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ABSTRACT
Parallel manipulators are a form of closed loop linkages and have a wide range of

applications e.g. surgical robots, flight simulators, pointing devices etc.  Parallel mechanisms

have many advantages over serial manipulator.  Higher accuracy, stiffness and increased payload

capacity are the characteristics of parallel manipulator. In spite of many advantages, they have

limited workspace and more singularity regions. So, redundant architectures have become

popular. However, redundancy leads to infinite solutions for inverse kinematic problem. The

current work addresses this issue of resolving the redundancy of kinematically redundant planar

parallel manipulators using optimization based approach.  First the conventional non-redundant

3-RPR planar parallel manipulator is presented.  Afterwards the kinematically redundant

counterpart 3-PRPR is discussed and actuation redundant 4-RPR has been touched upon briefly.

Computer simulations have been performed for the kinematic issues using  MATLAB

programme .  The workspace of redundant and non-redundant parallel manipulators have been

obtained. The generalized stiffness matrix has been derived based upon the Jacobian model and

the principle of duality between kinematics and statics. A stiffness index has been formulated

and the isotropy of stiffness index is used as the criterion for resolving redundancy.   A novel

spiral optimization metaheuristics has been used to achieve the isotropic stiffness within the

selected workshape and the results are compared against particle swarm optimization.  The

results obtained from the novel Spiral optimization are found to be more effective and closer to

the objective function as compared to the particle swarm optimization. Optimum redundant

parameters are obtained as a result of the analysis. A wooden skeletal prototype has also been

fabricated to enhance the understanding of the mechanism workability.
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Chapter-1

Introduction

Parallel mechanisms are found recently in many applications including machine tools,

robots and simulation platforms etc. Unlike serial manipulator used in most industrial

robots, here, all the joint motors are located at ground level and a sort of stiffness

improvising mechanism is provided in the structure. Thus, essentially, a parallel linkage

provides advantages such as improved stiffness to weight ratio and more accurate path

following capabilities. They are finding several applications in micro and nano level

devices. Basic parallel linkage is a 6-DOF stewart-Guff spatial platform studied by

several researchers. More recently, planar parallel mechanisms are being employed in

several application areas. Most common, planar parallel linkages are 3-RRR, 3-RPR and

3-PRR linkages. Here, the underscore denotes the actuator location in the mechanism; for

example 3-RRR indicates that the mechanism has 3 chains each having three revolute

joints with first revolute joint as actuation joint. All these mechanisms drive a platform in

a plane motion (3 degrees of freedom) allowing the platform point (cutting tool) to move

according to a desired path/trajectory. Main disadvantages of these linkages are their

relatively small workspace and huge singularities within the workspaces. At singularities,

the mechanism either loses (forward) or gains (inverse) a degree of freedom and cannot

perform the action as per the instructions. Such mechanisms with sufficient DOF for a

specific end-effector task may not have the ability to achieve alternative paths when

attempting a task due to their uniqueness of solution. In order to alleviate these problems,

several efforts are made in literature. An important attempt in this direction is to provide
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redundancy in the mechanism. Redundancy refers to the adding additional actuator to

achieve the same three degrees of freedom at the platform point (end-effector).

Additional actuators may avoid singular postures and improvise dexterity in path

planning just like a serial human hand mechanism. But, the mechanism becomes more

complex leading to several possible joint solutions to achieve a desired task. Resolving

the complexity in kinematics and dynamics of mechanisms is one of the important issues

in redundant parallel mechanisms.

1.1 Redundant Parallel Manipulators

There are mainly two different types of redundancy in parallel manipulators: (a)

kinematic redundancy and (b) actuation redundancy. A parallel manipulator is said to be

kinematically redundant when its mobility is more than the degrees of freedom at the

moving platform. We often use this type of redundancy for enhancing the workspace.

Fig.1.1 shows an example of kinematically redundant manipulators.

Fig.1.1 Kinematically  redundant Fig.1.2 Redundantly actuated

The mobility or degrees of freedom M is given by M=(L-J-1)+fj, j=1,2,…J; with  as

motion parameter (3 in case of planar and 6 in case of spatial), L and J as total number of

links and joints respectively and fj as the degree of freedom at each joint in the linkage. In

Passive revolute joint Active joints
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case of kinematically redundant manipulators, mobility M is greater than  and is equal

to the number of actuators used in the mechanism.

On the other hand, a parallel manipulator is redundantly actuated when the

number of actuators is greater than the mobility of the mechanism (Fig.1.2). Redundant

actuation does not change mobility of mechanism M, but increases only the number of

actuators. That is mobility M= and the number of actuators used in linkage are greater

than this mobility M.

Redundant actuation in parallel manipulator can be implemented by the following

approaches. The first one is to actuate some of the passive joints within the branches of

the parallel manipulator. The second one is to add some additional branches beyond the

minimum necessary to actuate the parallel manipulator. The last one can be the hybrid of

the above two approaches.

1.2 Liteature review

Several earlier works explained various insights of parallel redundant manipulators.

These can be grouped under different headings like: workspace, singularities, dynamics

and control and so on. Here, a brief literature relating to redundant parallel manipulators

is described.

A systematic classification of redundancies in parallel manipulators was proposed

by Lee and Kim [1] and Marlet [2]. Accordingly, there are three types of redundancies,

Type I, Type II and Type III that are achieved by adding additional joint to existing

limbs, replacing passive joints in current limbs with active ones and adding additional

limbs. Redundancy can provide practical advantages to industrial manipulators.



4

Redundantly actuated linkages

Abundant literature is available on redundantly actuated manipulators since early

2000. Firmani and Podhorodeski [3] presented a study of the effect of redundant actuators

on the existence of force-unconstrained configurations of planar parallel layout of joints.

Successively, a methodology of using scaling factors to determine the force capabilities

of redundantly-actuated parallel manipulators was also presented [4]. Wu et al. [5]

described dynamics and control of a three degree of freedom parallel kinematic machine

tool with actuation redundancy. Muller and Hufnagel [6] presented computed torque

control scheme in redundant coordinates to control redundantly actuated parallel

kinematic machine. A 2 degree of freedom model was used to illustrate methodology.

More recently, an idea of optimizing antagonistic stiffness for redundantly actuated

mechanisms for resolving redundancy was proposed by Shin et al.[7].

Kinematically redundant manipulators

Mohamed and Gosselin [8] addressed the issue of kinematic redundancy using 3-RRR

mechanism. The requirement may be improvement of dexterity or stiffness etc. This is an

important observation, since it helps identify the utility of the redundant mechanism.

