

Software Reliability Prediction Using

Neural Network

Thesis submitted in partial fulfillment of

the requirements for the degree of

Bachelor of Technology in Computer Science and Engineering

by

Rosalin Maharana

Roll No-110CS0303

under the guidance of

Dr. Durga Prasad Mohapatra

Department of Computer Science and Engineering

National Institute of Technology Rourkela

Rourkela-769008, Odisha, India

May 2014

Certificate

This is to certify that the work in the thesis entitled “Software Reliability Prediction

Using Neural Network” by Rosalin Maharana is a record of an original research

work carried out under my supervision and guidance in partial fulfillment of the

requirements for the award of the degree of Bachelor of Technology in Computer

Science. The thesis fulfills all requirements as per the regulations of this Institute and

has reached the standard needed for submission. Neither this thesis nor any part of it

has been submitted for any degree or academic award elsewhere.

Dr. Durga Prasad Mohapatra

Department of Computer Science and Engineering

National Institute of Technology Rourkela

Department of Computer Science and Engineering

National Institute of Technology Rourkela

Rourkela-769008, Odisha, India

Acknowledgement

On the submission of the Thesis report, we would like to extend our gratitude

and sincere thanks to our supervisor Dr. D. P. Mohapatra, for his constant motivation

and support during the course of this work in the last one year. We truly appreciate

and value his esteemed guidance and encouragement from the beginning to the end of

this thesis. He has been our source of inspiration throughout the thesis work and

without his invaluable advice and assistance it would not have been possible for us to

complete this thesis.

We would also like to give our most sincere thanks to Dr. S. K. Rath, Head of

the Department of Computer Science and Engineering for his support during our

work. A special acknowledgement goes to Mr Manmath Kumar Bhuyan, a PhD

scholar for his guidance throughout the thesis. We would also like to express our

thanks to all who extended their unlimited help to us during our project work and its

subsequent documentation.

Last but not least we would like to thank all professors and members of the

department of Computer Science and Engineering, NIT Rourkela for their generous

help in various ways in completion of this thesis. Furthermore, we would like to take

the name of our parents and God who directly or indirectly encouraged and motivated

us during this dissertation.

Rosalin Maharana

Declaration

I hereby declare that all the work contained in this report is my own work

unless otherwise acknowledged. Also, all of my work has not been previously

submitted for any academic degree. All sources of quoted information have

been acknowledged by means of appropriate references.

Rosalin Maharana

NIT Rourkela

Abstract

Software engineering is incomplete without Software reliability prediction. For

characterising any software product quality quantitatively during phase of testing, the

most important factor is software reliability assessment. Many analytical models were

being proposed over the years for assessing the reliability of a software system and for

modeling the growth trends of software reliability with different capabilities of

prediction at different testing phases. But it is needed for developing such a single

model which can be applicable for a relatively better prediction in all conditions and

situations. For this the Neural Network (NN) model approach is introduced. In this

thesis report the applicability of the models based on NN for better reliability

prediction in a real environment is described and a method of assessment of growth of

software reliability using NN model is presented. Mainly two types of NNs are used

here. One is feed forward neural network and another is recurrent neural network. For

modeling both networks, back propagation learning algorithm is implemented and the

related network architecture issues, data representation methods and some unreal

assumptions associated with software reliability models are discussed. Different

datasets containing software failures are applied to the proposed models. These

datasets are obtained from several software projects. Then it is observed that the

results obtained indicate a significant improvement in performance by using neural

network models over conventional statistical models based on non homogeneous

Poisson process.

i

Contents

Chapter 1 ... 1

Introduction .. 1

1.1 Motivation of Our Work .. 2

1.2 Objective of Our Work ... 3

1.3 Organisation of The Thesis ... 4

1.4 Literature Review ... 4

Chapter 2 ... 7

Background .. 7

2.1 Software Reliability... 7

2.2 Artificial Neural Network .. 8

2.3 Neural Network Modeling .. 8

2.4 Transfer Function ... 9

Chapter 3 ... 11

Work Details .. 11

3.1 Back Propagation Learning Algorithm .. 11

3.2 Approach for Feed Forward Neural Network .. 12

3.3 Approach for Recurrent Neural Network .. 14

Chapter 4 ... 16

Implementation & Results .. 16

4.1 Implementation setup ... 16

4.2 Different Performance Measures... 18

4.3 Prediction Types .. 18

4.4 Results and Discussion .. 20

4.5 Graphs and Screenshots ... 22

Chapter 5 ... 33

Conclusion and Future Work .. 33

5.1 Conclusion ... 33

5.2 Future Work .. 34

References .. 35

Appendix A .. 38

Datasets .. 38

ii

List of Figures

Figure 2.1: A simple model of artificial neuron--9

Figure 3.1: Flowchart for back propagation algorithm-------------------------------12

Figure 3.2: A sample feed forward network---13

Figure 3.3: A sample recurrent neural network--15

Figure 4.1: Performance of FFNN for Dataset1---22

Figure 4.2: Snapshot of performance of FFNN for Dataset1-------------------------23

Figure 4.3: Performance of FFNN for Dataset2-- 24

Figure 4.4: Snapshot of performance of FFNN for Dataset2-------------------------25

Figure 4.5: Performance of FFNN for Dataset3---26

Figure 4.6: Snapshot of performance of FFNN for Dataset3-------------------------27

Figure 4.7: Performance of FFNN for Dataset4---28

Figure 4.8: Snapshot of performance of FFNN for Dataset4-------------------------29

Figure 4.9: Performance of RNN for Dataset1--30

Figure 4.10: Performance of RNN for Dataset2---31

Figure 4.11: Performance of RNN for Dataset6---32

List of Tables

Table 4.1: Table of different software failure datasets used--------------------------17

Table 4.2: Feed forward neural network model results -------------------------------20

Table 4.3: Recurrent neural network model results------------------------------------20

Table 4.4: Comparison with analytical models--21

Table 4.5: Comparison between LTP and STP for feed forward

 neural network---21

1

Chapter 1

Introduction

Software is playing an ever-increasing role in our real time systems. Therefore

there has been a gradual growth of concern over quality of software products and

reliability has become a main concern from both software user’s point of view and

software developers’ point of view. Also the rapid growth of software products in size

and complexity has drawn the attention of researchers to be more focused on quality

assessment by the estimation of the time of software testing period quantitatively to

avoid any unwanted and unforeseen situation during operational phase. In this thesis

report the applicability of neural network models for better reliability prediction in

real environment are explored empirically and an assessment method of growth of

software reliability using artificial neural network (ANN) mode is presented.

