonging to the

current population Pi whose size is P . The following algorithm indicates the steps

to find the affinity value of the individual antibody in the population.

Algorithm for affinity function: AFFINITY()

Input: Īi = (I1i, I2i, I3i, ...., Ili)

Output: T̄i = (T1i, T2i, T3i, ...., Tni)

where Īi, Īi represent the input and output pairs of the l-m-n configuration of

neural network.

Step 1: Calculate weight corresponding to individual antibody.

Step 2: Considering W̄i as a constant weight, the network is trained for N

input instances and the estimate value Oi is found.

Step 3: Error Ej for each input instance j is computed using following equation:

Ej = (Tji − Oji)
2 (4.14)

Step 4: Root mean square error (RMSE) for the antibody Ci is computed
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using the following equation:

Ei =

√

∑j=N

j=1 Ej

N
(4.15)

where N is the total number of training data set.

Step 5: Calculate affinity value for antibody Ci using the following equation:

Fi =
1

Ei

=
1

√∑j=N
j=1 Ej

N

(4.16)

Figure 4.3 shows the block diagram for Neuro-CSA approach. This block dia-

gram represents the steps followed to design the model using Neuro-CSA approach.
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Figure 4.3: Flow chart representing Neuro-CSA execution

4.4 Result and Analysis

In this section, the relationship between value of metrics and the fault found in

a class is determined. In this approach, the comparative study involves using six

CK metrics as input nodes and the output is the achieved fault prediction rate.

Fault prediction is performed for Eclipse JDT core.
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4.4.1 Neuro-GA Approach

Experimental setup

In this study, three layers of neural network are considered, in which six nodes

act as input nodes, nine nodes represent the hidden nodes and one node acts as

output node. Following are the numerical values used in execution of Neuro-GA

approach for fault prediction.

i. Initialization of chromosome: Let the population of size N=50 is considered,

initially generated by random process.

ii. Extraction of weight: Each chromosome contains the weight of input to

hidden node and hidden node to output. Weight is extracted using Equation

4.4.

iii. Computing fitness value: The fitness of individual chromosomes is found

using the proposed algorithm FITGEN. This algorithm is executed with an

aim of minimizing the mean square error.

iv. Ranking of chromosomes: The chromosomes in the pool are ranked based

on their fitness value. Minimum fitness value chromosome is stripped of by

Maximum fitness value chromosome.

v. Crossover:

– Neuro-GA: Two point cross-over approach is considered for offspring

re-selection.

– Adaptive Neuro-GA: Pc and Pm values were adaptively varied when

intermediate criteria were met. while performing the simulation, the

following assumption were made:

Pc=Pc-0.1*n/10;

Pm=Pm-0.01*n/10

Initially Pc and Pm was taken as 0.6 and 0.1 respectively. n is no of

chromosome having same fitness value.
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vi. Stopping criteria: The execution of the proposed algorithm terminates when

95% of the chromosomes in the pool obtain unique fitness value, beyond this

level the fitness value of chromosome get almost saturated.

In this study, Step function is used as a output function i.e, class is classified

as faulty when output is greater then zero else classified as not faulty. initially 50

chromosomes are randomly generated. The input-hidden layer and hidden-output

layer weights of the network are computed using equation 4.4. Two-point cross-

over operation is performed in Neuro-GA and Pc and Pm values were adaptively

varied in Adaptive Neuro-GA on the generated population. The execution of the

algorithm converges when 95% of the chromosomes achieve same fitness values or

reach maximum iteration limit ( of 200 epochs). Figure 4.4 shows the variance

of number of chromosomes having same fitness value and generation number for

Neuro-GA and Adaptive Neuro-GA. From Figure 4.4, it is clear that Neuro-GA

consume more no iteration to train the model.
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Figure 4.4: Generation No. vs number of chromose having same fitness value

Table 4.1 represent the confusion matrix for number of classes with faults before

applying Neuro-GA and Adaptive Neuro-GA analysis respectively for Ellipse JDT

core. Table 4.2 and Table 4.3 shows the the confusion matrix for number of classes

with faults after applying Neuro-GA and Adaptive Neuro-GA analysis respectively

for Ellipse JDT core.

Table 4.1: Before applying regression

Non-Faulty Faulty
Non-Faulty 791 0
Faulty 206 0
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Table 4.2: After applying Neuro-GA

Non-Faulty Faulty
Non-Faulty 762 29
Faulty 62 144

Table 4.3: After applying Adaptive Neuro-GA

Non-Faulty Faulty
Non-Faulty 782 9
Faulty 43 163

From Table 4.2, in case of Neuro-GA total number of 762+144 classes are

classified correctly with accuracy of 90.87%. From Table 4.3, in case of Adaptive

Neuro-GA total number of 782+163 classes are classified correctly with accuracy

of 94.78%.

