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Preface

In the present thesis consisting of two chapters first we have given a brief review of some

important number theoretic concepts and results. Then we have discussed S-DES and DES

algorithms for Secret key cryptography, RSA and DSA algorithms for Public key cryptography

and at last a brief introduction to elliptic curves and their use in Cryptography.

Rourkela Somyashree Satpathy

May 12, 2014
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Chapter 1

Basics of Number Theory

1.1. Prime numbers and their properties

Definition 1.1.1. An integer p > 1 is called a prime number or simply prime, if its only

positive divisors are 1 and p. An integer greater than 1 that is not prime is termed as

composite.

Theorem 1.1.2 [3]. If p is a prime and p|ab, then p|a, or p|b.

Proof: If p|a, then there is nothing to do. So let’s assume that p does not divide a. Because

the only positive divisors of p are 1 and p itself; this implies that gcd(p, a) = 1. Then there

exist integers m, n such that mp + na = 1. Thus, mpb + nab = b. Now p|mpb and, by our

assumption p|nab, consequently p|(mpb+ nab), or p|b.

Corollary 1.1.3 [3]. If p is a prime and p|a1a2 · · · an, then p|ak, for some k, where 1 ≤ k ≤ n.

Corollary 1.1.4 [3]. If p, q1, q2, · · · , qn all are primes and p|q1q2 · · · qn, then p = qk, for some

k, where 1 ≤ k ≤ n.

Theorem 1.1.5 (Fundamental Theorem of Arithmetic)[3]. Every positive integer n > 1

can be expressed as a product of primes; this representation is unique, apart from the order

in which the factors occur.

Proof: Either n is a prime or a composite. In case of prime, there is nothing more to prove.

If n is composite, then there exists an integer d satisfying d|n and 1 < d < n. Among all

such integers d, choose p1, to be the smallest. This is possible by the well-ordering principle.

Then p1 must be a prime number. Otherwise it too have a divisor q with 1 < q < p1; but

then q|p1 and p1|n which imply that q|n, which contradicts the choice of p1 as the smallest

positive divisor, not equal to 1, of n.

Therefore we may write n = p1n1, where p1 is a prime number and 1 < n1 < n. If n1

happens to be a prime, then we have our representation. In the contrary case, the argument

is repeated to produce a second prime number p2 such that n1 = p2n2; i.e.

n = p1p2n2; 1 < n2 < n1
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If n2 is a prime, then it is not necessary to go further. Otherwise, write n2 = p3n3, with p3 a

prime.

n = p1p2p3n3; 1 < n3 < n2

The decreasing sequence

n > n1 > n2 > · · · > 1

can not continue indefinitely, so that after a finite number of steps nk−1 is a prime, say, pk.

This leads to the prime factorization.

n = p1p2 · · · pk

For the uniqueness of prime factorization, let’s suppose that the integer n can be represented

as a product of primes in two ways, say,

n = p1p2 . . . pr q1q2 . . . qs where

where r ≤ s and pi’s and qi’s are all primes, written in increasing magnitude so that

p1 ≤ p2 ≤ · · · ≤ pr, q1 ≤ q2 ≤ · · · ≤ qs

Because p1 | q1q2 . . . qs. From the above corollary we know that p1 = qk, for some k but

then p1 ≥ q1. Similar reason gives q1 ≥ p1 which together gives p1 = q1. We may cancel the

common factors and obtain

p2p3 . . . pr = q2q3 . . . qs

Now repeat the process to get p2 = q2, and

p3p4 . . . pr = q3q4 . . . qs.

Continuing in this fashion, if the inequality r < s were to hold, we would get that

1 = qr+1qr+2 . . . qs

which is not possible as each qj > 1. Hence r = s, and p1 = q1, p2 = q2, . . . , pr = qr, making

the two factorization of n identical.

1.2. Theory of Congruence
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Definition 1.2.1.[3] Let n be a fixed positive integer. Two integers a and b are said to be

congruent modulo n, written as

a ≡ b(mod n)

if n divides the difference a− b; i.e. a− b = kn, for some integer k.

Theorem 1.2.2.[3] Let n > 1 be fixed and a, b, c, d be arbitrary integers. Then the following

properties hold:

(i) a ≡ a (mod n).

(ii) If a ≡ b (mod n), then b ≡ a (mod n).

(iii) If a ≡ b (mod n) and b ≡ c (mod n), then a ≡ c (mod n).

(iv) If a ≡ b (mod n) and c ≡ d (mod n), then a+ c ≡ b+ d (mod n) and ac ≡ bd (mod n).

(v) If a ≡ b (mod n), then a+ c ≡ b+ c (mod n) and ac ≡ bc (mod n).

(vi) If a ≡ b (mod n), then ak ≡ bk (mod n), for any positive integer k.

Theorem 1.2.3.[3] If ca ≡ cb(mod n), then a ≡ b(mod n/d), where d = gcd(c, n).

Proof: By hypothesis,we can write

c(a− b) = ca− cb = kn

for some integer k. Knowing that gcd(c, n) = d, there exist relatively prime integers r and s

satisfying c = dr and n = ds. Putting these two values in the above equation, we get

r(a− b) = ks.

Hence, s|r(a− b) and gcd(r, s) = 1. Euclid’s lemma [If a|bc, with gcd(a, b)=1, then a|c] yields

s|(a− b) which implies that a ≡ b(mod s). In other words a ≡ b(mod n/d).

Corollary 1.2.4 [3]. If ca ≡ cb(mod n) and gcd(c, n) = 1, then a ≡ b(mod n).

Corollary 1.2.5 [3]. If ca ≡ cb(mod p) and p - c, where p is a prime number, then a ≡

b(mod p).

Theorem 1.2.6.[3] Let P (x) =
∑m

k=0 ckx
k be a polynomial function of x with integral coef-

ficients ck. If a ≡ b(mod n), then P (a) ≡ P (b)(mod n).

Proof: As a ≡ b(mod n), we can write ak ≡ bk(mod n) for k = 0, 1, · · · ,m. Therefore

cka
k ≡ ckbk(mod n), for all such k. Adding these m+ 1 congruences, we conclude that

m∑

k=0

cka
k ≡

m∑

k=0

ckb
k(mod n)
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or, P (a) ≡ P (b)(mod n).

Corollary 1.2.7 [3]. If a is a solution of P (x) ≡ 0(mod n)) and a ≡ b(mod n), then b is also

a solution.

Theorem 1.2.8.[3] The linear congruence ax ≡ b(mod n) has a solution if and only if d | b,

where d = gcd(a, n). If d | b, then it has d mutually incongruent solutions modulo n.

Proof: The given congruence is equivalent to the linear diophantine equation ax − ny = b.

We know that the latter equation can be solved if and only if d | b; moreover, if it is solvable

and x0, y0 is one specific solution, then any other solution has the form

x = x0 +
n

d
t, y = y0 +

a

d
t

for some choice of t. Among the various integers satisfying the first of these formulas, consider

those that occur when t takes on the successive values t = 0, 1, 2, · · · , d− 1:

x0, x0 +
n

d
, x0 +

2n

d
, · · · , x0 +

(d− 1)n

d

We claim that these integers are incongruent modulo n and all other such integers x are

congruent to some one of them. If it happened that

x0 +
n

d
t1 ≡ x0 +

n

d
t2(mod n)

where 0 ≤ t1 < t2 ≤ d− 1, then we would have

n

d
t1 ≡

n

d
t2(mod n)

Now gcd(n/d, n) = n/d. So

t1 ≡ t2(mod d)

which is to say that d | t2− t1. But this is impossible in the view of inequality 0 < t2− t1 < d.

