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ABSTRACT 

 Crystallization is an oldest unit operations used by industries for the separation as well 

as purification of a solid product. It is a popular operation in majority of industries, including 

pharmaceutical, food, microelectronics and bulk and fine chemicals. The widespread use of 

crystallizers is attributed to numerous advantages provided by the process like formation of pure 

solids from impure solution, less energy required for separation, availability of products in a 

suitable form for packaging, transportation and storage. The mathematical modelling, control and 

monitoring of crystallization process is a significant research area both from academic as well as 

industrial point of view.  

 A temperature trajectory that improves the crystal size distribution in a batch crystallizer 

is proposed and compared with some of the basic cooling modes like natural, linear and 

controlled cooling. The properties of the crystalline product and dynamic behavior of the 

crystallizer, obtained by numerical experimentation are presented and analyzed here. 

  The Mathematical modeling and simulation of a non-isothermal continuous cooling 

crystallizer followed by a control strategy to improve the crystal size distribution has been 

proposed. The model developed here is used to monitor the process using various multivariate 

statistical process control techniques. Monitoring and control of chemical processes are highly 

challenging due to their non-linear, multivariate and highly correlated nature. Present dissertation 

furnishes the successful implementation of various chemometric techniques. Two methods were 

chosen for process monitoring and control: Clustering of time series data and moving window 

based pattern matching. PCA similarities and dissimilarity index were chosen as the index of 

clustering as well as pattern matching. These methods have been successfully implemented in 

continuous crystallizer for fault detection and to differentiate among various operating 

conditions. Both the methods produced promising results. 

Keywords: Crystallization, control, MSPC, PCA, Monitoring, fault detection. 
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 Chapter 1 

INTRODUCTION 

Crystallization is an oldest unit operations used by industries for the separation as well as 

purification of solid products. It is a popular operation in majority of industries, including 

pharmaceutical, food, microelectronics and bulk and fine chemicals. The production process of 

the majority of all solid products includes at least one crystallization step during the synthesis or 

purification of intermediates or the final product.  

Since crystallization is most of the time the first step when a solid product is separated 

from the liquid solution it is a vital process to monitor the solid properties, like crystal size 

distribution (CSD), shape, purity etc. Since these physical characteristics has a strong influence 

on the end  product characteristics as well as on the effectiveness of the downstream processes 

(such as drying, filtration etc.), the proper design and control of crystallization processes can 

have a noteworthy effect on the overall efficiency of the solid production process and the value 

of the final product. 

During the past two decades significant  effort has been made to develop a better 

understanding of the crystallization mechanisms like nucleation, growth etc., as well as on the 

modeling and control of crystallization systems. The advancement in process analytical 

technology and computing power has made this task much easier. The key developments have 

occurred in novel crystallization concepts, modeling, monitoring and control. A major 

development in the modeling area is the use of multi-dimensional population balance models 

which gives the morphological model of crystallization processes, as well as in the better 

understanding of crystallization in impure media. Developments in the monitoring of 

crystallization processes are highly attributed to the advances in process analytical technologies 

and advanced chemometrics and statistical process control concepts. The developments in the 

modeling and monitoring of crystallizers have also led to significant progress in the field of 

advanced control concepts.  

Monitoring using various process analytical techniques not only utilize real-time 

measurement tools but also incorporates chemical, physical, microbiological, and statistical 
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analysis like chemometrics. Chemometrics is usually applied for the interpretation of 

multivariate data provided by various in situ process monitoring devices. Chemometrics can be 

used to construct calibration models for sensors, to derive mathematical relationships between 

the anticipated   product properties, like crystal size distribution, and various other subsidizing 

variables, such as the solute concentration. These mathematical relationships are constructed 

using multivariate data analysis methods such as Principal Component Analysis (PCA), Partial 

Least Squares (PLS), Principal Component regression (PCR), Multiple Linear Regression (MLR) 

and variations of these approaches 

Various statistical process monitoring (SPM) techniques based on time series 

measurements have been developed and proposed for the monitoring of steady-state processes. 

They are used to spot unwanted departures from steady-state conditions. Thus, these approaches 

are well suited for monitoring of continuous crystallization systems. The purpose of statistical 

monitoring tools is to distinguish between random events and systematic changes of the process. 

Some of the frequently used statistical monitoring methods are the control charts e.g. Shewhart, 

CUSUM, EWMA. But, these methods are not suited for highly correlated data and in 

crystallization, the process variables are highly correlated and it may cause false alarms. This can 

be addressed by the use of control charts which take into account the autocorrelation and modify 

the control limits. A further approach is to develop a time series model that models the 

autocorrelation and then use the residuals for monitoring. But, univariate control charts are not 

efficient due to the interactions between variables. This is due to the fact that in  univariate 

analysis  the affiliation to the response variable are visualized one at a time and thus does not 

disclose the multivariate configurations between the variables, which is vital for industrial 

processes both for interpretation and prediction. 

Multivariate charts like Hotelling’s T
2
, MEWMA , MCUSUM, take this relationship into 

account for  monitoring the mean vector or variance-covariance matrix. Univariate control charts 

are more popular than Multivariate charts. Apart from the difficulty involved in the computation, 

of multivariate charts there are some additional difficulties which diminish their appeal: Unlike 

the univarite case, the scale of the values presented on the multivariate chart is not correlated to 

that of the monitored variables. If an out of control signal is indicated by a multivariate chart, it 
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becomes difficult to determine which variable responsible for the signal. More complicated 

methods are needed to decide the origin of the signals. 

Therefore, Multivariate Statistical Process Control (MSPC) techniques, which consider all the 

variables of interest simultaneously and can, extract information on the behavior of each variable 

or characteristic relative to the others is highly essential. MSPC research is having high value in 

theoretical as well as industrial application and is certainly a benefit to process monitoring, fault 

detection and process identification and control. 

 

1.1. OBJECTIVE 

In the context of aforesaid discussion, it is worthy to mention that control of 

crystallization process and application of multivariate statistical process monitoring and control 

deserves extensive research before its widespread use and commercialization. For very complex 

and non-linear processes, data based process monitoring, identification & control seems to be 

unequivocally superior to physical model based approaches. Expert systems or knowledge based 

system can be developed by integration of process knowledge derived from the process data 

base. In view of this, the objectives of the present dissertation are as follows: 

 Development of a temperature trajectory for control of batch crystallizer CSD. 

 Modeling and dynamic simulation of continuous cooling crystallization process. 

 Design of optimal control for CSD of continuous cooling crystallizer. 

 Monitoring of continuous crystallizer using MSPC techniques. 

1.2. ORGANIZATION OF THE THESIS 

Chapter 1: This chapter of the thesis presents a brief introduction on monitoring and control of 

crystallization process. The objective of this thesis with the chapter layout is also included in this 

chapter. 

Chapter 2: Theory of crystallization process along its kinetics and various control approaches are 

presented in this chapter. 

Chapter 3: In this chapter a mathematical model of batch crystallizer was resolved and simulated 

for three different cooling methods: natural, linear and controlled cooling. 
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Chapter 4: Modeling, open loop simulations along with the closed loop simulations are the traits 

of the present chapter. 

Chapter 5: Theoretical postulates of the various MSPC techniques and the application of these 

techniques on continuous crystallizer are presented in this chapter. 

Chapter 6: On an ending note this chapter concludes the thesis with future recommendation. 
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Chapter 2 

PRINCIPLES OF CRYSTALLIZATION 

2.1 Introduction 

Crystallization is a process of formation of solid crystal from a uniform solution. It is 

used in pharmaceutical as well as bulk chemical industries. Its widespread use is due to the fact 

that in a single operation enables both separation as well as purification, resulting in a crystalline 

solid which is sequestered with high level of purity and low capital and operating cost. 

Crystallization process provides the chance to govern the size and amount of crystals formed. In 

the case of pharmaceutical industries, the size and structure of the crystals formed are significant. 

Product quality and efficiency are often dependent on satisfactory control of particle size and 

structure. The size of crystal produced in a crystallizer can have an unfavorable effect on 

downstream operations. 

Therefore, it is desirable to propose a crystallization process that prevents extreme fines 

generation and thus can reduce downstream operation problems. The degree of supersaturation 

can be calculated using the population balance together with the understanding of the nucleation 

and growth kinetics. The population balance method has a vital part in crystallization and other 

particulate processes. 
 

2.1.1 Supersaturation and solubility  

Solubility determination constitutes the first step in study of crystallization process. The 

knowledge of solubility gives the rate of supersaturation which is the driving force for 

crystallization. Solubility measurement is performed by heating a suspension and discerning the 

temperature corresponding to complete dissolution. Cooling of a saturated solution results in a 

solution that is supersaturated. 

Supersaturation can be defined as the difference in the chemical potential of solute 

concentration in a supersaturated to that of a saturated solution. Various methods like cooling, 

antisolvent addition, chemical reactions, solvent evaporation etc can be used supersaturation 

generation. The most commonly employed method for supersaturation generation is cooling. this 

method can be applied to materials whose solubility is a function of temperature. the final 
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product properties and economic traits forms the basis for the selection of a particular method for 

supersaturation generation. 

       

The solution is said to be supersaturated when ∆c is greater than zero. 

