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Abstract

The purpose of this dissertation was to provide a review of the theory of Optimization, in

particular non-linear and quadratic programming, and the algorithms suitable for solving

both convex and non-convex programming problems.Optimization problems arise in a

wide variety of fields and many can be effectively modeled with linear equations. However,

there are problems for which linear models are not sufficient thus creating a need for non-

linear systems.

This project includes a literature study of the formal theory necessary for understanding

optimization and an investigation of the algorithms available for solving of the non-linear

programming problem and a special case, namely the quadratic programming problem.

It was not the intention of this project to discuss all possible algorithms for solving these

programming problem, therefore certain algorithms for solving various programming prob-

lems were selected for a detailed discussion in this project. Some of the algorithms were

selected arbitrarily, because limited information was available comparing the efficiency of

the various algorithms.It was also shown that it is difficult to conclude that one algorithm

is better than another as the efficiency of an algorithm greatly depends on the size of the

problem, the complexity of an algorithm and many other implementation issues.

Optimization problems arise continuously in a wide range of fields and thus create the

need for effective methods of solving them. We discuss the fundamental theory necessary

for the understanding of optimization problems, with particular programming problems

and the algorithms that solve such problems.

Keywords Non-linear Programming, Convex, Non-convex, Optimization, Fractional

Programming, Separable Programming
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Introduction

Throughout human history, man has always strived to master his physical environment

by making the best use of his available resources. These resources are however limited

and the optimal use thereof poses potentially difficult problems. Problems of finding the

best or worst situation arise constantly in daily life in a wide variety of fields that include

science, engineering, economy and management. The theory of optimization attempts to

find these solutions.

The theory and application of optimization is sometimes referred to as mathematical

programming. Here the term programming does not refer to computer programming.The

theory of optimization provides a powerful framework for formulating the general opti-

mization problem. This project work is however, concerned with algorithms for solving

various programming problems and comparison of these algorithms, rather than to show

how these programming problems are formulated.

Chapter 1 gives the detail of general optimization problem and its classification are

presented in mathematical context. The conditions for optimality, the identification of

local and global optimum points, the convexity of the objective function and the Kuhn-

Tucker conditions are described, with particular reference to the quadratic programming

problem.

In Chapter 2 a selection of algorithms for solving the quadratic programming problem

specifically concerned with a convex objective function are discussed.It will be shown that

these algorithms do not necessarily produce a global optimum.

Chapter 3 deals with such non-linear programming problems in which the objective func-

tion as well as all the constraints are separable.

In Chapter 4 we solve the problem of maximizing the fraction of two linear function sub-

ject to a set of linear equalities and the non-negativity constraints.

Chapter 5 will present a summary of the research and the conclusions that have arisen

during the research and provide some recommendations for future research.
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1 Non-Linear Programming Problem

1.1 Introduction

The Linear Programming Problem which can be review as to

Maximize Z =
n∑

j=1

cjxj

subject to
n∑

j=1

aijxj ≤ bi for i = 1, 2, ...,m

and xj ≥ 0 for j = 1, 2, ...,m

The term ’non linear programming’ usually refers to the problem in which the objective

function (1) becomes non-linear, or one or more of the constraint inequalities (2) have

non-linear or both.

Ex. Consider the following problem

Maximize( Minimize ) Z = x21 + x22 + x33

subject to x1 + x2 + x3 = 4 and x1 , x2 , x3 > 0

1.2 Graphical Solution

In a linear programming, the optimal solution was usually obtained at one of the extreme

points of the convex region generated by the constraints and the objective function of the

problem. But, it is not necessary to find the solution at extreme points of the feasible

region of non-linear programming problem. Here, we take an example below :-

Example 1. Solve graphically the following problem:

Maximize Z = 2x1 + 3x2 (1)

subject to x21 + x22 6 20, (2)

x1x2 6 8 and x1, x2 > 0 (3)
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Solution:

In this problem objective function is linear and the constraints are non-linear.

x21 + x22 = 20 represents circle and x1x2 = 0 represents hyperbola. Asymptotes are

represented by X − axis and Y − axis .

Solving eqn (2) and (3) , we get x1 = −2,−4, 2, 4 . But x1 = −2,−4 are impossible

(x1 > 0)

Take x1 = 2 and 4 in eqn (2) and (3) , then we get x2 = 4 and 2 respectively. So, the

points are (2, 4) or (4, 2). Shaded non-convex region of OABCD is called the feasible

region. Now, we maximize the objective function i.e 2x1 + 3x2 = K lines for different

constant values of K and stop the process when a line touches the extreme boundary

point of the feasible region for some value of K .

At (2, 4) , K = 16 which touches the extreme boundary point. We have boundary point

of like (0, 0), (0, 4), (2, 4), (4, 2), (4, 0). Where the value of Z is maximum at point (2, 4).