It remains to argue that any other solution x0 + (n/d)t is congruent modulo n to one of

the d integers listed above. The division algorithm permits us to write t as t = qd+ r, where

0 ≤ r ≤ d− 1. Hence

x0 +
n

d
t = x0 +

n

d
(qd+ r)

= x0 + nq +
n

d
r

≡ x0 +
n

d
r(mod n)
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with x0 +
n

d
r being one of our d selected solutions.

Corollary 1.2.9 [3]. If gcd(a, n) = 1, then the linear congruence ax ≡ b(mod n) has a

unique solution modulo n.

Theorem 1.2.10.[3] The system of linear congruences

ax+ by ≡ r(mod n)

cx+ dy ≡ s(mod n)

has a unique solution modulo n, whenever gcd(ad− bc, n) = 1.

1.3. Fermat’s Theorem and Related results

Theorem 1.3.1 (Fermat)[3]. Let p be a prime and suppose that p - a. Then ap−1 ≡

1(mod p).

Proof: We begin by considering the first p− 1 positive multiples of a; i.e the integers

a, 2a, 3a, · · · , (p− 1)a.

None of these numbers is congruent modulo p to any other, nor is any congruent to zero.

Indeed, if it happened that

ra ≡ sa(mod p) 1 ≤ r < s ≤ (p− 1)

then a could be cancelled out to give r ≡ s(mod p), which is impossible. Therefore the

previous set of integers must be congruent modulo p to 1, 2, · · · , (p− 1), taken in same order.

Multiplying all these congruences together, we get that

a.2a.3a · · · (p− 1)a ≡ 1.2.3 · · · (p− 1)(mod p)

whence

a(p−1)(p− 1)! ≡ (p− 1)!(mod p).

Once (p−1)! is cancelled out from both the sides of the preceding congruence, since p - (p−1)!,

we get that

a(p−1) ≡ 1(mod p).

Corollary 1.3.2 [3]. If p is a prime, then ap ≡ a(mod p), for any integer a.
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Theorem 1.3.3 (Wilson)[3]. If p is a prime, then (p− 1)! ≡ −1(mod p).

Theorem 1.3.4.[3] The quadratic congruence x2 + 1 ≡ 0(mod p), where p is an odd prime,

has a solution if and only if p ≡ 1(mod 4).

Proof: Let a be any solution of x2 + 1 ≡ 0(mod p), so that a2 ≡ −1(mod p). Because p - a,

the outcome of applying Fermat’s theorem is

1 ≡ a(p−1) ≡ (a2)(p−1)/2 ≡ (−1)(p−1)/2(mod p).

The possibility that p = 4k + 3, for some k does not arise. If it did, we would have

(−1)(p−1)/2 = (−1)(2k+1) = −1

hence, 1 ≡ −1(mod p). The net result of this is that p | 2, which is false. Therefore p must

be of the form 4k + 1.

Now for the opposite direction, in the product

(p− 1)! = 1.2. · · · (p− 1)

2
.
(p+ 1)

2
. . . (p− 2)(p− 1)

we have the congruences

p− 1 ≡ −1(mod p)

p− 2 ≡ −2(mod p)

...

(p+ 1)

2
≡ −(p− 1)

2
(mod p)

Rearrangement of the factors produce

(p− 1)! ≡ 1.(−1).2(−2) . . .
(p− 1)

2
.

(
− (p− 1)

2

)
(mod p)

≡ (−1)(p−1)/2
(

1.2. . . .
(p− 1)

2

)2

(mod p)

because there are (p−1)/2 minus signs involved. By Wilson’s theorem (p−1)! ≡ −1(mod p),

−1 ≡ (−1)(p−1)/2
[(

p− 1

2

)
!

]2
(mod p)
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If we assume that p is of the form 4k+1, then (−1)(p−1)/2 = 1, leaving us with the congruence

−1 ≡
[(

p− 1

2

)
!

]2
(mod p).

The conclusion is that the integer [(p − 1)/2]! satisfies the quadratic congruence x2 + 1 ≡

0(mod p).

1.4. Number Theoretic Functions

Definition 1.4.1.[3] Given a positive integer n; let τ(n) denotes the number of positive

divisors of n and σ(n) denote the sum of these divisors.

Theorem 1.4.2.[3] If n = pk11 .p
k2
2 · · · pkrr is the prime factorization of n > 1, then the positive

divisors of n are precisely those integers d of the form

d = pa11 .p
a2
2 . . . parr

where 0 ≤ ai ≤ ki (i = 1, 2 . . . , r).

Proof: Note that the divisor d = 1 is obtained when a1 = a2 = · · · = ar = 0 and n itself

occurs when a1 = k1, a2 = k2, . . . ,ar = kr. Suppose that d divides n is non-trivially, say,

n = dd′ where d > 1; d′ > 1. Express both d and d′ as product of (not necessarily distinct)

primes.

d = q1.q2. . . . qs d′ = t1.t2. . . . tu

with qi, ti prime. Then

pk11 .p
k2
2 . . . pkrr = q1.q2 . . . qs.t1 . . . tu

are two prime factorizations of the positive integer n. By the uniqueness of the prime factor-

ization each prime qi must be one of the pj . Collecting the equal primes into a single integral

power, we get

d = q1.q2 . . . qs = pa11 .p
a2
2 . . . parr

where the possibility that ai = 0 is allowed.
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Conversely, every number d = pa11 .p
a2
2 . . . parr (0 ≤ ai ≤ ki) turns out to be a divisors of n.

For we can write

n = pk11 .p
k2
2 . . . pkrr

= (pa11 .p
a2
2 . . . parr )(pk1−a11 .pk2−a22 . . . pkr−arr )

= dd′

with d′ = pk1−a11 .pk2−a22 . . . pkr−arr and ki − ai ≥ 0 for each i. Then d′ > 0 and d | n.

Theorem 1.4.3.[3] If n = pk11 , p
k2
2 . . . pkrr is the prime factorization of n > 1, then

(a) τ(n) = (k1 + 1)(k2 + 1) . . . (kr + 1), and

(b) σ(n) =
pk1+1
1 − 1

p1 − 1
.
pk2+1
2 − 1

p2 − 1
. . . . .

pkr+1
r − 1

pr − 1
.

Definition 1.4.4.[3] A number-theoretic function f is said to be multiplicative if

f(mn) = f(m).f(n)

whenever gcd(m,n) = 1.

Theorem 1.4.5.[3] The functions τ and σ are both multiplicative functions.

Proof: Let m and n be relatively prime integers. Because the result is trivially true if either

m, or n is equal to 1, we may assume that m > 1 and n > 1. If

m = pk11 p
k2
2 . . . pkrr and n = qj11 q

j2
2 . . . qjss

are the prime factorizations of m and n, then because gcd(m,n) = 1, no pi can occur among

the qj . It follows that the prime factorization of the product mn is given by

mn = pk11 p
k2
2 . . . pkrr q

j1
1 q

j2
2 . . . qjss .

Applying the previous theorem, we obtain

τ(mn) = [(k1 + 1) . . . (kr + 1)][(j1 + 1) . . . (js + 1)]

= τ(m)τ(n).

In the similar way,

σ(mn) =

[
pk1+1
1 − 1

p1 − 1
. . .

pkr+1
r − 1

pr − 1

] [
qj1+1
1 − 1

q1 − 1
. . .

qjs+1
s − 1

qs − 1

]

= σ(m)σ(n).
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Thus, τ and σ are multiplicative functions.

