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Abstract

This project related to control systems, Lie groups and Lie algebra. Firstly, we have dis-
cussed about control systems with its examples.Then various types of control systems and
its applications. Control theory has continued to advance with advancing technology and
has emerged in modern times as a highly developed discipline. Lie theory, the theory of Lie
groups, Lie algebras and their applications is a fundamental part of mathematics. On this
project review Lie groups controllability for left-invariant control systems on Lie groups
are addressed.
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SOME STUDIES ON CONTROL SYSTEM USING LIE GROUPS

Chapter-1

1 INTRODUCTION

Mathematical control theory is the area of application-oriented mathematics that treats
the basic mathematical principles, theory, and problems underlying the analysis and de-
sign of control systems, principally those encountered in engineering. To control an object
means to influence its behaviour so as to achieve a desired goal.
One major branch of control theory is optimization. One assumes that a good model of
the control system is available and seeks to optimize its behaviour in some sense. Another
major branch treats control systems for which there is uncertainty about the model or its
environment. The central tool is the use of feedback in order to correct deviations from
and stabilize the desired behaviour. Control theory has its roots in the classical calculus
of variations, but came into its own with the advent of efforts to control and regulate
machinery and to develop steering systems for ships and much later for planes, rockets,
and satellites. During the 1930s, researchers at Bell Telephone Laboratories developed
feedback amplifiers, motivated by the goal of assuring stability and appropriate response
for electrical circuits. During the Second World War various military implementations and
applications of control theory were developed. The rise of computers led to the implemen-
tation of controllers in the chemical and petroleum industries. In the 1950s control theory
blossomed into a major field of study in both engineering and mathematics, and power-
ful techniques were developed for treating general multi variable, time-varying systems.
Control theory has continued to advance with advancing technology, and has emerged in
modern times as a highly developed discipline.
Lie theory, the theory of Lie groups, Lie algebras, and their applications, a fundamental
part of mathematics that touches on a broad spectrum of mathematics, including geometry
ordinary and partial differential equations, group, ring, and algebra theory, complex and
harmonic analysis, number theory, and physics. It typically relies upon an array of sub-
stantial tools such as topology, differentiable manifolds and differential geometry, covering
spaces, advanced linear algebra, measure theory, and group theory to name a few. How-
ever, we will considerably simplify the approach to Lie theory by restricting our attention
to the most important class of examples, namely those Lie groups that can be concretely
realized as (multiplicative) groups of matrices. Lie theory began in the late nineteenth
century, primarily through the work of the Norwegian mathematician Sophus Lie, who
called them continuous groups,” in contrast to the usually finite permutation groups that
had been principally studied up to that point. An early major success of the theory was
to provide a viewpoint for a systematic understanding of the newer geometries such as
hyperbolic, elliptic, and projective, that had arisen earlier in the century. This led Felix
Klein in his Erlanger Programm to propose that geometry should be understood as the
study of quantities or properties left invariant under an appropriate group of geometric
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transformations.
In the early twentieth century Lie theory was widely incorporated into modern physics,
beginning with Einstein’s introduction of the Lorentz transformations as a basic feature of
special relativity. Since these early beginnings research in Lie theory has burgeoned and
now spans a vast and enormous literature. The essential feature of Lie theory is that one
may associate with any Lie group G a Lie algebra g. The Lie algebra g is a vector space
equipped with a bilinear nonasssociative anticommutative product, called the Lie bracket
or commutator and usually denoted [.,.]. The crucial and rather surprising fact is that a
Lie group is almost completely determined by its Lie algebra g. There is also a basic bridge
between the two structures given by the exponential map exp : g → G. For many purposes
structure questions or problems concerning the highly complicated nonlinear structure G
can be translated and reformulated via the exponential map in the Lie algebra g, where
they often lend themselves to study via the tools of linear algebra (in short, nonlinear
problems can often be linearized). This procedure is a major source of the power of Lie
theory.
The two disciplines, control theory and Lie theory, come together in certain interesting
classes of control problems that can be interpreted as problems on Lie groups or their
coset spaces. In this case the states of the system are modeled by members of the Lie
group and the controls by members of the Lie algebra, interpreted as invariant vector
fields on the Lie group. There are significant advantages to interpreting problems in this
framework whenever possible; these advantages include the availability of a rich arsenal of
highly developed theoretical tools from Lie group and Lie algebra theory. In addition, Lie
groups typically appear as matrix groups and one has available the concrete computational
methods and tools of linear algebra and matrix theory.

7



Chapter-2

2 CONTROL SYSTEMS

A control system consists of
a.Inputs, which are things that we can not only measure, but to which we can assign chosen
values (constants or functions of time).
Examples: Drug dosages and treatment regimens.
b.Outputs, which are things that we can measure, but to which we cannot assign values.
Examples: Concentrations of administered drug in urine, blood, etc.
c.States, which are things that effect the outputs, but which cannot even measure because
we cannot directly access them.
Examples: Concentrations of drug in targeted organ.