2.1.2 Metastable zone  

The initial stage in the design of crystallization process is to determine the width of 

metastable zone. Metastable zone is a region of supersaturated solutions where even in the 

absence of stability no solid phase separates out. The width of the metastable zone depends on 

several features like coolant flow rate rate, solute concentration, impeller speed, presence of 

impurities, etc. It can be demarcated as the difference in saturation temperature to the 

temperature at which first crystals are formed. This temperature difference is named as the 

maximum undercooling, ∆Tmax. The solubility and metastable limit of a system cooled from  

under saturation to supersaturation is illustrated in Figure 2.1  

According to Ostwald (1897), the phase diagram for crystallization can be divided into 

three distinct regions namely under saturated, Metastable supersaturated and unstable 

supersaturated zone. 

1. Under saturated zone – In this zone the crystals present in the solution get dissolved 

making crystallization process infeasible. 

2. Metastable supersaturated zone – This zone facilitates the growth of crystals as there 

are no nucleation of the supersaturated solution. 

3. Unstable supersaturated zone – In this zone spontaneous nucleation take place. 

In cooling crystallizations solute concentration profile is maintained well within the 

metastable zone and close to the solubility curve in order to promote crystal growth and to avoid 

secondary nucleation. In industrial crystallizers the level of supersaturation is retained at about 

half the metastable width. 
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Figure 2.1: The Phase Diagram 

]
 

2.1.3 Crystallization kinetics 

 

Dynamic evolution of crystal population to the state variables of the continuous phase is 

related by crystallization kinetics. Crystallization kinetics can be explained by crystal growth and 

nucleation. Nucleation and growth takes place only if supersaturation is positive, indicating a 

thermodynamically favorable condition for transition of the solute into the solid phase. 

2.1.3.1 Nucleation 

Nucleation is the process of formation of a new crystalline phase. Nucleation can be 

broadly categorized as primary nucleation and secondary nucleation. Primary nucleation takes 

place in the absence of crystalline surfaces. Primary nucleation can further classified as 

homogeneous and heterogeneous nucleation. Homogeneous nucleation takes place 

spontaneously in a pure solution through the formation of clusters of solute molecules. On the 

other hand, heterogeneous nucleation is induced by the presence of impurities. Primary 

nucleation when the level of supersaturation is high typically when the metastable limit is 

exceeded. A common practice in industrial crystallization is to dodge primary nucleation since it 

is often unfavorable to the product quality. This can be done by maintaining the supersaturation 

within the metastable zone. 
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Figure 2.2: Mechanisms of Crystal Nucleation 

Secondary nucleation takes place at low levels of supersaturation. Figure 2.2 shows a 

variety of secondary nucleation mechanisms. Initial breeding happens when crystalline dust 

fragments adhered to the surface of dry seed crystals are washed off upon introduction into a 

supersaturated solution. Breakage of dendrites from the parent crystals leads to dendrite 

breeding, whereas fluid shear breeding transpires due to the breakage of a growing crystal face 

under hydrodynamic shear forces. Whereas, contact nucleation is a result of mechanical forces, 

namely vigorous crystal-crystal, crystal-impeller, and crystal-hardware collisions. 

Among the various secondary nucleation mechanisms, contact nucleation generally 

dominates in industrial crystallization. Attrition is a two-step process consisting of the generation 

of attrition fragments and their subsequent growth. They are created mainly due to crystal-crystal 

and crystal-hardware collisions. The formation of secondary nuclei is dependent on the 

properties of the crystalline material and the hydrodynamic conditions inside the crystallizer.  

Mechanical stress can results in distortion of the crystal lattice of the attrition fragments. The 

lattice strain intensely affects the existence and the outgrowth of these fragments. 

2.1.3.2 Crystal growth  

Crystal growth begins once stable nuclei have been shaped in a supersaturated solution. 

These stable nuclei begin to grow into crystals of observable size. The surface of crystals 

increases as the solute molecules are assimilated into the accessible and energetically favorable 

kinks or steps of the crystal lattice. 
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Crystal growth is primarily a two-step process. In the first step the solute molecules 

diffuse towards the crystal surface and integration of these growth units into a crystal lattice 

takes place followed by mass transfer of the solute molecules from bulk through a stagnant layer 

around the crystal surface. In this stage surface diffusion, spatial orientation, and the subsequent 

surface integration reaction takes place. The individual steps of the crystal growth are often 

described in terms of power-law functions of supersaturation.  

In this study, the crystal growth rate( 
  

  
), is represented by the empirical expression 

         ( 
 

  
)                                                                             

2.1.4 Seeding 

Seeding is a technique that is used in a crystallization process to control the size and 

amount of crystals produced. Addition of seed crystals occurs prior to crystallization. It provides 

surface for nucleation and crystal growth. Hence, can control the inception of crystallization. The 

key step in seeding process is to ensure that the seeds are not added too early. This information is 

very significant in context of production routine. This high lights why the information of the 

solubility curve and metastable width are important.   

 

Figure 2.3: Seeding Policy 

 

Some of the key variables to be considered in seeding include seed loading, size of the 

seeds and when and how they are added. Naturally, smaller seeds provide higher surface area per 
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unit mass and hence more opening for growth-controlled process. Smaller crystals provide more 

area for growth as compared to larger ones and thus the process becomes secondary nucleation 

controlled. Typically, higher amount and smaller size of seeds makes the crystallization process 

easier to control with minimum process disturbances. Seeds are added in dry or in wet form. 

When seeds are added as slurry, it becomes easier for the seeds to disperse to their prime crystal 

size. Whereas adding dry seeds results solvent entrapment and agglomeration.  

2.2 Control of Crystallizers 

With the advancement in process analytical technology and computing power various 

interesting control approaches have been proposed to meet the increasing demand of high quality 

product. These control approaches can be broadly categorized as ‘model based controlled 

approach’ and ‘direct design approach’.  

2.2.1   The Direct Design Approach 

The root of the direct design approach for controlling a crystallizer is the knowledge  that 

the desired area of operation of crystallizers are within the metastable zone (Fig.2.4), which is 

constrained by the solubility curve and the metastable curve. 

 

Figure 2.4: The Direct Design Approach 

Here, the set point trajectory (solute concentration) is intended to lie inside the metastable 

zone and a feedback control system is provided to track the solute concentration. The set point is 

fixed based on the fact that crystals grow at a faster rate near the metastable curve, and the level 
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of nucleation is low near the solubility curve. This method stands with the advantage that 

accurate kinetics of growth and nucleation need not be derived. Implementation of this method, 

call for knowledge of the metastable zone and solute concentration. The popularity of this 

method is stirred by recent advances in the in situ sensors, which permits automatic evaluation of 

the metastable zone. 

2.2.2   The Model Based Control Approach 

Basis of this method is a first-principles model constructed from material and energy 

balances. Probability balance equation (PBE) gives the solid balance and defines the effect of 

crystallization kinetics on crystal size distribution. The distributed nature of PBE makes the 

model based control difficult to handle. This problem is solved by approximating PBE by 

method of moments. And these crystal moments describe various physical properties of crystal 

growth like number, length, area and volume. But knowledge of CSD is not given by PBE. The 

primary objective of model based control approach is production of crystals having large mean 

crystal size and a narrow crystal size distribution. 

First-principles models provide insights into crystallization processes by enabling 

systematic simulation and optimization of various kinetic phenomena. The drawback of this 

method is that it requires accurate knowledge of crystallization kinetics.  The arrival of in-situ 

sensors and the use of multivariate statistics have largely improved reliable data collection and 

analysis for identification of the kinetic model. However, modeling of more complex kinetic 

phenomena, e.g. agglomeration, dendritic growth, polymorphic transitions, etc., yet remains to 

be a challenge. 

Moreover, kinetic parameters are typically determined at laboratory-scale. Achieving the 

same supersaturation and localized mixing in an industrial-scale crystallizer is almost impractical 

due to different heat transfer and mixing characteristics. To add to this the kinetic parameters are 

largely sensitive to feed impurities. The shortfalls of the identified kinetic models can severely 

degrade the effectiveness of a model-based control approach at industrial level. In this thesis 

model based control approach has been used for the batch as well as continuous crystallizer. 
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Chapter 3 

BATCH CRYSTALLIZER 

3.1 Introduction 

Batch crystallization from solution is used in pharmaceutical and agrochemical industries 

for solid–liquid separation as well as purification. They are used for the production of both low-

volume and high-value chemicals. A batch crystallizer produces crystals of large mean crystal 

size and narrow crystal size distribution which has direct effect on the final product qualities. 

Therefore, to increase the batch crystallization performance and product quality it is very 

important to control the CSD. Supersaturation trajectory which is a function of temperature has 

direct effect on CSD. Thus the crystallizer temperature serves as the manipulated variable for 

cooling crystallizer. But the temperature of the crystallizer cannot be manipulated. Only the inlet 

temperature of the cooling medium can be influenced. So in most of the cases slurry temperature 

is set as the manipulated variable which controls supersaturation. 

The need to produce products with specified crystal size distribution calls for an 

optimized crystallization process. Some of the objectives of an optimized batch crystallizer  are, 

maximize the mean crystal size, maximize the terminal  seed crystal size,  minimize the 

coefficient of variation of crystals and to reduce seed crystal mass to the nucleated crystal mass 

ratio etc. (Debasis etal., 2003) . Griffiths (1925) suggested maintaining the cooling profile of a 

batch crystallizer well within the metastable zone results in betters CSD. However, no 

computable procedures  for optimal operation of a batch crystallizer was proposed. Mullin and 

Nyvlt (1971) ,developed a cooling method and it was considered to be the optimal method for 

batch crystallization in the programmed cooling mode. Further, a more systematic method that 

mathematically calculates the programmed cooling profiles that takes nucleation also into 

account was suggested by Jones and Mullin (1974).According to the studies conducted by 

Jagadesh et al.(1996) using a laboratory crystallizer, a unimodal distribution of the crystals can 

be produced with virtually no nucleation under natural cooling mode if enough seeds are added. 