1.5. Euler’s Generalization of Fermat’s Theorem

Definition 1.5.1.[3] For n ≥ 1, let φ(n) denote the number of positive integers not exceeding

n that are relatively prime to n. The function φ is called the Euler’s phi-function or, Euler’s

totient function.

Theorem 1.5.2.[3] If p is a prime and k > 0, then

φ(pk) = pk − p(k−1) = pk
(

1− 1

p

)
.

Proof: Clearly gcd(n, pk) = 1 if and only if p - n. There are p(k−1) integers between 1 and

pk divisible by p, namely;

p, 2p, 3p . . . (p(k−1)).p

Thus the set {1, 2, . . . , pk} contains exactly pk − pk−1 integers that are relatively prime to pk

and so by the definition of Euler’s phi-function, φ(pk) = pk − pk−1.

Lemma 1.5.3.[3] Given integers a, b, c; gcd(a, bc) = 1 iff gcd(a, b) = 1 and gcd(a, c) = 1.

Theorem 1.5.4.[3] The function φ is a multiplicative function.

Theorem 1.5.5.[3] If the integer n > 1 has the prime factorization n = pk11 p
k2
2 . . . pkrr , then

φ(n) = (pk11 − pk1−11 )(pk22 − pk2−12 ) . . . (pkrr − pkr−1r )

= n

(
1− 1

p1

)(
1− 1

p2

)
· · ·
(

1− 1

pr

)

Proof: We will prove the above result by induction on r. Clearly, the result is true for r = 1.

Suppose it holds for r = i. As

gcd(pk11 p
k2
2 . . . pkii , p

ki+1

i+1 ) = 1

the definition of multiplicative function gives

φ((pk11 p
k2
2 . . . pkii )p

ki+1

i+1 ) = φ(pk11 p
k2
2 . . . pkii ).φ(p

ki+1

i+1 )

= φ(pk11 p
k2
2 . . . pkii )(p

ki+1

i+1 − p
ki+1−1
i+1 )

9



By the induction hypothesis, the first factor on the R.H.S. becomes

φ(pk11 p
k2
2 . . . pkii ) = (pk11 − pk1−11 )(pk22 − pk2−12 ) · · · (pkii − pki−1i )

and this completes the induction steps.

Theorem 1.5.6.[3] For n > 2, φ(n) is an even integer.

Proof: First assume that n is a power of 2. Let’s say that n = 2k, with k ≥ 2. Then

φ(n) = φ(2k) = 2k
(

1− 1

2

)
= 2k−1

an even integer. If n is not a power of 2, then it is divisible by an odd prime p, we therefore

may write n as n = pkm, where k ≥ 1 and gcd(pk,m) = 1. Applying the multiplicativity

of phi-function we get φ(n) = φ(pk).φ(m) = pk−1(p − 1).φ(m) which again is even because

2|(p− 1).

Lemma 1.5.7.[3] Let n > 1 and gcd(a, n) = 1. If a1, a2, . . . , aφ(n) are the positive integers

less than n and relatively prime to n, then

aa1, aa2, . . . , aaφ(n)

are congruent modulo n to a1, a2, . . . , aφ(n) in some order.

Proof: Note that no two of the integers aa1, aa2, . . . , aaφ(n) are congruent modulo n. For if

aai ≡ aaj(mod n) with 1 ≤ i < j ≤ φ(n), then the cancellation law yields ai ≡ aj(mod n), and

thus ai = aj , which is a contradiction. Further as gcd(ai, n) = 1, for all i and gcd(a, n) = 1,

each aai is relatively prime to n. Fixing on a particular aai, there exists a unique integer b,

where 0 ≤ b < n, for which aai ≡ b(mod n). Since gcd(b, n) = gcd(aai, n) = 1, b must be one

of the integers a1, a2, . . . , aφ(n). This proves that the numbers aa1, aa2, . . . , aaφ(n) and the

numbers a1, a2, . . . , aφ(n) are identical (modulo n) in a certain order.

Theorem 1.5.8(Euler)[3]. If n ≥ 1 and gcd(a, n) = 1, then aφ(n) ≡ 1(mod n).

Proof: Let n > 1. Let a1, a2, . . . , aφ(n) be the positive integers less than n that are

relatively prime to n. Since gcd(a, n) = 1, it follows from the lemma that aa1, aa2, . . . , aaφ(n)

are congruent, not necessarily in the order of appearance, to a1, a2, . . . , aφ(n). Then

aa1 ≡ a′1(mod n)

aa2 ≡ a′2(mod n)
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...

aaφ(n) ≡ a′φ(n)(mod n)

where a′1, a
′
2, . . . , a

′
φ(n) are integers a1, a2, . . . , aφ(n) in some order. On taking the product

of these φ(n) congruences, we get

(aa1)(aa2) . . . (aaφ(n)) ≡ a′1a′2 · · · a′φ(n)(mod n)

≡ a1a2 · · · aφ(n)(mod n)

and this implies that

aφ(n)(a1a2 . . . aφ(n)) ≡ a1a2 · · · aφ(n)(mod n).

Since gcd(ai, n) = 1 , for each i, we have gcd(a1a2 . . . aφ(n), n) = 1. Therefore dividing both

sides of the above congruence by a1a2 . . . aφ(n) we get, aφ(n) ≡ 1(mod n).

Corollary 1.5.9 (Fermat)[3]. If p is a prime such that p does not divide a, then ap−1 ≡

1(mod p).

Theorem 1.5.10 (Gauss)[3]. For each positive integer n ≥ 1,

n =
∑

d|n

φ(d)

the sum being extended over all positive divisors of n.

Proof: The integers between 1 and n can be separated into classes as follows: If d is a positive

divisor of n, we put the integer m in the class Sd provided that gcd(m,n) = d. i.e.

Sd = {m : gcd(m,n) = d; 1 ≤ m ≤ n}

Now gcd(m,n) = d iff gcd(m/d, n/d) = 1. Thus the number of integers in the class Sd is

equal to the number of positive integers not exceeding n/d that are relatively prime to n/d,

or equal to φ(n/d). Since each of the n integers in the set {1, 2, . . . , n} lies in exactly one

class Sd, we get

n =
∑

d|n

φ(n/d)

But as d runs through all positive divisors of n so does n/d; hence

∑

d|n

φ(n/d) =
∑

d|n

φ(d).
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Theorem 1.5.11.[3] For n > 1, the sum of the positive integers less than n and relatively

prime to n is
1

2
nφ(n).

Proof. Let a1, a2, · · · , aφ(n) be the positive integers less than n and relatively prime to n.

Now since gcd(a, n) = 1 iff gcd(n− a, n) = 1, the numbers n− a1, n− a2, · · · , n− aφ(n) are

equal in some order to a1, a2, . . . , aφ(n). Thus

a1 + a2 + · · ·+ aφ(n) = (n− a1) + (n− a2) + · · ·+ (n− aφ(n))

= φ(n)n− (a1 + a2 + · · ·+ aφ(n))

Hence, 2(a1 + a2 + · · ·+ aφ(n)) = φ(n)n.
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Chapter 2

Cryptography

2.1. Introduction

Cryptography (from the Greek kryptos means hidden and graphein means to write) pro-

vides practical means of protecting information transmitted through public communication

networks, such as those using telephone lines, microwaves or satellites etc. In cryptogra-

phy, codes are called ciphers, the information to be concealed is called plaintext and, after

transformation to a secret form a message is called ciphertext.