∴ Max. Z = 16
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1.3 Single-Variable Optimization

A one-variable,unconstrained nonlinear program has the form

Maximize(Minimize) Z = f(x)

where f(x) is a nonlinear function of the single variable x, and the search for the optimum

is conducted over the infinite interval.

If the search is restricted to a finite subinterval [a, b] ,then the problem becomes

Maximize (Minimize) Z = f(x)

subject to a 6 x 6 b

some result

(1) If f(x) is continuous in the closed and bounded interval [a,b], then f(x) has global

optima (both a maximum and minimum) on this interval.

(2) If f(x) has a local optimum at x0 and if f(x) is differentiable on a small interval

centered at x0, then f
′
(x0) = 0

Two search-methods to find the optimization in one dimension

1.3.1 Bisection

Assume concave f(x)→ all we need to find is the turning point.

Steps:

1) Initially search points x1, x2, ...

2) Keep most interior point with f
′
(x) < 0 and most interior point with f

′
(x) > 0

3) Pick a point half way in between them and:

if f
′
(xk+1) < 0 −→replace xmax

if f
′
(xk+1) > 0 −→replace xmin

4) Repeat until desired resolution is obtained.

Stopping condition:|f ′(xk+1)| 6 ε

Only checking if positive or negative ⇒ Values are ignored.
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Advantages: Known no. of steps until we reach the end.

Disadvantages: Doesnt use all available information. Doesnt take into account slope and

curvature.

1.3.2 Newtons Method

This method uses information on the curvature of the function but we need to be able to

calculate the curvature in order for it to be feasible.

By Taylors rule

f(xi) = f(xi) + (xi+1 + xi)f
′
(x) +

(xi+1 + xi)
2

2
f
′′
(x) + . . .

If we maximize this approximation we use both the first and second derivative information

to make a guesses as to the next point to evaluate:

xi+1 = xi −
f
′
(x)

f ′′(x)

In one dimension:

f
′
(x) = 0 is necessary for a maximum or minimum.

f
′′
(x) > 0 is necessary for a minimum.

f
′′
(x) 6 0 is necessary for a maximum.

For strict inequality for this to be a sufficient condition. i.e.f
′
(x) = 0

and f
′′
(x) > 0 is sufficient to know that x is a minimum.

1.4 Multivariable Optimization without Constraints

A nonlinear multivariable optimization without constraints has the form :

Maximize f(x1, x2, ..., xn)

with x1, x2, ..., xn > 0
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Local and Global Maxima

Definition

An objective function f(X) has a local maximum at X̂ if there exist an ε-neighbourhood

around X̂ s.t. f(X) 6 f(X̂) for all X in this ε-neighbourhood at which the function is

defined, If the condition is met for every positive ε then f(X) has a global maximum at

X̂ .

Unconstrained Optimization

We have to optimize f(x1, x2, ..., xn)

In unconstrained type of function we determine the extreme points.

∂f

∂x1
= 0

∂f

∂x2
= 0

...
∂f

∂xn
= 0

For one Variable
∂2f

∂x2
> 0 Then f is minimum.

∂2f

∂x2
< 0 Then f is maximum.

∂2f

∂x2
= 0 Then further investigation needed.

For two variable

rt− s2 > 0 Then the function is minimum.

rt− s2 < 0 Then the function is maximum.

rt− s2 = 0 Further investigation needed.

Where r =
∂2f

∂x12
, s =

∂2f

∂x1x2
, t =

∂2f

∂x22

For ’n’ Variable

Hessian Matrix
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

∂2f

∂x12
∂2f

∂x1x2
. . .

∂2f

∂x1xn

∂2f

∂x1x2

∂2f

∂x22
. . .

∂2f

∂x2xn
...

...
...

...
∂2f

∂x1xn

∂2f

∂x2xn
. . .

∂2f

∂xn2


| H |> 0 at p1, f is attains minimum at p1.

| H |< 0 at p1, f is attains maximum at p1.

Convex Function : A function f(x) is said to be convex function over the region S

if for any two points x1, x2 belongs to S.

We have the function

f(λx1 + (1− λ)x2) 6 λf(x1) + (1− λ)f(x2) where 0 6 λ 6 1

S is strictly convex function if

f(λx1 + (1− λ)x2) < λf(x1) + (1− λ)f(x2)

Concave Function : A function f(x) is said to be concave function over the region S if

for any two points x1, x2 belongs to S.

We have the function

f(λx1 + (1− λ)x2) > λf(x1) + (1− λ)f(x2) where 0 6 λ 6 1

S is strictly concave function if

f(λx1 + (1− λ)x2) > λf(x1) + (1− λ)f(x2)

Result

(1) Sum of two convex functions is also a convex function.