2.1 Abstract Depiction of a Control System

Control systems may be thought of as having four functions, measure,compare, compute
and correct. The main components of a control system are plant and a sensor which is used
to measure the variable to be controlled.Control theory has two main roots, regulation and
trajectory optimization.
(i)Regulation
Regulation is the more important and engineering oriented one.The problem of regulation
is to design mechanisms that keep contain to be controlled variables at constant values
against external disturbances.
(ii)Trajectory Optimization
This is the Mathematics based.The problem of Trajectory transfer is the question of de-
termining the paths of a dynamical system that transfer the system from a given initial to
a prescribed terminal state.A beautiful example of such a problem is the brachystochrone
problem that was posed by Johann Bernoulli in 1696.
From the Greek word ”brachystochrone” means shortest time.We suppose that a particle
of mass m moves along some curve under the influence of gravity. we’ll assume motion
in two dimension here and that the particle moves, starting at rest, from fixed point a to
fixed point b. we could imagine that the particle is a bead that that moves along a rigid
wire without friction. The question is that what is the shape of the wire for which the
time to get from a to b is minimized.

2.2 Examples of Control Systems

Traditional examples:
Thermostats for controlling room (or furnace) temperature Pilot control systems for fighter

8



planes (which are statically unstable)

Automotive: anti-skidding, fuel efficiency, etc.

Biological examples:
Gene regulatory networks Insulin delivery and blood glucose regulation system (natural
and artificial)
Any orally administered drug passing through the body.

Some familiar examples of control systems
Autofocus mechanism in cameras
Cruise control system in cars
Thermostat temperature control systems

Classes of Control systems
We can classify control systems according to

Nature of time: continuous-time versus discrete time
Nature of quantities: continuous-state versus discrete state
Nature of behaviour: Deterministic versus stochastic

2.3 Different types of control system

All our tools and machines need appropriate control to work, otherwise it will be difficult
to finish their designated tasks accurately. Therefore, we need control systems to guide, in-
struct and regulate our tools and machines. Common control systems include mechanical,
electronic, pneumatic and computer aided. A system usually contains three main parts:
input, process and output.

(a) Mechanical system
A mechanical system is a device made up of various mechanical parts. Its input is provided
by an effort. Once the effort is applied, it can set off a motion to move a load. The force
applied to the load is the output of the mechanical system. Examples of mechanical sys-
tems include levers, gears and shafts.Some examples of mechanical systems are Can opener
and Corkscrew etc.

(b) Electronic system
An electronic system is a system that employs electronic signals to control devices, such
as radios, calculators, video game machines, mobile phones, portable computers, etc. The
input of an electronic system is provided by electronic signals. After they are processed,
they can generate output signals, which control the operation of various devices, such as
amplifiers and LCD. Electronic systems can carry out many different tasks, such as generat-
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ing sound, transmitting information, displaying video, measuring, memorising, calculating,
etc. Common examples of electronic devices include semi-conducting diode, transistors,
capacitors that they are usually welded onto electronic circuit boards.
Examples of electronic systems are Mobile phone, Portable computer, Electronic circuit
board.

(c) Computer control system
A computer control system uses a computer to control its output devices according to dif-
ferent input signals. Its function is similar to that of an electronic system. Yet a computer
control system can use high speed calculation to process large volume of input signals
within a very short time, and then generates appropriate outputs with the help of pre-
set programs. Examples of computer control systems include computer numerical control
press brakes, computer controlled home appliances, computer controlled underground rail-
way systems, etc.
Examples of computer control systems are CNC press brake, a proposed computer con-
trolled home appliances etc.

(d) Pneumatic system
A pneumatic system is a system that uses compressed air to transport and control energy.
Air is first pressurized to give energy in the cylinder. Then signals are input into the system
through the use of switches. Next, air is transferred through sealed pipes to the pneumatic
parts for processing. Finally, the force produced by the pneumatic parts is utilized to
finish the designated task. The use of pneumatic systems is very extensive, for example, in
controlling the movement of train doors, the operation of automatic production lines and
mechanical clamps, etc.
Examples of pneumatic systems are Production line of CD-ROM, Mechanical clamp etc.

(e) Other systems
There exist many other control systems apart from the ones mentioned above, for exam-
ple, mail processing systems, commercial operation systems, etc. The input, process and
output of different systems have different properties. In this chapter, we will discuss some
of the most common control systems.

2.4 Open loop and closed loop control system

There are basically two types of control system: the open loop system and the closed loop
system. They can both be represented by block diagrams.

1. Open loop control system
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When an input signal directs the control element to respond, an output will be pro-
duced. Examples of the open loop control systems include washing machines, light switches,
gas ovens, etc.
The operation of a washing machine does not depend on the cleanness of the clothes. Both
the structure and the control process of an open loop control system are very simple, but
the result of the output depends on whether the input signal is appropriate or not.

