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Abstract 

 

Software engineering is incomplete without Software reliability prediction. For 

characterising any software product quality quantitatively during phase of testing, the 

most important factor is software reliability assessment. Many analytical models were 

being proposed over the years for assessing the reliability of a software system and for 

modeling the growth trends of software reliability with different capabilities of 

prediction at different testing phases. But it is needed for developing such a single 

model which can be applicable for a relatively better prediction in all conditions and 

situations. For this the Neural Network (NN) model approach is introduced. In this 

thesis report the applicability of the models based on NN for better reliability 

prediction in a real environment is described and a method of assessment of growth of 

software reliability using NN model is presented. Mainly two types of NNs are used 

here. One is feed forward neural network and another is recurrent neural network. For 

modeling both networks, back propagation learning algorithm is implemented and the 

related network architecture issues, data representation methods and some unreal 

assumptions associated with software reliability models are discussed. Different 

datasets containing software failures are applied to the proposed models. These 

datasets are obtained from several software projects. Then it is observed that the 

results obtained indicate a significant improvement in performance by using neural 

network models over conventional statistical models based on non homogeneous 

Poisson process. 
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Chapter 1 

 

Introduction 

Software is playing an ever-increasing role in our real time systems. Therefore 

there has been a gradual growth of concern over quality of software products and 

reliability has become a main concern from both software user’s point of view and 

software developers’ point of view. Also the rapid growth of software products in size 

and complexity has drawn the attention of researchers to be more focused on quality 

assessment by the estimation of the time of software testing period quantitatively to 

avoid any unwanted and unforeseen situation during operational phase. In this thesis 

report the applicability of neural network models for better reliability prediction in 

real environment are explored empirically and an assessment method of growth of 

software reliability using artificial neural network (ANN) mode is presented. 

Artificial neural networks are generally known as “Neural Networks” and act 

in a way similar to the human brain. Non linearity and complexity of the brain is very 

high and behaves like a parallel computer. It has the ability for organizing its 

structural constituents known as neurons; hence it performs certain computation very 

quickly than the fastest computer present on earth. The brain structure is very intense 

and it builds up its own rules through experiences. Experiences are built up over time 

with the development of the human brain through many stages. A developing neuron 

is as similar as a plastic brain. To adapt with the surrounding environment the 

developing nervous system has the property of plasticity. Plasticity appears to be 

essential to the functioning of neurons as information processing units in the human 

brain. Similarly this same thing happens with neural networks made up of artificial 

neurons. A neural network is a machine that is designed to model the way in which 

the brain performs a particular task. To achieve good performance, neural networks 

should have a massive interconnection of simple computing cells referred to as 
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“neurons” or “processing units”. Neural networks perform essential computations 

through a process of learning. 

Thus a neural network consists of simple processing units and big parallel 

distributed processors. The ability of storing experiential data and making it available 

for use comes naturally to it. Artificial neural network do not approach the complexity 

of the brain. It is similar to brain in two ways: 1.A learning process is used to acquire 

knowledge from its surrounding by the network. 2. The acquired knowledge is stored 

by the interneuron connection strengths known as synaptic weights. The procedure 

used to perform the process of learning is called learning algorithm. Function of 

learning algorithm is to modify the synaptic weights of the networks in an orderly 

manner in order to attain a desired design objective. 

 

1.1 Motivation of Our Work 

The software market is very competitive in this dynamic world. Software 

industries attempt to release software to grab the market as soon as it is ready. Now it 

is a challenge for software developers to rapidly design, implement, test, and maintain 

complex hardware or software systems as per the demands of the users. Also it is a 

challenge for software companies to deliver good quality and error free software in 

right time. The impact of the failures produces severe consequences such as 

environmental impact, inconvenience, economical losses, loss of human life etc. 

Needless to say, the reliability of computer systems has become a major concern for 

our society. Software reliability is an important facet of software quality 

characteristic. Many researchers have used neural networks to predict software 

reliability. Different neural networks with different learning methods also have been 

modelled. It is also observed that connectionist models perform better than the 

previous parametric models. Prediction of software reliability using computational 

intelligence (CI) can be very accurate and significant compared to traditional 

statistical methods. CI can offer promising approaches to software reliability 

prediction and modeling. 
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With this motivation, we implemented different neural network models with 

different learning algorithms and compared their performance results for software 

reliability prediction with the statistical methods and observed that neural networks 

perform better than the analytical models. The details of the work are described in the 

next chapter. 