Both the plaintext and the ciphertext are written in terms of elements from a finite set

A, called an alphabet of definition. The alphabet of definition may consist of numbers, letters

from an alphabet such as the English, Greek, or Russian alphabets, or symbols such as !,

@, ∗, or any other symbols that we choose to use when sending messages. The alphabet

of definition for the plaintext and ciphertext may differ, but the usual convention is to use

the same for both. A message space, M, is defined to be a finite set consisting of strings of

symbols from the alphabet of definition. Elements ofM, which may be anything from binary

strings to English text, are called plaintext message units. A finite set C, consisting of strings

of symbols from an alphabet of definition for the ciphertext, is called the ciphertext space,

and elements from C are called ciphertext message units. Let K be a set of parameters, called

the keyspace, and elements of K are called keys.

Definition 2.1.1.[4] An enciphering transformation (or, enciphering function) is a bijective

function

Ee :M→ C,

where the key e ∈ K uniquely determines Ee acting upon plaintext message units m ∈M to

get ciphertext message units

Ee(m) = c ∈ C.

A deciphering transformation (or, deciphering function) is a bijective function

Dd : C →M,
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which is uniquely determined by a given key d ∈ K, acting upon ciphertext message units

c ∈ C to get plaintext message units

Dd(c) = m.

The application of Ee tom, is called enciphering, encoding, or encrypting m ∈M, whereas

the application of Dd to c is called deciphering, decoding, or decrypting c ∈ C.

For example, let N=letter alphabets with numerical equivalents 0, 1, 2 . . . .(N−1), b=fixed

integer, and f=a shift transformation, that is, the enchiphering function defined by the rule

C = f(P ) ≡ P + b (mod N),

where P represents the plaintext and C is the ciphertext.

A B C D E F G H I J K L M

00 01 02 03 04 05 06 07 08 09 10 11 12

N O P Q R S T U V W X Y Z

13 14 15 16 17 18 19 20 21 22 23 24 25

Let the plaintext message be

THE GOD IS GREAT

Using the congruence theory and the enchiphering function defined by

C ≡ P + 3 (mod 26),

where P is the digital equivalent of a plaintext letter and C the digital equivalent of the

ciphertext, the letters of the message in the above equation are converted to their equivalents:

19 07 04 06 14 03 08 18 06 17 04 00 19

Thus, the ciphertext for the above plaintext message becomes

22 10 07 09 17 06 11 21 09 20 07 03 22

i.e

WKH JRG LV JUHDW.
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To recover the plaintext, the procedure is simply reversed by means of the congruences

P ≡ C − 3 (mod 26) ≡ C + 23 (mod 26).

Definition 2.1.2.[4] A cryptosystem is composed of a set {Ee : e ∈ K} consisting of en-

ciphering transformations and the corresponding set {E−1e : e ∈ K} = {Dd : d ∈ K} of

deciphering transformations. In other words, for each e ∈ K, there exists a unique d ∈ K such

that Dd = E−1e , so that Dd(Ee(m)) = m for all m ∈M. The keys (e, d) are called a key pair

where possibly e = d.

2.2. Secret Key Cryptography

With secret key cryptography, a single key is used for both encryption and decryption.

The sender uses the key (or some set of rules) to encrypt the plaintext and sends the cipher-

text to the receiver. The receiver applies the same key (or ruleset) to decrypt the message

and recover the plaintext. Because a single key is used for both functions, secret key cryp-

tography is also called symmetric encryption. With this form of cryptography, it is obvious

that the key must be known to both the sender and the receiver; that, in fact, is the secret.

The biggest difficulty with this approach, of course, is the distribution of the key. Secret key

cryptography schemes are generally categorized as being either stream ciphers or block ciphers.

Definition 2.2.1.[4] A Block Cipher is a cryptosystem that separates the plaintext message

into strings, called blocks, of fixed length k ∈ N, called the blocklength, and enciphers one

block at a time.

Classically, block ciphers are divided into two types, substitution and transposition ciphers.

A substitution cipher replaces plaintext symbols with other symbols to produce ciphertext.

As an example, the plaintext might be palace, and the ciphertext might be QZY ZXW when

a, c, e, l, p are replaced by Z,X,W, Y,Q, respectively. With a transposition cipher we permute

the places where the plaintext letters sit. That is, we do not change the letters but rather

move them around, transpose them, without introducing any new letters.
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Definition 2.2.2.[4] A simple transposition cipher, also known as a simple permutation

cipher, is a symmetric-key block cryptosystem having blocklength r ∈ N, with keyspace K

being the set of permutations on {1, 2, · · · , r}. The enciphering transformation is defined, for

each m = (m1,m2 · · · ,mr) ∈M, and given e ∈ K, by Ee(m) = (me(1),me(2), · · · ,me(r)), and

for each c = (c1, c2, · · · , cr) ∈ C, Dd(c) = De−1(c) = (cd(1), cd(2), · · · , cd(r)).

The cryptosystems in the above definition have keyspace of cardinality |K| = r!. Permu-

tation encryption involves grouping plaintext into blocks of r symbols and applying to each

block the permutation e on the numbers 1, 2, · · · , r.

Definition 2.2.3.[4] Let A be an alphabet of definition consisting of n symbols, and let M

be the set of all blocks of length r over A. The keyspace K will consist of all ordered r-tuples

e = (σ1, σ2, · · · , σr) of permutations σj on A. For each e ∈ K, and m = (m1,m2, · · · ,mr) ∈

M let E(m) = (σ1(m1), σ2(m2), · · · , σr(mr)) = (c1, c2, · · · , cr) = c ∈ C, and for d =

(d1, d2, · · · , dr) = (σ−11 , σ−12 , · · · , σ−1r ) = σ−1, Dd(c) = (d1(c1), d2(c2), · · · , dr(cr)) =

(σ−11 (c1), σ
−1
2 (c2), · · · , σ−1r (cr)) = m. This type of cryptosystem is called a substitution ci-

pher. If all keys are the same, namely, σ1, σ2, · · · , σr, then this cryptosystem is called a simple

substitution cipher or monoalphabebetic substitution cipher. If the keys differ, then it is called

a polyalphabetic substitution cipher.

Definition 2.2.4.[4] Affine Cipher is also a type of block cipher. Let a, b, n ∈ N and for

m ∈ Z define

Ee(m) = am+ b(mod n),

where the key e is the ordered pair (a, b). Notice that for a = 1 we have Ee(m) = m+b(mod n),

the Shift Cipher, where the key is b. Such a transformation is called an Affine function. In

order to guarantee that the deciphering transformation exists, we need to know that the

inverse of the affine function exists. This means that f−1(c) ≡ a−1(c− b)(mod n) must exist

and this can happen only if gcd(a, n) = 1. We know that there are φ(n) natural numbers

less than n and relatively prime to it. Hence, since b can be any of the choices of natural

numbers less than n, there are exactly nφ(n) possible Affine Ciphers, the product of the
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possible choices for a with the number for b, since this is the total number of possible keys.

Thus we have

Let M = C = Z/nZ, n ∈ N, K = {(a, b) : a, b ∈ Z/nZ and gcd(a, n) = 1}, and for

e, d ∈ K, and m, c ∈ Z/nZ, let Ee(m) ≡ am+ b(mod n), then Dd(c) ≡ a−1(c− b)(mod n).

Thus, e = (a, b) since e is multiplication by a followed by addition of b modulo n, and

d = (a−1,−b) is subtraction of b followed by multiplication with a−1. In the case of the Shift

Cipher, the inverse is additive and in the case of the Affine Cipher, the inverse is multiplica-

tive. Of course, these coincide precisely when a = 1. In either case, knowing e or d allows us

to easily determine the other, so they are symmetric-key cryptosystems. They are also Block

Ciphers with the trivial blocklengths of k = 1.