Another example of an open loop control system is the burglar alarm system. The
function of the sensor is to collect data regarding the concerned house.When the electronic
sensor is triggered off (for example, by the entry of an unauthorized person), it will send a
signal to the receiver. The receiver will then activate the alarm, which will in turn generate
an alarm signal.

DRAWBACKS
The drawback of an open loop control system is that it is incapable of making automatic
adjustments. Even when the magnitude of the output is too big or too small, the system
will not make the appropriate adjustments. For this reason, an open loop control system
is not suitable for use as a complex control system.
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2. Closed loop control system

Sometimes, we may use the output of the control system to adjust the input signal. This
is called feedback. Feedback is a special feature of a closed loop control system. A closed
loop control system compares the output with the expected result or command status,
then it takes appropriate control actions to adjust the input signal. Therefore, a closed
loop system is always equipped with a sensor, which is used to monitor the output and
compare it with the expected result.The output signal is fed back to the input to produce
a new output.

Feedback can be divided into positive feedback and negative feedback. Positive feedback
causes the new output to deviate from the present command status. For example, an am-
plifier is put next to a microphone, so the input volume will keep increasing, resulting in
a very high output volume. Negative feedback directs the new output towards the present
command status, so as to allow more sophisticated control. For example, a driver has to
steer continuously to keep his car on the right track.

ADVANTAGES:
It is able to adjust its output automatically by feeding the output signal back to the input.
When the load changes, the error signals generated by the system will adjust the output.
However, closed loop control systems are generally more complicated and thus more ex-
pensive to make.

2.5 Applications of the control systems

There are many household and industrial application examples of the control systems, such
as washing machine, air conditioner, security alarm system and automatic ticket selling
machine, etc.
(i) Washing machine
Nowadays, many families use fully automatic washing machines. There are numerous preset
washing procedures available for the users. When we have chosen the suitable washing
procedures,the machine automatically starts to pour water, add washing powder, spin and
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wash clothes, discharge waste water, etc. After the completion of all the procedures, the
washing machine will stop the operation. Fully automatic washing machine only requires
the user to input a suitable procedure to complete the whole washing process, thus this
saves much time for the users. However, this kind of machine only operates according to
the preset time to complete the whole washing process. It ignores the cleanness of the
clothes and does not generate feedback. Therefore, this kind of washing machine is of
open loop control system indeed, and their block diagram of control system of the washing
machine as shown in Figure.

(ii) Air conditioner
Nowadays, there are many families using automatic control system for the temperature of
the air conditioner. Fig. 17 shows the interior structure of an air conditioner. The coolant
circulated in the machine will absorb heat indoor, then it will be transported from the
vaporization device to cooling device. The hot air is then blown to outdoor by a fan. There
is an adjustable temperature device equipped in the air conditioner for the users to adjust
the extent of cooling. When the temperature of the cool air is lower than the preset one,
the controller of the air conditioner will stop the operation of the compressor to cease the
circulation of the coolant. The temperature sensor installed near the vaporization device
will continuously measure the indoor temperature, and send the results to the controller
for further processing.
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Chapter-3

3 LIE GROUP AND LIE ALGEBRA

3.1 Lie Group

Lie groups are smooth manifolds and as such can be studied using differential calculus,
in contrast with the case of more general topological groups. One of the key ideas in the
theory of Lie groups is to replace the global object, the group, with its local or linearised
version, which Lie himself called its ”infinitesimal group” and which has since become
known as its Lie algebra.

DEFINITION: A Lie group is defined as a topological group whose identity element
has a neighbourhood that is homeomorphic to a subset of an r-dimensional Euclidean
space, where r is then called the order or dimension of the Lie group.
On mathematically,

A set G is called a Lie group if:
(1) G is a smooth manifold,
(2) G is a group, and
(3) the group operations in G are smooth.
For example, GL(n) is a Lie group.
The most important class of Lie groups is formed by linear Lie groups, i.e., groups of linear
transformations of Rn.

3.2 Linear Lie Groups

A Lie group G ⊂ M(n) is called a linear Lie group. The sufficient condition for a set of
matrices to form a linear Lie group is G is a closed subgroup of GLn.

3.3 Examples of Lie groups

a. General Linear Group(GL(n))
The general linear group consists of all n× n invertible matrices:

GL(n,R) = GL(n) = {X ∈M(n)|detX 6= 0}

To show GL(n) is a Lie group
1. GL(n) is a manifold
det : M(n) → R is continuous, by this continuity the set GLn is an open domain thus a
smooth sub manifold in the linear space M(n).
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2. GLn is a group with respect to matrix product.If X, Y ∈ GL(n), then the product
XY ∈ GL(n). Further, the identity matrix Id = δij is contained in GL(n).

where, δij =

{
1, ifi = j
0, ifi 6= j

}
.