 

1.2 Objective of Our Work 

The main objective of this research work is to implement different 

connectionist models with different learning regimes. Different datasets containing 

software failures are applied to the proposed models. These datasets are obtained from 

several software projects. Then different issues related to method of data 

representation, some unrealistic assumptions incorporated with software reliability 

models, and network architecture are discussed.  

We have tried to implement the feed forward neural network architecture first 

with back propagation learning method for reliability prediction. As no work is done 

regarding the implementation of recurrent neural network with back propagation 

algorithm till now, so mainly our objective is to implement recurrent neural network 

architecture with back propagation learning algorithm. Followings are the key points 

of our implementation. 

 Feed Forward Neural Network with one hidden layer and multiple hidden layer 

along with back propagation learning method  

 Recurrent Neural Network with back propagation learning method 

 Long term predictability and Short term predictability of  feed forward neural 

networks 

 Evaluation of effectiveness of the above proposed models by using different 

performance parameters 
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1.3 Organisation of  The Thesis 

The rest of this thesis report is organised into chapters as follows. 

 Chapter 2 describes about the related work done and gives an overall 

literature review.  

 Chapter 3 provides the background concepts used in the remaining part of 

the thesis. Some theoretical concepts regarding software reliability 

measures, artificial neural network and back propagation learning algorithm 

are described. Some basic concepts of feed forward and recurrent neural 

network are presented. 

 Chapter 4 provides a brief review and implementation details of the project 

work. 

 Chapter 5 describes the experimental results of the implemented network 

models and their performance results. 

 Chapter 6 concludes the thesis report with a summary and possible future 

extension of this work. 

 

1.4 Literature Review 

Artificial Neural Network (ANN) is a powerful technique for Software 

Reliability Prediction.  

Werbos [9] proposed back-propagation learning as an alternative to regression 

technique to identify sources of forecast in uncertainty in a recent gas market model. 

Thus it can be concluded that neural network models are very useful for regression 

techniques of forecasting in uncertainty of any data. 

Shadmehr et al. [10] estimated model parameters of pharmacokinetics system 

using feed forward multilayered network and predicted the noise resides in the 

measured data sample. The authors compared the results with that of the optimal 
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Bayesian estimator and found the performance was better than the maximum 

likelihood estimator [11].  

The ANN tools and feed forward network using back propagation algorithm 

are applied for reliability and software quality prediction [12–14]. The authors 

developed a connectionist model and took failure data set as input to produce 

reliability as output. These papers describe network architecture, method of data 

representation and some unrealistic assumptions associated with software reliability 

models.  

Karunanithi et al. [15] predicted software reliability using feed forward 

network and recurrent network. The authors compared the result with 14 different 

literature representative data sets and suggested that neural network produced better 

predictive accuracy compared to analytical models at end-point predictions.  

Sitte [16] analyzed two methods for software reliability prediction: 1) neural 

networks and 2) parametric recalibration models. These approaches differentiate the 

neural networks and parametric recalibration models in the context of software 

reliability prediction and conclude that neural networks are much simpler and better 

predictors. 

Tian et al. [7] predicted software reliability using recurrent neural network. 

Bayesian regularization is applied to train the network. The authors commented that 

their proposed approach produced less average relative prediction error than well 

known prediction techniques.  

RajKiran et al. [17] implemented the use of wavelet neural networks (WNN) to 

predict software reliability. In this paper, the authors employed two kinds of wavelets 

i.e. Morlet wavelet and Gaussian wavelet as transfer functions. They made a 

comparison on test data with multiple linear regression (MLR), multivariate adaptive 

regression splines (MARS), back-propagation trained neural network (BPNN) and 

threshold accepting trained neural network (TANN), pi-sigma network (PSN), general 

regression neural network (GRNN) and found that its performance is better than 

others.  
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Lo [18] designed a model for software reliability prediction using artificial 

neural networks. This approach examines several conventional software reliability 

growth models without assuming some unrealistic things. 