Almost same results were reported by Doki et al. (2001) for a large scale crystallizer. The 

cooling mode suggested here is very easy to operate. But it is not considered to be optimal for 

attaining large / desired product size.                                                                                                                                                                                                                                                                                                                                                                           
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A single optimal control policy was generated by Chang and Epstein (1982).Zhang and 

Rohani (2003) proposed an optimal policy by combining the objectives of achieving CSD with a 

large mean size and small CV into one objective by a weighted sum approach. Similarly, single-

objective optimization approach using a penalty for time of operation was used to solve the 

problem of achieving the largest possible final crystal size in the shortest possible batch time 

(Choong and Smith, 2004).The effect of different cooling policies on the supersaturation level in 

batch crystallizers has been widely investigated. The effect of cooling profile on supersaturation 

level for a batch crystallizer that produces ammonium sulfate was investigated by Hojjati and 

Rohani (2005). Four cooling strategies including natural, linear, controlled, and impulse change 

in natural cooling policy were investigated and the results showed that at low seed loading, 

control of cooling policy is must   to ensure narrow crystal size distribution  with large mean 

size. 

In this work a mathematical model of batch cooling crystallizer was resolved for the three 

different cooling approaches, natural, linear and controlled cooling using terminologies for 

nucleation and crystal growth rates and solubility determined for potassium sulphate solutions. 

These theoretical considerations were used to predict the temperature, supersaturation and the 

product distribution. The population balance equation together with the mass and energy 

balances is converted into the set of moment equations for the first four moments having 

physical meaning. The properties of the crystalline product and dynamic behavior of the 

crystallizer obtained by numerical experimentation carried out by using a computer program in 

MATLAB environment are presented and analyzed.  

3.2 MATHEMATICAL MODELING OF BATCH COOLING CRYSTALLIZER 

Crystallization process is complex process. To predict the performance of a crystallizer 

proper understanding of the phenomenon like nucleation, growth, attrition, breakage and 

dissolution are required. A mathematical outline for modeling a batch crystallization process 

comprises of the population balance equation (PBE) which describes a conservation equation for 

number of crystals in a population. 

 In order to simplify the mathematical model of the process following assumptions were 

made: the system is well mixed in both phases, no volume changes, crystals or solution are 
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neither removed nor added, and all same sized crystals grow at same rate. With these 

assumptions population balance for a batch crystallizer with one specific growth dimension is 

given as: 

  

  
 

     

  
                                                                                                                        

  

  
 

     

  
                                                                                                                           

Were p is the population density; B and G are the birth and growth rate respectively. When the 

growth rate is independent of crystal size (G ≠ G(L)) Eq. (3.2) can be written as: 

  

  
  (

  

  
)                                                                                                       

This equation was derived by Branson and Dunning (1949)     

The population density p in equation is demarcated as “unit mass of solvent” basis as we 

have taken that the volume changes are considered insignificant and an anhydrous salt is 

considered. The solution of eq. (3.1) comprises of 2 parts, the population balance of the seed 

crystals as well as generated nuclei. In order to distinguish between the two, former is denoted as 

S crystals and the latter as N crystals, and their corresponding number densities are continuous 

functions of size and time. 

Mass balance for the batch cooling crystallizer is given as: 

 
  

  
 

    

   
   

               [ ∫   
 

 
              

               
 ]              

                                                                                                        

Equation ( .4) defines the rate of change of solute concentration in a supersaturated solution due 

to the growth of the S-crystals, the generation and subsequent growth of the N-crystals.   is the 

number rate,    nucleation rate constant and    supersaturation. 

The saturation rate , is written as: 
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Adding 
   

  
 to both sides of the equation ( .4) gives the supersaturation equation: 

 
   

  
       

   

  
    

    

   
   

                 ∫   
 

 
              

               
      

( .7) 

3.2.1 Moment Transformation 

The method of moments is employed as a model reduction technique to obtain the 

analytical solution of PBE. This method allows us to condense the PBE to a set of nonlinear 

ordinary differential equation. These ordinary differential equations enable us to efficiently solve 

the crystallization model to pre specified accuracy. The moment model is particularly suitable for 

control applications. The moment transformation describes the j
th

 moment with regard to  

population density function:  

   ∫    
 

 

                                                                   

 In addition, the four moments of crystal size distribution have physical significance: 

  = total crystal number per unit volume 

  = total crystal length per unit volume 

   = total crystal surface area per unit volume 

  = total crystal volume per unit volume. 

    

  
                                                                                   

    

  
            

    

  
                                                         

    

  
            

    

  
   

                                                      

    

  
            

    

  
   

                                                      

The supersaturation balance Eq. 3.7 may be written in terms of Eq. 3.8 where j = 3, to give: 
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These moment equations is used in the solving the operating policies considered. 

The crystal growth rate, G( 
  

  
), may be represented by the empirical expression: 

         ( 
 

  
)                                                                   

or can be written as 

                                                                                                                                                        

                                                                                                                                                                          

           ( 
 

  
)                                                                                                                                                    

3.2.2 Energy Balance 

For the programmed batch cooling crystallizer the energy balance is given by: 

  

  
                                                                                                                       

here the temperature decreases with time and the heating periods are neglected. 

Here three basic cooling modes have been considered 

 Natural cooling 

 Linear cooling 

 Controlled cooling 

3.2.2.1 Natural Cooling 

In natural cooling, the batch is cooled from a prominent temperature to room temperature 

by natural convection (Newton’s law of cooling) and crystallization is uncontrolled. Here there is 

a rapid drop in the solution temperature early in the batch and the solution supersaturates at a 

faster rate than it is de supersaturated by growth of crystals. Thus supersaturation swiftly crosses 

the metastable curve and excessive nucleation takes place. Finally these nuclei grow and as a 

consequence an irregular product distribution is obtained. 
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The cooling rate for natural cooling       is described by Newton’s law (i.e., the cooling 

rate is proportional to the excess temperature): 

  

  
    {         }                                                                  

where   , Is the coolant temperature.    , is associated to the initial and final boundary 

conditions on temperature,   and    , and the batch time,  , by the equation :  

   
 

 
  {

     

     
}                                                                                            

3.2.2.2 Linear Cooling 

In Linear cooling the temperature tracks a constant cooling rate. The cooling rate is given 

by: 

  

  
                                                                                                                         

   , is associated to the initial and final boundary conditions on temperature,  and    , and the 

total batch time,  , by the equation :  

   
     

 
                                                                                

3.2.2.3 Controlled Cooling 

Modern crystallizers are often operated with some degree of control over cooling as 

uncontrolled cooling usually degrades the quality of crystals. In order to control the crystal size 

distribution of the product a proper control of supersaturation throughout the operation is must. 

Such a control is possible by maintaining the solute concentration well within the metastable 

zone. This results in a better product crystal size as nucleation becomes negligible (3.5) and 

growth essentially occurs on the seeded crystals. In order to obtain large crystals the temperature 

should be reduced gradually in the early stages and more rapidly towards the end of the batch. 

This mode of operation is termed controlled cooling. 

Here the controlled cooling is illustrated by the case of constant nucleation rate. If the 

rate of nucleation is assumed to be reliant only on the supersaturation  
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then for controlled cooling : 

                                                                                                    

   

  
                                                                                         

The equation (3.30) can be rearranged to obtain cooling rate 

  

  
  [

   

  
 

    

   
   

        

    

  
]   (

   

  
)                                       

 

 3.3 DYNAMIC SIMULATION OF BATCH CRYSTALLIZATION PROCESS               

The cooling curves, transient supersaturation, nucleation rate and product CSD were 

computed from the equations given above. The seeded batch crystallization of potassium sulfate 

is considered .The following physical properties and initial conditions were used obtain the 

dynamic simulation results of batch cooling crystallizer. (Table 3.1) 
 

Table 3.1: The physical parameters and initial conditions of batch crystallizer 

Parameters Value  Parameters Value 

             n      

      g   

- E/R                       m 

             m                 kg/kg 

              kg/kg        K 

       K        K 

        sec                  

                    

 

 Dynamic simulation is obtained by using ODE 45 solver in MATLAB software. Dynamic 

responses of state variables are shown in figure 3.1. 



21 
 

 

Figure 3.1 Comparison of operating policy for batch cooling crystallization.(  Natural,  Linear      

, Controlled) 

 

Figure.3.2 Effect of cooling curves on transient supersaturation.(  Natural, 
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Figure.3.3:  Effect of cooling curves on seed crystal length. (  Natural,  Linear, Controlled) 

 

It is quite clear from the figure 3.1 that the temperature profile for natural cooling is 

concave in nature. i.e. the slope of the temperature profile  is maximum at the commencement of 

the batch. So in order to attain natural cooling profile there should be a very swift drop in the 

crystallizer temperature early in the batch. In case of controlled cooling the temperature profile is 

convex in nature, i.e. temperature drop is maximum at the end of the batch, and for linear cooling 

the temperature drop remains constant throughout.  

The degrees of supersaturation corresponding to various cooling profiles studied are 

shown in figure 3.2. Initial supersaturation peaks are obtained in case of natural as well as linear 

cooling. The effect is more prominent in natural cooling. We can see that the terminal 

supersaturation and rate of nucleation are in the reverse order. That is the final supersaturation 

for natural cooling is lesser than that of linear, which is lower than that for controlled cooling. 