Wang and Gosselin [9] carried out analysis and design of parallel manipulator both

planar as well as spatial using kinematic redundancy. A significant reduction in the

singularity region was obtained via addition of the redundancy.

Ebrahimi [10] dealt with analysis of four different types of kinematically

redundant planar parallel manipulators. They compared the dexterous workspace for the

kinematically redundant planar parallel manipulators with conventional non-redundant

planar parallel case. Later-on, Ebrahimi et al.[11] presented a novel redundant 3-PRRR
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architecture, considering its advantages over the non-redundant one. The same authors

[12] proposed actuation schemes for 3-RRR and 3-PRRR using optimization procedures.

The problem of finding a valid actuation scheme for parallel manipulators is one of the

least explored.  Two techniques were presented, first one based upon the condition

number of the Jacobian matrix and the second scheme was derived from scaled in-circle

radius method. It was shown that the solutions obtained from scaled incircle radius

method provide better manipulability. Ebrahimi et al. also [13] conducted the path

planning for 3-RPRR kinematically redundant planar parallel manipulator.  The

dexterous workspace and the actuation scheme for 3-RPRR were obtained using an index

of closeness to singularity and condition number.  Different actuation schemes were

compared using manipulability and results indicated that kinematically redundant 3-

RPRR is advantageous over 3-PRR.

Cha et al. [14-15] dealt with redundancy resolution problem by considering

singularity avoidance using 3-RRR mechanism and to found out the permissible limits of

the kinematically redundant active base sliders in order to avoid singularities along a

specified trajectory.

Chen et al. [16] dealt with improving the positional accuracy of parallel

manipulator using kinematic redundancy.  With the kinematically redundant variables,

optimum configurations were selected for which the error transmission is least and output

errors were optimized instead of being determined.

Kortlarski et al. [17] proved the utility of kinematic redundancy to increase the

useable workspace of parallel manipulator with the help of 3-(P)RRR and 3-(P)RPR .
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The workspace was obtained using an interval based method for singularity avoidance

along a specified trajectory.

Kotlarski et al. [18] also proposed five different strategy for resolving kinematic

redundancy. The position of redundant joints was formulated in terms of optimal values

of maximal homogenized pose errors of the end effector.  Further it was proven that

classical continuous optimization techniques resulted in same performance variables that

could be obtained by discrete optimization techniques.

Zarkandi [19] carried out singularity analysis on a 3-PRRR kinematically

redundant manipulator. Weihmann et al. [20] carried-out optimization based computation

of the force capabilities of a 3-RPRR manipulator without considering the trajectory.

Ruggius and Carretero [21] evaluated the kinematic performance of 3-PRPR planar

parallel manipulator.  Jacobian and workspace analysis was conducted.  The results

indicated improved performance in comparision to 3-RPR conventional manipulator.

Gallant et al. [22] proposed a geometrical procedure to determine the dexterous

workspace of n-RRRR and n-RRPR kinematically redundant planar parallel

manipulators.  The workspace of the kinematically redundant manipulator was developed

from the intersection of the kinematic sub-chains forming each limb and Gauss

divergence theorem was applied to calculate the dexterous workspace area. It was shown

that for kinematically redundant RRRR and RRPR limbs workspaces are dependent on

the type of the non-redundant part and the dimensions of the redundant linkage.

Thanh et al. [23] dealt with modelling and dynamics identification of

kinematically redundant parallel robots. A set of minimal dynamic parameters were
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obtained from lagrangian equations using coordinate partitioning method.  The direct

search technique was used for optimization of dynamic parameters.

More recently, Boudreau and Nokleby [24] proposed a solution to the problem of

redundancy resolution of the redundant parallel manipulator following a desired

trajectory by optimizing the joint torques. The base architecture for the work was the

conventional non-redundant 3-RPR planar parallel manipulator.

Redundancy resolution to obtain the kinematic solution of a parallel manipulator

is thus based on the application considered. For example, in load carrying applications

like machining, one has to account stiffness maximization, while in pick-and-place

applications as in printed circuit board assemblies, one has to account dexterity and

singularities as criterion.

1.3 Objectives and Scope

In kinematics of redundant parallel robots, inverse kinematics results in multiple

solutions for a given pose. So, one has to consider redundancy-resolution issues, which

should account joint physical limits as well as environmental factors. The redundancy-

resolution issue is solved by using pseudo-inverse-based formulation and by considering

different optimization criteria, such as maximizing the singularity-free workspace and

improvising dexterity etc.  However, it is found that the redundancy-resolution can be

effectively achieved by using online optimization techniques.

In present work, the following objectives are planned:

(i) Consider a planar configuration and introduce kinematic redundancy

(ii) Arrive the kinematics and workspace characteristics in comparison to   non-

redundant case
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(iii) Select the stiffness improvisation as the criterion and define isotropic stiffness

index in terms of Jacobian matrix.

(iv) Choose a workpath inside the workspace of manipulator and divide it into

several check points. At each point, the objective is to achieve isotropic

stiffness index.

(v) To maximize the stiffness index, two non-conventional global optimization

schemes are to be considered.

(vi) The identified optimized locations of redundant prismatic joints are to be

tested with forward static analysis problem.

(vii) Create the optimized dimensions of redundant manipulator in ADAMS

simulation environment and test the inverse solution.

(viii) Finally fabricate a prototype of assembly and propose the guidelines for its

control.

The remaining part of thesis is organized as follows: chapter-2 explains the kinematics

and definition of stiffness matrix of redundant parallel manipulator under consideration.

Chapter-3 deals with the description of two latest meta-heuristic algorithms (new spiral

optimization scheme and Particle swarm optimization) for solving the stiffness

optimization of the manipulator.  Results and discussion of the work are presented in

chapter-4. In chapter-5, summary and future direction of the work is explained.
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Chapter 2

Mathematical Modeling
2.1 The 3-RPR Manipulator Description

The base architecture on which the study is based is presented in Figure 2.1.

Fig. 2.1The 3-RPR Manipulator

It is a conventional and non-redundant type of manipulator.  There are three limbs that

connect the platform on the ground to the platform that moves, a point on which can be

used as end effector.  The former is labeled as L1L2L3 and the latter as M1M2M3. The

vertices L1 and M1 are constrained through a leg with three joints.  One of which is active

and the other two are passive.  The former is prismatic joint while the latter one is,

revolute. The important feature of the manipulator is that it contains no complex

singularity curves inside the workspace, unlike its popular 3-RRR counterpart.  But, the
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mechanical construction becomes heavy due to the inherent presence of a prismatic joint.