4.4.2 Neuro-PSO Approach

Experimental setup

In this study, three layers of neural network are considered, in which six nodes

act as input nodes, nine nodes represent the hidden nodes and one node acts as

output node. Following are the numerical values used in execution of Neuro-PSO

approach for fault prediction.

i. Initialization of Swarms: Let the population of size N=50 particles is con-

sidered with random velocity and position, initially generated by random

process .

ii. Computing fitness value: The fitness of individual particle is found using the

Equation 4.10.

iii. Comparing with Pbest: The particles in the swarm are compared with local

best fitness value (Pbest), if it is better then local fitness value then Pbest

is stripped of fitness value of particle.

iv. Comparing with Gbest: The particles in the swarm are compared with global
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best fitness value (Gbest), if it is better then global fitness value then Gbest

is stripped of fitness value of particle.

v. Mutation:

– Neuro-PSO: No any mutation step is performed.

– Modified Neuro-PSO: Pm values were adaptively varied when interme-

diate criteria were met. while performing the simulation, the following

assumption were made:

Pm=Pm-0.01*n/10

Initially Pm was taken as 0.2 and n represent the generation number.

vi. Updating velocity and position: velocity (V) and position (P) of particles

are updated using Equation 4.11 and Equation 4.12.

vii. Stopping criteria: The execution of the proposed algorithm continue up to

100 generation .

vi. Stopping criteria: The execution of the proposed algorithm terminates when

95% of the antibodies in the pool obtain unique affinity value.

In this study, Step function is used as a output function i.e, class is classified

as faulty when output is greater then zero else classified as not faulty. initially 50

.
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Figure 4.5: Generation No. vs fitness value

Table 4.4 and Table 4.4 shows the the confusion matrix for number of classes

with faults after applying Neuro-PSO and Modified Neuro-PSO analysis respec-

tively for Ellipse JDT core.
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Table 4.4: After applying Neuro-PSO

Non-Faulty Faulty
Non-Faulty 781 10
Faulty 56 150

Table 4.5: After applying Modified Neuro-PSO

Non-Faulty Faulty
Non-Faulty 778 13
Faulty 49 157

From Table 4.4, in case of Neuro-PSO total number of 781+150 classes are

classified correctly with accuracy of 93.38%. From Table 4.3, in case of Modified

Neuro-PSO total number of 778+157 classes are classified correctly with accuracy

of 93.78%.

4.4.3 Neuro-CSA Approach

Experimental setup

In this study, three layers of neural network are considered, in which six nodes

act as input nodes, nine nodes represent the hidden nodes and one node acts as

output node. Following are the numerical values used in execution of Neuro-CSA

approach for fault prediction.

i. Initialization of Antibodies: Let the population of size N=50 antibodies are

considered.

ii. Computing affinity value: The affinity of individual antibody is found using

the Equation 4.16.

iii. Ranking of antibodies: The antibody in the pool are ranked based on their

affinity value.

iv. Clone : Better matching antibodies are cloned with some predefined ratio.

v. Mutated: Mutation of antibodies are performed.
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In this study, Step function is used as a output function i.e, class is classified

as faulty when output is greater then zero else classified as not faulty. initially

50 antibodies are randomly generated. The execution of the algorithm converges

when 95% of the antibodies achieve same affinity values or reach maximum itera-

tion limit ( of 200 epochs). Figure 4.6 shows the variance of number of antibodies

having same fitness value and generation number for Neuro-CSA.
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Figure 4.6: Generation No. vs fitness value

Table 4.6 show the the confusion matrix for number of classes with faults after

applying Neuro-CSA for Ellipse JDT core.

Table 4.6: After applying Neuro-CSA

Non-Faulty Faulty
Non-Faulty 781 10
Faulty 38 168

From Table 4.4, in case of Neuro-CSA total number of 781+168 classes are

classified correctly with accuracy of 95.19%.