Thus we can say that natural cooling profile corresponds to lowest residual supersaturation and 

thus produces more amount of solute is been formed. Thus, natural cooling does not give the 

optimal crystal size distribution. 
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Constant nucleation rate cooling shows an improvement in the terminal size of the seed 

crystals compared with both linear and natural cooling (Fig.3.3).This is due to the fact that, 

natural cooling results in the  formation of huge amount of nuclei as the supersaturation crosses 

the metastable curve and these nuclei grow and compete for solute with the seeded crystals. 

Whereas, in the case of controlled cooling supersaturation is maintained at a level within the 

metastable limit throughout the batch, so nucleation would be negligible and an better  product 

crystal size is be obtained. 

3.4 Crystal Size Distribution 

The primary objective of crystallization process in industries is to produce solid products 

with desired purity and crystal size distribution. Crystal size distribution is a very important 

factor that determines the efficiency of downstream operations as well as the effectiveness of the 

product. In the case of batch cooling crystallization quality of the product is emphasized from the 

crystal size distribution obtained at the end of a batch. The final CSD is dependent on 

supersaturation profile which is a function of temperature. Hence a proper control strategy that 

gives the desired supersaturation trajectory is needed. As the performance of model base control 

approach is highly prone to uncertainties, a model that can effectively explain the process and 

accurately estimate the model parameters is of utmost importance. The CSD of batch crystallizer 

is accounted by considering primary nucleation, secondary nucleation, crystal growth, breakage 

and aggregation. Due to the unavailability of an accurate theoretical model to express the 

crystallization kinetics, nucleation and growth rates are expressed as empirical power law 

expressions. 

 In this study following properties of final CSD is investigated: number average size, final 

mean size of crystals and coefficient of variation. 

                                   
  

  
                                                               

                                        
  

  
                                                               

A crystal size distribution with a large mean size and minimum coefficient of variation (CV) is 

highly desirable for the end product. 
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Table 3.2: Effect of cooling policies on product CSD 

 

Operating Policy 

 

 

Terminal Size of 

‘S’ Crystals  

(  ) 

 

Number Average 

Size  (  ) 

 

Final Mean Size 

(  ) 

 

Coefficient of 

Variation 

(%) 

Natural Cooling 1355 380 1156 50 

Linear Cooling 1421 421 1270 48 

Controlled Cooling 1561 491 1500 44 

 

 The effect of various cooling policies on the product CSD’s is shown in Table 3.2 where 

the potential improvement of controlled cooling profile over the other policies is highly visible. 

Constant nucleation rate cooling results in the increase in final size of the seed crystals, the mean 

crystal size and final mean size. A further improvement in the terminal size of seed crystal is 

possible if we eliminate nucleation completely. 

 3.5. CONCLUSION 

The CSD from a batch cooling crystallization process was prophesied by the numerically 

solving the mathematical model using the crystallization kinetics like nucleation and crystal 

growth. The results clearly portray the prospective benefits of controlled cooling for the 

betterment of the product crystal size over that gained by natural and linear cooling. 

Controlled cooling significantly minimizes the extent of nucleation and improves the size 

of the terminal crystals, compared to natural cooling. The ultimate outcome is significant 

improvement in the number average size, final mean size and coefficient of variation of the 

whole crystal distribution as well as the terminal size of the seed crystals. 
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Chapter 4 

CONTINUOUS CRYSTALLIZER 

4.1 INTRODUCTION 

Continuous crystallizers are used in industry for the manufacture of chemical products as 

well as for recovery of valuable products. They are suited for the production of large tonnage 

bulk commodity crystalline products as they can be operated at desired operating condition .The 

production rate of continuous crystallizers vary from 1ton/day to 50 ton/day. 

In continuous crystallizers, full use of existing plant capacity is possible as no down-time 

is needed for filling and emptying of crystallizers as is required for batch operation. The often 

quoted advantages for continuous crystallizers compared to batch crystallizers are better optimal 

operating conditions, reduced size of crystallizers and tankage. And some of the drawbacks are   

continuous crystallizers take time to attain steady state, instability of operation and accumulation 

problems. Continuous crystallizers are intended to create and maintain constant growing 

conditions for the crystal product. Due to the large dimension of the equipment it is difficult to 

attain uniform distribution of the temperature, solute concentration and crystal suspension. 

Therefore, a proper control strategy is must. 

Control of crystallizers has been the topic of many researches since early 1960s.In the 

previous studies control schemes were mainly concentrated on the control of crystal size 

distribution (CSD).A feedback control scheme that can overcome instabilities observed in the 

CSD of continuous crystallizers was proposed by Randolph el al. (1977).Many works 

emphasizing on the choice of a proper measured and a manipulated control variable for control 

of crystal size distribution  are reported in literature (Rohani1986,Randolph el al. 1987). But in 

majority of these studies complexities in controlling the process have not been considered. In 

crystallization process apart from CSD there is other variables like crystal purity, crystal shape 

and productivity that are to be considered. 

Studies were conducted by Sherwin (1967) and Randolph (1977) on the stability of well 

mixed crystallizers. Vollmera and Raisch (2002) based on stability analysis of simple model 

crystallizer transfer function designed stabilizing feedback H∞ controller. Yin et al. (2003) 
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investigated the stability and dynamics of linearized model of a continuous crystallizer were 

crystal growth rate was size-dependent. Analyzes of controllability and observability of MSMPR 

crystallizer as well as the coupling between the inputs and the outputs by simulation using the 

linearized moment equation model were reported by Moldoványi et al.(2005)The dynamic 

behavior of isothermal CMSMPR together with their bifurcation behavior, period doubling 

cascades, quasi periodic oscillations etc. were considered by Lakatos et al.(1995). 

Ramanathan (1988) investigated the stability and dynamic behavior of isothermal 

CMSMPR in Laplace domain. The characteristics of these models, considering the zeroes and 

poles location and their effects on system stability and frequency response were discussed in 

detail. Shirvani et al.(1995)developed a simplified model for complex transfer function models in 

frequency response domain. These frequency response data of a process system provides 

excellent recognizable information about structure of a lumped process system as well as a 

distributed process system such as the crystallizer systems which can be detected clearly in a 

heuristic manner. Alberto et al (2012) designed a feedback control algorithm for non-isothermal 

seeded continuous crystallizer. The control objectives was steadying of the third moment of the 

crystal size distribution and the temperature of the crystallizer considering impeller speed  and 

the jacket flow rate as the manipulated variables .Heidariet al.(2012) contributed a linearized 

dynamic model for calculating Cumulative Mass Fraction (CMF) of Potassium Nitrate-Water 

Seeded Continuous Mixed Suspension Mixed Product Removal (CMSMPR) crystallizer by 

approximated simplified model in frequency domain. 

 This chapter covers the mathematical modeling and simulation of a non-isothermal 

continuous cooling crystallizer. Analyzes of the operating conditions were done based on the 

combined effects of secondary nucleation and cooling temperature. Finally, a closed loop 

simulation was developed using traditional PID controller. The model developed here was used 

to generate the database for performing various multivariate statistical process control techniques  

4.2. MATHEMATICAL MODELING OF NON ISOTHERMAL CONTINIOUS 

COOLING CRYSTALLIZER       

Presence of two nonlinear discrete kinetic steps: nucleation and growth makes the 

continuous crystallization a highly complex and nonlinear process. In addition, there are 

interactions between kinetic, fluid dynamics, and crystal size distribution. A mathematical 
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background for modeling a continuous crystallization process consists of the population balance 

equation (PBE) which describes a conservation equation for the amount of crystals in a 

population. 

 In order to streamline the mathematical model of the process following 

assumptions were made: crystallizer is operated in a continuous mode, perfectly mixed, constant 

volume and infinitesimal new generated particles size. With these assumptions population 

balance for a continuous crystallizer is given as: 

  

  
 

     

  
  ∑

      

 
 

                                                                 

Were n is the population density, L is characteristic crystal length, G is the crystal growth 

rate, B is the nucleation rate, and δ(L − L0) is the Dirac delta function acting at L = L0. The initial 

and boundary conditions are given as: 

  

                                                                                                                                      

                                                                                          

Mass balance for the continuous cooling crystallizer is given as: 

   

  
  

      

  
 

      

  
 ∑   

 

                                                                 

The mass balance gives the flow of solute in and out of the crystallizer and the mass 

transfer to the crystal phase through nucleation and growth. Here    is the mass of solute in the 

solvent, V is the total suspension volume,    is the suspension solids-free volume, C is the solute 

concentration, q is the volumetric flow rate,    is the global mass transfer of solute and ε is the 

void fraction. 

The energy balance gives the differences in enthalpy of the flow streams, the heat of 

crystallization and heat removed by the coolant. The following equation denotes the energy 

balance: 

                                         

  

  
 ∑   
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Where     stands for specific heat capacity, ρ is the slurry density, T temperature of the 

crystallizer, is    the enthalpy of the k
th 

stream, Δ  is the heat of crystallization and      is the 

net heat removed.  

In order to, develop complete model of the crystallization process empirical equations for 

growth and nucleation are required. Both of them are function of supersaturation and agitation 

rate as reported by Salcedo-Estrada(2000). 