The extension of any prismatic joint is tij, i.e. ith limb and jth joint.

2.2 Inverse Kinematics of 3-RPR Manipulator

In order to compute the velocities or displacements at limb joints for a desired

trajectory of the end effector, inverse kinematics is necessary.  There are two coordinate

systems, shown in Fig 2.2.  A fixed one which is on ground with the larger platform

L1L2L3.  A mobile one that is attached to the end effector platform M1M2M3.  They are

notated as O’-X-Y and O-x-y respectively.

A vector equation can be written for the system as follows:

{O’Mi}={O’O}+[R]{OMi} (2.1)

where [R] is the rotation matrix 










cossin

sincos , vector O’O=








y

x
and {OMi} is

vector from O to Mi expressed in moving frame O-x-y.

Expanding the equation in matrix format,
















 

















iy

ix

iy M

M

y

x

M '

'

cossin

sincosM ix




(2.2)

2.3 Velocity Analysis of 3-RPR Manipulator

The time derivative of displacement results in velocity.  The displacements  of   prismatic

joints are t12, t22 and t32. The kinematic equations are written from the loop-closure

equations and differential kinematics is written by taking first derivative of loop-closure

equations. From kinematic equations, a mapping from end effector velocities in cartesian

space to actuator velocities in joint space can be obtained, termed as the Jacobian.  The
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Jacobian matrix is the relation of small perturbation of input and the response of output.

The distance formula is adapted to the coordinate system in Fig 2.2.

Fig. 2.2 Seperated Limb with Coordinate System

ti2
2=(Mxi – Lxi)

2 +(Myi – Lyi)
2,   i=1,2,3 (2.3)

where Mxi and Myi are calculated from equation (2.1) and (2.2) as follows,

Mxi=x+(Mix cos- Miy sin) and  Myi=y+( Mix sin- Miy cos) (2.4)

Time-derivative of Eq.(2.3) yields:

yiyiyixixixiii MLMMLMtt  )(2)(22 22  (2.5)

  )cos'sin'( iyixxi MMxM   yiOMx  (2.6)

  )sin'cos'( iyixyi MMyM   xiOMy  (2.7)

2
2ˆ

i

ii
i t

LM
n


 (2.8)
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And

xiiyixi nMMxt 22 ˆ))cos'sin'((    yiiyix nMMy 2ˆ))sin'cos'((    (2.9)

Simplifying,

xiyii nOMxt 22 ˆ)(   yixi nOMy 2ˆ)(   (2.10)

Expanding and Rearranging using matrix form,
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

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

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


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
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


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nOMnOMnn

nOMnOMnn

nOMnOMnn

t

t

t

xyyxyx
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xyyxyx

3233233232

2222222222

1211211212

32

22

12

ˆˆˆˆ
ˆˆˆˆ
ˆˆˆˆ

(2.11)

This is equivalent to,



 qBxA (2.12)

That is the standard form of velocity equation for parallel manipulators. Comparing the

two A and B matrices can be found and the Jacobian can be computed as,

ABJ 1 (2.13)

2.4The 3-PRPR manipulator description

The mechanical architecture of the 3-PRPR parallel manipulator considered is shown in

the Fig 2.3.  It consists of a base platform,  triangle O1O2O3 and a mobile platform,

triangle M1M2M3. The end effector may be chosen as any suitable point on the mobile

platform.  The mobile platform is connected to the base platform through three parallel

serial linkages called as limbs.  Each limb consists of four joints, an actuated base

prismatic joint along O1L1, a base revolute joint at L1, an actuated distal prismatic joint

along L1M1 and a platform revolute joint at M1.  Two prismatic joints are actuated.  There

are three limbs, hence twelve joints, but only six of them are actuated.  The mechanism is
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a planar one and has three degree of freedom.  But the number of actuated joints is six.

So three extra joints has to be actuated through a redundancy resolution algorithm.

Fig. 2.3The 3-PRPR Manipulator

2.5 Kinematic and Jacobian Analysis of The 3-PRPR manipulator

The displacements  of   base prismatic joints are t11, t21 and t31. The displacements  of

distal prismatic joints are t12, t22 and t32. The velocity equations for the 3-PRPR

mechanism can be obtained by modifying the kinematic equations of the 3-RPR to take

into account the first time derivatives of base slider positions. Writing the displacement

constraint from Fig. 2.4 in as equation 2.14.

Fig. 2.4 Seperated limb of the 3-PRPR mechanism

ti2
2 = (Mxi – Lxi)

2 +(Myi – Lyi)
2,   i=1,2,3 (2.14)
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where,   )cos'sin'( iyixxi MMxM   yiOMx  (2.15)

  )sin'cos'( iyixyi MMyM   xiOMy  (2.16)

Writing the time derivative of equation (2.14) and not neglecting the base slider motion,

))((2))((22 22 yiyiyiyixixixixiii LMLMLMLMtt   (2.17)

xixiiiyixi nntMMxt 2112 ˆ)ˆ)cos'sin'((    yiyiiiyix nntMMy 212 ˆ))sin'cos'((   

(2.18)

Where,

1
1ˆ

i

ii
i t

OL
n


 (2.19)

2
2ˆ

i

ii
i t

LM
n


 (2.20)

xixiiyii nntOMxt 2112 ˆ)(    yiyiixi nntOMy 211 ˆ)(    (2.21)

Expanding the equation 2.21 and rearranging in the matrix form,
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10000

00100

00001
(2.22)

This is equivalent to,



 qBxA (2.23)

That is the standard form of velocity equation for parallel manipulators.

Comparing the two A and B matrices can be found and the jacobian can be computed as,
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ABJ 1 (2.24)

2.6 The 4-RPR Manipulator

In order to understand the advantages of kinematically redundant linkage against

redundantly actuated mechanism, in present case, we also considered 4-RPR (one extra

leg) redundantly actuated linkage. The mechanical architecture of the 4-RPR planar

parallel manipulator is shown in the Fig 2.5.  It consists of a base platform,   L1L2L3L4

and a mobile platform, M1M2M3M4. The end effector may be chosen as any suitable point

on the mobile platform.  The mobile platform is connected to the base platform through

four parallel serial linkages called as limbs.  Each limb consists of three joints, a base

revolute joint at L1, an actuated distal prismatic joint along L1M1 and a platform revolute

joint at M1.  The prismatic joint is actuated.  There are four limbs, hence twelve joints,

but only four of them are actuated.  The mechanism is a planar one and has three degree

of freedom.  But the number of actuated joints is four.  So the extra joint has to be

actuated through a redundancy resolution algorithm.