3. The group operations in GL(n) are smooth.
(X, Y )→ XY , (XY )ij are polynomials in Xij,Yij
X → X−1, (X−1)ij are rational functions in Xij.
b. Special Linear group(SL(n))

The special linear group consists of all n× n unimodular matrices.

SL(n,R) = SL(n) = {X ∈M(n)|detX = 1}

Such matrices correspond to linear operators v → Xv, preserving the standard volume in
Rn .

c. Orthogonal Group

The orthogonal group is formed by n× n orthogonal matrices.

O(n) =
{
X ∈M(n)|XXT = Id

}
Orthogonal transformations v → Xv preserve the Euclidean structure in Rn.
Orthogonal matrices have determinant ±1.

d. Special Orthogonal Group

Orthogonal unimodular matrices form the special orthogonal group

SO(n,R) =
{
X ∈M(n)|XXT = Id, detX = 1

}
Special orthogonal transformations v → Xv preserve both the Euclidean structure and
orientation in Rn.

e. Affine group

The afine group is defined as follows:

Aff(n) =
{
X =

(
Y b
01

)
∈M(n+ 1)|Y ∈ GL(n), b ∈ Rn

}
⊂ GL(n+ 1).

Such matrices correspond to invertible affine transformations in Rn of the form v → Y v+b.

15



f. Euclidean Group

The Euclidean group is the subgroup of the affine group.

E(n) =
{
X =

(
Y b
01

)
∈M(n+ 1)|Y ∈ SO(n), b ∈ Rn

}
⊂ GL(n+ 1).

Such matrices parametrize orientation-preserving affine isometrics v → Y v + b.

g. Triangular Group

A group formed by real matrices, the triangular group consists of all invertible trian-
gular matrices.

T (n) = {X = xij ∈M(n)|xij = 0, i > j, xii 6= 0}

These are matrices of invertible linear operators v → Xv preserving the flag of subspaces

Re1 ⊂ span(e1, e2) ⊂ ... ⊂ span(e1, e2, ..., en−1) ⊂ Rn.

h. Complex General Linear Group

The complex general linear group consists of all complex n× n invertible matrices

GL(n,C) = {z ∈M(n,C)|detz 6= 0}
=
{(

X −Y
Y X

)
∈M(2n,R)|det2X + det2Y 6= 0

}
i. Complex Special Linear Group

The complex special linear group consists of all complex n× n unimodular matrices

SL(n,C) = {z ∈M(n,C)|detz = 1}
=
{(

X −Y
Y X

)
∈M(2n,R)|det(X + iY ) = 1

}
j. Unitary Group

An important example of a linear Lie group is the unitary group consisting of all n × n
unitary matrices.

U(n) = {z ∈M(n,C)|z̄T z = Id}
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Such matrices correspond to linear transformations that preserve the unitary structure in
Cn.

k. Special Unitary Group

Su(n) = U(n)
⋂

SL(n,C)

= {z ∈M(n,C)|z̄T z = Id, detz = 1}
= {
(
X −Y
Y X

)
∈M(2n,R)|XTX + Y TY = Id,XTY − Y TX = 0, det(X + iY ) = 1}

3.4 The algebra of Lie groups

Consider the tangent space to the general linear group at the identity.

TIdGL(n) = {X ′(0)|X(t) ∈ GL(n), X(0) = Id}

Since the velocity vector X ′(t) = (x
′
ij(i)) is an n× n matrix, we obtain

X ′(0) = (x
′

ij(0) = A ∈M(n).

Thus,

TIdGL(n)
⋂

M(n).

choose an arbitrary matrix A ∈ M(n). The curve X(t) = Id + tA belongs to GL(n) for
|t| < ε and small ε > 0.
X(0) = Id and X ′(0) = A

⇒ TIdGL(n) = M(n)

The tangent space TIdGL(n) is a linear space.

[A,B] = AB −BA ∈M(n), A,B ∈M(n).

This operation satisfies the following properties:
(1) bilinearity,
(2) skew-symmetry
(3) Jacobi identity
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3.5 Lie Algebra

A linear space L endowed with a binary operation [.,.] which is
(1) bilinear
(2) skew-symmetric
(3) satisfies Jacobi identity
is called a Lie algebra.
For example, The space M(n) with the matrix commutator is a Lie algebra.

Sub algebra
A subset K of a Lie algebra L is called a subalgebra of L if for all x, y ∈ K and all α, β ∈ F ,
αx+ βy ∈ K,[x, y] ∈ K.

Ideals
An Ideal I of a Lie algebra L is a sub algebra of L with the property [I, L] ⊂ I.