Fuzzy Wavelet Neural Network (FWNN) is used for phase space 

reconstruction technology and for software reliability prediction [19]. In this work, the 

network architecture is designed easily by taking the failure data as input. 
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Chapter 2 

 

Background 

2.1 Software Reliability 

The probability that a software will perform a required function under 

stated conditions for a specified period of time is known as software reliability. 

Software reliability assessment is a very vital factor to characterise the quality 

of any software product quantitatively during testing phase. 

Software Reliability Measures 

 Failure Rate: It is the rate of occurrence of failures. It also represents 

number of failures in specified period of time. 

 Mean Time Between Failures (MTBF): It is the average time between 

failures. No of hours taken to pass before a failure occurs is the MTBF. 

It is the inverse of failure rate. 

 Reliability: The probability that an item will perform a required 

function without failure under the stated conditions for a specified 

period of time is called reliability. It takes into account the mission time. 

 Availability: The probability that an item is in operable state at any time 

is called availability. It accounts for repairs and down time. 

 

Software Reliability Growth Models 

It includes two types of models 

 Parametric models 

 Nonparametric models 

Parametric models are based on non homogeneous Poisson process. Neural 

network is non parametric model and based on statistical failure data. 

Nonparametric models are more flexible. 
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Different Reliability Metrics 

 Failure rate 

 Next time to failure 

 Time between failures  

 Cumulative failures detected 

 

2.2 Artificial Neural Network 

 It is can be defined as a system where data can be processed through a number of 

nodes similar to neurons in brain. 

 Each node is assigned with a function and it determines the node output with the 

help of some parameters available locally to it for a set of given input.   

 By adjusting weight of these parameters the node function can be altered as 

intended. 

 

2.3 Neural Network Modeling 

 Like a brain, a neural network also performs in similar fashion. It has some 

learning mechanism designed within it for modelling the reliability. 

 A number of neurons constitute NN which are simple processing elements. 

These neurons are connected to each other directly through communications 

links associated with some weight. 

 Supervised learning method is used to train the NN with a series of sample input 

and to compare the responses overall for the pre specified period of time with the 

expected sample output.  

 The training procedure is carried out until expected and convincing responses are 

provided by the network. The neurons are arranged layer by layer and the 

connection patterns within and in-between layers make the network architecture. 

 The network can be either single-layered or multi-layered; layers of 

interconnected links between the neuron slabs determine it. 
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2.4 Transfer Function 

 

 

 

 

 

 

 

 

 

Figure 2.1: A simple model of artificial neuron 

Let I=input to the neural network 

Where        
 
    

Then Y=F (I) 

where Y is the output of the neural network and F is the transfer function. 

Hyperbolic Tangent Transfer Function 

Y=F ( I)=
  - - 
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Y varies between -1 and +1. 
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Log Sigmoid Transfer Function 

Y=F ( I)=
 

     
 

Y varies between 0 and +1. 

Both log sigmoid and hyperbolic tangent functions are continuous. In this thesis report 

we have used log sigmoid as transfer function. 
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Chapter 3 

 

Work Details 

We have implemented feed forward neural network and recurrent neural 

network with back propagation learning algorithm. 

 

3.1 Back Propagation Learning Algorithm 

Algorithm: 

1. Initialize the weights 

2.        Repeat 

3.                For each training pattern 

4.                Train on that pattern 

5.                 Find error for each pattern and mean square error for total no of       

           patterns 

6.                Update the connecting weights by calculating errors layer by   

           layer backward 

7.       End 

8. Until the error is acceptably low.  
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Figure 3.4: Flowchart for back propagation algorithm 

 

3.2 Approach for Feed Forward Neural Network 

• Here Back Propagation Learning rule is applied to a feed forward network. 

• The basic feed forward neural network architecture comprises in two steps.  

– 1) feed forward NN  

– 2) back propagation 

• Here the input vector is propagated through a weight layer. It is combined with 

the previous state activation as it depicted in next Figure 3.2.  