Definition 2.2.5.[4] Stream ciphers operate on a single bit (byte or computer word) at a

time and implement some form of feedback mechanism so that the key is constantly changing.

A block cipher is so-called because the scheme encrypts one block of data at a time using the

same key on each block. In general, the same plaintext block will always encrypt to the same

ciphertext when using the same key in a block cipher whereas the same plaintext will encrypt

to different ciphertext in a stream cipher.

The following is the simplest flow chart for a stream cipher.

Figure 1: A Stream Cipher
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Definition 2.2.6.[4] If K is the keyspace for a set of enciphering transformations, then a

sequence k1k2 · · · ∈ K is called a keystream. A keystream is either randomly chosen or gener-

ated by an algorithm, called a keystream generator, which generates the keystream from an

initial small input keystream called a seed. Keystream generators that eventually repeat their

output are called periodic.

The Vernam cipher is a stream cipher with alphabet of definition A = {0, 1} that enciphers

in the following fashion. Given a bitstring

m1m2 . . .mn ∈M

and a key stream

k1k2 . . . kn ∈ K

the enciphering transformation is given by

Ekj (mj) = mj + kj = cj ∈ C,

and the deciphering transformation is given by

Dkj (cj) = cj + kj = mj ,

where + is addition modulo 2. The keystream is randomly chosen and never used again. For

this reason, the Vernam cipher is also called the one-time pad.

Example 2.2.7.[4]

Let n = |A| where A is the alphabet of definition. We call

k1k2 . . . kr for 1 ≤ r ≤ n

a priming key. Then given a plaintext message unit

m = (m1,m2, . . . ,ms) where s > r,

we generate a keystream as follows.

k = k1k2 . . . krm1m2 . . .ms−r.
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Then we encipher via:

Ekj (mj) = mj + kj (mod n) = cj , for j = 1, 2, . . . r, and

Ekj (mj) = mj +mj−r (mod n) = cj , for j > r,

and we decipher via

Dkj (cj) = cj − kj (mod n) = mj , for j = 1, 2, . . . r, and

Dkj (cj) = cj −mj−r (mod n) = mj for j > r.

This cryptosystem is non-synchronous since the plaintext serves as the key, from the (r+ 1)st

position onwards, with the simplest case being r = 1.

Definition 2.2.8.[4] A stream cipher is said to be synchronous if the keystream is gener-

ated without use of either the plaintext or of the ciphertext, called keystream generation

independent of the plaintext and ciphertext. A stream cipher is called self synchronizing (or

asynchronous) if the keystream is generated as a function of the key and a fixed number of

previous ciphertext units. If the stream cipher utilizes plaintext in the keystream generation,

then it is called non synchronous.

The following two flow charts illustrate a general synchronous and a general asynchronous

cipher respectively.

Figure 2: A Synchronous Stream Cipher
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Figure 3: A Asynchronous Stream Cipher
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Data Encryption Standard (DES):[4] The best-known symmetric-key block cipher, (now

replaced by the Advanced Encryption Standard), is the Data Encryption Standard (DES).

We will begin with an overview of the mechanisms behind S-DES, which is a simplified version

of DES. In practice, any text to be sent is first converted to a string of numbers, for example

by assigning the numerical ASCII codes that correspond to ordinary keyboard characters.

These are then written in binary (base 2) notation, so that the text becomes a string of 0’s

and 1’s.

Algorithm for S-DES encryption:[4]

(i) First the message to be encrypted is divided into blocks of 8-bits. Let us denote each

such block by m. The key k used in the encryption process has bitlength 10.

(ii) From the 10-bit key k generate two subkeys k1 and k2 of 8-bits each.

(iii) For k1 apply a permutation P10 (of 10 symbols) to k, divide it into two equal parts 5-bits

each and apply left-shift by 1 on these two sets of 5 bits. To the resulting 10-bits apply

the permutation P8 (of 8 symbols). This will generate the first subkey k1 of 8-bits.

(iv) For k2 start from the two sets of 5-bits obtained after applying left-shift by 1 and on

both apply left shift by 2, then P8 to obtain the second subkey k2 of 8-bits.

(v) Apply an initial permutation IP to m.

(vi) Then divide the resulting 8-bits into two equal parts. Let L(t) represents the first 4-bits

and R(t) represents the remaining 4-bits.
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(vii) Apply the first round function fk1(t) = (L(t)⊕ F (R(t), k1), R(t)). Here ⊕ denotes sum

modulo 2. The function F first uses the expansion permutation EP to convert 4-bit

input R(t) into 8-bit output. Then add this 8-bit output to the subkey k1 modulo 2.

Denote the first four bits of this result by L(y) and the remaining four bits by R(y).

Now apply the S-boxes S0 and S1 to L(y) and R(y), respectively. This process will give

us 4-bits. At last apply the permutation P4 to get the final output of the function F .

(viii) Now apply the switch function SW which swaps the set of first four bits and the set of

remaining four bits of the output of fk1 .

(ix) Divide the resulting 8-bits into two equal parts. Let L(t) represents the first 4-bits

and R(t) represents the remaining 4-bits. Apply the second round function fk2(t) =

(L(t)⊕ F (R(t), k2), R(t)) as described above by using the second subkey k2.

(x) At last apply the inverse of the initial permutation IP−1 to get the ciphertext c.

Algorithm for S-DES decryption:

(i) Apply the initial permutation IP to c.

(ii) Then divide the resulting 8-bits into two equal parts. Let L(t) represents the first 4-bits

and R(t) represents the remaining 4-bits.

(iii) Apply the second round function fk2(t) = (L(t)⊕ F (R(t), k2), R(t)).

(iv) Now apply the switch function SW which swaps the set of first four bits and the set of

remaining four bits of the output of fk2 .

(v) Divide the resulting 8-bits into two equal parts. Let L(t) represents the first 4-bits

and R(t) represents the remaining 4-bits. Apply the first round function fk1(t) =

(L(t)⊕ F (R(t), k1), R(t)).

(vi) At last apply the inverse of the initial permutation IP−1 to get the original plaintext

m.
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The S-DES Encryption Flowchart

input: m = (m1m2m3m4m5m6m7m8)

!

IP
!

m2m6m3m1 m4m8m5m7

!
!✄✂ "✁+ ← F (m4m8m5m7, k1)
!

ց ւ
u1u2u3u4 m4m8m5m7

ց ւ
SW!

m4m8m5m7 u1u2u3u4

!
!✄✂ "✁+ ← F (u1u2u3u4, k2)
!

ց ւ
v1v2v3v4 u1u2u3u4

!

IP−1

!

output: c = (c1c2c3c4c5c6c7c8)

The action between IP and SW is round 1, namely, the execution of fk1
,

and the action between SW and IP−1 is round 2, the action of fk2 .
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The S-DES Decryption Flowchart

input: c = (c1c2c3c4c5c6c7c8)

!

IP
!

c2c6c3c1 c4c8c5c7
! ց✄✂ "✁+ ← F (c4c8c5c7, k1)

!

ց ւ
m4m8m5m7 c4c8c5c7

ց ւ
SW!

c4c8c5c7 m4m8m5m7

!
!✄✂ "✁+ ← F (m4m8m5m7, k1)
!

ց ւ
m2m6m3m1 m4m8m5m7

!