(2) Let f(x) = XTAX be positive semi definite quadratic form then f(x) is a convex -

function.

(3) Let f(x) be a convex function over convex region S, then a local minima of f(x) is a

global minima of f(x) in the region S.

(4) If f(x) is a strictly convex function over the convex set S then f(x) has unique global

minima.
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1.5 Multivariable Optimization with Constraints

General Non-linear Programming Problem

Let Z be a real valued function of n variables defined by:

(a) Z = f(x1, x2, ..., xn) −→ Objective function.

Let (b1, b2, ..., bm) be a set of constraints, such that:

(b) g1 (x1, x2, ..., xn) [ 6 or > or = ] b1

g2 (x1, x2, ..., xn) [ 6 or > or = ] b2

g3 (x1, x2, ..., xn) [ 6 or > or = ] b3

gm (x1, x2, ..., xn) [ 6 or > or = ] bm

Where g1 are real valued functions of n variables, x1, x2, ..., xn.

Finally, let (c) xj > 0 where j = 1, 2, ..., n. −→Non-negativity constraint.

If either f(x1, x2, ..., xn) or some g1(x1, x2, ..., xn) or both are non-linear, then the problem

of determining the n-type (x1, x2, ..., xn) which makes z a minimum or maximum and

satisfies both (b) and (c), above is called a general non-linear programming problem.

Global Minima and Local Minima of a Function

It gives optimal solution for the objective function at the point but also optimize the

function over the complete solution space.

Global Minimum: A function f(x) has a global minimum at a point x0 of a set of points

K if an only if f(x0) 6 f(x) for all x in K.

Local Minimum: A function f(x) has the local minimum point x0 of a set of points K if

and only if there exists a positive number such that f(x0) 6 f(x) for all x in K at which

||x0 − x|| < δ

There is no general procedure to determine whether the local minimum is really a global

minimum in a non-linear optimization problem.
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The simplex procedure of an LPP gives a local minimum, which is also a global minimum.

This is the reason why we have to develop some new mathematical concepts to deal with

NLPP.

1.5.1 Lagrange Multipliers

Here we discussed the optimization problem of continuous functions. The non-linear

programming problem is composed of some differentiable objective function and equality

side constraints, the optimization may be achieved by the use of Lagrange multipliers. A

Lagrange multiplier measures the sensitivity of the optimal value of the objective function

to change in the given constraints bi in the problem. Consider the problem of determining

the global optimum of

Z = f(x1, x2, ..., xn)

subject to the

gi (x1, x2, ..., xn) = bi , i = 1, 2, ...,m.

Let us first formulate the Lagrange function L defined by:

L(x1, x2, ..., xn;λ1, λ2, ..., λm) = f(x1, x2, ....xn) + λ1 g1(x1, x2, ..., xn) +

λ2 g2(x1, x2, ..., xn) + ... + λmgm(x1, x2, ..., xn)

where λ1, λ2, ..., λm are Lagrange Multipliers.

For the stationary points

∂L

∂xj
= 0 ,

∂L

∂λi
= 0 ∀ j = 1(1)n ∀ i = 1(1)m

Solving the above equation to get stationary points.

Observation

Although the Lagrangian method is often very useful in applications yet the drawback

is that we can not determine the nature of the stationary point. This can sometimes be

determined from physical consideration of the problem.

problem.1

A rectangular box open at top is to have volume of 32 cubic meters. Find the dimensions
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of the box requiring the least material for its construction.

solution:

Let x1, x2, x3 be the sides of the rectangular face with x1, x3 in the sides of the bottom

faces and s be its surface then

s = 2x1x2 + 2x2x3 + x1x3

subject to

x1x2x3 = 32 and x1, x2, x3 > 0

Form the lagrangian function

L(x1, x2, x3, λ) = 2x1x2 + 2x2x3 + x1x3 + λ(x1x2x3 − 32)

The stationary points are the solutions of the followings:

∂L

∂x1
= 2x2 + x3 + λx2x3 = 0 (4)

∂L

∂x2
= 2x1 + 2x3 + λx1x3 = 0 (5)

∂L

∂x3
= 2x2 + x1 + λx1x2 = 0 (6)

∂L

∂λ
= x1x2x3 − 32 = 0 (7)

from equation (1) and (2) we get x1 = 2x2

and from equation (1) and (3) we get x2 = x3

putting these value in equation (4) we get x1 = 4, x2 = 2, x3 = 4

Min.S = 48

1.5.2 Kuhn-Tucker Conditions

Here we developing the necessary and sufficient conditions for identifying the stationary

points of the general inequality constrained optimization problems. These conditions are

called the Kuhn-Tucker Conditions. The development is mainly based on Lagrangian

method. These conditions are sufficient under certain limitations which will be stated in

the following .
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Kuhn-Tucker Necessary Conditions

Maximize f(X) , X = (x1, x2, ..., xn) subject to constraints

gi(X) 6 bi , i = 1, 2, ...,m,

including the non-negativity constraints X > 0 , the necessary conditions for a local

maxima at X̄ are

(i)
∂L(X̄, λ̄, s̄)

∂xj
= 0, j = 1, 2, ..., n,

(ii) λ̄i [ gi(X̄) − bi ] = 0,

(iii) gi(X̄) 6 bi , (iv) λ̄i > 0 , i = 1, 2, ...,m.