Fig. 2.5 The 4-RPR Manipulator

2.7 Kinematics and Jacobian Analysis of The 4-RPR Manipulator

The kinematics of the 4-RPR can be derived from the constraint equations of the four

prismatic joints. The displacements of prismatic joints are t1, t2, t3and t4. The
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displacements  of   distal prismatic joints are constrained within the minimum and

maximum joint limits. The velocity equations for the 4-RPR mechanism can be obtained

as follows, Writing the displacement constraint from Fig.2.6,

Fig. 2.6 Seperated limb of The 4-RPR mechanism

222 )()( yiyixixii LMLMt  (2.25)

yiyiyixixixiii MLMMLMtt  )(2)(22  (2.26)

Where,

  )cos'sin'( iyixxi MMxM   yiOMx  (2.27)

  )sin'cos'( iyixyi MMyM   xiOMy  (2.28)

Putting,

i

ii
i t

LM
n


ˆ (2.29)

ixiyixi nMMxt ˆ))cos'sin'((    iyiyix nMMy ˆ))sin'cos'((    (2.30)

Simplifying,

ixyii nOMxt ˆ)(   iyxi nOMy ˆ)(   (2.31)

Expanding and writing in matrix form,
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(2.32)

This is equivalent to,



 qBxA (2.33)

That is the standard form of velocity equation for parallel manipulators. Comparing the

two A and B matrices can be found and the jacobian can be computed as,

ABJ 1 (2.34)

2.8 Generalized Stiffness Matrix

Several authors worked out on stiffness index as one of the measure of manipulator
performance. A brief literature of few papers is cited below:

Simaan and Shoham [25] considered the stiffness synthesis of a kinematically redundant

parallel robot.  The proposed a polynomial solution for the geometric parameters in order

to achieve a stiffness matrix.  A six degree of freedom double planar parallel manipulator

was studied and the polynomial obtained possessed 384 real solutions.

Legnani et al. [26] discussed isotropy and decoupling of n-dof parallel

manipulators. The use of Jacobian matrix in achieving isotropy was revived.  The

application of these concepts to Gough-Stewart platform indicated that it can be isotropic,

but not decoupled.  A modification was proposed which resulted in two six degree of

freedom isotropic and decoupled parallel manipulators.

Bandyopadhyay and Ghoshal [27] derived the Jacobian of Stewart platform that

led an algebraic formulation in terms of an eigen value problem to obtain isotropy of the

mechanism.  The criterion for isotropy was expressed in terms of minimum number of
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algebraic equations. Two families of manipulators with isotropic form were obtained

using the symbolic algebraic equations.

Wu et al. [28] considered the effect of adding an additional leg to a 3-DOF parallel

manipulator in terms of stiffness and natural frequency.  The stiffness and natural

frequency increased with the addition of a leg.  But, addition of another leg was shown to

be unnecessary. It was proposed to maintain symmetry of the mechanism in order to

leave other kinematic paramters such dexterity unaffected.

A brief outline of stiffness prediction from kinematic equations is provided below:

Let


 be the velocity of joint rates and X be the end effector velocity state,

Then, we have from jacobian analysis,



 =J X (2.35)

For infinitesimal displacement

xJ (2.36)

This relates the infinitesimal joint displacement with the infinitesimal end efector

displacement,

From duality between kinematics and dynamics,

fJF T 2.37)

where  F= End effector force vector

f = Joint Force Vector.

Stiffness is defined as force per unit displacement, hence joint forces can be defined as,

 JKf (2.38)

].......[ 1 nJ KKdiagK 
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Hence,

xJKJF J
T  (2.39)

Hence, The stiffness matrix is,

JKJK J
T (2.40)

Here, Kt is a diagonal matrix containing stiffness of each actuator joint (known as rigidity

coefficient). This stiffness is essential index in parallel manipulators for the following

reasons:

(1) the higher stiffness can improve the dynamic accuracy.

(2) stiffness affects control performance.

To measure this matrix in different directions, the eigenvalues of stiffness matrix may be

utilized. However, the units of the different entries of the matrix are not uniform, the

dimensions of the eigenvalues of the stiffness include both force/length and force-length.

Hence, the eigenvalue problem for stiffness is dimensionally inconsistent. Alternatively,

the diagonal elements of stiffness matrix reflect pure stiffness.

Detailed expression for stiffness used in present work is given in next chapter.

-----------
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Chapter 3

Optimization Techniques

This chapter presents a formulation of a present optimization criterion and two latest

global optimization solution techniques via metaheuristics namely, spiral optimization

and particle swarm optimization schemes.

3.1  Formulation of Optimization Problem

Optimization problem requires definition of objective function along with the constraints.

Often both objective functions and constraints are nonlinear functions of a design

variables. In the present work, we considered the redundant joint variables as the design

parameters, so as to resolve the redundancy while satisfying the isotropic stiffness

conditions over the workpath considered at the end effector.

Find the redundant joint locations so as to make the condition number of stiffness

matrix S close to one. Here, S is defined as:

])([max

])([min

Keigvalue

Keigvalue
S  (3.1)

Where [K ] is the stiffness matrix defined earlier in chapter 2,

Formulation is as follows,

At every checkpoint

Minimize |S-1|

Subject to: ( the limits for the base prismatic actuators)

max,min, ii ttt  (i=1, 2, 3) (3.2)
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We start from a selected workspace shape such as circle and square where the end-

effector operates and at these locations, objective is to achieve isotropic stiffness index.

The optimization procedure is as follows, at each checkpoint:

Step 1: Begin with a random set of feasible input candidate solutions.

Step 2: Define a series of checkpoints.

Step 3: Start with initial solution set.

Step 4: Compute Jacobian and hence, the Stiffness matrix at each checkpoint.

Step 5: compute the objective function and update the solution set based on selected

meta-heuristics.

Step 6: Compare the updated vector set with the previous ones and store the potential

candidates

Step 7: Repeat the procedure until optimal solution is found.

The discretization of the work region to a series of checkpoints, both on the boundary as

well as on the inside reduce the computational requirements.  The mechanism is useful if

it is able to track any point within the desired workspace definitely while working against

some load.

3.2 Spiral Optimization Methodology

Search algorithms are very often used for the purpose of solving optimization problems.