Artificial neural networks are generally known as “Neural Networks” and act

in a way similar to the human brain. Non linearity and complexity of the brain is very

high and behaves like a parallel computer. It has the ability for organizing its

structural constituents known as neurons; hence it performs certain computation very

quickly than the fastest computer present on earth. The brain structure is very intense

and it builds up its own rules through experiences. Experiences are built up over time

with the development of the human brain through many stages. A developing neuron

is as similar as a plastic brain. To adapt with the surrounding environment the

developing nervous system has the property of plasticity. Plasticity appears to be

essential to the functioning of neurons as information processing units in the human

brain. Similarly this same thing happens with neural networks made up of artificial

neurons. A neural network is a machine that is designed to model the way in which

the brain performs a particular task. To achieve good performance, neural networks

should have a massive interconnection of simple computing cells referred to as

2

“neurons” or “processing units”. Neural networks perform essential computations

through a process of learning.

Thus a neural network consists of simple processing units and big parallel

distributed processors. The ability of storing experiential data and making it available

for use comes naturally to it. Artificial neural network do not approach the complexity

of the brain. It is similar to brain in two ways: 1.A learning process is used to acquire

knowledge from its surrounding by the network. 2. The acquired knowledge is stored

by the interneuron connection strengths known as synaptic weights. The procedure

used to perform the process of learning is called learning algorithm. Function of

learning algorithm is to modify the synaptic weights of the networks in an orderly

manner in order to attain a desired design objective.

1.1 Motivation of Our Work

The software market is very competitive in this dynamic world. Software

industries attempt to release software to grab the market as soon as it is ready. Now it

is a challenge for software developers to rapidly design, implement, test, and maintain

complex hardware or software systems as per the demands of the users. Also it is a

challenge for software companies to deliver good quality and error free software in

right time. The impact of the failures produces severe consequences such as

environmental impact, inconvenience, economical losses, loss of human life etc.

Needless to say, the reliability of computer systems has become a major concern for

our society. Software reliability is an important facet of software quality

characteristic. Many researchers have used neural networks to predict software

reliability. Different neural networks with different learning methods also have been

modelled. It is also observed that connectionist models perform better than the

previous parametric models. Prediction of software reliability using computational

intelligence (CI) can be very accurate and significant compared to traditional

statistical methods. CI can offer promising approaches to software reliability

prediction and modeling.

3

With this motivation, we implemented different neural network models with

different learning algorithms and compared their performance results for software

reliability prediction with the statistical methods and observed that neural networks

perform better than the analytical models. The details of the work are described in the

next chapter.

1.2 Objective of Our Work

The main objective of this research work is to implement different

connectionist models with different learning regimes. Different datasets containing

software failures are applied to the proposed models. These datasets are obtained from

several software projects. Then different issues related to method of data

representation, some unrealistic assumptions incorporated with software reliability

models, and network architecture are discussed.

We have tried to implement the feed forward neural network architecture first

with back propagation learning method for reliability prediction. As no work is done

regarding the implementation of recurrent neural network with back propagation

algorithm till now, so mainly our objective is to implement recurrent neural network

architecture with back propagation learning algorithm. Followings are the key points

of our implementation.

 Feed Forward Neural Network with one hidden layer and multiple hidden layer

along with back propagation learning method

 Recurrent Neural Network with back propagation learning method

 Long term predictability and Short term predictability of feed forward neural

networks

 Evaluation of effectiveness of the above proposed models by using different

performance parameters

4

1.3 Organisation of The Thesis

The rest of this thesis report is organised into chapters as follows.

 Chapter 2 describes about the related work done and gives an overall

literature review.

 Chapter 3 provides the background concepts used in the remaining part of

the thesis. Some theoretical concepts regarding software reliability

measures, artificial neural network and back propagation learning algorithm

are described. Some basic concepts of feed forward and recurrent neural

network are presented.

 Chapter 4 provides a brief review and implementation details of the project

work.

 Chapter 5 describes the experimental results of the implemented network

models and their performance results.

 Chapter 6 concludes the thesis report with a summary and possible future

extension of this work.

1.4 Literature Review

Artificial Neural Network (ANN) is a powerful technique for Software

Reliability Prediction.

Werbos [9] proposed back-propagation learning as an alternative to regression

technique to identify sources of forecast in uncertainty in a recent gas market model.

Thus it can be concluded that neural network models are very useful for regression

techniques of forecasting in uncertainty of any data.

Shadmehr et al. [10] estimated model parameters of pharmacokinetics system

using feed forward multilayered network and predicted the noise resides in the

measured data sample. The authors compared the results with that of the optimal

5

Bayesian estimator and found the performance was better than the maximum

likelihood estimator [11].

The ANN tools and feed forward network using back propagation algorithm

are applied for reliability and software quality prediction [12–14]. The authors

developed a connectionist model and took failure data set as input to produce

reliability as output. These papers describe network architecture, method of data

representation and some unrealistic assumptions associated with software reliability

models.

Karunanithi et al. [15] predicted software reliability using feed forward

network and recurrent network. The authors compared the result with 14 different

literature representative data sets and suggested that neural network produced better

predictive accuracy compared to analytical models at end-point predictions.

Sitte [16] analyzed two methods for software reliability prediction: 1) neural

networks and 2) parametric recalibration models. These approaches differentiate the

neural networks and parametric recalibration models in the context of software

reliability prediction and conclude that neural networks are much simpler and better

predictors.

Tian et al. [7] predicted software reliability using recurrent neural network.

Bayesian regularization is applied to train the network. The authors commented that

their proposed approach produced less average relative prediction error than well

known prediction techniques.