IP−1

!

output: m = (m1m2m3m4m5m6m7m8)
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Example 2.2.9.[4] Suppose we are given plaintext bitstring m = (10100101) and key bit-

string k = (0010010111). Suppose that IP (Initial Permutation), EP (Expansion Permuta-

tion), P10, P8, P4, IP
−1 and the two S-boxes, S0 and S1 are given as follows:

IP

j 1 2 3 4 5 6 7 8

IP (j) 2 6 3 1 4 8 5 7

P10

j 1 2 3 4 5 6 7 8 9 10

P10(j) 3 5 2 7 4 10 1 9 8 6

P8

j 1 2 3 4 5 6 7 8

P8(j) 6 3 7 4 8 5 10 9

P4

j 1 2 3 4

P4(j) 2 4 3 1

EP

j 1 2 3 4 5 6 7 8

EP (j) 4 1 2 3 2 3 4 1

IP−1

j 1 2 3 4 5 6 7 8

IP−1(j) 4 1 3 5 7 2 8 6

24



S0 x2 0 0 1 1
x3 0 1 0 1

x1 x4

0 0 01 00 11 10
0 1 11 10 01 00
1 0 00 10 01 11
1 1 00 01 11 10

and

S1 x2 0 0 1 1
x3 0 1 0 1

x1 x4

0 0 00 01 10 11
0 1 10 00 01 11
1 0 11 00 01 10
1 1 10 01 00 11

These S-Boxes or substitution boxes for S-DES are four-by-four matrices with entries from

Z/4Z (put into binary) with rows and columns labelled from 0 to 3 (put into binary) that

take a 4-bit input and output a 2-bit string as follows. If (x1x2x3x4) = (1101) is our input

bitstring of length 4, then by using the first S-Box, we get S0(1101) = (11), since (x1x4) = (11)

represents the fourth row, and (x2x3) = (10) represents the third column, the entry at the

intersection of which is (11). Similarly, if we want to use the S-Box S1, then S1(1101) = (00).

First we generate our subkeys as follows:

(1) P10(k) = 1000010111.

(2) LS1(10000) = (00001) and LS1(10111) = (01111).

(3) P8(0000101111) = (00101111) = k1.

(4) LS2(00001) = (00100) and LS2(01111) = (11101) (applying LS2 to the output of step

2)

(5) P8(0010011101) = (11101010) = k2 (applying P8 to the output of step 4).

Now we encrypt as follows. First we calculate IP (m) = (01110100). Then we will calculate the

round function for the first round fk1(01110100) = (L(01110100)⊕F (R(01110100), k1), R(01110100)).

(1) EP (0100) = (00101000).

(2) EP (0100)⊕ k1 = (00101000)⊕ (00101111) = (00000111).
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(3) S0(0000) = (01) and S1(0111) = (11).

(4) P4(0111) = (1110) = F (R(01110100), k1).

(5) L(01110100)⊕ F (R(01110100), k1) = (0111)⊕ (1110) = (1001).

(6) fk1(01110100) = (10010100).

Now we apply the switch function, SW (10010100) = (01001001). Similarly,

fk2(01001001) = (L(01001001)⊕ F (R(01001001), k2), R(01001001)) = (01101001)

At last, we apply the inverse of the initial permutation, IP−1(01101001) = (00110110), which

is the ciphertext.

To decrypt, we reverse the process. First feed c into IP to get

IP (c) = (01101001),

then apply fk2 to get

fk2(0110⊕ F (1001, k2), 1001) = (01001001).

Then SW (01001001) = (10010100). Next,

fk1(1001⊕ F (0100, k1), 0100) = (01110100),

then the final application yields the original plaintext, IP−1(01110100) = (10100101) = m.

Schaefer relabelled S-DES as baby DES since it is a much simpler block cipher than DES.

In terms of composition of functions, all of the above discussion of S-DES can be combined

as follows.

(IP−1 ◦ fk2 ◦ SW ◦ fk1 ◦ IP )(m) = IP−1(fk2(SW (fk1(IP (m)))) = c.

Full DES takes 64-bit plaintext blocks, a 56-bit key, from which sixteen 48-bit subkeys are

generated, and correspondingly there are sixteen round functions fkj for j = 1, 2, · · · , 16.

Hence, we may specify (full) DES now as a single composition of functions.

(IP−1 ◦ fk16 ◦ SW ◦ fk15 ◦ SW ◦ · · · ◦ fk1 ◦ IP )(m) = c.
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Moreover, in DES, we have eight S-Boxes Sj for j = 1, 2, · · · , 8, each having four rows and

sixteen columns, where Sj(m1m2m3m4m5m6) picks out the entry in row (m1m6) and column

(m2m3m4m5), which represents sixteen possible entries, in binary, for each such row. Also,

P4 in S-DES, is replaced by P32 in DES, which is half the bitlength of the input in either case.

2.3. Public Key Cryptography

In Public key cryptography encryption and decryption are carried out using two different

keys. The two keys in such a key pair are referred to as the public key and the private key.

Public-key cryptography is also known as asymmetric-key cryptography.

Party A, if wanting to communicate confidentially with party B, can encrypt a message

using B’s publicly available key. Such a communication would only be decipherable by B

as only B would have access to the corresponding private key. Party A, if wanting to send

an authenticated message to party B, would encrypt the message with A’s own private key.

Since this message would only be decipherable with A’s public key, that would establish the

authenticity of the message meaning that A was indeed the source of the message. The public-

key encryption can be used to provide both confidentiality and authentication at the same

time. Note that confidentiality means that we want to protect a message from eavesdroppers

and authentication means that the recipient needs a guarantee as to the identity of the sender.

A’s public and private keys are designated as PUA and PRA. B’s public and private keys

are designated as PUB and PRB. Suppose that A wants to send a message M to B with

both authentication and confidentiality. The processing steps undertaken by A to convert M

into its encrypted form C that can be placed on the wire are:

C = E(PUB, E(PRA,M))

where E() stands for encryption. The processing steps undertaken by B to recover M from

C are

M = D(PUA, D(PRB, C))

where D() stands for decryption.

The sender A encrypting his/her message with its own private key PRA provides authenti-

cation. The sender A further encrypting his/her message with the receivers public key PUB
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provides confidentiality.

The Rivest-Shamir-Adleman (RSA) Algorithm:[1]

The RSA is one of the first practicable public key cryptosystems and widely used for secure

data transmission. In such a cryptosystem, the encryption key is public and differs from the

decryption key which is kept secrete. In RSA, the asymmetric key is based on the practical

difficulty of factoring the product of two large prime numbers. Considering arithmetic modulo

n, let’s say that e is an integer that is co-prime to the totient ϕ(n) of n. Further, let d be the

multiplicative inverse of e modulo ϕ(n).
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An individual A who wishes to receive messages confidentially will use the pair of integers

(e, n) as his/her public key. At the same time, this individual can use the pair of integers

(d, n) as the private key. The definitions of n, e, and d are as given above. Another party B

wishing to send a message M to A confidentially will encrypt M using A’s public key (e, n) to

create cipher text C. Subsequently, only A will be able to decrypt C using his/her private key

(d, n). If the plain text message M is too long, B may choose to use RSA as a block cipher

for encrypting the message meant for A. When RSA is used as a block cipher, the block size

is likely to be half the number of bits required to represent the modulus n. If the modulus

required, say, 1024 bits for its representation, message encryption would be based on 512-bit

blocks.

RSA ALGORITHM:[1]

The RSA algorithm involves 3 steps:

(1) Key Generation

(2) Encryption

(3) Decryption

(1) Key Generation:

Step-1: Choose two distinct large prime numbers p and q. For security purpose, the integers

p and q should be chosen at random and should be of similar bit length.