                                                                                                                                                      

                                                             
                                                                                    

The driving force for both phenomena and is called the relative super-saturation ∆c given 

by the equation (3.7): 

                                                             
        

    
                                                                                   

The crystallizer mentioned here is developed for operating in the metastable zone limit. 

Hence, knowledge of the limits of metastable zone is very important. The polynomial equation 

for the metastable zone limit (cmz) for the ammonium sulfate-water system as function of 

crystallizer temperature is reported by Lugo-Martinezaas: 

                                                                                      

The lower limit, saturation concentration (cs) was estimated using the polynomial 

equation given by Perry et al. Both of these equations are effective in the range from 20 to 50
0
C. 

                                                                                                   

To avoid high computational time required in solving of the PBE, these equations are 

converted into a set of ode by the method of moments. In this context, the method of moments 

states the i
th

 moment in terms of the population density function as: 

    ∫    
 

 

                                                                             

The moment transformation resulted in the following set of differential equations: 
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These equations were solved using the SIMULINK tool box of MATLAB to get the open loop 

simulation of the continuous cooling crystallizer. 

4.3. DYNAMIC SIMULATION OF CONTINUOUS CRYSTALLIZATION PROCESS 

The dynamics of continuous crystallizer was computed from the above equations. The 

seeded batch crystallization of ammonium sulfate is considered .The following physical 

parameters and initial conditions were used, Table 3.1. 
 

Table 4.1: The physical parameters and initial conditions of the seeded continuous crystallizer 

PARAMETERS VALUE UNIT PARAMETERS VALUE UNIT 

   1.769 g/cm
3 

C(0) 0.772 g/l 

ρ 1.244 g/cm
3   2.6 min 

   2.85 cal/g
0
C     -12.0354 cal/g 

Cpw 1 cal/g
0
C UA 1000 cal/min

0
C 

V 3000 cm
3 

U0A0 100 cal/min
0
C 

VC 820 cm
3 

Tjin 13 
0
C 

kg 9.09*10
-4

 (cm/min)(min/rev)
h 

Tin 30 
0
C 

kb 180 (cm
3
/g)

0
(min/rev)

h
 

/min cm
3
 

μ0 0.9772  

g 1.5  μ1(0) 1.044*10
-2

  

h 1.337  μ2(0) 1.8213*10
-4

  

b .562  μ3(0) 2.3407*10
-7

  

o .001  μ4(0) 3.0159*10
-8

  

p .050  μ5(0) 3.8891*10
-10
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The following graphs show the open loop simulation of the state variables of non-isothermal 

continuous cooling crystallizer. 

 

Figure 4.1: Zero order moment of crystallization 

 

 

Figure 4.2: First order moment of crystallization 

 

Figure4.3: Second order moment of crystallization 
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Figure4.4: Third order moment of crystallization 

 

Figure4.5: Fourth order moment of crystallization 

 

 

Figure4.6: Fifth order moment of crystallization 
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Figure4.7: Concentration profile. (                                           )        

 

Figure4.8: Crystallizer Temperature Profile 

 

Figure4.9: Jacket Temperature profile 
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the process provides: a crystal formed from an impure solution is essentially pure, little energy is 

required for separation, and it provides the product in a suitable condition for packaging and 

storage. These profits are possible only when a good control strategy is tailored and all control 

intentions are accomplished. At industrial level, the objective of crystallizers is to obtain crystals 

with definite characteristics of crystal size and purity. 

In this thesis, an attempt has been made to develop a good control strategy that improves 

the crystal size distribution of a non-isothermal continuous crystallizer that produces ammonium 

sulphate. Here, a traditional PID controller to control the temperature of the crystallizer has been 

proposed. Inlet temperature of the coolant is taken as the manipulated variable to control the 

crystallizer temperature. The parameters values for the PID controllers were obtained minimizing 

the integral square error (ISE). The PID parameters obtained for the temperature control are Kc = 

78.956, τI = 0.7014,τD = 0.3174 and τF = 12.44. The following graphs shows the closed loop 

responses obtained.  

 

Figure 4.10: Zero order moment of crystallization 

Figure 4.11: First order moment of crystallization 
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Figure 4.12: Second order moment of crystallization 

 

Figure 4.13: Third order moment of crystallization 

 

Figure 4.14: Fourth order moment of crystallization 
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Figure 4.15: Fifth order moment of crystallization 

 

Figure 4.16: Concentration profile (                                          ) 

 

          

Figure 4.17: Temperature profile ( set point tracking) 

 

 From the figure 4.17 we can see that the PID controller enables perfect set point 
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crystallizer concentration is maintained well within the metastable zone limit. But in case of 

open loop simulation the crystallizer concentration is very close to saturation concentration limit 

and by temperature control we are able to maintain the concentration within acceptable limits.  

4.5. CRYSTAL SIZE DISTRIBUTION 

               The mean crystal size and coefficient of variation can be calculated using the following 

relationships of the moments in order to obtain the complete Crystal size distribution:  

    
  

  
                                                                           

                                                                 √
  

  
 (

  

  
)

 

 
  

  
                                                               

The crystal size distribution was calculated using the equation 4.14 and 4.15 for both the open 

loop and closed loop and are tabulated. The results show significant improvement in the CSD for 

closed loop. 

Table 4.2: Crystal Size Distribution 

OPERATING POLICY MEAN CRYSTAL SIZE(µm) CV (%) 

Open loop 82.67 57 

Controlled 354.2 46 

 

4.6. CONCLUSION  

 The mathematical modeling and simulation of continuous crystallizer was performed to 

obtain the dynamics. Then a PID controller to control the crystallizer temperature which in turn 

leads to the improvement in crystal size distribution has been proposed. The overall effect is that 

the crystal concentration is maintained well within the metastable zone and there is significant 

improvement in the crystal mean size and coefficient of variation of the whole distribution.  
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Chapter 5 

MULTIVARIATE STATISTICAL PROCESS MONITORING AND 

CONTROL 

5.1. INTRODUCTION 

 Multivariate Statistical Process Monitoring (MSPM) - also known as Multivariate 

Statistical Process Control or MSPC - is a valuable tool for warranting reliable product quality 

and safety in the process industry. With the advent of mature data capture technology, 

multisensory array, advancement in data collection, compression and storage, data driven process 

monitoring including product quality monitoring, fault detection and diagnosis are gaining  due 

attention and wide spread acceptance. However, many industries are still lagging behind in fully 

using their potential to make noteworthy improvements in their production.  

The MSPC make use of several multivariate models to instantaneously capture the data 

from process variables. It can vary from two variables to thousands of variables. This method 

provides major profits to the process engineers such as: 

 Early fault detection 

 Improved process understanding 

 Process optimization 

 Online prediction of quality 

Various MSPC approaches, enables monitoring of data at the final product quality stage, 

as well as at different periods of the process, to recognize the fundamental systematic changes in 

the process variables. The measured variables in a process are often correlated to a certain extent, 

for example, by measuring several temperatures in a crystallizer events in a process can be 

pictured in a reduced subspace and this can give a direct chemical/physical interpretation. To 

keep such a process under control, traditional univariate control charts are not efficient due to the 

covariance between variables. This is because in univariate analysis the relationship between the 

response variable are pictured one at a time and thus does not disclose the multivariate patterns 

between these variables, which is vital for industrial processes both for interpretation and 

prediction. 
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5.1.1. DATA BASED MODELS 

Data based modeling is one of the very recently added techniques in process 

identification, monitoring and control. Here the model parameters are determined by 

experimental results /wet labs, hence these models are called data based models or experimental 

models. Unlike the white box models derived from first principles, the black box/data based 

models or empirical models do not describe the systematic phenomena of the process; they are 

based on input-output data and only describing the overall behavior of the process. The data 

based models are especially appropriate for problems that are data rich and information poor. 

Sufficient numbers of quality data points are essential to propose a good model. Quality data is 

defined by noise free data; free of outliers and is ensured by data pre conditioning. 

The phases in the Data based modeling are: 

• System analysis 

• Data collection 

• Data conditioning 

• Key variable analysis 

• Model structure design 

• Model identification 

• Model evaluation 

In this era of data explosion, rational as well as potential conclusions can be drawn from 

the data, and in this regard, multivariate statistics is of profound importance. Several Data driven 

multivariate statistical techniques such as Principal Component Analysis (PCA), Canonical 

Correlation Analysis (CCA), Partial Least Squares (PLS), Principal component regression (PCR) 

and Canonical Variate and Subspace State Space modeling have been proposed for these 

purposes. 

Data based models are divided into two major categories namely: 
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• Unsupervised models: These are the models which try to extract the different features present 

in the data without any prior knowledge of the arrays present in the data. Examples are Principal 

Component Analysis (PCA), Hierarchical Clustering Techniques (Dendrograms), non-

hierarchical Clustering Techniques (K-means). 

• Supervised models: These are the models which try to learn the features of the data under the 

guidance of a supervisor who trains these models with inputs along with their corresponding 

outputs. Examples include Artificial Neural Networks (ANN), Partial Least Squares (PLS) and 

Auto Regression Models etc. 

Efficient data mining, hence, efficient data based modeling enables to exploit the huge database 

available; in newer dimensions and perspective; embraced with never expected possibilities. 

5.2. THEORETICAL POSTULATES 

5.2.1. Principal Component Analysis (PCA) 

Principal component analysis is a statistical procedure in which a set of measurements 

which are possibly the correlated variables are converted into a set of values of linearly 

uncorrelated variables using orthogonal transformation. The set of linearly uncorrelated variables 

produces are called principal components and first PC gives the direction of largest variation in a 

data set. PCA technique can be applied on an auto-scaled data matrix to determine the 

eigenvectors, related eigenvalues and scores or the transformed data along the principal 

components. The drawbacks of the PCA method are that the new latent variables produced have 

no physical meaning and this can result in loss of information. 