• The conventional feed-forward neural network consists of two-layered 

network. The network comprises of two steps mapping. 

y(t) = G(F(x(t)) ………......................................(1) 

• The back-propagation learning techniques are used in the above equation 1 to 

update the weights of the network (F and G) for training the feed forward back 

propagation network. The operation is restricted in this paper to (“hidden/state” 

layer and “output” layer).  
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• The input vector ’x’ is propagated with a layer associated with weight V as 

depicted in equation 3. 

yj(t) = f(netj)(t) -----------------------------(2) 

                         n                    

netj(t) = Σ (vji)(xi(t) )+ θi-------------------(3)  

                         i                                               

where n is the number of inputs nodes, θi is a bias and f is an activation 

function. 

• The output of the network is calculated by state and weight W associated with 

that output layer. 

 yk(t) = g(netk(t))--------------------------- (4) 

                   m 

       g(netk(t)) =Σ yj(t)wkj + θk---------------------------------- (5) 

                              j 

where m is the number of states or ‘hidden’ nodes, θk is a bias and g is an 

activation function. 

Here sigmoid function is taken as activation function. 

 

Figure 3.5: A sample feed forward network 
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3.3 Approach for Recurrent Neural Network 

• Here Back Propagation Learning rule is applied to a recurrent network. 

• The basic recurrent neural network architecture comprise in two steps.  

– 1) feed forward NN  

– 2) back propagation with recurrent. 

• Here the input vector is propagated through a weight layer. It is combined with 

the previous state activation through an additional recurrent weight layer, R as 

it depicted in next Figure 3.3.  

• The conventional feed-forward neural network consists of two-layered 

network. The network comprises of two steps mapping 

y(t) = G(F(x(t)) ………..(1) 

• The back-propagation learning techniques are used in the above equation 1 to 

update the weights of the network (F and G) for training the Recurrent Back 

Propagation Network. The operation is restricted in this paper to 

(“hidden/state” layer and “output” layer).  

• The input vector ’x’ is propagated with a layer associated with weight V and 

combined with previous state activation associated with recurrent weight U as 

depicted in equation 3. 

yj(t) = f(netj)(t) -------(2) 

                         n                   m 

netj(t) = Σ (vji)(xi(t) )+Σ (ujh)(yh(t − 1) )+ θi-------------------(3)  

                         i                     h                          

where n is the number of inputs nodes, θi is a bias, m is the number of states or 

‘hidden’ nodes, and f is an activation function. 

• The output of the network is calculated by state and weight W associated with 

that output layer. 

 yk(t) = g(netk(t))----------------------------------------- (4) 

                   m 

       g(netk(t)) =Σ yj(t)wkj + θk---------------------------------- (5) 

                              j 

where g is an activation function. 
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Here sigmoid function is taken as activation function. 

 

Figure 3.6: A sample recurrent neural network 
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Chapter 4 

 

Implementation & Results 

4.1 Implementation setup 

 The FFNN and RNN with back propagation learning algorithm is implemented 

using MATLAB 7.10.0.499. 

 In our prediction experiment, failure data during system testing phase of 

various projects collected at Bell Tele-phone Laboratories, Cyber Security 

and Information Systems In-formation Analysis Centre(CSIAC) by John 

D. Musa are considered. 

 CSIAC provides software failure datasets in order to support the project 

manager to monitor testing, estimating the project schedule, and helping the 

researchers to evaluate the reliability model. 

 The data set consists of  

o Failure Number 

o Failure Interval Lengths/Time Between Failures (TBF) in CPU secs  

o Day of Failure of software project  

 We have taken 5 numbers of application software testing data set for 

demonstration of predictive performance and prediction accuracy as shown in 

Figure 5.1.  

 70% of each dataset is used for training the model and the rest failure data is 

used for validating the model. 
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Table 4.1: Table of different software failure datasets used 

Project 

Code  

Project Name  Number 

of Failures  

Development 

Phases  

DBS[1]  Real Time Command & 

Control System 

136  System Test 

Operations  

DBS[2]  Real Time Command & 

Control System 

54  System Test 

Operations  

DBS[3]  Real Time Command & 

Control System 

38  System Test 

Operations  

DBS[4]  Real Time Command & 

Control System 

53  System Test 

Operations  

DBS[6]  Commercial System  73  Subsystem 

Test  

 

• For  FFNN proposed model,  

– Cumulative Execution time is taken as input  

–  No of Cumulative Failures is taken as output 

–  Both cumulative execution time and no of cumulative failures are 

normalized in the range 0 to 1. 