Kuhn-Tucker Sufficient Conditions

The Kuhn-Tucker conditions which are necessary conditions are also sufficient if f(x)

is concave and the feasible space is convex, i.e. if f(x) is strictly concave and gi(x),

i = 1, ...,m are convex.

Problem.1

Max.Z = 10x1 + 4x2 − 2x1
2 − 3x2

2,

subject to

2x1 + x2 ≤ 5

x1, x2 ≥ 0

.

Solution:

We have,

f(X) = 10x1 + 4x2 − 2x1
2 − x22

h(X) = 2x1 + x2 − 5

The Kuhn-Tucker condition are

11



∂f

∂x1
− λ ∂h

∂x1
= 0

∂f

∂x2
− λ ∂h

∂x2
= 0

λh(X) = 0,

h(X) ≤ 0, λ ≥ 0.

Applying these condition , we get

10− 4x1 − 2λ = 0 (i)

4− 2x2 − λ = 0 (ii)

λ(2x1 + x2 − 5) = 0 (iii)

2x1 + x2 − 5 ≤ 0 (iv)

λ ≥ 0 (v)

From (iii) either λ = 0 or 2x1 + x2 − 5 = 0

When λ = 0, the solution of (i) and (ii) gives x1 = 2.5 and x2 = 2 which does not satisfy

the equation (iv). Hence λ = 0 does not yield a feasible solution.

When 2x1 + x2 − 5 = 0 and λ 6= 0, the solution of (i),(ii) and (iii) yields, x1 =
11

6
, x2 =

4

3
, λ =

4

3
, which satisfy all the necessary conditions.

It can be verified that the objective function is concave in X, while the constraint is convex

in X. Thus these necessary conditions are also the sufficient conditions of maximization

of f(X).

Therefore the optimal solution is x1
∗ =

11

6
, x2
∗ =

4

3
, which gives Zmax =

91

6
� .
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2 Quadratic Programming Problem

2.1 Introduction

Quadratic programming deals with the non-linear programming problem of maximiz-

ing(or minimizing) the quadratic objective function subject to a set of linear inequality

constraints.

The general quadratic programming problem can be defined as follows:

Maximize Z = CX +
1

2
XTQX

subject to

AX 6 B and X > 0

where

X = (x1, x2, ..., xn)T

C = (c1, c2, ..., cn) , B = (b1, b2, ..., bm)T

A =

a11 . . . a1n
...

...
...

am1 . . . amn



Q =

q11 . . . q1n
...

...
...

qn1 . . . qnn



The function XTQX is said to be negative-definite in the maximization case, and positive

definite in the minimization case. The constraints are to be linear which ensures a convex

solution space.

In this algorithm, the objective function is convex (minimization) or concave(maximization)

and all the constraints are linear.
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2.2 Wolfe’s modified simplex method

Let the quadratic programming problem be :

Maximize Z = f(X) =
n∑

j=1

cjxj +
1

2

n∑
j=1

n∑
k=1

cjkxjxk

subject to the constraints :

n∑
j=1

aijxj 6 bi, xj > 0(i = 1, ...,m, j = 1, ..., n)

Where cjk = ckj for all j and k, bi > 0 for all i = 1,2,...,m.

Also, assume that the quadratic form

n∑
j=1

n∑
k=1

cjkxjxk

be negative semi-definite.

Then, the Wolfe’s iterative procedure may be outlined in the following steps:

Step 1. First, convert the inequality constraints into equation by introducing slack-

variable q2i in the ith constraint (i = 1, ...,m) and the slack variable r2j the jth non-negative

constraint (j = 1, 2, ..., n).

Step 2. Then, construct the Lagrangian function

L(X,q, r, λ, µ) = f(X)−
m∑
i=1

λi[
n∑

j=1

aijxj − bi + q2i ]−
n∑

j=1

µj[−xj + r2j ]

Where X = (x1, x2, ..., xn), q = (q21, q
2
2, ..., q

2
m), r = (r21, r

2
2, ..., r

2
n), and µ = (µ1, µ2, ..., µn),

λ = (λ1, λ2, ..., λm),

Differentiating the above function ’L’ partially with respect to the components of X,q,r,λ, µ

and equating the first order partial derivatives to zero, we derive Kuhn-Tucker conditions

from the resulting equations.