RajKiran et al. [17] implemented the use of wavelet neural networks (WNN) to

predict software reliability. In this paper, the authors employed two kinds of wavelets

i.e. Morlet wavelet and Gaussian wavelet as transfer functions. They made a

comparison on test data with multiple linear regression (MLR), multivariate adaptive

regression splines (MARS), back-propagation trained neural network (BPNN) and

threshold accepting trained neural network (TANN), pi-sigma network (PSN), general

regression neural network (GRNN) and found that its performance is better than

others.

6

Lo [18] designed a model for software reliability prediction using artificial

neural networks. This approach examines several conventional software reliability

growth models without assuming some unrealistic things.

Fuzzy Wavelet Neural Network (FWNN) is used for phase space

reconstruction technology and for software reliability prediction [19]. In this work, the

network architecture is designed easily by taking the failure data as input.

7

Chapter 2

Background

2.1 Software Reliability

The probability that a software will perform a required function under

stated conditions for a specified period of time is known as software reliability.

Software reliability assessment is a very vital factor to characterise the quality

of any software product quantitatively during testing phase.

Software Reliability Measures

 Failure Rate: It is the rate of occurrence of failures. It also represents

number of failures in specified period of time.

 Mean Time Between Failures (MTBF): It is the average time between

failures. No of hours taken to pass before a failure occurs is the MTBF.

It is the inverse of failure rate.

 Reliability: The probability that an item will perform a required

function without failure under the stated conditions for a specified

period of time is called reliability. It takes into account the mission time.

 Availability: The probability that an item is in operable state at any time

is called availability. It accounts for repairs and down time.

Software Reliability Growth Models

It includes two types of models

 Parametric models

 Nonparametric models

Parametric models are based on non homogeneous Poisson process. Neural

network is non parametric model and based on statistical failure data.

Nonparametric models are more flexible.

8

Different Reliability Metrics

 Failure rate

 Next time to failure

 Time between failures

 Cumulative failures detected

2.2 Artificial Neural Network

 It is can be defined as a system where data can be processed through a number of

nodes similar to neurons in brain.

 Each node is assigned with a function and it determines the node output with the

help of some parameters available locally to it for a set of given input.

 By adjusting weight of these parameters the node function can be altered as

intended.

2.3 Neural Network Modeling

 Like a brain, a neural network also performs in similar fashion. It has some

learning mechanism designed within it for modelling the reliability.

 A number of neurons constitute NN which are simple processing elements.

These neurons are connected to each other directly through communications

links associated with some weight.

 Supervised learning method is used to train the NN with a series of sample input

and to compare the responses overall for the pre specified period of time with the

expected sample output.

 The training procedure is carried out until expected and convincing responses are

provided by the network. The neurons are arranged layer by layer and the

connection patterns within and in-between layers make the network architecture.

 The network can be either single-layered or multi-layered; layers of

interconnected links between the neuron slabs determine it.

9

2.4 Transfer Function

Figure 2.1: A simple model of artificial neuron

Let I=input to the neural network

Where

Then Y=F (I)

where Y is the output of the neural network and F is the transfer function.

Hyperbolic Tangent Transfer Function

Y=F (I)=
 - -

 -

Y varies between -1 and +1.

|

|

|

|

X2

X1

X3

W1

W2

Wn

W3

Summation of

weighted inputs

Thresholding unit
Xn

Inputs

Output

Apply Transfer

function

10

Log Sigmoid Transfer Function

Y=F (I)=

Y varies between 0 and +1.

Both log sigmoid and hyperbolic tangent functions are continuous. In this thesis report

we have used log sigmoid as transfer function.

11

Chapter 3

Work Details

We have implemented feed forward neural network and recurrent neural

network with back propagation learning algorithm.

3.1 Back Propagation Learning Algorithm

Algorithm:

1. Initialize the weights

2. Repeat

3. For each training pattern

4. Train on that pattern

5. Find error for each pattern and mean square error for total no of

 patterns

6. Update the connecting weights by calculating errors layer by

 layer backward

7. End

8. Until the error is acceptably low.

12

Figure 3.4: Flowchart for back propagation algorithm

3.2 Approach for Feed Forward Neural Network

• Here Back Propagation Learning rule is applied to a feed forward network.

• The basic feed forward neural network architecture comprises in two steps.

– 1) feed forward NN

– 2) back propagation

• Here the input vector is propagated through a weight layer. It is combined with

the previous state activation as it depicted in next Figure 3.2.

• The conventional feed-forward neural network consists of two-layered

network. The network comprises of two steps mapping.

y(t) = G(F(x(t)) ………......................................(1)

• The back-propagation learning techniques are used in the above equation 1 to

update the weights of the network (F and G) for training the feed forward back

propagation network. The operation is restricted in this paper to (“hidden/state”

layer and “output” layer).

13

• The input vector ’x’ is propagated with a layer associated with weight V as

depicted in equation 3.

yj(t) = f(netj)(t) -----------------------------(2)

 n

netj(t) = Σ (vji)(xi(t))+ θi-------------------(3)

 i

where n is the number of inputs nodes, θi is a bias and f is an activation

function.

• The output of the network is calculated by state and weight W associated with

that output layer.

 yk(t) = g(netk(t))--------------------------- (4)

 m

 g(netk(t)) =Σ yj(t)wkj + θk---------------------------------- (5)

 j

where m is the number of states or ‘hidden’ nodes, θk is a bias and g is an

activation function.

Here sigmoid function is taken as activation function.

Figure 3.5: A sample feed forward network

14

3.3 Approach for Recurrent Neural Network

• Here Back Propagation Learning rule is applied to a recurrent network.

• The basic recurrent neural network architecture comprise in two steps.

– 1) feed forward NN

– 2) back propagation with recurrent.

• Here the input vector is propagated through a weight layer. It is combined with

the previous state activation through an additional recurrent weight layer, R as

it depicted in next Figure 3.3.

• The conventional feed-forward neural network consists of two-layered

network. The network comprises of two steps mapping

y(t) = G(F(x(t)) ………..(1)

• The back-propagation learning techniques are used in the above equation 1 to

update the weights of the network (F and G) for training the Recurrent Back

Propagation Network. The operation is restricted in this paper to

(“hidden/state” layer and “output” layer).