Some results of ideals
1. If L′ = [L,L] then this is an ideal in L.
2. If L′ = [L,L] = 0 then this is an Abelian Lie algebra.
3. Ideals in a Lie algebra can be combined in various ways to give new ideals.
4. Let I and K be ideals in L. Then the sum I + K, the intersection I

⋂
K and the com-

mutator [I,K] are ideals in L.
5. If the central sequence is L0 ⊃ L1 ⊃ L2 ⊃ ... ⊃ Ln ⊃ ... and that L0, L1, L2, ... and
ideals in L.
6. If the central sequence is L0 ⊃ L1 ⊃ L2 ⊃ ... ⊃ Ln ⊃ ... and that L0, L1, L2, ... are ideals
in L.

Lie algebras have two special types.
1.Solvable Lie algebra and
2. Nilpotent Lie algebra

Solvable Lie algebra
Definition.
The derived series of a Lie algebra L is the sequence of ideals

L0 = L, L1 = [L,L], L2 = [L1, L1], ..., Li = [Li−1, Li−1].

Further, we call a Lie algebra solvable whenever Ln = 0 for some n.

Nilpotent Lie algebra
Definition.
The lower central series of a Lie algebra L is the sequence of ideals

L0 = L, L1 = [L,L], L2 = [L,L1], ..., Li = [L,Li−1].

18



Further, L is called nilpotent if Ln = 0 for some n.
Commutator
Let M and N be subsets of Lie algebra L which are not necessary subspaces. Then the
Commutator [M,N ] of M and N is defined to be the Linear span of the set of elements of
the form [x, y] with x ∈M and y ∈ N .

[M,N ] =

{
z ∈ L|z =

∑
i,j

(αij)[xi, yj];xi, yj ∈ L;αij ∈ F

}

3.6 Relation of this Lie algebra with the Lie group

The tangent space to a Lie group G at the identity element is called the Lie algebra of the
Lie group G.
i.e

L = TIdG

.

Examples
a. The Lie algebra of a Lie group GL(n) is gl(n).

TIdGL(n) = gl(n).

b. The Lie Algebra of SL(n)
The Lie algebra of the special linear group is denoted by sl(n).
sl(n) = TIdSL(n) = {X ′(0)|X(t) ∈ SL(n), X(0) = Id}
Let us take a curve,

X(t) = Id+ tX ′(0) +O(t) ∈ SL(n)

then

1 = detX(t) = det(Id+ tX ′(0) +O(t)) = 1 + t(detX ′(0)) +O(t)

= 1 + ttrX ′(0) +O(t), t→ 0

So
trX ′(0) = 0.

Thus sl(n) = {A ∈M(n)|traceA = 0} , the traceless matrices.

c. The Lie Algebra of SO(n)
The Lie algebra of SO(n) is denoted as so(n).

so(n) = TIdSO(n) = {X ′(0)|X(t) ∈ SO(n), X(0) = Id} .
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We have X(t)XT (t) ≡ Id, thus

0 = X ′(0)XT (0) +X(0)X ′T (0) = X ′(0) +X ′T (0).

Donating A = X ′(0), we obtain A+ AT = 0.
Thus, So(n) =

{
A ∈M(n)|A+ AT = 0

}
, the skew-symmetric matrices.

d. Lie Algebra of Aff(n)
The Lie Algebra of Aff(n) is defined as

aff(n) = TIdAff(n)

=
{(

A b
0 0

)
|A ∈ gl(n), b ∈ Rn

}
As,

aff(n) = TIdAff(n) = {X ′(0)|X(t) ∈ Aff(n), X(0) = Id}
We have,

(
A b
0 0

)
∈ Aff(n), where the transformation v → Y v + b

We have, (
Y (0) b

0 1

)′
=
(
Y (0) b

0 0

)
Let Y ′(0) = A then

(
Y (0) b

0 1

)
=
(
A b
0 0

)
∈ gl(n), b ∈ Rn.

Similarly,
The Lie Algebra of E(n) is denoted by e(n).such that

e(n) = TIdE(n) =
{(

A b
0 0

)
|A ∈ so(n), b ∈ Rn

}
The Lie Algebra of T (n) is denoted by t(n) such that

t(n) = {A = (aij) ∈M(n)|aij = 0, i > j}

The Lie Algebra of U(n) is denoted by u(n) such that

u(n) =
{
A ∈M(n,C)|A+ ĀT = 0

}
The Lie Algebra of SU(n) is denoted by su(n) such that

su(n) = TIdSU(n) =
{
A ∈M(n,C)|A+ ĀT = 0, traceA = 0

}

We can find Lie group from Lie Algebra by reverse passage via matrix exponential.
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3.7 Matrix exponential

Consider a matrix ODE, X ′ = XA (1)
where A ∈ M(n) is a given matrix. In the case n = 1, solutions to the ODE x′ = xa are
given by the exponential x(t) = x(0)eat,
where

ea = 1 + a+
a2

2!
+ ...+

an

n!
+ ...