– Graph is plotted with cumulative execution time in X-axis and no of 

cumulative failures in y-axis.  

• For RNN proposed model 

– Cumulative execution time for nth failure is taken as input 

– Cumulative execution time for n+1th failure is taken as output 
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– Graph is plotted with no of failure taken in X-axis and cumulative 

execution time in y-axis.  

– Cumulative execution time is normalized in the range 0 to 1. 

 

4.2 Different Performance Measures 

 

• The following performance measures are being used to validate the proposed 

models: 

– Relative Error(%): REi = ( | (Pi-Ai ) / Ai | ) * 100  

                       n  

– Average Relative Error(%): 1/n ∑ REi  

                                      n              2 

– Root  Mean Squared Error: RMSE = √ [ ( ∑ (Pi-Ai) ) / n ] 

          n              

– Mean Absolute Error: [ ∑ | Pi-Ai | ] / n 

         n              

– Mean Error: [ ∑ (Pi-Ai) ] / n 

where   

Pi=Predicted Value    

Ai=Actual Value 

n=total no of observations/patterns 

 

4.3 Prediction Types 

 

• Neural Networks can predict software reliability in two ways:  

– Long Term Prediction  

– Short Term Prediction 
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Short term prediction (STP) 

Suppose we have a software failure dataset having the following format. 

Cumulative  

execution time   No of failures 

  t1     x1 

  t2     x2 

  t3     x3 

  |     | 

  tk     xk  

  t(k+1)     x(k+1) 

  |      | 

  tn     xn  

  t(n+1)     x(n+1) 

We can interpret no of failures as a function of cumulative execution time .  

Suppose y is the function, then y can be written as y(t)=x 

• Then a neural network can be modeled by with 3 layers taking k input neurons 

in input layer, 1 output neuron in output layer and a hidden layer. 

• Taking y(t1),y(t2),y(t3)…y(tk) as inputs to the neural network and Predicting 

y’(t(k+1)) as output(where y(t(k+1)) is taken as target value) is known as short 

term prediction or 1-step ahead prediction .  

 

Long term prediction(LTP) 

Considering the neural network model as explained in previous section, 

 y(t1),y(t2),y(t3)…y(tk) are taken as inputs to the neural network and y’(t(k+1)) 

is predicted as output(where y(t(k+1)) is taken as target value).   

 Then y(t2),y(t3),y(t4)…y’(t(k+1)) are taken as inputs to the neural network and 

y’(t(k+2)) is predicted as output(where y(t(k+2)) is taken as target value).  

 Continuing like this up to nth pattern is known as long term prediction or n-step 

ahead prediction.  
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4.4 Results and Discussion 

Different dataset are taken and results are shown in the following tables and  

figures. 

Table 4.2: Feed forward neural network model results 

 

 

 

Table 4.3: Recurrent neural network model results 
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Table 4.4: Comparison with analytical models 

 

 

 

Table 4.5: Comparison between LTP and STP for feed forward neural network 
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4.5 Graphs and Screenshots 

 

Figure 4.1: Performance of FFNN for Dataset1 

 

In the above figure, plots for feed forward neural networks are shown. The first 

graph is the plot between number of epochs vs. error rate in terms of RMSE during 

training. It shows how the error rate gradually decreases with the no of epochs by the 

use of back propagation learning. The second and third graph is the plot between 

cumulative execution time vs. no of cumulative failures for Dataset1. Second graph is 

plotted for the training period and third graph is plotted for the prediction period. In 

both second and third graph blue colour line represents actual data, green colour line 

represents predicted data and red colour line represents difference between predicted 

data and actual data. 
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Figure 4.2: Snapshot of performance of FFNN for Dataset 1 

 

In the above figure, the snapshot of different performance measure values using 

FFNN for Dataset1 is shown. 
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Figure 4.3: Performance of FFNN for Dataset2 