• The input vector ’x’ is propagated with a layer associated with weight V and

combined with previous state activation associated with recurrent weight U as

depicted in equation 3.

yj(t) = f(netj)(t) -------(2)

 n m

netj(t) = Σ (vji)(xi(t))+Σ (ujh)(yh(t − 1))+ θi-------------------(3)

 i h

where n is the number of inputs nodes, θi is a bias, m is the number of states or

‘hidden’ nodes, and f is an activation function.

• The output of the network is calculated by state and weight W associated with

that output layer.

 yk(t) = g(netk(t))--- (4)

 m

 g(netk(t)) =Σ yj(t)wkj + θk---------------------------------- (5)

 j

where g is an activation function.

15

Here sigmoid function is taken as activation function.

Figure 3.6: A sample recurrent neural network

16

Chapter 4

Implementation & Results

4.1 Implementation setup

 The FFNN and RNN with back propagation learning algorithm is implemented

using MATLAB 7.10.0.499.

 In our prediction experiment, failure data during system testing phase of

various projects collected at Bell Tele-phone Laboratories, Cyber Security

and Information Systems In-formation Analysis Centre(CSIAC) by John

D. Musa are considered.

 CSIAC provides software failure datasets in order to support the project

manager to monitor testing, estimating the project schedule, and helping the

researchers to evaluate the reliability model.

 The data set consists of

o Failure Number

o Failure Interval Lengths/Time Between Failures (TBF) in CPU secs

o Day of Failure of software project

 We have taken 5 numbers of application software testing data set for

demonstration of predictive performance and prediction accuracy as shown in

Figure 5.1.

 70% of each dataset is used for training the model and the rest failure data is

used for validating the model.

17

Table 4.1: Table of different software failure datasets used

Project

Code

Project Name Number

of Failures

Development

Phases

DBS[1] Real Time Command &

Control System

136 System Test

Operations

DBS[2] Real Time Command &

Control System

54 System Test

Operations

DBS[3] Real Time Command &

Control System

38 System Test

Operations

DBS[4] Real Time Command &

Control System

53 System Test

Operations

DBS[6] Commercial System 73 Subsystem

Test

• For FFNN proposed model,

– Cumulative Execution time is taken as input

– No of Cumulative Failures is taken as output

– Both cumulative execution time and no of cumulative failures are

normalized in the range 0 to 1.

– Graph is plotted with cumulative execution time in X-axis and no of

cumulative failures in y-axis.

• For RNN proposed model

– Cumulative execution time for nth failure is taken as input

– Cumulative execution time for n+1th failure is taken as output

18

– Graph is plotted with no of failure taken in X-axis and cumulative

execution time in y-axis.

– Cumulative execution time is normalized in the range 0 to 1.

4.2 Different Performance Measures

• The following performance measures are being used to validate the proposed

models:

– Relative Error(%): REi = (| (Pi-Ai) / Ai |) * 100

 n

– Average Relative Error(%): 1/n ∑ REi

 n 2

– Root Mean Squared Error: RMSE = √ [(∑ (Pi-Ai)) / n]

 n

– Mean Absolute Error: [∑ | Pi-Ai |] / n

 n

– Mean Error: [∑ (Pi-Ai)] / n

where

Pi=Predicted Value

Ai=Actual Value

n=total no of observations/patterns

4.3 Prediction Types

• Neural Networks can predict software reliability in two ways:

– Long Term Prediction

– Short Term Prediction

19

Short term prediction (STP)

Suppose we have a software failure dataset having the following format.

Cumulative

execution time No of failures

 t1 x1

 t2 x2

 t3 x3

 | |

 tk xk

 t(k+1) x(k+1)

 | |

 tn xn

 t(n+1) x(n+1)

We can interpret no of failures as a function of cumulative execution time .

Suppose y is the function, then y can be written as y(t)=x

• Then a neural network can be modeled by with 3 layers taking k input neurons

in input layer, 1 output neuron in output layer and a hidden layer.

• Taking y(t1),y(t2),y(t3)…y(tk) as inputs to the neural network and Predicting

y’(t(k+1)) as output(where y(t(k+1)) is taken as target value) is known as short

term prediction or 1-step ahead prediction .

Long term prediction(LTP)

Considering the neural network model as explained in previous section,

 y(t1),y(t2),y(t3)…y(tk) are taken as inputs to the neural network and y’(t(k+1))

is predicted as output(where y(t(k+1)) is taken as target value).

 Then y(t2),y(t3),y(t4)…y’(t(k+1)) are taken as inputs to the neural network and

y’(t(k+2)) is predicted as output(where y(t(k+2)) is taken as target value).

 Continuing like this up to nth pattern is known as long term prediction or n-step

ahead prediction.

20

4.4 Results and Discussion

Different dataset are taken and results are shown in the following tables and

figures.

Table 4.2: Feed forward neural network model results

Table 4.3: Recurrent neural network model results

21

Table 4.4: Comparison with analytical models

Table 4.5: Comparison between LTP and STP for feed forward neural network

22

4.5 Graphs and Screenshots

Figure 4.1: Performance of FFNN for Dataset1

In the above figure, plots for feed forward neural networks are shown. The first

graph is the plot between number of epochs vs. error rate in terms of RMSE during

training. It shows how the error rate gradually decreases with the no of epochs by the

use of back propagation learning. The second and third graph is the plot between

cumulative execution time vs. no of cumulative failures for Dataset1. Second graph is

plotted for the training period and third graph is plotted for the prediction period. In

both second and third graph blue colour line represents actual data, green colour line

represents predicted data and red colour line represents difference between predicted

data and actual data.

23

Figure 4.2: Snapshot of performance of FFNN for Dataset 1

In the above figure, the snapshot of different performance measure values using

FFNN for Dataset1 is shown.