Step 3. Now introduce the non-negative artificial variable vj, j = 1, 2, ..., n in the

Kuhn-Tucker conditions

cj +
n∑

k=1

cjkxk −
m∑
i=1

λiaij + µj = 0

14



for j = 1, 2, ..., n and to construct an objective function

Zv = v1 + v2 + ...+ vn

Step 4. In this step, obtain the initial basic feasible solution to the following linear

programming problem :

Minimize Zv = v1 + v2 + ...+ vn.

Subject to the constraints :

n∑
k=1

cjkxk −
m∑
i=1

λiaij + µj + vj = −cj (j = 1, ...n)

n∑
j=1

aijxj + q2i = bi (i = 1, ...,m)

vj, λjµj, xj > 0 (i = 1, ...,m; j = 1, ..., n)

and satisfying the complementary slackness condition:

n∑
j=1

µjxj +
m∑
i=1

λisi = 0, (where si = q2i )

or

λisi = 0 and µjxj = 0 (for i = 1, ...,m; j = 1, ..., n).

Step 5. Now, apply two-phase simplex method in the usual manner to find an optimum

solution to the LP problem constructed in Step 4. The solution must satisfy the above

complementary slackness condition.
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Step 6. The optimum solution thus obtained in Step 5 gives the optimum solution of

given QPP also.

Important Remarks:

1.If the QPP is given in the minimization form, then convert it into maximization one by

suitable modifications in f(x) and the ’>’ constraints.

2. The solution of the above system is obtained by using Phase I of simplex method.

The solution does not require the consideration of Phase II . Only maintain the condition

λisi = 0 = µjxj all the time.

3. It should be observed that Phase I will end in the usual manner with the sum of all

artificial variables equal to zero only if the feasible solution to the problem exists.

problem.2

Maximize 2x1 + x2 − x12

subject to

2x1 + 3x2 ≤ 6

2x1 + x2 ≤ 4 and x1, x2 ≥ 0

solution:

Since the given objective function is convex and each constraint is convex therefore the

given NLPP is a CNLPP.

Now L(X,λ) = (−2x1 − x2 + x1
2) + λ1(2x1 + 3x2 − 6) + λ2(2x1 + x2 − 4)

Therefore the khun-tucker condition are

∴
∂L

∂xj
≥ 0⇒ −2 + 2x1 + 2λ1 + 2λ2 ≥ 0

⇒ −2 + 2x1 + 2λ1 + 2λ2 − µ1 = 0

−1 + 3λ1 + λ2 ≥ 0

⇒ −1 + 3λ1 + λ2 − µ2 = 0

∴
∂L

∂λi
≤ 0⇒ 2x1 + 3x2 − 6 ≤ 0

⇒ 2x1 + 3x2 − 6 + S1 = 0
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2x1 + x2 − 4 ≤ 0

⇒ 2x1 + x2 − 4 + S2 = 0

∴ xj
∂L

∂xj
= 0⇒ x1µ1 = 0, x2µ2 = 0 (1)

∴ λi
∂L

∂λ
= 0⇒ λ1S1 = 0, λ2S2 = 0 (2)

The above system of equation can be written as

2x1 + 2λ1 + 2λ2 − µ1 = 2

3λ1 + λ2 − µ2 = 1

2x1 + 3x2 + S1 = 6

2x1 + x2 + S2 = 4 (3)

x1, x2, λ1, λ2, S1, S2, µ1, µ2 ≥ 0

x1µ1 = 0, x2µ2 = 0, λ1S1 = 0, λ2S2 = 0.

This equation (3) is a LPP with out an objective function. To find the solution we can

write (3) as the following LPP.

max.Z = −R1 −R2

subject to

2x1 + 2λ1 + 2λ2 − µ1 = 2

3λ1 + λ2 − µ2 = 1

2x1 + 3x2 + S1 = 6

2x1 + x2 + S2 = 4

Now solve this by the two phase simplex method. The end of the phase (1) gives the

feasible solution of the problem

The optimal solution of the QPP is

x1 =
2

3
, x2 =

14

9
, λ1 =

1

3
, S2 =

10

9
. �

2.3 Beale’s Method

In Beale’s method we solve Quadratic Programming problem and in this method we does

not use the Kuhn-Tucker condition. At each iteration the objective function is expressed

in terms of non basic variables only.

Let the QPP be given in the form
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Maximize f(X) = CX +
1

2
XTQX

subject to AX = b, X ≥ 0.

Where

X = (x1, x2, ..., xn+m)

c is 1× n

A is m× (n+m)

and Q is symmetric and every QPP with linear constraints.