Often many of the search algorithms are inspired from the phenomena in nature, e.g.

bacteria foraging or birds flocking for food.  Such higher order search principles are easy

to implement, very robust and prone to convergence.  The phenomenon that inspired this

principle is present in various forms in nature such as in spirals generating

logarithmically as in a shell.
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Tamura and Yasuda [29,30] worked out a two dimensional spiral optimization algorithm

and later  proposed n-dimensional spiral optimization algorithm by extending the two

dimensional algorithm.  The n-dimensional rotation matrices were obtained as a

composition of modified forms of 2-D rotation matrices.  The algorithm was tested on

different benchmark problems and the effectiveness of the algorithm was found to be

competent as compared to other metaheuristics.

The method based on spiral optimization is quite suitable for higher dimensional

problems. The spiral model begins by intiating randomly points representing solutions to

a problem which converge iteratively to the centre of a spiral from the intial point. Each

point in the progressive spiral is updated according to equation (3.3),

Xk+1 = r. Rm Xk - (r. Rm - In ) X* (3.3)

Where,

Xk+1 = Updated feasible solution

Xk = Previous feasible solution

Rm = The rotation matrix ( here m refers to the number of design

variables)

In = Identity matrix of order m×m.

r= radius of spiral (taken a value from 0 to 1)

Equation (3.4) gives the rotation matrix in the two dimensional space in terms of spiral

angle :








 





cossin

sincos
2R (3.4)

In order to adopt the spiral optimization algorithm to n-dimensional problems, the

concept of rotation in n-dimensions has to be formulated mathematically.  One approach



23

to define the n-dimensional rotation matrices is to generalize the concept based on the

two dimensional rotation matrices. The higher order matrices can be composed from the

primary two dimensional rotation matrices with the help of eqn (3.5).

Rotations in m-dimensional Space is given by

 


 


1

1 1
1,1, ))((
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m RR  (3.5)

For m=3, i.e. in three dimensional space,

 
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The composition of the rotations can be obtained as follows,
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ji

m
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In 3 Dimensional Space, following sub-matrices are used to obtain Rm from eq.(3.5).
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




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
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





cos0sin

010
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3,1R (3.11)

Flowchart of the algorithm is shown in Fig.3.1. The algorithm starts by initializing the

parameters of spiral algorithm. Number of iterations has to be set by the analyst.  The

spiral angle and spiral radius are chosen based on experiments with the algorithm to

obtain convergent results.

Fig.3.1 Flowchart of spiral optimization scheme

Select parameters
(r, Nmax, , number of search points ), k=1

Initiate randomly the points in
feasible solution zone

X1, X2,...,Xm

Compute fitness function f(Xi) and
select minimum as centre X*

Update Xi, i=1,2,…m
Xi(k+1)=r.Rm().Xi(k)-(r.Rm()-In).X*

k<Nmax

Print Xi, f(Xi)

stop

k=k+1 yes

no
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Some parameters suggested by Tamura and Yasuda [30] are shown in Table3.1.

However, we have to carry-out trails to get correct set.

Table.3.1 Spiral Optimization Parameters

r

(Spiral Radius)



(Spiral Angle)

0.95

4



0.95

2



0.90

4



Next,  a random set of vectors is generated within the feasible solution region.  For each

vector, the objective function is evaluated and the optimum solution is chosen as the

starting point for a spiral with the parameters selected in the previous step. Each point is

updated according to the equation (3.3).   The centre of the spiral is chosen as the starting

point of next iteration.  After final iteration, the convergent solution is obtained and

stored.

Here, k is the iteration number and Nmax is maximum number of iterations. A code has

been written in MATLAB programming language.  Any other programming language can

also be used.  The pseudo code with the procedure, parameters and formulae is provided

here.  The pseudocode is in line with the algorithm presented in flow chart in Fig.3.1.
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Pseudo code:

%Initialize Parameters

 =pi/3; ; r=0.8;

Nmax=50; m=3;

In=eye(3);

%Generate Rotation Matrices


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
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
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;
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;















 






cos0sin

010
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3,1R

231312 RRRRm 

%Set Constraints

Xmin=[0;0;0];

Xmax=[X1; X2; X3];

%Initial Variables Through Random Vectors

Loop

For 1:m

Xm= Xmin+rand(Xmax-Xmin);

End

Loop

For 1:Nmax
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objf(m)=fitness(Xm);

Xstar=max(objf);

%Constrain solution within limits

For k=1:m

Xk+1 =  Rm Xk - ( Rm - In ) Xstar

if(Xm(k)>Xmax || Xm(k)<Xmin(k))

Xm(k)=Xmin+rand(Xmax-Xmin);

End

End

End

Print(“%d, optimum value”,Xstar)

The code was run on windows 7 platform in the Matlab environment on a machine with i-

3 processor and 1 GHz speed.  The  novel algorithm is effective and gives convergent

results for multidimensional problems.

3.3 Particle Swarm Optimization

This is one of the most popular optimization techniques.  This has been inspired from the

harmony in the flocking behavior of birds searching for food.  This has been captured in

the form of a dynamic principle.  In this algorithm, a population of particles is spread

over the feasible solution region.  Then, each particle is updated based on the behavior of

particles in its locality  as well as particles in the generation.  This is a dynamic process,

one has to keep track of the best optimal values obtained by each particle and also, the
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best value in the generation.  A few such generations when iterated would lead towards a

converging optimal solution.

Kennedy and Eberhart [31] presented the particle swarm optimization algorithm.  The

basic frame work of the algorithm based on flocking behavior of birds is simply based on

three rules.  First is to keep track of the speed of neighbourhood particles, second move

towards the centre of the motion of the complete group and thirdly, not to jump out of

bounds of solution.

The increment in the position of each particle is based on two factors as shown in Fig.

3.2.

1. Social weight

2. Personal weight

Fig 3.2 Particle Swarm

The conventional PSO approach is presented as a step-by-step method below:

(1) Define the initial swarm of populations, initialize the velocities and other

constants.

(2) Evaluate fitness function for each particle of the swarm in each population.

(3) Store the personal best of each particle and obtain the global best  of the

population ‘Gbest’.
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(4) If the new fitness value is better than the previous one , it becomes the new

personal best and the new global best is obtained from the current values of each

particle’s personal best ‘Pbest’.

(5) The new particle velocity is updated according to the following equation.

Vk+1=Vk+C1r1(Pbest-Xk)+ C2r2(Gbest-Xk) (3.12)

Where, Vk+1 = Updated particle velocity

Vk = Current Particle velocity

Xk= Current particle position

C1=C2=Social weight factors=2

r1=r2=randomly distributed value between 0   & 1.

(6) Update the particle position as follows,

Xk+1=Xk+Vk+1 (3.13)

Always one has to check the velocity and position upper and lower limits.

(7) After a number of iterations, a converging solution is obtained and the algorithm

is stopped.