Generally, PCA is a mathematical method used to find correlations and explain variance 

in a data set. The aim is to map a raw data vector A onto vectors B, where, the vector   represent  

a linear combination of a set of m orthonormal vectors ui 

                                                                                   ∑     

 

   

                                                                   

where the coefficients zi is given by       
  . This corresponds to the rotation of the coordinate 

system from the original   to a new set of coordinates given by z. In order to reduce the 



42 
 

dimensions of the data set, only a subset (k <m) of the basic feature vectors are conserved. Rest 

of the coefficients are substituted by constants and each vector   is then given as 

   ∑     

 

   

 ∑     

 

   

                                                                    

Here,    are the principal components which are the eigenvectors of the covariance matrix of the 

data set. The coefficients    and the principal components are so chosen that they provide best 

approximation of the original vector on an average. However, the reduction of dimensionality 

from m to k can lead to approximation error. By selecting the vectors that correspond to the 

largest Eigen values of the covariance matrix we can reduce the sum of squares of the errors over 

the whole data. PCA transformation reduces dimensionality of the original data set (typically 2-

3) and the measurements can be plotted in the same coordinate system. These plots show the 

relation between different observations or experiments. Grouping of data points in those bi-plots 

suggest some common properties and those can be used for classification. Considering the 

following matrix: 

                                                                      [

        

    
        

]                                                         

where, each row in X represents one measurement and the number of columns m gives the length 

of the measurement sequence. After that the covariance matrix C = cov(X) and its eigenvalues λ 

was calculated. Its eigenvectors    form an orthonormal basis 

                ; that is      . The original data set can be denoted in the new basis 

using the relation:       . After this renovation, a new data matrix of reduced dimension can 

be erected with the help of eigenvalues of the matrix C. This is done by choosing the highest 

values λ since they correspond to the principal components with maximum significance. The no. 

of PCs to be contained within should be high enough to guarantee good separation between the 

groups. Principal components with low values of λ are ignored. Let the first k PCs as new 

features be selected disregarding the remaining (m×k) principal components. In this way, a new 

data matrix D of dimension n × k was obtained. 
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  [

        

    
        

]                                                                    

The PCA score data sets are grouped into number of classes following the rule of nearest 

neighborhood clustering algorithm. In the present work PCA based similarity was used for 

process monitoring purposes. 

5.2.2. Similarity Factors: 

5.2.2.1 PCA similarity: 

Principal component analysis is a multivariate statistical tool that measures the variations 

in data, and renovates the original set of correlated variables into a new set of uncorrelated 

variables. The new set of variables thus produced is a linear combination of the original set of 

variables and they are called as principal components which signify the most vital directions of 

variations in a dataset. 

Krzanowski (1979) developed a method of using similarity factor in the place of 

Euclidean distance to measure dissimilarity between two datasets. In this method the similarity 

between two data sets containing n variables are measured using PCA similarity factor, SPCA. 

The PCA model for each dataset is assumed to contain k principal components and the number 

of principal component are so chosen that they define at least ninety five percentage variance in 

each dataset. These principal components are the eigenvectors of the covariance matrix of the 

multivariate dataset. The dissimilarity between the two data sets is computed by comparing their 

PCs and is given by a single factor, SPCA. 

Two data sets X1 and X2 having n variables each are considered. It is assumed that the 

PCA contain k principle components each. Then the corresponding (n × k) subspaces are denoted 

by L and M respectively. The SPCA that compares these datasets is given as: 

     
             

 
                                                              

 Geometrically, SPCA is the sum of the squares of the cosines of the angles between each 

principal component L and  M. Thus, 
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∑ ∑        

 

   

 

   

                                                            

   is the angle between the i
th

 PC of X1 and the j
th

 PC of X2. 

But, here all the PCs are weighed equally and thus might not be efficient in capturing the 

degree of dissimilarity between the datasets when only one/two PCs describe the variance. Thus, 

it calls for a modified PCA similarity factor;     
 thatweights each PC by its explained variance. 

The     
 is defined as: 

    
  

∑ ∑    
   

  
   

        
 
   

 
   

∑   
   

  
    

   

                                                  

where   
   

 and   
   

 are the i
th

 eigenvalues of the first and second datasets respectively. 

5.2.2.1. Distance similarity: 

The distance similarity compares 2 datasets that having same kind of spatial alignment 

but are positioned at distance from each other. This similarity factor is used when two datasets 

are having similar PCs but the values of the process variables are dissimilar due to different 

operating conditions. We can define the distance similarity factor, Sdist as: 

        
 

√  
∫   

  

   

 

 

   [  
 

√  
∫   

  

   

 

  

]                                   

where,   is the Mahalanobis distance from the midpoint of the first dataset (X1) to the center the 

second  dataset (X2) and is defined as: 

                                                √  
    

 ∑    
    

   
   

 
                                                     

  
  and   

  are sample mean vectors, ∑     the covariance matrix of  dataset X1, and 

∑      
  the pseudo-inverse of X1 calculated using SVD (singular value decomposition). Here X1 

is taken as the reference dataset. In equation 5.8, one sided Gaussian distribution is used as  ϕ ≥ 0 
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.The error function in equation 5.8 is calculated using standard tables or softwares. Integration 

normalizes Sdist between 0 and 1. As the relative values of Sdist is used for clustering as well as 

pattern matching, any mapping from ϕ to Sdist can be used. 

5.2.2.3. Combination of similarity factors 

A combined similarity factor which is a combination of      
  and Sdist can be used as a 

similarity measure. The key issue in this case is how these similarities should be united to yield a 

single parameter of similarity. Here the similarity factors are jointed into a sole similarity SF by 

means of weighted average of the two similarities and are given as:  

          
                                                                

The value of weighting factors can be chosen based on the prominence of each similarity 

factor for a particular application. Here, we selected the values    of and   as                                                                        

0.67 and 0.33 respectively. It is very important to note that there is no relation between the 

number of readings in each dataset and similarity factors and can be evaluated with 

comparatively less computational exertion. 

5.2.2.4. Dissimilarity Index 

In addition to the above mentioned similarity measures for clustering and pattern 

matching another factor called the dissimilarity index is also used in this work. Kano et al. 

proposed a dissimilarity index to match datasets for process monitoring. Here eigenvalue or the 

eigenvector decomposition of the covariance matrix of the combined data set is used to calculate 

the dissimilarity index. The covariance matrix of the combined data set X, is defined as: 

                                                                      [
  

  
]                                                                               

The datasets X1 and X2 are then projected on the eigenvector matrix of the covariance 

matrix of X and scaled by the corresponding eigenvalues to give  the transformed data sets   
 and 

   
 respectively. Then, the covariance matrices of the transformed data sets are calculated. 

Finally, the eigenvalues and eigenvectors of the covariance matrices are calculated. The 

covariance matrices of both transformed data sets have similar eigenvectors, and their 

eigenvalues are associated as: 

  
  

     
  

                                                                        



46 
 

where   
  

and   
  

are the eigenvalues of the covariance matrices of the modified data. If 

the data sets are similar to each other their eigenvalues will be near to 0.5, but if the data sets are 

dissimilar, then the largest and the smallest eigenvalues will be near to 0 and 1 respectively. 

Finally, a dissimilarity index D, defined to calculate the dissimilarity between two datasets. 

                                                                        
 

 
∑         

 

   

                                                              

The dissimilarity index D varies from zero to one. If two data sets are similar in any form 

D will be close to zero. However, D will be close to one when data sets are quite different from 

each other. 

In view of this, two MSPC methods clustering time series data and moving window 

based pattern recognition technique was adapted for process monitoring. Continuous 

crystallization processes were taken for the implementation of the proposed monitoring 

techniques. Instead of using first hand plant data, the crystallization  processes was modeled 

using first principles and processes were perturbed at industrially applicable operating conditions 

including faulty conditions to create vector time series datasets. 

5.3. CLUSTERING TIME SERIES DATA 

Cluster analysis is a process of finding groups among the data. The advent of various data 

recording systems has enabled the collection of large amount of valuable data about the normal 

as well as abnormal plant behavior. Classification of these datasets into different groups of 

operating condition can serve to be highly beneficial for decision making in fault identification 

and analyses. Clustering is a process of finding groups among datasets that are similar to each 

other. These clusters are further evaluated to gain process knowledge from the similarity among 

the datasets. The knowledge gained from the clustering can be very important for purposes like 

process enhancement, fault detection, where each new dataset is grouped as either a known 

condition or a new condition. In this thesis clustering of time series data based on similarity and 

dissimilarity index have been studied. 

Though clustering is a very important research area for process monitoring and control, 

only very few researchers have reported the clustering of dynamic and high dimensional 

multivariate time series data based on similarity measures. Johnston and Kramer used a 
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probabilistic approach together with expectation maximization algorithm for the clustering of 

time series data. But this approach is not suited for batch processes as in such cases process 

dynamics haze the difference between different operating conditions. Huang et al. performed 

clustering by dividing huge clusters of multivariate data sets into smaller ones using PCA 

models. Wang and McGreavy successfully classified different operating conditions of a 

simulated fluid catalytic cracking unit using the Auto class algorithm. The drawback of this 

approach is that it call for each dataset to possess same number of readings; or else different 

datasets may contain different no. of features. Wang and McGreavy’s used another method 

where Euclidean distance between datasets was used to measure similarity. 