 

In the above figure, plots for feed forward neural networks are shown. The first 

graph is the plot between number of epochs vs. error rate in terms of RMSE during 

training. It shows how the error rate gradually decreases with the no of epochs by the 

use of back propagation learning. The second and third graph is the plot between 

cumulative execution time vs. no of cumulative failures for Dataset2. Second graph is 

plotted for the training period and third graph is plotted for the prediction period. In 

both second and third graph blue colour line represents actual data, green colour line 

represents predicted data and red colour line represents difference between predicted 

data and actual data. 
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Figure 4.4: Snapshot of performance of FFNN for Dataset2 

 

In the above figure, the snapshot of different performance measure values using 

FFNN for Dataset2 is shown. 
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Figure 4.5: Performance of FFNN for Dataset3 

 

In the above figure, plots for feed forward neural networks are shown. The first 

graph is the plot between number of epochs vs. error rate in terms of RMSE during 

training. It shows how the error rate gradually decreases with the no of epochs by the 

use of back propagation learning. The second and third graph is the plot between 

cumulative execution time vs. no of cumulative failures for Dataset3. Second graph is 

plotted for the training period and third graph is plotted for the prediction period. In 

both second and third graph blue colour line represents actual data, green colour line 

represents predicted data and red colour line represents difference between predicted 

data and actual data. 
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Figure 4.6: Snapshot of performance of FFNN for Dataset3 

 

In the above figure, the snapshot of different performance measure values using 

FFNN for Dataset3 is shown. 
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Figure 4.7: Performance of FFNN for Dataset4 

 

In the above figure, plots for feed forward neural networks are shown. The first 

graph is the plot between number of epochs vs. error rate in terms of RMSE during 

training. It shows how the error rate gradually decreases with the no of epochs by the 

use of back propagation learning. The second and third graph is the plot between 

cumulative execution time vs. no of cumulative failures for Dataset4. Second graph is 

plotted for the training period and third graph is plotted for the prediction period. In 

both second and third graph blue colour line represents actual data, green colour line 

represents predicted data and red colour line represents difference between predicted 

data and actual data. 
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Figure 4.8: Snapshot of performance of FFNN for Dataset4 

 

In the above figure, the snapshot of different performance measure values using 

FFNN for Dataset4 is shown. 
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Figure 4.9: Performance of RNN for Dataset1 

 

In the above figure, plots for recurrent neural networks are shown. The upper 

two graphs are the plot between no of cumulative failures vs. cumulative execution 

time for Dataset1. Upper left graph is plotted for the training period and upper right 

graph is plotted for the prediction period. In both upper graphs red colour line 

represents actual data; blue colour line represents predicted data. In the lower two 

graphs red colour line represents difference between predicted data and actual data. 
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Figure 4.10: Performance of RNN for Dataset2 

 

In the above figure, plots for recurrent neural networks are shown. The upper 

two graphs are the plot between no of cumulative failures vs. cumulative execution 

time for Dataset2. Upper left graph is plotted for the training period and upper right 

graph is plotted for the prediction period. In both upper graphs red colour line 

represents actual data; blue colour line represents predicted data. In the lower two 

graphs red colour line represents difference between predicted data and actual data. 
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Figure 4.11: Performance of RNN for Dataset6 

 

In the above figure, plots for recurrent neural networks are shown. The upper 

two graphs are the plot between no of cumulative failures vs. cumulative execution 

time for Dataset3. Upper left graph is plotted for the training period and upper right 

graph is plotted for the prediction period. In both upper graphs red colour line 

represents actual data; blue colour line represents predicted data. In the lower two 

graphs red colour line represents difference between predicted data and actual data. 
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Chapter 5 

 

Conclusion and Future Work 

5.1 Conclusion 

We have successfully implemented the feed forward and recurrent neural 

network with back propagation learning algorithm. The observations conclude that 

neural network model performs better in terms of less error in prediction as compared 

to existing analytical models and hence it is a better alternative to do software 

reliability test using neural network. However it can be seen from the figures that the 