Algorithm

Step 1

First express the given QPP with Linear constraints in the above form by introducing

slack and surplus variable.

Step 2

Now select arbitrary m variables as basic and remaining as non-basic.

Now the constraints equation AX = b can be written as

BXB +RXNB = b⇒ XB = B−1b−B−1RXNB

where

XB-basic vector XNB-non-basic vector

and the matrix A is partitioned to submatrices B and R corresponding to XB and XNB

respectively.

Step 3

Express the basis XB in terms of non-basic XNB only, using the given additional constraint

equations, if any.

Step 4

Express the objective function f(x) in terms of XNB only using the given and additional

constraint , if any . Thus we observe that by increasing the value of any of the non-basic

variables, the value of the objective function can be improved. Now the constraints on
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the new problem become

B−1RXNB 6 B−1b (since XB > 0)

Thus, any component of XNB can increase only until
∂f

∂xNB

becomes zero or one or more

components of XB are reduced to zero.

Step 5

Now we have m+ 1 non-zero variables and m+ 1 constraints which is a basic solution to

the extended set of constraints.

Step 6

We go on repeating the above procedure until no further improvement in the objective

function may be obtain by increasing one of the non-basic variables.

problem.1:

Use Beale’s Method to solve following problem

Maximize Z = 4x1 + 6x2 − 2x1
2 − 2x1x2 − 2x2

2

subject to x1 + 2x2 ≤ 2 and x1, x2 ≥ 0

Solution:

Step:1

Max. Z = 4x1 + 6x2 − 2x1
2 − 2x1x2 − 2x2

2 (1)

subject to

x1 + 2x2 + x3 = 2 (2)

and x1, x2, x3 ≥ 0

taking XB = (x1);XNB =
(
x2

x3

)
and x1 = 2− 2x2 − x3 (3)

Step:2

put (3) in (1), we get

Max. f(x2, x3) = 4(2− 2x2 − x3) + 6x2 − 2(2− 2x2 − x3)2 − 2(2− 2x2 − x3)x2 − 2x2
2

∂f

∂x2
= −2 + 8(2− 2x2 − x3) + 8x2 − 4x2 − 2(2− x3)

∂f

∂x3
= −4 + 4(2− 2x2 − x3) + 2x2
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Now
∂f

∂x2 (0,0)
= 10

∂f

∂x3 (0,0)
= 4

Here ’+ve’ value of
∂f

∂xi
indicates that the objective function will increase if xi increased

. Similarly ’-ve’ value of
∂f

∂xi
indicates that the objective function will decrease if xi is

decrease . Thus, increase in x2 will give better improvement in the objective function.

Step:3

f(x) will increase if x2 increased .

If x2 is increased to a value greater then 1, x1 will be negative.

Since x1 = 2− 2x2 − x3
x3 = 0;

∂f

∂x2
= 0

⇒ 10− 12x2 = 0

⇒ x2 =
5

6

Min. (1,
5

6
) =

5

6
The new basic variable is x2.

Second Iteration:

Step:1

let XB = (x2), XNB =
(
x1

x3

)
x2 = 1− 1

2
(x1 + x3)

Step:2

Substitute (4) in (1)

Max. f(x1, x3) = 4x1 +6(1− 1

2
(x1 +x3))−2x1

2−2x1(1−
1

2
(x1 +x3))−2(1− 1

2
(x1 +x3))

2

∂f

∂x1
= 1− 3x1,

∂f

∂x2
= −1− x3

∂f

∂x1 (0,0)
= 1

∂f

∂x3 (0,0)
= −1

This indicates that x1 can be introduce to increased objective function.

Step:3

x2 = 1− 1

2
(x1 + x3) and x3 = 0

If x1 is increased to a value greater then 2, x2 will become negative.
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∂f

∂x1
= 0

⇒ 1− 3x1 = 0

⇒ x1 =
1

3

Min. (2,
1

3
) =

1

3

Therefore x1 =
1

3

Hence x1 =
1

3
, x2 =

5

6
, x3 = 0

and Max. f(x) =
25

6
�
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3 Separable Programming

3.1 Introduction

This programming deals with such non-linear programming problems in which the ob-

jective function as well as constraints are separable. A Non-linear programming problem

can be reduced to a Linear Programming Problem and the usual simplex method can be

used to get an optimal solution.

3.2 Separable Function

Definition: A Function f(x1, x2, ..., xn) is said to be separable if it can be expressed as

the sum of n single valued functions f1(x1), f2(x2), ..., fn(xn), i.e.

f(x1, x2, ..., xn) = f1(x1) + f2(x2) + ...+ fn(xn)

.

Example:

g(x1, x2, ..., xn) = c1x1 + ...+ cnxn where c ′s are constants, is a separable function.

g(x1, x2, x3) = x1
3 + x2

2sin(x1) + log(x61) is not a separable function.