24

Figure 4.3: Performance of FFNN for Dataset2

In the above figure, plots for feed forward neural networks are shown. The first

graph is the plot between number of epochs vs. error rate in terms of RMSE during

training. It shows how the error rate gradually decreases with the no of epochs by the

use of back propagation learning. The second and third graph is the plot between

cumulative execution time vs. no of cumulative failures for Dataset2. Second graph is

plotted for the training period and third graph is plotted for the prediction period. In

both second and third graph blue colour line represents actual data, green colour line

represents predicted data and red colour line represents difference between predicted

data and actual data.

25

Figure 4.4: Snapshot of performance of FFNN for Dataset2

In the above figure, the snapshot of different performance measure values using

FFNN for Dataset2 is shown.

26

Figure 4.5: Performance of FFNN for Dataset3

In the above figure, plots for feed forward neural networks are shown. The first

graph is the plot between number of epochs vs. error rate in terms of RMSE during

training. It shows how the error rate gradually decreases with the no of epochs by the

use of back propagation learning. The second and third graph is the plot between

cumulative execution time vs. no of cumulative failures for Dataset3. Second graph is

plotted for the training period and third graph is plotted for the prediction period. In

both second and third graph blue colour line represents actual data, green colour line

represents predicted data and red colour line represents difference between predicted

data and actual data.

27

Figure 4.6: Snapshot of performance of FFNN for Dataset3

In the above figure, the snapshot of different performance measure values using

FFNN for Dataset3 is shown.

28

Figure 4.7: Performance of FFNN for Dataset4

In the above figure, plots for feed forward neural networks are shown. The first

graph is the plot between number of epochs vs. error rate in terms of RMSE during

training. It shows how the error rate gradually decreases with the no of epochs by the

use of back propagation learning. The second and third graph is the plot between

cumulative execution time vs. no of cumulative failures for Dataset4. Second graph is

plotted for the training period and third graph is plotted for the prediction period. In

both second and third graph blue colour line represents actual data, green colour line

represents predicted data and red colour line represents difference between predicted

data and actual data.

29

Figure 4.8: Snapshot of performance of FFNN for Dataset4

In the above figure, the snapshot of different performance measure values using

FFNN for Dataset4 is shown.

30

Figure 4.9: Performance of RNN for Dataset1

In the above figure, plots for recurrent neural networks are shown. The upper

two graphs are the plot between no of cumulative failures vs. cumulative execution

time for Dataset1. Upper left graph is plotted for the training period and upper right

graph is plotted for the prediction period. In both upper graphs red colour line

represents actual data; blue colour line represents predicted data. In the lower two

graphs red colour line represents difference between predicted data and actual data.

31

Figure 4.10: Performance of RNN for Dataset2

In the above figure, plots for recurrent neural networks are shown. The upper

two graphs are the plot between no of cumulative failures vs. cumulative execution

time for Dataset2. Upper left graph is plotted for the training period and upper right

graph is plotted for the prediction period. In both upper graphs red colour line

represents actual data; blue colour line represents predicted data. In the lower two

graphs red colour line represents difference between predicted data and actual data.

32

Figure 4.11: Performance of RNN for Dataset6

In the above figure, plots for recurrent neural networks are shown. The upper

two graphs are the plot between no of cumulative failures vs. cumulative execution

time for Dataset3. Upper left graph is plotted for the training period and upper right

graph is plotted for the prediction period. In both upper graphs red colour line

represents actual data; blue colour line represents predicted data. In the lower two

graphs red colour line represents difference between predicted data and actual data.

33

Chapter 5

Conclusion and Future Work

5.1 Conclusion

We have successfully implemented the feed forward and recurrent neural

network with back propagation learning algorithm. The observations conclude that

neural network model performs better in terms of less error in prediction as compared

to existing analytical models and hence it is a better alternative to do software

reliability test using neural network. However it can be seen from the figures that the

NN method proposed in this paper using back propagation algorithm provides a good

fit than analytical models.As the connection weights are randomly initialized, thus the

neural network gives different results for the same datasets and thus the performance

of the network varies. The usefulness of a Neural Network method is dependent on the

nature of dataset up to a greater extent. In most cases STP gives better result than

LTP. Neural Network model gives better result for larger datasets than smaller

datasets. These models are easily compatible with different smooth trend data set and

projects. We have implemented the program in MATLAB. But the programs can be

implemented in other languages such as Java, Python etc.

34

5.2 Future Work

Software reliability can be predicted using hybrid intelligent system. In

addition to neural network model genetic programming can be applied further. Novel

recurrent architectures for Genetic Programming (GP) and Group Method of Data

Handling (GMDH) to predict software reliability can be proposed.

Further, research can be extended by developing GP and GMDH based

ensemble models to predict software reliability. In the ensemble models, GP and

GMDH are considered as constituent models.

35

References

[1] J. D. Musa, “Software Reliability Data,” Data & Analysis Centre for Software,

January 1980.

[2] R. Iyer and I. Lee, “Measurement-based analysis of software reliability,”

Handbook of Software Reliability Engineering, McGraw-Hill, pp. 303 – 358,

1996.

[3] J. D. Musa and K. Okumoto, “A Logarithmic Poisson Execution Time Model

for Software Reliability Measurement,” in ICSE, EEE Press Piscataway. NJ,

USA: Proceedings of the 7th International Conference on software

Engineering, pp. 230–238, 1984.

[4] T. R. Benala, S. Dehuri, and R. Mall, “Computational Intelligence in Software

Cost Estimation: An Emerging Paradigm,” ACM SIGSOFT Software

Engineering, vol. 37, no. 3, pp. 1–7, May 2012.

[5] IEEE, “Standard glossary of software engineering terminology,” Standards

Coordinating Committee of the IEEE Computer Society, 1991.

[6] Simon Haykin, “Neural Networks A Comprehensive Foundation”, Pearson

Prentice Hall, 2
nd

 Edition, 2001.

[7] L. Tian and A. Noore, “Software Reliability Prediction Using Recurrent Neural

Network with Bayesian Regularization,” International Journal of Neural

Systems, vol. 14, no. 3, pp. 165–174, June 2004.

[8] A. L. Goel, “Software reliability models: Assumptions, limitations, and

applicability,” IEEE Transaction on Software Engineering, vol. 11, no. 12, pp.

1411–1423, December 1985.