NN method proposed in this paper using back propagation algorithm provides a good 

fit than analytical models.As the connection weights are randomly initialized, thus the 

neural network gives different results for the same datasets and thus the performance 

of the network varies. The usefulness of a Neural Network method is dependent on the 

nature of dataset up to a greater extent. In most cases STP gives better result than 

LTP. Neural Network model gives better result for larger datasets than smaller 

datasets. These models are easily compatible with different smooth trend data set and 

projects. We have implemented the program in MATLAB. But the programs can be 

implemented in other languages such as Java, Python etc. 
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5.2 Future Work 

 

Software reliability can be predicted using hybrid intelligent system. In 

addition to neural network model genetic programming can be applied further. Novel 

recurrent architectures for Genetic Programming (GP) and Group Method of Data 

Handling (GMDH) to predict software reliability can be proposed. 

Further, research can be extended by developing GP and GMDH based 

ensemble models to predict software reliability. In the ensemble models, GP and 

GMDH are considered as constituent models.  
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Appendix A  

Datasets 
 

Cyber Security and Information Systems In-formation Analysis 

Centre(CSIAC) Software project failure datasets: 

Dataset1: 

 Failure Number   
  Failure Interval  

Length(in cpu secs) 
  Day of Failure   

1 3 1 

2 30 2 

3 113 9 

4 81 10 

5 115 11 

6 9 11 

7 2 17 

8 91 20 

9 112 20 

10 15 20 

11 138 20 

12 50 20 

13 77 20 

14 24 20 

15 108 20 

16 88 20 

17 670 30 

18 120 30 

19 26 30 

20 114 30 

21 325 30 

22 55 30 

23 242 31 

24 68 31 

25 422 31 

26 180 32 

27 10 32 

28 1146 33 



 

39 
 

29 600 34 

30 15 42 

31 36 42 

32 4 46 

33 0 46 

34 8 46 

35 227 46 

36 65 46 

37 176 46 

38 58 46 

39 457 47 

40 300 47 

41 97 47 

42 263 47 

43 452 53 

44 255 53 

45 197 54 

46 193 54 

47 6 54 

48 79 54 

49 816 56 

50 1351 56 

51 148 56 

52 21 57 

53 233 57 

54 134 57 

55 357 57 

56 193 59 

57 236 59 

58 31 59 

59 369 59 

60 748 59 

61 0 59 

62 232 59 

63 330 59 

64 365 61 

65 1222 62 

66 543 63 

67 10 63 



 

40 
 

68 16 63 

69 529 64 

70 379 64 

71 44 64 

72 129 64 

73 810 64 

74 290 64 

75 300 64 

76 529 65 

77 281 65 

78 160 65 

79 828 66 

80 1011 66 

81 445 66 

82 296 66 

83 1755 67 

84 1064 67 

85 1783 68 

86 860 68 

87 983 68 

88 707 69 

89 33 69 

90 868 69 

91 724 69 

92 2323 70 

93 2930 71 

94 1461 72 

95 843 72 

96 12 72 

97 261 72 

98 1800 73 

99 865 73 

100 1435 74 

101 30 74 

102 143 74 

103 108 74 

104 0 74 

105 3110 75 

106 1247 76 



 

41 
 

107 943 76 

108 700 76 

109 875 77 

110 245 77 

111 729 77 

112 1897 78 

113 447 79 

114 386 79 

115 446 79 

116 122 79 

117 990 79 

118 948 80 

119 1082 80 

120 22 80 

121 75 80 

122 482 80 

123 5509 81 

124 100 81 

125 10 81 

126 1071 82 

127 371 83 

128 790 83 

129 6150 83 

130 3321 83 

131 1045 84 

132 648 84 

133 5485 87 

134 1160 87 

135 1864 88 

136 4116 92 
 

Dataset2: 

 Failure Number   
  Failure Interval 

Length(in cpu secs)   
  Day of Failure   

1 191 1 

2 222 2 

3 280 11 

4 290 11 



 