For arbitrary natural no n, Let us consider a matrix A ∈M(n),

exp(A) = eA = Id+ A+
A2

2!
+ ...+

An

n!
+ ...

This matrix series converges absolutely thus it can be differentiated termwise,

(eAt)′ =

(
Id+ At+

A2t2

2!
+ ...+

Antn

n!
+ ...

)′
= A+

A2t

1!
+ ...+

Antn−1

(n− 1)!
+ ... = eAt.A

Thus the matrix exponential

X(t) = eAt (2)

is the solution to the Cauchy problem X ′ = XA,X(0) = Id and all solutions of the matrix
equation (2) have the form,

X(t) = X(0)eAt

For an arbitrary matrix A ∈ gl(n),then its exponential exp(A) ∈ GL(n).
Since detexp(A) = exp(trA) 6= 0. So we constructed a (smooth) mapping
exp : gl(n)→ GL(n).
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Chapter-4

4 Control systems and Lie groups

For an arbitrary matrix A ∈ gl(n), the Cauchy problem X ′ = XA, X(0) = X0, X ∈ GL(n)
has a unique solution of the form X(t) = X0exp(tA).
For Lie group G, the solution of X ′ = XA, X ∈ G is X(t) = X0exp(tA). Similarly,
for the special linear group the cauchy problem X ′ = XA, X ∈ SL(n) has the solution
X(t) = exp(tA).

4.1 Left invariant vector fields for Lie Group

Vector fields of the form V (X) = XA, X ∈ G, A ∈ L are called left-invariant vector fields
on the linear Lie group G.
Let V,W be two left invariant vector fields on a Lie group G then [V,W ] is also a left
invariant vector fields.
Left invariant vector fields on a Lie group G from a Lie algebra isomorphic to the Lie
algebra L = TIdG.
A left invariant vector field XA ∈ vecG has two representation of Lie algebra of a Lie
group G.
(1) L = TIdG
(2) L=Left invariant vector fields on G

Control system can be divided into two parts as considering vector fields.
(1)Left invariant control system
(2)Right invariant control system.

4.2 Left invariant control system

Let G be a Lie group and L its Lie algebra. A left-invariant control system Γ on a Lie
group G is an arbitrary set of left-invariant vector fields on G.

Example:

a.Control-affine left-invariant systems

A particular class of left-invariant systems, which is important for applications is formed
by control affine systems.

Γ =

{
A+

m∑
i=1

(uibi)|u = (u1, ...um) ∈ U ⊂ Rm

}
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where A,B1, B2, ..., Bm are some elements of L. If the control set U coincides with Rm,
then the system is an affine subspace of L.

b.Trajectory

A trajectory of a left-invariant system Γ on G is a continuous curve X(t) in G defined on
an interval [t0, T ] ⊂ R so that there exists a partition.
t0 < t1 < ... < tN = T and left-invariant vector fields A1, ..., AN ∈ Γ such that the restric-
tion of X(t) to each open interval (ti−1, ti) is differentiable and

X ′(t) = X(t)Ai fort ∈ (ti−1, ti), i = 1, 2, ..., N.

c. Reachable set for time T

For any T ≥ 0 and any X in G, the reachable set for time T of a left-invariant system
Γ ⊂ L from the point X is the set AΓ(X,T ) of all points that can be reached from X in
exactly T units of time. AΓ(X,T ) = {X(T ) | X(.)a trajectory of Γ, X(0) = X,T ≥
0} = ∪t≥0AΓ(X,≤ T ) The reachable set for time not greater than T ≥ 0 is defined as
AΓ(X,≤ T ) = AΓ(X,≤ T ) =

⋃
0≤t≤T AΓ(X, t).

d. Controllable set:

A system Γ ⊂ L is called controllable if, given any pair of points X0 and X1 in G, the point
X1 can be reached from X0 along a trajectory of Γ for a non negative time, X1 ∈ A(X0),
for any X0, X1 ∈ G A(X) = G, for any X ∈ G.
This corresponds to global controllability, or complete controllability.

4.3 Right-invariant control systems:

It is Similar to left-invariant vector fieldsX ′ = XA
Consider right-invariant vector fields of the form Y ′ = BY . The inversion i : G →
G, i(X) = X−1 = Y transforms left-invariant vector fields to right-invariant ones. Indeed,
let X(t) be a trajectory of a left-invariant ODE X ′ = XA. Since Y (t)X(t) = Id, we have
Y ′(t)X(t) + Y (t)X ′(t) = 0
thus,

Y ′(t) = −Y (t)X ′(t)X−1(t) = −Y (t)X(t)AY (t) = −AY (t)

Consequently, X ′ = XA⇔ Y ′ = −AY and Y = X−1.
Since X(t) = X0e

tA then
Y (t) = e−tAY0.
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The Lie algebra L = TIdG of a Lie group G can be identified with the Lie algebra of
right-invariant vector fields {AX|A ∈ L} on G.