[9] P. Werbos, “Generalization of Back propagation with Application to Recurrent

Gas Market Model,” Neural Network, vol. 1, pp. 339–356, 1988.

[10] R. Shadmehr and D. Z. DSArgenio, “A Comparison of a Neural Network

Based Estimator and Two Statistical Estimators in a Sparse and Noisy Data

Environment,” in IJCNN, vol. 1, Washington D.C, pp. 289–292, June 1990.

36

[11] N. Karunanithi, Y. Malaiya, and D. Whitley, “Prediction of Software

Reliability Using Neural Networks,” in Proceedings IEEE International

Symposium on Software Reliability Engineering. Austin, TX: IEEE, pp. 124–

130, May 1991.

[12] T. M. Khoshgoftaar, A. S. Pandya and H. More, “A Neural Network Approach

For Predicting Software Development Faults.” Research Triangle Park, NC:

Proceedings of Third International Symposium on Software Reliability

Engineering, pp. 83–89, October 1992.

[13] Y. Singh and P. Kumar, “Prediction of Software Reliability Using Feed

Forward Neural Networks,” in Computational Intelligence and Software

Engineering (CiSE), I. Conference, Ed. IEEE, pp. 1–5, 2010.

[14] M. M. T. Thwin and T. S. Quah, Eds., Application of Neural Network for

Predicting Software Development Faults using Object-Oriented Design

Metrics, vol. 5. Proceedings of the 9th International Conference on Neural

Information Processing (ICONIP’02), November 2002.

[15] N. Karunanithi and D. Whitley, “Prediction of Software Reliability Using Feed

forward and Recurrent Neural Nets,” in Neural Networks, 1992. IJCNN, vol. 1.

Baltimore, MD: IEEE, pp. 800–805, June 1992.

[16] R. Sitte, “Comparison of software-reliability-growth predictions: neural

networks vs. parametric-recalibration,” Reliability, IEEE Transactions, vol. 48,

no. 3, pp. 285–291, September 1999.

[17] N. RajKiran and V. Ravi, “Software Reliability Prediction using Wavelet

Neural Networks,” in International Conference on Computational Intelligence

and Multimedia Applications, vol. 1. Sivakasi, Tamil Nadu: IEEE, pp. 195 –

199, December 2007.

[18] J. H. Lo, “The Implementation of Artificial Neural Networks Applying to

Software Reliability Modeling,” Control and Decision Conference, 2009.

CCDC '09, Chinese, pp. 4349 – 4354, June 2009.

[19] L. Zhao, J. pei Zhang, J. Yang, and Y. Chu, “Software reliability growth model

based on fuzzy wavelet neural network,” in 2nd International Conference on

Future Computer and Communication (ICFCC), vol. 1. Wuhan: IEEE, pp. 664–

668, May 2010.

37

[20] R. Mohanty, V. Ravi, and M. R. Patra, “Hybrid Intelligent Systems for

Predicting Software Reliability,” Applied Soft Computing, vol. 13, no. 1, pp.

189–200, August 2013.

38

Appendix A

Datasets

Cyber Security and Information Systems In-formation Analysis

Centre(CSIAC) Software project failure datasets:

Dataset1:

 Failure Number
 Failure Interval

Length(in cpu secs)
 Day of Failure

1 3 1

2 30 2

3 113 9

4 81 10

5 115 11

6 9 11

7 2 17

8 91 20

9 112 20

10 15 20

11 138 20

12 50 20

13 77 20

14 24 20

15 108 20

16 88 20

17 670 30

18 120 30

19 26 30

20 114 30

21 325 30

22 55 30

23 242 31

24 68 31

25 422 31

26 180 32

27 10 32

28 1146 33

39

29 600 34

30 15 42

31 36 42

32 4 46

33 0 46

34 8 46

35 227 46

36 65 46

37 176 46

38 58 46

39 457 47

40 300 47

41 97 47

42 263 47

43 452 53

44 255 53

45 197 54

46 193 54

47 6 54

48 79 54

49 816 56

50 1351 56

51 148 56

52 21 57

53 233 57

54 134 57

55 357 57

56 193 59

57 236 59

58 31 59

59 369 59

60 748 59

61 0 59

62 232 59

63 330 59

64 365 61

65 1222 62

66 543 63

67 10 63

40

68 16 63

69 529 64

70 379 64

71 44 64

72 129 64

73 810 64

74 290 64

75 300 64

76 529 65

77 281 65

78 160 65

79 828 66

80 1011 66

81 445 66

82 296 66

83 1755 67

84 1064 67

85 1783 68

86 860 68

87 983 68

88 707 69

89 33 69

90 868 69

91 724 69

92 2323 70

93 2930 71

94 1461 72

95 843 72

96 12 72

97 261 72

98 1800 73

99 865 73

100 1435 74

101 30 74

102 143 74

103 108 74

104 0 74

105 3110 75

106 1247 76

41

107 943 76

108 700 76

109 875 77

110 245 77

111 729 77

112 1897 78

113 447 79

114 386 79

115 446 79

116 122 79

117 990 79

118 948 80

119 1082 80

120 22 80

121 75 80

122 482 80

123 5509 81

124 100 81

125 10 81

126 1071 82

127 371 83

128 790 83

129 6150 83

130 3321 83

131 1045 84

132 648 84

133 5485 87

134 1160 87

135 1864 88

136 4116 92

Dataset2:

 Failure Number
 Failure Interval

Length(in cpu secs)
 Day of Failure

1 191 1

2 222 2

3 280 11

4 290 11

42

5 290 14

6 385 23

7 570 23

8 610 23

9 365 23

10 390 23

11 275 23

12 360 27

13 800 27

14 1210 28

15 407 29

16 50 29

17 660 29

18 1507 31

19 625 31

20 912 32

21 638 32

22 293 32

23 1212 33

24 612 33

25 675 33

26 1215 33

27 2715 37

28 3551 37

29 800 38

30 3910 38

31 6900 38

32 3300 38

33 1510 41

34 195 42

35 1956 42

36 135 43

37 661 43

38 50 43

39 729 43

40 900 46

41 180 46

42 4225 46

43 15600 53

43

44 0 53

45 0 53

46 300 53

47 9021 57

48 2519 64

49 6890 64

50 3348 67

51 2750 69

52 6675 71

53 6945 71

54 7899 72

Dataset3:

 Failure Number
 Failure Interval

Length(in cpu secs)
 Day of Failure

1 115 1

2 0 1

3 83 3

4 178 3

5 194 3

6 136 3

7 1077 3

8 15 3

9 15 3

10 92 3

11 50 3

12 71 3

13 606 6

14 1189 8

15 40 8

16 788 18

17 222 18

18 72 18

19 615 18

20 589 26

21 15 26

22 390 26

23 1863 27

44

24 1337 30

25 4508 36

26 834 38

27 3400 40

28 6 40

29 4561 42

30 3186 44

31 10571 47

32 563 47

33 2770 47

34 652 48

35 5593 50

36 11696 54

37 6724 54

38 2546 55

Dataset4:

 Failure Number
 Failure Interval

Length(in cpu secs)
 Day of Failure

1 5 1

2 73 1

3 141 1

4 491 5

5 5 5

6 5 5

7 28 5

8 138 5

9 478 9

10 325 9

11 147 10

12 198 10

13 22 10

14 56 10

15 424 20

16 92 20

17 520 20

18 1424 26

19 0 26

45

20 92 26

21 183 26

22 10 26

23 115 27

24 17 27

25 284 27

26 296 27

27 215 27

28 116 27

29 283 31

30 50 31

31 308 31

32 279 31

33 140 32

34 678 32

35 183 32

36 2462 41

37 104 41

38 2178 42

39 285 43

40 171 44

41 0 44

42 643 46

43 887 46

44 149 48

45 469 48

46 716 48

47 604 48

48 0 48

49 774 50

50 256 50

51 14637 58

52 18740 70

53 1526 71

46

Dataset6:

 Failure Number
Failure Interval

Length(in cpu secs)
 Day of Failure

1 3 1

2 14 1

3 59 1

4 32 2

5 8 2

6 52 2

7 2 2

8 25 2

9 2 2

10 3 5

11 4 6

12 1 6

13 30 6

14 21 7

15 196 12

16 265 12

17 6 12

18 3 12

19 8 12

20 1 12

21 12 12

22 36 13

23 38 13

24 1 13

25 74 14

26 43 14

27 236 14

28 121 15

29 18 16

30 9 16

31 23 16

32 1 16

33 672 24

34 189 24

35 83 26

36 52 26

47

37 8 26

38 1 26

39 41 27

40 7 27

41 43 28

42 1 28

43 4 28

44 5 28

45 1 28

46 16 28

47 70 29

48 60 30

49 2 30

50 2 30

51 3 30

52 169 31

53 29 32

54 88 33

55 55 35

56 27 35

57 24 35

58 27 35

59 140 37

60 33 37

61 5 37

62 36 37

63 74 38

64 40 39

65 2 39

66 86 40

67 221 42

68 6 42

69 891 52

70 23 53

71 4 53

72 437 58

73 66 58

	Figure 2.1: A simple model of artificial neuron--9
	Figure 3.2: A sample feed forward network---13
	Chapter 1
	Introduction
	1.1 Motivation of Our Work
	The software market is very competitive in this dynamic world. Software industries attempt to release software to grab the market as soon as it is ready. Now it is a challenge for software developers to rapidly design, implement, test, and maintain co...
	With this motivation, we implemented different neural network models with different learning algorithms and compared their performance results for software reliability prediction with the statistical methods and observed that neural networks perform b...
	1.2 Objective of Our Work
	The main objective of this research work is to implement different connectionist models with different learning regimes. Different datasets containing software failures are applied to the proposed models. These datasets are obtained from several softw...
	We have tried to implement the feed forward neural network architecture first with back propagation learning method for reliability prediction. As no work is done regarding the implementation of recurrent neural network with back propagation algorithm...
	 Feed Forward Neural Network with one hidden layer and multiple hidden layer along with back propagation learning method
	 Recurrent Neural Network with back propagation learning method
	 Long term predictability and Short term predictability of feed forward neural networks
	 Evaluation of effectiveness of the above proposed models by using different performance parameters
	1.3 Organisation of The Thesis
	The rest of this thesis report is organised into chapters as follows.
	 Chapter 2 describes about the related work done and gives an overall literature review.
	 Chapter 3 provides the background concepts used in the remaining part of the thesis. Some theoretical concepts regarding software reliability measures, artificial neural network and back propagation learning algorithm are described. Some basic conce...
	 Chapter 4 provides a brief review and implementation details of the project work.
	 Chapter 5 describes the experimental results of the implemented network models and their performance results.
	 Chapter 6 concludes the thesis report with a summary and possible future extension of this work.
	1.4 Literature Review

	Chapter 2
	Background
	2.1 Software Reliability
	2.2 Artificial Neural Network
	2.3 Neural Network Modeling
	2.4 Transfer Function
	Figure 2.1: A simple model of artificial neuron
	Let I=input to the neural network
	Where I=,i=1-n-,W-i.,X-i..
	Then Y=F (I)
	where Y is the output of the neural network and F is the transfer function.
	Hyperbolic Tangent Transfer Function
	Y=F (I)=,,e-I.-,e--I.-,e-I.+,e--I..
	Y varies between -1 and +1.
	Log Sigmoid Transfer Function
	Y=F (I)=,1-1+,𝑒-−I..
	Y varies between 0 and +1.
	Both log sigmoid and hyperbolic tangent functions are continuous. In this thesis report we have used log sigmoid as transfer function.