Reducible to Separable Form: Sometimes the functions are not directly separable but

can be made separable by simple substitutions.

Example:

Max. Z = x1x2

Let y = x1x2

Then log y = log x1 + log x2

Hence the problem becomes Max. Z = y,

subject to log y = log x1 + logx2 which is separable.
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Reducible to separable form:

(1)

Max. Z = x1x2x3

Let y = x1x2x3 ⇒ log y = log x1 + log x2 + log 3

Hence, the problems are

Max. Z = y

subject to

log y = log x1 + log x2 + log x3 for (x1, x2, x3 > 0)

(2)

If x1, x2, x3 > 0

then

u1 = x1 + v1 ⇒ x1 = u1 − v1

u2 = x2 + v2 ⇒ x2 = u2 − v2

u3 = x3 + v3 ⇒ x3 = u3 − v3

Let y = u1 u2 u3 {x1x2x3 = (u1 − v1)(u2 − v2)(u3 − v3) = u1u2u3 − u3v2u1 − v1u2u3 + v1v2u3 − u1u2v3 + u1v2v3 + v1u2v3 − v1v2v3}

then;

Max. Z = y − u1u2u3 − u3v2u1 − v1u2u3 + v1v2u3 − u1u2v3 + u1v2v3 + v1u2v3 − v1v2v3

subject to

log y = log u1 + log u2 + log u3 which is separable.
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3.3 Separable Programming Problem

A Non-linear programming problem in which the objective function can be expressed as

a linear combination of several different single variable functions, of which some or all are

non-linear, is called a separable programming problem.

Non-linear programming which has the problem of minimizing a convex objective func-

tion(or maximizing a concave objective function) in the convex set of points is called

Convex Programming. In general, we take non-linear constraints.

Separable Convex Programming Problem

A separable programming problem in which the separate functions are all convex can be

defined as a separable convex programming problem with separable objective function.

i.e

If f(x) = f1(x1) + f2(x2) + ...+ fn(xn)

where f1(x1), f2(x2), ..., fn(xn) are all convex

example: f(x) = 3x31 + 2x23 − x1 − 3x3

So, let f1(x1) = 3x31 − x1 and f2(x2) = 2x23 − 3x3

3.4 Piece-wise Linear Approximation of Non-linear Function:-

Consider the non-linear objective function

Maximizez =
n∑

j=1

fj(xj)

subject to constraints:

n∑
j=1

aijxj = bi , i = 1, 2, ...,m and xj > 0 ; for all j
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where fj(xj)= nonlinear function in xj. The points (ak, bk) , k = 1, 2, ..., K are called the

breaking points joining the linear segments which approximate the function f(x) . Let

wk denote the non-negative weight associated with the kth breaking point such that

K∑
k=1

wk = 1

wk′ = (ak′ , bk′ ) and wk′+1 = (ak′+1, bk′+1)

then f(x) =
k∑

k=1

bkwk , where x =
k∑

k=1

akwk

subject to the necessary additional constraints are:

0 6 w1 6 y1

0 6 w2 6 y1 + y2

...
...

0 6 wk−1 6 yk−1 + yk−2

0 6 wk 6 yk−1

k∑
k=1

wk = 1,
k−1∑
k=1

yk = 1, yk = 0 or 1 for all k

Suppose yk′ = 1

Above all other yk = 0

0 6 wk′ 6 yk′

0 6 wk′+1 6 yk′ = 1

Thus, the remaining constraints should be wk 6 0 .

Therefore; all other wk = 0 as desired.
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3.5 Reduction of separable programming problem to linear pro-

gramming problem

Let us consider the separable programming problem

Max.(or Min.) Z =
n∑

j=1

fj(xj)

subject to the constraints :

n∑
j=1

gij(xj) 6 bi

xj > 0 (i = 1, 2, ...,m; j = 1, 2, ..., n) where some or all gij(xj), fj(xj) are non-linear.

Equivalent mixed problem is

Max.(or Min.)z =
n∑

j=1

Kj∑
k=1

fj(ajk)wjk,

subject to the constraints:

n∑
j=1

Kj∑
k=1

gij(ajk)wjk 6 bi , i = 1, 2, ...,m

0 6 wj1 6 yj1

0 6 wjk 6 yj.k−1 + yjk , k = 2, 3, ..., Kj−1

0 6 wjkj 6 yj.kj−1

kj∑
k=1

wjk = 1,

kj−1∑
k=1

yjk = 1

yjk = 0 or 1 ; k = 1, 2, ..., Kj , j = 1, 2, ..., n

The variables for the approximating problem are given by wjk and yjk .

We can use the regular simplex method for solving the approximate problem under the

additional constraints involving yjk .