42 
 

5 290 14 

6 385 23 

7 570 23 

8 610 23 

9 365 23 

10 390 23 

11 275 23 

12 360 27 

13 800 27 

14 1210 28 

15 407 29 

16 50 29 

17 660 29 

18 1507 31 

19 625 31 

20 912 32 

21 638 32 

22 293 32 

23 1212 33 

24 612 33 

25 675 33 

26 1215 33 

27 2715 37 

28 3551 37 

29 800 38 

30 3910 38 

31 6900 38 

32 3300 38 

33 1510 41 

34 195 42 

35 1956 42 

36 135 43 

37 661 43 

38 50 43 

39 729 43 

40 900 46 

41 180 46 

42 4225 46 

43 15600 53 



 

43 
 

44 0 53 

45 0 53 

46 300 53 

47 9021 57 

48 2519 64 

49 6890 64 

50 3348 67 

51 2750 69 

52 6675 71 

53 6945 71 

54 7899 72 

 

Dataset3: 

 Failure Number   
  Failure Interval 

Length(in cpu secs)    
  Day of Failure   

1 115 1 

2 0 1 

3 83 3 

4 178 3 

5 194 3 

6 136 3 

7 1077 3 

8 15 3 

9 15 3 

10 92 3 

11 50 3 

12 71 3 

13 606 6 

14 1189 8 

15 40 8 

16 788 18 

17 222 18 

18 72 18 

19 615 18 

20 589 26 

21 15 26 

22 390 26 

23 1863 27 



 

44 
 

24 1337 30 

25 4508 36 

26 834 38 

27 3400 40 

28 6 40 

29 4561 42 

30 3186 44 

31 10571 47 

32 563 47 

33 2770 47 

34 652 48 

35 5593 50 

36 11696 54 

37 6724 54 

38 2546 55 

 

Dataset4: 

  Failure Number   
  Failure Interval 

Length(in cpu secs)     
  Day of Failure   

1 5 1 

2 73 1 

3 141 1 

4 491 5 

5 5 5 

6 5 5 

7 28 5 

8 138 5 

9 478 9 

10 325 9 

11 147 10 

12 198 10 

13 22 10 

14 56 10 

15 424 20 

16 92 20 

17 520 20 

18 1424 26 

19 0 26 



 

45 
 

20 92 26 

21 183 26 

22 10 26 

23 115 27 

24 17 27 

25 284 27 

26 296 27 

27 215 27 

28 116 27 

29 283 31 

30 50 31 

31 308 31 

32 279 31 

33 140 32 

34 678 32 

35 183 32 

36 2462 41 

37 104 41 

38 2178 42 

39 285 43 

40 171 44 

41 0 44 

42 643 46 

43 887 46 

44 149 48 

45 469 48 

46 716 48 

47 604 48 

48 0 48 

49 774 50 

50 256 50 

51 14637 58 

52 18740 70 

53 1526 71 

 

 

 



 

46 
 

Dataset6: 

 Failure Number   
Failure Interval 

Length(in cpu secs) 
  Day of Failure   

1 3 1 

2 14 1 

3 59 1 

4 32 2 

5 8 2 

6 52 2 

7 2 2 

8 25 2 

9 2 2 

10 3 5 

11 4 6 

12 1 6 

13 30 6 

14 21 7 

15 196 12 

16 265 12 

17 6 12 

18 3 12 

19 8 12 

20 1 12 

21 12 12 

22 36 13 

23 38 13 

24 1 13 

25 74 14 

26 43 14 

27 236 14 

28 121 15 

29 18 16 

30 9 16 

31 23 16 

32 1 16 

33 672 24 

34 189 24 

35 83 26 

36 52 26 



 

47 
 

37 8 26 

38 1 26 

39 41 27 

40 7 27 

41 43 28 

42 1 28 

43 4 28 

44 5 28 

45 1 28 

46 16 28 

47 70 29 

48 60 30 

49 2 30 

50 2 30 

51 3 30 

52 169 31 

53 29 32 

54 88 33 

55 55 35 

56 27 35 

57 24 35 

58 27 35 

59 140 37 

60 33 37 

61 5 37 

62 36 37 

63 74 38 

64 40 39 

65 2 39 

66 86 40 

67 221 42 

68 6 42 

69 891 52 

70 23 53 

71 4 53 

72 437 58 

73 66 58 
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