4.4.4 Fault removal cost evaluation

In this cost evaluation model, the data set of Eclipse JDT core from PROMISE

repository was considered to evaluate the impact of fault prediction technique

over the fault removal cost using the proposed model for computing NEcost. To

illustrate effectiveness of our model, Statistical (logistic) and machine learning

(Neuro-PSO, Modified Neuro-PSO and Neuro-CSA) classification techniques are

considered. The goal is to demonstrate the cost evaluation model and suggest

whether fault prediction using particular prediction technique is useful or not
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Table 4.7: Fault removal cost for Eclipse JDT core

Specification Recall Precision F-Measure Accuracy NEcost
Neuro-GA 0.9633 0.9248 0.8324 0.9437 90.87 0.8540
Adaptive Neuro-GA 0.9886 0.9479 0.9477 0.9678 94.78 0.8326
Neuro-PSO 90.9874 0.9331 0.9375 0.9595 93.38 0.8389
Modified Neuro-PSO 0.9836 0.9407 0.9235 0.9617 93.78 0.8379
Neuro-CSA 0.9799 0.9536 0.9130 0.9666 94.62 0.8334

rather than identifying the “best” fault-prediction technique. Figure 2.1 shows

the block diagram for cost evaluation model.

Table 4.7 shows the various parameters related to cost evaluation model along

with NEcost. NEcost is the evaluation criteria used in evaluating a prediction

techniques usefulness in fault prediction. From Table 4.7, it is evident that Adap-

tive Neuro-GA approach took less fault removal cost (0.8326) when compared with

other hybrid approaches i.e., Neuro-GA (0.8540), Neuro-PSO (0.8389), Modified

Neuro-PSO (0.8379) and Neuro-CSA (0.8334). From the result obtained using

cost evaluation model it can be suggested that the selection of a fault-prediction

technique does not only depend on the accuracy rate but it should also take into

account the economics (fault removal cost) of software. However, while developing

business critical applications, where ignoring faults can be crucial, then using fault

prediction is not applicable; if it has high false negatives. Otherwise, it may result

in a poor quality outcome.

Cost based evaluation model proposed in this study, answers two main ques-

tions which are as follows:

i. Which fault prediction model is suitable among the applied techniques.

ii. For a given software product, whether performing fault prediction analysis

is economically effective or not.
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4.5 Summary

In this chapter, an attempt has been made to use software metrics in order to

build Object-Oriented software reliability prediction models. In this study, three

hybrid approaches of soft computing viz., Neuro-GA, Neuro-PSO and Neuro-CSA

were applied for fault prediction. Fault classification using these approaches were

carried out for the Eclipse JDT core case study, by coding in MATLAB environ-

ment. The hybrid approach obtained better fault classification when compared

with statistical and machine learning approaches. In terms of cost evaluation, it

can be concluded that hybrid approach has low value of NEcost, when compared

with that of statistical and machine learning approaches. So from the proposed

work of cost evaluation model, it can be noted that it is better to perform fault

prediction when NEcost is less than one.
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Chapter 5

Conclusion and Future Work

Software quality assurance process focuses on the identification and removal of

faults quickly from the artifacts that are generated and subsequently used in the

development of software. Software fault prediction is one of the different strategies,

which are conducted rapturously during the very early stage of software develop-

ment life cycle (SDLC). Fault prediction information not only points to the need

for increased quality during the development but also provides an information to

understand suitable verification and validation activities in order to improve the

effectiveness.

The effectiveness of a fault-prediction technique is demonstrated by educating

it over a part of some known fault data and measuring its performance against the

other part of the fault data. Recently, several software project data repositories

became publicly available such as NASA Metrics Data Program and PROMISE

Data Repository. Availability of these public data sets has encouraged under-

taking more rigorous investigations on their replications. Large number of fault-

prediction techniques have been applied to demonstrate their effectiveness on these

data set.

In this study, a cost evaluation framework has been proposed, which performs

cost based analysis for misclassification of faults. Accordingly, this study focuses

on investigating two important and related research questions regarding the via-

bility of fault prediction.� 1. For a given project, are the fault prediction results useful?
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Conclusion and Future Work� 2. In case of an affirmative answer, then look for how to choose a fault

prediction technique for an overall improved performance in terms of cost

effectiveness.

The proposed framework is used to investigate the usefulness of various fault-

prediction techniques. The investigation consisted of performance evaluation of

different prediction techniques i.e., statistical method, machine learning method

and hybrid approach of machine learning and soft computing methods i.e., Neuro-

GA, Neuro-PSO and Neuro-CSA on public datasets.

From the obtained results, it is observed that fault prediction approach is useful

for the projects with percentage of faulty modules less than a certain threshold. It

was observed that there was no single technique that could provide the best results

in all cases. However, for different critical applications, where ignoring faults can

be crucial, using fault prediction may not be effective if it has high false negatives.

Otherwise, it may result in a poor quality outcome.

Further, work can be carried out on another quality parameter such as : soft-

ware maintainability. Software Maintainability is typically measured as change

effort. Change effort can mean either the average effort to make a change to a

class, or the total effort spent on changing a class.
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