Algorithm

Step-1

If the objective function is of minimization form; convert it into maximization.

26



Step-2

Test whether the functions fj(xj) and gij(xj) satisfy the concavity (convexity) conditions

required for the maximization(minimization) of non-linear programming problem. If the

condition are not satisfied, the method is not applicable, otherwise go to next step.

Step-3

Divide the interval 0 6 xj 6 tj (j = 1, 2, ..., n) into a number of mesh points ajk (k =

1, 2, ..., Kj) such that aj1 = 0,

aj1 < aj2 < ... < ajk = tj.

Step-4

For each point ajk , compute piecewise linear approximation for each fj(xj) and gij(xj)

where j = 1, 2, ..., n; i = 1, 2, ...,m.

Step-5

Using the computations of step− 4,write down the piece-wise linear approximation of the

given NLPP.

Step-6

Now solve the resulting LPP by two-phase simplex method. For this method consider

wi1 (i = 1, 2, ...,m) as artificial variables. Since, the costs associated with them are

not given, we assume them to be zero. Then,Phase-I of this method is automatically

complete., the initial simplex table of Phase-I is optimum and hence will be the starting

simplex table for Phase-II.

Step-7

Finally, we obtain the optimum solution x∗j of the original problem by using the relations:

x∗j =

Kj∑
k=1

ajkwjk (j = 1, 2, ..., n)

27



4 Fractional Programming

4.1 Introduction

In various applications of nonlinear programming a ratio of two functions is to be maxi-

mized or minimized. In other applications the objective function involves more than one

ratio of functions. Ratio optimization problems are commonly called fractional programs.

Linear Fractional Programming technique is used to solve the problem of maximizing the

function of two linear functions subject to a set of linear equalities and the non-negativity

constraints. This method can be directly solved by starting with a basic feasible solution

and showing the conditions for improving the current basic feasible solution.

The fractional Programming method is useful in solving the problem in Economics when-

ever the different economic activities utilize the fixed resources in proportion to the level

of their values. These types of problems play an important role in ′finance′.

Mathematical Formulation The Linear Fractional Programming Problem can be for-

mulated as follows :

Max.Z =
(c
′
x+ α)

(d′x+ β)
(8)

Subject to the constraints:

Ax = b , X > 0 (9)

Where x, c and d are n× 1 column vectors

A is an m× n column vectors

c
′
, d
′

is transpose of vectors

α, β are some scalars

The constraints set is always non-empty and bounded.

4.2 Computational Procedure Of Fractional Algorithm

We consider a example can better demonstrate the computational procedure of linear

fractional programming algorithm.
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Example: Solve the fractional programming problem

Max. Z =
x1 − 2x2

5x1 + 3x2 + 2

subject to:

3x1 + 6x2 6 8

5x1 + 2x2 6 10 and x1 , x2 > 0

Solution. First, Introducing the slack variables s1 > 0 and s2 > 0

We write the problem in standard form becomes:

Max. Z =
x1 − 2x2

5x1 + 3x2 + 2

subject to 3x1 + 6x2 + s1 = 0

5x1 + 2x2 + s2 = 10 and x1 , x2 , s1 , s2 > 0

Here, α = 0 and β = 2

The method to determine the leaving variable and also the new values of xij , XB ,∆
(1)
j ,∆

(2)
j

corresponding to improved solution will be the same as for ordinary simplex method.

Table 1: Starting Table
B.V dB cB XB x1 x2 s1(β1) s2(β2) Min.(xB/x1)

s1 0 0 8 3 6 1 0 8/3

s2 0 0 10 5 2 0 1 10/5←−

z(1) = cBxB + α = 0 -1 2 0 0 4(1)
j

z(2) = dBxB + β = 0 -5 -2 0 0 4(2)
j

z = z(1)/z(2) = 0 -5 2 - - 4j

↑

Introducing x1 and dropping s2(β2), we get the first Iteration table.

Again, Introducing X2 and dropping s1(β1) , then we construct the second Iteration table.

Now, Introducing X4 and removing s1β(2)

After this table we observe that all 4j > 0

So, the optimum solution is

x1 = 3, , x2 = 1 , s2 = 2

∴Max. Z = 1/16
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5 Future Research

Some of the possible projects for future research include the following:

Conduct a study on the genetic algorithms for solving quadratic programming problems.

Compare the efficiency of these algorithms with respect to the algorithms mentioned in

this project, for solving quadratic programming problems and other algorithms for solving

general non-linear programming problems. Comparing the efficiency of these algorithms

to other algorithms that may or may not have been mentioned in this project, for solving

non-convex quadratic programming problems.

There are many more methods that have not been discussed in this project and therefore

it could be extended to incorporate other algorithms available for quadratic programming

and fractional programming.
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