	Chapter 3
	Work Details
	3.1 Back Propagation Learning Algorithm
	3.2 Approach for Feed Forward Neural Network
	• Here Back Propagation Learning rule is applied to a feed forward network.
	• The basic feed forward neural network architecture comprises in two steps.
	– 1) feed forward NN
	– 2) back propagation
	• Here the input vector is propagated through a weight layer. It is combined with the previous state activation as it depicted in next Figure 3.2.
	• The conventional feed-forward neural network consists of two-layered network. The network comprises of two steps mapping.
	y(t) = G(F(x(t)) ………......................................(1)
	• The back-propagation learning techniques are used in the above equation 1 to update the weights of the network (F and G) for training the feed forward back propagation network. The operation is restricted in this paper to (“hidden/state” layer and “...
	• The input vector ’x’ is propagated with a layer associated with weight V as depicted in equation 3.
	yj(t) = f(netj)(t) -----------------------------(2)
	n
	netj(t) = Σ (vji)(xi(t))+ θi-------------------(3)
	i
	where n is the number of inputs nodes, θi is a bias and f is an activation function.
	• The output of the network is calculated by state and weight W associated with that output layer.
	yk(t) = g(netk(t))--------------------------- (4)
	m
	g(netk(t)) =Σ yj(t)wkj + θk---------------------------------- (5)
	j
	where m is the number of states or ‘hidden’ nodes, θk is a bias and g is an activation function.
	Here sigmoid function is taken as activation function.
	/
	Figure 3.5: A sample feed forward network
	3.3 Approach for Recurrent Neural Network
	• Here Back Propagation Learning rule is applied to a recurrent network.
	• The basic recurrent neural network architecture comprise in two steps.
	– 1) feed forward NN
	– 2) back propagation with recurrent.
	• Here the input vector is propagated through a weight layer. It is combined with the previous state activation through an additional recurrent weight layer, R as it depicted in next Figure 3.3.
	• The conventional feed-forward neural network consists of two-layered network. The network comprises of two steps mapping
	y(t) = G(F(x(t)) ………..(1)
	• The back-propagation learning techniques are used in the above equation 1 to update the weights of the network (F and G) for training the Recurrent Back Propagation Network. The operation is restricted in this paper to (“hidden/state” layer and “out...
	• The input vector ’x’ is propagated with a layer associated with weight V and combined with previous state activation associated with recurrent weight U as depicted in equation 3.
	yj(t) = f(netj)(t) -------(2)
	n m
	netj(t) = Σ (vji)(xi(t))+Σ (ujh)(yh(t − 1))+ θi-------------------(3)
	i h
	where n is the number of inputs nodes, θi is a bias, m is the number of states or ‘hidden’ nodes, and f is an activation function.
	• The output of the network is calculated by state and weight W associated with that output layer.
	yk(t) = g(netk(t))--- (4)
	m
	g(netk(t)) =Σ yj(t)wkj + θk---------------------------------- (5)
	j
	where g is an activation function.
	Here sigmoid function is taken as activation function.

	Chapter 4
	Implementation & Results
	4.1 Implementation setup
	 The FFNN and RNN with back propagation learning algorithm is implemented using MATLAB 7.10.0.499.
	 In our prediction experiment, failure data during system testing phase of various projects collected at Bell Tele-phone Laboratories, Cyber Security and Information Systems In-formation Analysis Centre(CSIAC) by John D. Musa are considered.
	 CSIAC provides software failure datasets in order to support the project manager to monitor testing, estimating the project schedule, and helping the researchers to evaluate the reliability model.
	 The data set consists of
	o Failure Number
	o Failure Interval Lengths/Time Between Failures (TBF) in CPU secs
	o Day of Failure of software project
	 We have taken 5 numbers of application software testing data set for demonstration of predictive performance and prediction accuracy as shown in Figure 5.1.
	 70% of each dataset is used for training the model and the rest failure data is used for validating the model.
	4.2 Different Performance Measures
	• The following performance measures are being used to validate the proposed models:
	– Relative Error(%): REi = (| (Pi-Ai) / Ai |) * 100
	n
	– Average Relative Error(%): 1/n ∑ REi
	n 2
	– Root Mean Squared Error: RMSE = √ [(∑ (Pi-Ai)) / n]
	n
	– Mean Absolute Error: [∑ | Pi-Ai |] / n
	n
	– Mean Error: [∑ (Pi-Ai)] / n
	where
	Pi=Predicted Value
	Ai=Actual Value
	n=total no of observations/patterns
	4.3 Prediction Types
	• Neural Networks can predict software reliability in two ways:
	– Long Term Prediction
	– Short Term Prediction
	Short term prediction (STP)
	Suppose we have a software failure dataset having the following format.
	Cumulative
	execution time No of failures
	t1 x1
	t2 x2
	t3 x3
	| |
	tk xk
	t(k+1) x(k+1)
	| |
	tn xn
	t(n+1) x(n+1)
	We can interpret no of failures as a function of cumulative execution time .
	Suppose y is the function, then y can be written as y(t)=x
	• Then a neural network can be modeled by with 3 layers taking k input neurons in input layer, 1 output neuron in output layer and a hidden layer.
	• Taking y(t1),y(t2),y(t3)…y(tk) as inputs to the neural network and Predicting y’(t(k+1)) as output(where y(t(k+1)) is taken as target value) is known as short term prediction or 1-step ahead prediction .
	Long term prediction(LTP)
	Considering the neural network model as explained in previous section,
	 y(t1),y(t2),y(t3)…y(tk) are taken as inputs to the neural network and y’(t(k+1)) is predicted as output(where y(t(k+1)) is taken as target value).
	 Then y(t2),y(t3),y(t4)…y’(t(k+1)) are taken as inputs to the neural network and y’(t(k+2)) is predicted as output(where y(t(k+2)) is taken as target value).
	 Continuing like this up to nth pattern is known as long term prediction or n-step ahead prediction.
	4.4 Results and Discussion
	4.5 Graphs and Screenshots

	/
	/
	/
	Chapter 5
	Conclusion and Future Work
	5.1 Conclusion
	We have successfully implemented the feed forward and recurrent neural network with back propagation learning algorithm. The observations conclude that neural network model performs better in terms of less error in prediction as compared to existing a...
	5.2 Future Work
	Software reliability can be predicted using hybrid intelligent system. In addition to neural network model genetic programming can be applied further. Novel recurrent architectures for Genetic Programming (GP) and Group Method of Data Handling (GMDH) ...
	Further, research can be extended by developing GP and GMDH based ensemble models to predict software reliability. In the ensemble models, GP and GMDH are considered as constituent models.

	References
	Appendix A
	Datasets