Step-2: Compute n = pq. n is used as the modulus of both public and private key.

Step-3: Compute ϕ(n) = ϕ(p)ϕ(q) = (p−1)(q−1) = n− (p+q−1), where ϕ is Euler totient
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function.

Step-4: Choose an integer e such that 1 < e < ϕ(n) and gcd(e, ϕ(n))) = 1 i.e e and ϕ(n) are

coprime.

Step-5: Determine d, the multiplicative inverse of e(mod ϕ(n)).

(2) Encryption: Let A transmits her public key (e, n) to B and keeps the private key secret.

B then wishes to send message M to A. He first turns M into m such that 0 ≤ m < n.

Then he computes the cipher text C corresponding to C ≡ me(mod n).

(3) Decryption: A can recover m from C by using her private key exponent via computing

m ≡ Cd(mod n)

Example 2.3.1. [1]

(1) Choose two distinct prime numbers such as p = 61 and q = 53.

(2) Then n = p× q gives n = 61× 53 = 3233.

(3) The totient of the product given by ϕ(n) = (p− 1)× (q − 1) is

ϕ(3233) = (61− 1)× (53− 1) = 3120.

(4) Choose any number 1 < e < 3120 that is co-prime to 3120. Let e = 17.

(5) Then d, the modular multiplicative inverse of e(modϕ(n)) yields

d ≡ e−1(mod ϕ(n))

d ≡ 17−1(mod ϕ(3120))

d = 2753

The public key is (n = 3233, e = 17). For plain text message m, the encryption function

is

C(m) = m17(mod 3233).

The private key is (n = 3233, d = 2753). For an encrypted cipher text C, the decryption

function is

m(C) = m17(mod 3233)

For instant; in order to encrypt m = 65, C = 6517(mod 3233) = 2790. To decrypt C = 2790,

we calculate m = 27902753(mod 3233) = 65.
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Digital Signature Algorithm (DSA) [4]: A digital signature scheme typically consists of

three algorithms:

(1) A key generation algorithm that selects a private key uniformly at random from a set of

possible private keys. The algorithm outputs the private key and a corresponding public key.

(2) A signing algorithm that, given a message and a private key, produces a signature.

(3) A signature verifying algorithm that, given a message, public key and a signature, either

accepts or rejects the message’s claim to authenticity.

Definition 2.3.2. A hash function is a computationally efficient function that maps bit-

strings of arbitrary length to bitstrings of fixed length, called hash values. A one-way hash

function f : M → C is a hash function that satisfies the property that f(m) is easy to

compute for all m ∈ M, but for randomly chosen c in the image of f , finding an m ∈ M

such that c = f(m) is computationally infeasible, namely we can easily compute f , but it is

computationally infeasible to compute f−1. One-way hash functions are called cryptographic

hash functions since these functions prevent unauthorized retrieval of the original bitstring.

(I) Key Generation:

(1) The sender selects a prime q with 160 bits. Then she selects a prime p with bitlength a

multiple of 64 between 512 and 1024, satisfying the property that q divides p− 1.

(2) She chooses an α ∈ Z∗p of order q modulo p. This can be done, for instance, by se-

lecting a primitive root a modulo p and setting α ≡ a(p−1)/q(mod p). (If m ∈ Z, n ∈ N

and ordn(m) = φ(n), then m is called a primitive root modulo n. Let m ∈ Z, n ∈ N and

gcd(m,n) = 1. Then the order of m modulo n is the smallest e ∈ N such that me ≡ 1(mod n),

denoted by e = ordn(m).)

(3) A cryptographic hash function h : Z∗p → B160 (bitstrings of length 160) is selected. She

chooses a private key e ∈ N such that e < q and computes β ≡ αe(mod p).

(4) She publishes (p, q, α, β) and keeps private her key e.
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(II) Signing: The sender performs the following in order to sign a message m ∈ Z∗p. In what

follows, we will assume that any powers of α or β have been reduced modulo p before being

used in any congruence modulo q:

(1) Select a random r ∈ N such that r ≤ q − 1.

(2) Compute γ ≡ αr(mod q).

(3) Compute σ ≡ r−1(h(m) + eγ)(mod q).

(4) She sends m and sigk(m, r) = (γ, σ) to the receiver.

(III) Verifying: The receiver executes the following steps:

(1) Obtain sender’s public data (p, q, α, β).

(2) Compute δ1 ≡ σ−1h(m)(mod q) and δ2 ≡ σ−1γ(mod q).

(3) Compute δ ≡ αδ1βδ2(mod q).

(4) verk(m, (γ, σ)) = 1 if and only if δ ≡ γ(mod q), in which case he accepts, and rejects

otherwise.

2.4. Elliptic Curve Cryptography [2]

An elliptic curve in its standard form is described by

y2 = x3 + ax+ b

for some fixed real values for the parameters a and b. This equation is also referred to as

Weierstrass Equation of characteristic 0. For an elliptic curve to be smooth the following

condition on the discriminant of the polynomial f(x) = x3 + ax+ b must be satisfied:

4a3 + 27b2 6= 0.

If the discriminant is zero, then the curve have a cusp or some other form of non-smoothness.

Non-smooth curves are called singular. It is not safe to use singular curves for cryptography.

For example, y2 = x3−4x and y2 = x3 +2x+1 are smooth elliptic curves. Note that since we

can write y = ±
√
x3 + ax+ b elliptic curves in their standard form will be symmetric about

the x-axis. The points on an elliptic curve can be shown to constitute a group. The group

32



operator for the points on an elliptic curve is, by convention, called addition. To add a point

P on an elliptic curve to another point Q on the same curve, we use the following rule:

We first join P with Q with a straight line. The third point of the intersection of this

straight line with the curve, if such an intersection exists, is denoted by R. The mirror image

of this point with respect to the x-coordinate is the point P+Q. If the third point of intersection

does not exist, we say it is at infinity.

We denote the point at infinity by the special symbol O and, this serves as the additive

identity element for the group operator. We stipulate that P + O = P for any point on the

curve.

We define the additive inverse of a point P as its mirror reflection with respect to the

x-coordinate. So if Q on the curve is the mirror reflection of P on the curve, then Q = −P .

For any such two points, it would obviously be the case that the third point of intersection
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with the curve of a line passing through the first two points will be at infinity. That is, the

point of intersection of a point and its additive inverse will be the distinguished point O. We

will further stipulate that that O + O = O, implying that −O = O. Therefore, the mirror

reflection of the point at infinity is the same point at infinity.

The additive inverse of a point where the tangent is parallel to the y-axis, is the point

itself. That is, if the tangent at P is parallel to the y-axis, then P + P = O. In general,

addition of P to itself means to take two distinct points P and Q and let Q approach P .

The line joining P and Q will obviously become a tangent at P in the limit. Therefore, the

operation P +P means that we must draw a tangent at P , find the intersection of the tangent

with the curve, and then take the mirror reflection of the intersection.

For an elliptic curve y2 = x3+ax+b we define the set of all points on the curve along with

the distinguished point O by E(a, b). E(a, b) is an abelian group with the addition operator

as we defined earlier.