Wang and Li described conceptual clustering for crafting state space based monitoring of 

a process. Kavitha and Punithavalli (2010) claimed that all traditional clustering or unsupervised 

algorithms are incongruous for real time data. Xiaozhe Wang et al. (1998) proposed clustering 

methodologies based on extraction of structure based statistical characters from a multivariate 

time series data. Sudjianto et al. and Trouve et al. (1996 & 2000) used PCA to extract similarity 

from the large datasets. Such feature extracting serves as dimensionality reduction of the 

datasets. Singhal and Seborg (2002) used PCA and Mahalonbis distance similarity measures for 

location of similar operating condition in large multivariate database. They proposed modified k-

means cluster algorithm using similarity factors. In many instances, it was proved that use of 

PCA for grouping of objects that possess similar characteristics in multivariate time series data 

would be beneficial. 

 Intention of this work is to locate the abnormality of the process by distinguishing 

between the states of operating conditions involved in large database. Clustering of the different 

operating conditions including the faulty operating conditions of a simulated continuous cooling 

crystallizer is presented here. 

5.3.1. MODIFIDED K MEAN CLUSTERING ALGORITHM  

5.3.1.1. Using Similarity Factors 

Clustering technique is simpler of grouping structures as no priori assumptions are made. 

Classification of the data are made base on similarities or distances (dissimilarities). The number 
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of clusters K can be prespecified or can be determined iteratively by the clustering procedure. In 

general, the K-means clustering proceeds in three steps, which are as follows: 

1. Data sets are clustered in K clusters. 

2. A dataset is assigned to a cluster having nearest centroid. Then these centroids are recalculated 

for cluster on reception of a new item and for the cluster which loses the same item 

3. The step 2 is repeated until no more reassignment of datasets takes place or until stable cluster 

are generated. 

The K-means clustering ensures a faster computation as it does not require the distance 

matrix as required in hierarchical clustering. The time series data belonging to various operating 

conditions were discriminated and classified using modified K-means algorithm. 

 The K mean clustering algorithm is given as: 

We have Q datasets, {                 }to be clustered into K clusters. 

Step1: The     dataset in the     cluster is denoted by   
   

. The aggregate dataset   (i=1,2,….,K) 

for each of the K clusters is computed as: 

   [(  
   

)
 

 (  
   

)
 

 (  
   

)]
 

                                                

where, Qi is the number of datasets    and ∑      
    

Step 2: The dissimilarity value between the datasets    (q=1,2……,Q) and each of the K 

aggregate datasets   (i=1, 2,….,K) are calculated as: 

                                                                                   

where,      is the similarity factor between the q
th 

dataset and the i
th

 cluster (equations 5.10).  

The aggregate dataset    (equation 5.14) is taken as the reference. The dataset    is allocated to 

the cluster to which it is least dissimilar, that is to the cluster having smallest value of     .  

Step 3: Repeated the aforesaid steps for all Q datasets. 

5.3.1.1. Using Dissimilarity Index 

In order to cluster the time series data based on the dissimilarity index replace equation 

5.15 of the algorithm by 5.13 
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5.3.2. CLUSTER PERFORMANCE EVALUATION 

To gauge the performance of varied clustering methodologies two parameters specifically 

cluster purity, p, and clustering efficiency, ƞ has been outlined. If datasets comprises of      

operating conditions and      datasets of operating condition j within the database and the 

datasets have been divided into K clusters, then a cluster purity p, is outlined to validate the 

purity of every cluster in terms of what number of datasets of a selected operating condition are 

present in that cluster. The cluster purity for the i
th

 cluster is defined as: 

   
(        )

   

                                                              

Here,     is the number of datasets of operating condition j within the i
th

 cluster, and    
 

is the number of datasets in the i
th 

cluster. The dominant operating condition of cluster is decided 

by viewing the number of times a particular operating condition is repeated in a cluster. 

The second parameter is the cluster efficiency, ƞ, which measures the extent of 

distribution of datasets pertaining to particular operating condition into different clusters. If the 

cluster efficiency is high then all data sets pertaining to a specific operating condition will be 

classified into one cluster. Thus, this measure avoids large K values during clustering. The 

clustering efficiency for the j
th

 operating condition is defined as: 

   
(        )

    

                                                                    

The p and ƞ provide good balance between cluster purity and the concentration of operating 

conditions into separate clusters. 

5.4. PATTERN MATCHING 

With the advent of modern data recording systems it is possible collect and store huge 

amount of data in industries. Industrial plants collect huge number of process variables, 

production, and product quality and maintenance information on continuous basis. Thus a huge 

amount of data is available for analyzing the process and earlier existences of abnormal 

conditions. A historical record contains much valuable information pertaining to the process, but 
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extraction of useful data from them is a difficult task. It would be highly beneficial if these 

relevant datasets could be extracted from a huge historical database. Even though the terms like 

data processing and data discovery have gained much attention in variety of activities, 

conferences, and commercial products were analysis of large databases is required, 

comparatively few engineering applications are reported.  

Pattern matching is a vital answer to the present downside. It is a method of locating 

historical record that is similar to a definite set of data. Though manual hunts of historical 

database is possible, it is very tedious and time intense. So, it is highly desired to formulate a 

machine driven pattern matching. This method can be used to locate abnormal plant conditions if 

a similar type of abnormal condition has arisen in the past. Thus this method can ease two 

important purposes like recognizing the source of the occurrence of abnormality and to develop 

an efficient solution that can inhibit or minimize future abnormal operation and their impact. 

Matching techniques can be broadly classified into two: unsupervised and supervised 

techniques. Supervised methods necessitate the knowledge about training data for every type of 

pattern that is being taken. Many of the classical pattern matching methods are termed as 

supervised techniques. Some of the well-known supervised pattern recognition techniques are 

statistical approaches, neural networks and rule-based systems. This thesis is strictly restricted to 

unsupervised learning techniques, were previous occurrences of the present pattern will serve as 

training data. Some of the existing unsupervised patterns matching techniques are based on 

neural network methods like adaptive resonance theory (ART), self-organizing maps etc. 

 Pattern matching techniques has been successfully applied in areas of machine learning, 

image processing, and speech and character identification by  Fukunaga (1990), Bishop (1995), 

Shurmann(1996). Process monitoring and data investigation based on pattern matching 

techniques from a chemical engineering viewpoint are also found in literature (Stephanopoulos 

and Han, 1994, Kramer and Mah, 1994,Davis et al., 1999).Pattern matching of simulated 

response data and experimental data. i.e. a model of the process is used to simulate faulty 

situations which are not found in the current database. Basseville and Nikiforov (1993) have 

reported various methods for sensing changes in the dataset using multivariable statistics and 

time-series models. But, efficiency of these methods reduces as the dimensionality of the 

historical datasets decreases.  
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A number of methods for univariate pattern recognition have been reported. These 

methods are based on the evaluation of Euclidean distances of modified data. For multivariate 

applications pattern classification or fault diagnosis are based on PCA. Thus, principle 

component analysis can also be used for fault detection and analysis.. Raich and Cuinar (1995) 

used the regular principal component metrics and the PCA similarity factor for differentiating 

between different forms of faults. Johannesmeyer et al. (2002) developed a pattern matching 

method that uses PCA similarity and limit violation similarity factor. Kano et al. (2001) proposed 

dissimilarity factors based on eigenvalue decompositions of the datasets for monitoring. Ashish 

Singhal et al. (2002) used Q and T
 2

 statistics based on PCA similarity for pattern matching with 

a case study of batch fermenter. He also proposed two different similarity measures and a 

moving-window method to depict the degree of dissimilarity between the current period of 

concern and windows of historical data of continuous CSTR. Damarla and Kundu (2011) 

proposed PCA and distance based combined similarity together with the moving window 

approach to discriminate between the normal operating conditions as well as fault detection of 

bioreactor and drum boiler process. Deng and Tian (2013) used statistics kernel PCA similarity 

factor for fault pattern recognition of nonlinear process. Li and Wen (2014) used pattern 

matching method for detecting faults in air handling unit system. 

An unsupervised multivariate statistical technique based on a combined similarity factor 

and a dissimilarity index along with a moving-window based approach to differentiate between 

the normal operating conditions and faulty condition of a continuous crystallizer is proposed in 

this work. 

5.4.1. MOVING WINDOW BASED PATTERN MATCHING 

The basic aim of the pattern matching method is to identify periods of operation from a 

historical database whose operational conditions are identical to the target operating condition. In 

case of automated pattern matching methodology only minimal information from the user is 

required. i.e. the user only has to supply the relevant process variables and their corresponding 

measurements for a period of current examination data. This data is called as the snapshot data 

and serves as a stencil for searching the historical record.  

In moving window based pattern matching, the significant historical data are subdivided 

into data windows having size as that of snapshot dataset. These historical datasets are structured 
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by placing data windows side by side along the time axis resulting in datasets which are having 

same length and are non-overlapping. The snapshot or template data moves in sample wise 

manner through the historical template and the similarity between them is explained by distance 

and PCA based combined similarity factor and dissimilarity index. The historical data windows 

with the highest similarity factors are taken and analyzed by the process Engineer. 