4.4 Proposition

Proposition 1.

The Lie bracket of right invariant vector fields computes as follows,
[AX,BX] = [B,A]X.

Proof.

The flows of right invariant vector fields are given by the matrix exponential

etv(X) = exp(−tA)X, etw(X) = exp(−tB)X

Now,

γ(t) = e−twoe−tvoetwoetv(X)

= ((Id− tB +
t2

2
B2 − ...)(Id− tA+

t2

2
A2 − ...)(Id− tB +

t2

2
B2 − ...)(Id− tA+

t2

2
A2 − ...))X

= ((Id− t(B + A) +
t2

2
(B2 + 2BA+ A2)− ...)(Id+ t(B + A) +

t2

2
(B2 + 2BA+ A2)...))X

= (Id+ t(B + A) +
t2

2
(B2 + 2BA+ A2) + ...− t(B + A)− t2

2
(B + A)2 − ...+ t2

2
(B2 + 2BA+ A2) +

t3

2
(B + A)(B2 + 2BA+ A2) + ...)X

= (Id+ t2(BA− AB) + ...)X

= (Id+ t2[B,A] + ...)X (1)

Thus,
γ(
√
t) = (Id+ t[B,A] + ...)X

It is a smooth curve at t = 0 and d
dt
|t=0 γ(

√
t) = X[A,B] = [BX,AX] = [AX,BX].

A right invariant control system on a Lie group G is an arbitrary set of right invariant
vector fields on G.

For example

A control-affine right-invariant control system on a Lie group G has the form

Y ′ = AY +
m∑
i=1

(ui)BiY, u ∈ U ⊂ Rm, Y ∈ G.
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The inversion X = Y −1 transforms right-invariant system to the left-invariant system

X ′ = −XA−
m∑
i=1

uiXBi
Y, u ∈ U,X ∈ G.

Proposition 2.

Let X(t),t ∈ [0, T ], be a trajectory of a left-invariant system Γ ⊂ L with X(0) =
X0. Then there exist N ∈ N and T1, ..., TN > 0, A1, ..., AN ∈ Γ, such that X(T ) =
X0exp(T1A1)...exp(TNAN), T1 + ...+ TN = T .

Proof. By the definition of a trajectory, there exist N ∈ N and

0 = t0 < t1 < ... < tN = T, A1, ..., AN ∈ Γ

such that X(t) is continuous and

t ∈ (ti−1, ti)⇒ X ′(t) = X(t)Ai.

Consider the first interval:

t ∈ (0, t1)⇒ X ′ = X(t)A1, X(0) = X0

Thus,
X(t) = X0exp(A1t), X(t) = X0exp(A1t1)

Further,
t ∈ (t1, t2)⇒ X ′ = X(t)A2, X(t1) = X0exp(A1t1)

So,
X(t) = X0exp(t0A1)exp((t− t1)A2)

X(t2) = X0exp(t1A1)exp((t2 − t1)A2)

= X0exp(A1T1)exp(T2A2)

where
T1 = t1, T2 = t2 − t1.
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continuing this process, we get our required representation,

X(tN) = X(T ) = X0exp(T1A1)...exp(TNAN)

TN = tN − tN−1, ..., T2 = t2 − t1, T1 = t1

TN + TN−1 + ...+ T1 = TN = T

Proposition 3.

Let Γ ⊂ L be a left-invariant system, and let X be an arbitrary point of G. Then
(1)AΓ(X) = {Xexp(t1A1)...exp(tNAN)|Ai ∈ Γ, ti > 0, N ≥ 0}
(2)AΓ(X) = XAΓ(Id)
(3)AΓ(Id) is a sub semigroup of G.
(4)AΓ(X) is an arcwise-connected subset of G.

Proof. Items (1) and (2) follow immediately from Proposition (2) and (2) follows from(1).
Now, (3) is true, since

AΓ(Id) = {exp(t1A1)...exp(tNAN)|Ai ∈ Γ, ti > 0, N ≥ 0}

then for any X1, X2 ∈ AΓ(Id), the product X1, X2 ∈ AΓ(Id).
(4) is true as any point in AΓ(X) is connected with the initial point X by a trajectory
X(t). �

4.5 Orbit of a control system

The orbit of a system Γ through a point X ∈ G is the following subset of the Lie group G.

OΓ(X) = {Xexp(t1A1)...exp(tNAN)|Ai ∈ Γ, ti ∈ R,N ≥ 0}

From previous proposition, we get AΓ(X) ⊂ OΓ(X), In the orbit, one is allowed to move
both forward and backward in time, while in the attainable set only the forward motion is
allowed.

Proposition 4.