The elliptic curves considered so far were for the field of real numbers which is of character-

istic zero. The addition operator similar to above can also be defined for fields of characteristic

2 or, 3. But now the elliptic curve y2 = x3 + ax+ b becomes singular. While singular elliptic

curves do admit group laws defined above, such groups, although defined over the points on

the elliptic curve, become isomorphic to either the multiplicative or the additive group over

the underlying field itself, depending on the type of singularity. That fact makes singular

elliptic curves unsuitable for cryptography because they are easy to crack. Therefore, in gen-

eral, when using the elliptic curve equation y2 = x3 + ax + b, we avoid underlying fields of

characteristic 2 or 3 because of the nature of the constraints they place on the parameters a

and b in order for the curve to not become singular.

An Algebraic expression for adding two points on an Elliptic Curve:[2] Given two

points P and Q on an elliptic curve E(a, b), we have already seen how to compute the point

P +Q, we first draw a straight line through P and Q. We next find the third intersection of

this line with the elliptic curve. We denote this point of intersection by R. Then P + Q is

equal to the mirror reflection of R about the x-axis. In other words, if P , Q, and R are the

three intersections of the straight line with the curve, then P + Q = −R. This implies that
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the three intersections of a straight line with the elliptic curve must satisfy P +Q+R = O.

We will next examine the algebraic implications of the above relationship between the three

points of intersection. The equation of the straight line that runs through the points P and

Q must be of the form y = αx + β, where α is the slope of the line, which is given by

α =
yQ − yP
xQ − xP

. For a point (x, y) to lie at the intersection of the straight line and the elliptic

curve E(a, b), the following equality must hold

(αx+ β)2 = x3 + ax+ b

since y = αx + β on the straight line through the points P and Q and since the equation of

the elliptic curve is y2 = x3 + ax + b. For there to be three points of intersection between

the straight line and the elliptic curve, the cubic form in equation (αx + β)2 = x3 + ax + b

must have three roots. We already know two of these roots, since they must be xP and xQ,

corresponding to the points P and Q. Being a cubic equation, since (αx+ β)2 = x3 + ax+ b

has at most three roots, the remaining root must be xR, the x-coordinate of the third point

R. Expressing this cubic equation in the form x3−α2x2 +(a−2αβ)x+(b−β2) = 0 we notice

that the coefficient of x2 is −α2. Therefore, we have xP + xQ + xR = α2. We therefore have

the following result for the x-coordinate of R:

xR = α2 − xP − xQ.

Since the point (xR, yR) must be on the straight line y = αx+ β, we can write for yR:

yR = αxR + β = αxR + (yP − αxP ) = α(xR − xP ) + yP .

To summarize, ordinarily a straight line will intersect an elliptic curve at three points. If

the coordinates of the first two points are (xP , yP ) and (xQ, yQ), then the coordinates of the

third point are

xR = α2 − xP − xQ, yR = α(xR − xP ) + yP .

We started out with the following relationship between P , Q, and R: P + Q = −R, we can

therefore write the following expressions for the x and the y coordinates of the addition of

two points P and Q:

xP+Q = α2 − xP − xQ, yP+Q = α(xP − xR)− yP ,
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since the y-coordinate of the reflection −R is negative of the y-coordinate of the point R on

the intersecting straight line.

Similarly we can obtain the following algebraic expression for calculating 2P from P :

x2P = α2 − 2xP , y2P = α(xP − xR)− yP ,
(
α =

3x2P + a

2yP

)
.

Elliptic curves over Zp for a prime p:[2] The elliptic curve arithmetic we described so

far was over real numbers. These curves cannot be used as such for cryptography because

calculations with real numbers are prone to round-off error. Cryptography requires error-free

arithmetic. By restricting the values of the parameters a and b, the value of the independent

variable x, and the value of the dependent variable y to some prime finite field Zp, we obtain

elliptic curves that are more appropriate for cryptography. Such curves would be described

by

y2 ≡ (x3 + ax+ b)(mod p).

The points on such curves would be subject to the modulo p version of the same smoothness

constraint on the discriminant as we had for the case of real numbers:

(4a3 + 27b2) 6= 0(mod p).

We will use the notation Ep(a, b) to represent all the points (x, y) that obey the conditions

laid down above. Ep(a, b) will also include the distinguished point O, the point at infinity.

So the points in Ep(a, b) are the set of coordinates (x, y), with x, y ∈ Zp, such that the

equation y2 = x3 + ax + b, with a, b ∈ Zp is satisfied modulo p and such that the condition

4a3 + 27b2 6= 0(mod p) is fulfilled. Obviously, then, the set of points in Ep(a, b) is no longer a

curve, but a collection of discrete points in the (x, y) plane (or, even more precisely speaking,

in the plane corresponding to the Cartesian product Zp×Zp). Since the points in Ep(a, b)) can

no longer be connected to form a smooth curve, we cannot use the geometrical construction

to illustrate the action of the group operator. However, the algebraic expressions we derived

for these operations continue to hold good provided the calculations are carried out modulo

p.
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Note that for a prime finite field Zp, the value of p is its characteristic. Elliptic curves

over prime finite fields with p ≤ 3, while admitting the group law, are not suitable for

cryptography. The set Ep(a, b) of points, with the elliptic curve defined over a prime finite

field Zp, constitutes a group, the group operator being as defined earlier.

Hasse’s Theorem addresses the question of how many points are on an elliptic curve

that is defined over a finite field. This theorem says that if N is the number of points on

Ep(a, b) when the curve is defined on a finite field Zp with p elements, then N is bounded by

|N − (p+ 1)| ≤ 2
√
p

That is the number of points, N , on an elliptic curve must be in the interval [p+ 1−√p, p+

1 +
√
p]. As mentioned previously, N includes the additive identity element O.

Elliptic Curve Cryptography:[2] That elliptic curves over finite fields could be used for

cryptography was suggested independently by Neal Koblitz and Victor Miller in 1985. Just as

RSA uses multiplication as its basic arithmetic operation (exponentiation is merely repeated

multiplication), ECC uses the addition group operator as its basic arithmetic operation (mul-

tiplication is merely repeated addition). Suppose G is a user-chosen base point on the curve

Ep(a, b), where p is a prime and the underlying finite field is the prime finite field Zp. The

core notion that ECC is based on is that, with a proper choice for G, whereas it is relatively

easy to calculate C = M × G, it can be extremely difficult to recover M from C even when

an adversary knows the curve Ep(a, b) and the G used. An adversary could try to recover

M from C = M × G by calculating 2G, 3G, 4G, · · · , kG with k, in the worst case, spanning

the size of the set Ep(a, b), and then seeing whether or not the result matched C. But if p is

sufficiently large and if the point G on the curve Ep(a, b) is chosen carefully, that would take

much too long.

Elliptic curve Diffie-Hellman Secret key exchange:[2] Choose the parameters p, a, and

b for an elliptic-curve based group Ep(a, b), and a base point G ∈ Ep(a, b). Party A selects

an integer XA to serve as his/her private key. A then generates YA = XA × G to serve as

his/her public key. A makes publicly available the public key YA. B designates an integer XB
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to serve as his/her private key. As was done by A, B also calculates his/her public key by

YB = XB × G. Then by choosing suitable enciphering and deciphering functions E and D,

respectively, the encryption and decryption can be carried out by using the following steps.

C = E(YB, E(XA,M)),

M = D(YA, D(XB, C)),

where M is the plaintext and C is the ciphertext.

In order to create a shared secret key (that could subsequently be used for, say, a

symmetric-key based communication link), both A and B carry out the following operations:

A calculates the shared session key by K = XA × YB.

B calculates the shared session key by K = XB × YA.

K as calculated by A = XA × YB

= XA × (XB ×G)

= (XA ×XB)×G

= (XB ×XA)×G

= XB × (XA ×G)

= XB × YA

= K as calculated by B
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