Selection of optimum parameters for particle swarm optimization is not a trivial task.

But, in order to obtain global minima, proper selection of w, c1 and c2 is required.   Li-

ping et al. [32] presented criterion for selecting optimum parameters and Table 3.2 shows

some suggested values.

Table. 3.2 PSO parameters

w 0.72984

c1 2.05*w

c2 2.05*w
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Fig. 3.3 shows the flowchart of the algorithm  to implement particle swarm optimization

in the present work.

Fig 3.3 Flowchart for Particle Swarm Optimization

Initiate particles randomly,set the parameter,
w,c1,c2, Nmax.

Evaluate fitness function for each
particle position

))(( txF i



If ))(( txF i
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Update
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

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Print gbest

stop
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Similar to spiral optimization scheme, a simple program is developed in MATLAB for

testing the present objective function. The code is initially tested for standard quadratic

nonlinear objective functions. The parameters in this algorithm are higher than that in

spiral optimization scheme.
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Chapter 4

Results and Discussions
This chapter presents the simulation results relating to kinematics and optimization issues

of non-redundant and redundant 3-RPR parallel manipulator.

4.1 Workspace and Singularity Analysis of 3-RPR manipulator

In order to illustrate the stiffness index optimization, we considered a working zone

within the manipulator reachable workspace. In general, the workspace of the parallel

manipulator consists of the set of points that can be reached by the end effector through a

feasible configuration of its internal parts.  There are many types of workspaces, namely

dexterous workspace, reachable workspace, constant orientation workspace.  The

constant orientation workspace consists of the set of points reachable by the end effector

at a fixed platform orientation. The reachable workspace consists of all points reachable

by the end effector with at least one orientation.  The dexterous workspace consists of the

region spanned by the end effector with any orientation of the platform. Singularities

occur when the configuration of the mechanism at a point in space becomes unstable.

The mechanism either becomes locked up or some degrees of freedom are lost.  At such

points, the Jacobian of the mechanism becomes singular.  Some singularity regions are

grouped around the corners i.e. near workspace boundaries only. When manipulator

works around the singular points or near singular regions, its accuracy, rigidity and other

performances will become worse. In order to compute the workspace, a numeric

discretization process is adopted. Table 4.1 shows the geometric parameters considered in



33

the kinematic analysis. To enhance workspace, often equilateral triangular platforms are

considered. All the prismatic joints are having same range of sliding motion.

Table 4.1 Geometric Parameters of The 3-RPR

Fig.4.1 and Fig.4.2 shows constant orientation workspace with singularity regions

computed for the 3-RPR mechanism in two platform orientation of 30 and 60 degree

angle respectively.

Fig.4.1 Workspace for Platform Orientation Angle,  =30 degree

Base Platform Side 30 cm

Mobile platform
Side

5 cm

Included Angle 60 degree

Joint Limits for
Prismatic actuators
(tmin, tmax)

8 to 16 cm
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The singularities are present near the boundaries of the workspace only.  So the complete

central region is available for practical applications. But, still a significant amount of

space is lost to singularities which can be recovered with the help of redundancies.

Fig. 4.2 Workspace for Platform Orientation Angle,  = 60 degree

From Fig. 4.1 and Fig. 4.2, it is clear that the workspace for large orientation angle has

maximal singularity free region.  The workspace is limited due to the interference of the

linkages.  The singular region is reachable, but controllability of the actuation scheme is

lost leading to unstable behaviour.  Hence, there is a lot of scope to increase the usable

workspace of the 3-RPR.  Fig. 4.3 shows the workspace of 3-RPR embedded into the

larger workspace of the 3-PRPR.
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Fig. 4.3 The 3-PRPR reachable workspace

The 3-PRPR has no definite workspace shape, rather a variable workspace.  But, it

expands the workspace capability of the 3-RPR, by allowing singular configurations to

become reachable via the internal reconfiguration of redundant parameters, thereby

enhancing the workspace of the 3-RPR. Fig. 4.4 shows the workspace of 4-RPR actuation

redundant manipulator containing the smaller workspace of 3-RPR.  It represents another

interesting case of redundancy which can be used to enhance capabilities such as

workspace, stiffness etc of the non-redundant manipulator.  Present work focuses on

kinematically redundant manipulator analysis. So, workspace point of view
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Fig.4.4 The 4-RPR workspace

4.2 Simulation Results using ADAMS software

Msc ADAMS is a commercial multibody dynamic analysis tool.  It stands for automated

dynamic analysis of mechanical systems.  It allows to create the model of complete

mechanical system including kinematic pairs and constraints. With the help of Msc

ADAMS, a model of 3-RPR with geometric parameters in Table  4.1 was created as

shown in Fig. 4.5.  The base position of the model could be varied parametrically.  An

inverse kinematic simulation was run for  a circular trajectory within the workspace and

the feasibility of motion was tested.  Since, there were no direct link intereferences, the

solutions were feasible for the kinematic analysis of the mechanism.
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Fig. 4.5 Multibody Model of the 3-RPR Mechanism

A circular path was chosen with following equations for  the end effector,

x=rcos(t), y=rsin(t);

where ,

x and y are the coordinates of the end effector

r is the radius of the trajectory. Specified 10 mm for current simulation of t=10

seconds.

The joint displacements as recorded during the inverse kinematic simulation are shown in

Figures 4.6, 4.7 and 4.8.  The active slider  joint displacements are measured along the

joint axes and displacements are found to be within the joint limits. In a similar way, we

can obtain passive revolute joint angular displacements as a function of time.
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Fig. 4.6 Joint 1  Displacement vs Time

Fig. 4.7 Joint 2 displacement Vs time
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Fig. 4.8. Joint 3 displacement Vs time

The above inverse displacement solutions are verified with our code based on kinematic

equations described earlier and it is found that an exact coincidence has occurred.

4.3    Stiffness Index Analysis and Optimization

The mechanism is useful if it is able to track any point within the desired workspace

while working against some load. Since, for any useful work, the error due to deflection

of the point tracing the required trajectory must be contained within limits. In case of

redundancy obtained due to additional actuators in each limb of the manipulators, there

exists infinite poses for achieving a target point within workspace.  Hence, there is a need

to resolve this difficulty.  Further, the stiffness of mechanism is dependent on

configuration of the mechanism; hence any strategy that takes into account stiffness as

the driving factor will benefit the design procedure as a whole. Fig.4.9 shows an atlas of

stiffness index for non-redundant 3-RPR linkage in a constant orientation pose. This is

also developed with a Jacobian matrix formulation subroutine. It is seen that the stiffness
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index at most of the locations especially at the central work region is relatively small and

requires improvement.