5.5. MONITORING OF CONTINUOUS CRYSTALLIZER 

A case study on simulated continuous cooling crystallizer was performed to evaluate the 

proposed clustering and pattern matching techniques. Dynamic simulation of continuous cooling 

crystallizer with cooling jacket dynamics was performed. Operating conditions that contain faults 

of variable degree and disturbances was simulated for the crystallizer. Three process variables 

were recorded. The details of the dynamic simulation and control study of continuous crystallizer 

are given in chapter 4. 

The four operating conditions (Table 5.1) were generated including the faulty operating 

conditions (opt. condi. 2) as well. Simulation was performed for a period of 100 min. with a 

sampling time of 0.5 sec. for each variable. Thus 18 different datasets with   201 data points each 

for each of the 3 measured variables was produced. 

In moving window based pattern matching proposed here, the historical data are divided 

into four data windows having same size as the snapshot dataset. These historical datasets are 

then structured by placing windows side by side. Four snapshot data sets have been considered 

here. The snapshot data are then moved through the historical template and the similarity 

between them is evaluated by distance and PCA based combined similarity factor and 

dissimilarity index. The historical data windows with the largest values of similarity factors are 

collected. 

Table 5.1: Operating Conditions 

OPERATING CONDITION NO OF DATASETS 

Step change in Tjin 3 

Ramp input to inlet concentration (Fault) 6 

Step input to inlet concentration 6 

Step input to Tin 3 
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5.6. RESULTS & DISCUSSIONS 

5.6.1. Clustering of time series data 

The K-means clustering procedure was performed using two similarity factor 

combinations:            
           and                        and a dissimilarity 

index. The performance of these clustering methodologies are evaluated using the parameters 

cluster purity, p, and clustering efficiency, ƞ .The combined similarity factor             
  

          has clustered four operating conditions into five clusters in which the second operating 

condition i.e. the fault has been clustered into two clusters all the other operating conditions are 

properly clustered resulting in 100% cluster purity, p, and 91.66% clustering efficiency, ƞ. (Table 

5.2) 

Table 5.1: Clustering performance based on combined similarity factor based  

Cluster 

no. 

Np p(%) Dominant 

Op. cond. 

Operating condition: 

1 2 3 4 

1 3 100 1 3 0 0 0 

2 4 100 2 0 4 0 0 

3 2 100 2 0 2 0 0 

4 6 100 3 0 0 6 0 

5 3 100 4 0 0 0 3 

Avg NA p=100 NA Ƞ=100 Ƞ=66.66 Ƞ=100 Ƞ=100 

            
            

Table 5.2: Clustering performance based on combined similarity factor based  

Cluster 

no. 

Np p(%) Dominant 

Op. cond. 

Operating condition: 

1 2 3 4 

1 3 100 1 3 0 0 0 

2 3 100 2 0 3 0 0 

3 1 100 2 0 1 0 0 

4 2 100 2 0 2 0 0 

5 9 66.66 3 0 0 6 3 

Avg NA p=93.32 NA Ƞ=100 Ƞ=50 Ƞ=100 Ƞ=100 
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The combined similarity factor                       also clustered four operating 

conditions into five clusters where the second operating condition was clustered into three 

clusters and the 3
rd

 and 4
th

 operating conditions being clustered as one. This method showed 

93.32% cluster purity, p, and 87.5% clustering efficiency, ƞ (Table 5.3).The dissimilarity index 

gave better results than the above mentioned combined similarity factors. The dissimilarity index 

is capable of detecting faulty operating condition as cluster 2 and datasets pertaining to various 

other operating conditions were also identified correctly. Thus, resulting in 100% cluster purity 

p, and 100% clustering efficiency ƞ (Table 5.4). 

Table 5.3: Dissimilarity Index based clustering performance 

Cluster 

no. 

Np p(%) Dominant 

Op. cond. 

Operating condition: 

1 2 3 4 

1 3 100 1 3 0 0 0 

2 6 100 2 0 6 0 0 

3 6 100 3 0 0 6 0 

4 3 100 4 0 0 0 3 

Avg NA p=100 NA Ƞ=100 Ƞ=100 Ƞ=100 Ƞ=100 

 

A summary of clustering performance obtained using different methodologies are 

presented in Table 5.5.The results shows that dissimilarity index provides the best clustering 

performance followed by the combined similarity factor             
           . 

Table 5.5: Clustering performance using different methodologies. 

Clustering method pavg.(%) Ƞavg.(%) 

Dissimilarity Index 100 100 

         
             100 91.66 

                     93.32 87.5 

     
  88 100 

SPCA 94.44 83.33 

Sdist NA NA 
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5.6.2. Moving window based pattern matching 

The proposed moving window based pattern matching technique perfectly identified all 

the snapshot data including normal and faulty data which find their similarity with the same 

process data present in the historical database. The technique was tested in sample wise as well 

as dataset wise manner. The similarity factors obtained in dataset wise pattern matching using 

combined similarity factors          
            ,                      and dissimilarity 

index are shown in Table 5.5, 5.6 and 5.7 respectively.  

Table 5.6: Pattern matching using combined similarity factor 

 Opt. 1 Opt. 2 Opt. 3 Opt. 4 

Opt. 1 1 0.3950 0.9441 0.7084 

Opt. 2 0.3950 1 0.5745 0.6871 

Opt. 3 0.9441 0.5745 1 0.9952 

Opt. 4 0.7084 0.6871 0.9952 1 

         
             

Table 5.7: Pattern matching using combined similarity factor 

 Opt. 1 Opt. 2 Opt. 3 Opt. 4 

Opt. 1 1 0.6707 0.7845 0.7805 

Opt. 2 0.6707 1 0.6697 0.6799 

Opt. 3 0.7845 0.6697 1 0.9970 

Opt. 4 0.7804 0.6799 0.9970 1 

                     

Table 5.8: Pattern matching using dissimilarity index 

 Opt. 1 Opt. 2 Opt. 3 Opt. 4 

Opt. 1 3.466*10
-26

 0.6039 0.4372 0.474 

Opt. 2 0.6039 3.1061*10
-30

 0.1818 0.3230 

Opt. 3 0.4372 0.1818 3.8621*10
-31

 0.0974 

Opt. 4 0.4746 0.3230 0.0974 1.4626*10
-30
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 In the pattern matching based on similarity datasets sets which are similar have similarity 

factor as 1.whereas in pattern matching based on dissimilarity index if two data sets are similar 

to each other D value will be close to zero. Thus we can see from the above tables that all the 

snapshot data sets have been correctly identified. 

5.7. CONCLUSION 

With the proposed clustering technique, the time series data corresponding to various 

operating conditions including abnormal ones of the continuous cooling crystallization  

processes were clustered/classified efficiently using a similarity factor and dissimilarity index  

based modified K-means clustering algorithm. A Sample wise moving window based pattern 

matching technique developed for the process monitoring of the crystallizer was also 

implemented successfully. Efficient modeling and simulation of the crystallization process taken 

up was a key factor behind the generation of databases required for the successful 

implementation of the proposed monitoring techniques. The machine learning algorithms 

developed here with their encouraging performances deserves immense significance in the 

current perspective of process monitoring and control. 
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Chapter 6 

 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 

 
6.1. CONCLUSION 

 

Industrial crystallizers are usually operated in two modes continuous and batch wise. 

Extensive research has been carried in this field. Continuous crystallizers are operated at the 

steady state. The steady state CSD gives determines the product quality. In batch crystallization, 

the quality of the product quality is determined by CSD obtained at the end of the batch, which 

influenced by the operation of the process during the entire batch. In the batch crystallization, the 

cooling rate is manipulated to obtain the desired CSD. Thus the problem of trajectory planning 

comes in. 

Multivariate Quality Control and univariate SPC models known at present are not entirely 

accurate. They do give a good estimation of the process or system, but they make so many 

assumptions about the data. Data sets are mostly auto correlated. Therefore, Multivariate 

Statistical Process Control (MSPC) techniques, which consider all the variables of interest 

simultaneously and can, extract information on the behavior of each variable or characteristic 

relative to the others. MSPC research is having high value in theoretical as well as practical 

application and is certainly beneficial to process monitoring, abnormal condition detection and 

process identification & control. From this perspective, the current project was taken up. 

Present work could successfully develop a proper control strategy for both batch and 

continuous crystallizer as well as successfully implemented various MSPC techniques in process 

identification, monitoring and control of crystallization process. The deliverables of the present 

dissertation are summarized as follows: 

 The crystal size distribution of a batch crystallizer was projected by the numerically 

solving of a mathematical model using crystallization kinetics like nucleation and crystal 

growth. The results clearly show the prospective benefit of controlled cooling (constant 

nucleation rate) for improving the crystal size of the product compared to that obtained 

by natural and linear cooling. 
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 The mathematical modeling and simulation of continuous crystallizer was performed to 

obtain the dynamics. Then a PID controller to control the crystallizer temperature which 

in turn leads to the improvement in crystal size distribution has been proposed. The 

overall effect is that the crystal concentration is maintained well within the metastable 

zone and there is significant improvement in the crystal mean size and coefficient of 

variation of the whole distribution.  

 Implementation of clustering time series data and moving window based pattern 

matching for detection of faulty conditions as well as differentiating among various 

normal operating conditions of continuous crystallizer. 

6.2. RECOMMENDATION FOR FUTURE WORK 

 MPC control of batch and continuous crystallizer. 

 Identification of batch and continuous crystallization process dynamics in latent subspace 

using partial least squares (PLS) 

 Development of PLS controllers for crystallization process 

 Integration of statistical process monitoring and control for crystallization process. 

 
 

 