Let Γ ⊂ L be a left-invariant system, and let X be an arbitrary point of G. Then
(1)OΓ(X) = XOΓ(Id)
(2)OΓ(Id) is the connected Lie subgroup of G with the Lie algebra Lie(Γ). where Lie(Γ)
the Lie algebra generated by Γ, i.e., the smallest Lie subalgebra of L containing Γ.

Proof. Item (1) is obvious.
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(2) First of all, the orbit OΓ(Id) is connected since any point in it is connected with the
identity by a continuous curve provided by the definition of an orbit.
Clearly, OΓ(Id) is a subgroup of G. If X, Y ∈ OΓ(Id) then XY ∈ OΓ(Id) as a product of
exponentials.
If

X = exp(t1A1)...exp(tNAN) ∈ OΓ(Id)

then
X−1 = exp(−tNAN)...exp(−t1A1) ∈ OΓ(Id)⇒ Id ∈ OΓ(Id)

From the general Orbit Theorem OΓ(Id) ⊂ G is a smooth submanifold with the tangent
space

TId(OΓ(Id)) = Lie(Γ)

Then the orbit OΓ(Id) is a Lie subgroup of G with the Lie algebra Lie(Γ). �

Proposition 5.

A left-invariant system Γ is controllable iff AΓ(Id) = G.

Proof. By definition, Γ is controllable iff AΓ(X) = G for any X ∈ G. Since AΓ(X) =
XAΓ(Id), controllability is equivalent to the identity AΓ(X) = G. That is why in the
sequel we use the following short notation for the attainable set and orbit from the identity.

AΓ(Id) = AΓ = A, AΓ(Id) = AΓ = A. �

4.6 Theorem 3.1 (Connectedness Condition)

If Γ ⊂ L is controllable on G, then the Lie group G is connected.

Proof. The attainable set A is a connected subset of G. �

Example 3.1.The Lie group GL(n) is not connected since it consists of two connected
components GL+(n) and GL−(n), where

GL±(n) = {X ∈M(n)|sign(detX) = ±1} .

Thus, there are no controllable systems on GL(n).

Example 3.2 Similarly, the orthogonal group O−(n) = SO(n)
⋃
O−(n) is disconnected,

where O−(n) = {X ∈ O(n)|detX = −1}. So there no controllable systems on O(n).
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4.7 Theorem 3.2 (Rank Condition).

Let Γ ⊂ L
(1) If Γ is controllable, then Lie(Γ) = L.
(2) int A 6= φ if and only if Lie(Γ) = L.

Proof.(1) If Γ is controllable, then A = G, the more so O = G, thus

Lie(Γ) = L.

(2) By Krener’s theorem, if Lie(Γ) = L, then int A 6= φ.
Conversely, let

Lie(Γ) 6= L.

Then
dimO = dimLie(Γ) < dimL = dimG.

Thus int O = φ , then int A = φ. �

4.8 Theorem 3.3 (Local Controllability Test).

A system Γ ⊂ L is controllable on a Lie group G iff the following conditions hold:
(1) G is connected,
(2) Γ is locally controllable at the identity
Note that identity element is always contained in the attainable set, and there may be two
cases: either Id ∈ intA, or Id ∈ ∂A.
In the first case the system is controllable, while in the second case not.
Now we prove Theorem 3.3.

4.9 Theorem 3.4 (Closure Test).

A system Γ ⊂ L is controllable on a Lie group G iff the following conditions hold:
(1) Lie(Γ) = L,
(2) clA = G.

Proof. The necessary part is obvious. Let us prove the sufficiency. Consider the time-
reversed system

−Γ = {−A|A ∈ Γ}
Trajectories of the system −Γ are trajectories of the initial system Γ passed in the opposite
direction, thus

A−Γ = {Xexp(−t1A1)...exp(−tNAN)|Ai ∈ Γ, ti ≥ 0}
=
{
exp(tNAN)−1...exp(t1A1)−1|Ai ∈ Γ, ti ≥ 0

}
= A−1

Γ
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Since Lie(−Γ) = Lie(Γ) = L, then intA−Γ 6= φ, Thus there exists an open subset V ⊂ A−Γ.
Further, by the hypothesis of this theorem, clAΓ = G, thus there exists a point X ∈
AΓ

⋂
V 6= φ. We have X ∈ V ⊂ A−Γ = A−1

Γ , thus the open set V −1 ⊂ AΓ is a neighbour-
hood of the inverse X−1. Consequently, the open set V −1X ⊂ AΓ. But Id = X−1X ∈
V −1X ⊂ AΓ, thus Id ∈ intAΓ and the system Γ is controllable by Theorem 3.3.

5 Conclusion

In this project we have received some aspects of application of Lie group to the geometrical
control theory. Our work is heavily drawn from the work of Yu.L.Sachkov ”Control theory
on Lie groups” available from the website having ref. no. Journal of Mathematical Science.
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