Fig.4.9 Atlas of stiffness index of 3-RPR mechanism

Envelop of usable workspace acts as a primary constraint and all the computations are

performed on selected checkpoints within this space.  It is seen that in manufacturing

industry, many components are required to be fabricated on same machine.  Majority of

components consists of various features with standard shapes as circles, boundaries,

triangle etc.  In order to fabricate such components, the workspace of the device include

should contain the desired feature boundary.

As a next case, 3-PRPR mechanism is considered with the specified range of redundant

base slider actuator positions (0 to 5 cm). The maximum possible workspace with

symmetrically laid base sliders is likewise computed as equivalent 3-RPR mechanism.

Within the workspace, some region in the form of circular and square shapes is separately
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considered as the working path of mechanism to present the optimization analysis.

Objective is to achieve a maximum stiffness close to unity at the boundaries of these

shapes and at interior choosen points. So the program employs Jacobian analysis at every

Cartesian location of work shape compute the stiffness matrix and finally the stiffness

index. This analysis involves nonlinear terms and requires some efficient optimization

scheme.

Since, it is difficult and time taking to perform computation at each point within

the workspace, certain selected points are used for the purpose of optimization.  These

points are referred to as checkpoints.  Checkpoints may lie within or on the boundary of

the workspace.  The two workspaces under study are shown in Fig.4.10.

Fig.4.10 Workspaces with considered checkpoints

There are two work envelopes, a circular and a square.   The checkpoints are marked on

the boundary as well as on the inside.  All points cannot be considered as it would form

an exhaustive, but a very time consuming search and computational cost would go up.

Hence, it is wise to discretize or mesh the workspace.  Only, selected checkpoints need to

be computationally verified for obtaining the optimal solution.  First the optimization is

conducted with spiral optimization scheme and then using particle swarm optimization.
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The computer programs are developed for both these schemes in MATLAB environment

and are verified with some standard problems. The constraints in the present formulation

are the base joint lower and upper limits of displacements and velocities. The following

parameters are employed (Tables 4.2 and 4.3) :

Table 4.2 Spiral Optimization algorithm parameters

r=0.8; a constant

Nmax=1000; maximum iterations

m=number of variables=3;

Spiral angle for rotation matrix is 60 degree.

The parameters used in PSO:

Table 4.3 Particle swarm algorithm parameters

nv=3;number of variables

popsize=50;size of population

Generations=1000;no. of generations

w = 0.72984; a constant

c1 = 2.05 * w;

c2 = 2.05 * w;

Case Study I:

A circular workspace is chosen first for the purpose of illustration.  The workspace is

discretized into twelve checkpoints:  Eight checkpoints are on the boundary and four

checkpoints lie inside the workspace.  At each and every check point with specified (x,y)
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coordinates, we require to find the Jacobian and stiffness at some pre-set values of base

prismatic joint locations using simple 3-RPR kinematics. The convergence of the

stiffness index is plotted against number of iteration cycles for first checkpoint as shown

in Fig.4.11.

Fig. 4.11 Convergence of The Optimal Index at First Checkpoint

In order to test the validity of the obtained solution, one can test the mechanism for a set

of joint forces, to see whether the output forces and moments are reasonable or not. A

force of 10 Newton is applied at each distal actuator at fixed optimal base slider positions

for each check point and the corresponding end-effector forces are computed through

static analysis. Fig.4.11 shows the outputs. The values obtained are of reasonable levels.
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Fig. 4.12 Generalized End Effector Forces For a Test Input

(Input Force 10 Newton)

The effectiveness of the algorithm is compared with particle swarm optimization.

Fig.4.13 shows, chart of optimal values of stiffness index obtained from particle swarm

against spiral optimization. The spiral optimization is seen to be effective as the optimal

values are much closer to unity.

Case Study II: Square Work region

A square work region with a given side length is considered. It is also divided into twelve

checkpoints.  There are eight on boundary and four on inside.  The calculations are

performed for the checkpoints on square workspace in the same way as done for the

circular envelope earlier.
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Fig. 4.13 Comparision between SO and PSO

After the first checkpoint, the procedure repeats on the subsequent points to perform the

computations.  One by one, all checkpoints shall be covered. An initial set of solutions is

assumed for each case at the beginning. Then finally after a number of iterations, the

procedure begins to give a convergent set and ultimate a solution is obtained.  The

convergence map is shown for one checkpoint as in Fig.4.14.

Fig. 4.14 Convergence for first checkpoint
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Similar to circular case, a test the validity of the obtained solutions is performed by

applying some input joint force and carry-out forward analysis to predict the end-effector

forces. This is a mark of stiffness measure. Fig.4.15 shows the computed end-effector

force vector at each point.

Fig. 4.15 General End Effector Forces (test input of 10 Newton)

Fig.4.16 shows the optimum stiffness index values obtained from PSO in comparison to

spiral optimization scheme.

Fig. 4.16 Optimized stiffness indices at each check point
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Novel spiral optimization scheme has given interesting results and corresponding

optimized design variables are depicted for both cases in Table 4.4.

Table 4.4 Optimum design variables

Circular workshape

Pt. No. t1 (m)            t2 (m)         t3(m)

Square workshape

Pt. No.          t1 (m)            t2 (m)         t3(m)

1 3.09 4.98 0.06 1 2 4 0.65

2 4.99 4.98 4.95 2 0.56 4.98 3.25

3 0.05 3.23 4.98 3 0.05 2.55 3.22

4 1.11 0.23 4.96 4 1.11 0.23 4.96

5 1.99 4.01 0.06 5 4.98 4.83 4.76

6 2.12 3.02 4.5 6 4.99 1.56 3.12

7 3.08 3.33 4.89 7 0.02 2.09 1.43

8 1.50 2.33 4.66 8 4.99 4.89 0.06

9 4.30 4.40 4.85 9 1.39 4.99 3.90

10 4.08 0.91 2.97 10 0.09 2.92 1.97

11 4.84 4.98 4.90 11 4.11 4.98 4.99

12 3.09 4.98 0.06 12 2.52 4.98 1.56
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4.4 Fabrication issues of scaled prototype

Within the limitations of time and resources, a simple manual set up for understanding of

redundancies in 3-RPR linkage is developed using wooden and aluminum material at

workshop. Initially, a solid model is drawn in Solidworks software and the feasibility is

tested as done in ADAMS environment. The fabricated model shown in Fig.4.17 consists

of the same 3-RPR mounted on variable base.

Fig. 4.17 Wooden skeleton model of the 3-PRPR

The model consists of a mobile platform, a fixed base and limb sub-assemblies.  The

mobile platform was carved out of a wooden plate as an equilateral triangle of 5 cm side

length.  Table 4.5 lists the dimensions.

Table 4.5 Parts and Materials

Component Material Dimensions

End Effector Plate Timbre wood 5 cm

Base Platform Aluminum Frame 30 cm

Limb Sub assembly Timbre wood 10 cm ( dead lenth)

20 cm (max extension)

Prismatic Joint

End effector
(mobile platform)

Pin  Joint

Base Slider

Aluminium Frame
(Ground Link)
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The assembly consists of following parts:

1.Base platform: Base Platform, is fabricated from aluminum frame.  There are two

functions of the base platform. It serves as the ground link as well as accommodate the

base slider joint. The mechanism intended to serve as a reconfigurable 3-PRPR planar

parallel manipulator.  Hence, the revolute joint of the limb sub assembly as shown in

figure 4.18 should travel along the aluminium frame to allow changes in the position of

the first passive revolute joint of the 3-RPR configuration resting on it.

2. Limb Sub assemblies: The limb sub assemblies were made out  of  wood.  Dry

timberwood is used for the fabrication.  Each limb consist of three components, a base

mount, a base cylinder and stepped rod.  The base mount was fitted on to the aluminium

frame with a slot to allow the relative base slider motion.  The base cylinder has been pin

jointed to the base mount at one end to permit relative rotational motion.  The stepped

wooden rod fits at one end into the base cylinder. The other end of the stepped rod is pin

jointed to the end effector plate.

Fig. 4.18 Limb sub assembly

3. End effector: The end effector plate is carved out of timbre wood.  It is an equilateral

triangle with side length 5 cm.  The end effector plate is connected to the three limb sub

assemblies through pinned joints to permit relative rotational motions.

Base Mount

Base cylinder

Stepped rod
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The workability of the mechanism is the next issue and it is planned to provide a

reconfigurable end-effector (gripper) instead of rigid mobile platform. The trajectory

tracking issues are yet to be verified with the use of linear motors in the assembly.

------



51

Chapter 5

Conclusion

In this work, the redundancy resolution for the 3-PRPR kinematically redundant

parallel manipulator has been achieved using two optimization schemes namely: spiral

and particle swarm optimizations to obtain the isotropic stiffness index inside a work

region by proper selection of base slider positions. The optimum base slider positions has

been obtained for the mechanism at selected checkpoints of a usable workshape defined

within the maximum workspace of the kinematically redundant mechanism. Circular and

square workshapes were considered, where twelve checkpoints distributed over the

boundary and inner region of the workshape were selected in order to minimise the time

and cost of computations while maintaining the accuracy of the results. The optimum

base slider positions obtained by novel spiral otimization algorithm were closer to the

desired objective function when compared against the particle swarm optimization

technique. The workspace and singularity regions of 3-RPR linkage has been obtained

and it is found that an enhancement can be obtained with the help of kinematic

redundancy. The case of 4-RPR actuation redundant manipulator was briefly discussed

and its workspace was analyzed. The solid model of the mechanism analysed in

ADAMS software has given some interesting inverse kinematics outputs. After achieving

optimal locations, forward kinematic analysis was carried out to verify the closeness of

selected work shape and also the corresponding output forces were obtained from a given

joint torques. A scaled model of the mechanism was fabricated and attempted to verify
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the workspace features. In overall sense, the present study aids in the analysis and

design of kinematically redundant manipulators effectively.

5.1 Future Scope

As future scope of this work, the 3-PRPR dimensions are to be arrived for any

generalized work shapes with isotropic stiffness as criterion.  An actual prototype with a

computer controlled user interface is to be developed.  The control system analysis and

implementation for the manipulation is to be developed.  A multiobjective formulation

including other performance indices such as dexterity is to be set up.  The dynamic

analysis of the mechanism is an important task in the future.  As an interesting case, a

spatial form of 3-RPR manipulator with vertical prismatic bases can also be made up and

the present algorithm can be verified for the spatial parallel manipulator in future.
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APPENDIX

Listing of the function file for 3-PRPR
%%% FUNCTION TO COMPUTE OBJECTIVE (STIFFNESS INDEX)FOR THE OPTIMIZATION
%%% PROGRAMS.

function Z = aniket2(X3,x,y,phi)
l=5;
L=30;
prad=l/sqrt(3);
dmin=0;
dmax=30;

%Output in cartesian space
% phi=pi/3;
% x=2.5;
% y=2.5;

%redundant parameter
s1=X3(1);
s2=X3(2);
s3=X3(3);

%COOrdinates fOr platfOrm lOcatiOns in platfOrm cOOrdinate system

%cOOrdinates fOr O1
O1x= -(L/2);
O1y= -(L/(2*sqrt(3)));
%cOOrdinates fOr O2
O2x=  (L/2);
O2y= -(L/(2*sqrt(3)));
%cOOrdinates fOr O3
O3x=   0;
O3y=  (L/sqrt(3));

%cOOrdinates fOr first prismatic jOint parametrically defined

%cOOrdinates fOr A1
A1x= O1x+s1;
A1y= -(L/(2*sqrt(3)));
%cOOrdinates fOr A2
A2x=  O2x-s2*cos(pi/6);
A2y= O2y+s2*sin(pi/6);
%cOOrdinates fOr A3
A3x=   s3*sin(pi/6);
A3y= -s3*cos(pi/6)+(L/sqrt(3));

%COOrdinates fOr platfOrm revOlute jOints in platfOrm cOOrdinate system

%cOOrdinates fOr B1
PB1x=(-l/2);
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PB1y=(-l/(2*sqrt(3)));
%cOOrdinates fOr B2
PB2x=(l/2);
PB2y=(-l/(2*sqrt(3)));
%cOOrdinates fOr B3
PB3x=(0);
PB3y=(l/sqrt(3));

%cOOrdinates fOr platfOrm revOlute jOint in platfOrm cOOrdinate system

%platfOrm revOlute jOint B1
pb1x=PB1x*cos(phi)-PB1y*sin(phi);
pb1y=PB1x*sin(phi)+PB1y*cos(phi);
%platfOrm revOlute jOint B2
pb2x=PB2x*cos(phi)-PB2y*sin(phi);
pb2y=PB2x*sin(phi)+PB2y*cos(phi);
%platfOrm revOlute jOint B3
pb3x=PB3x*cos(phi)-PB3y*sin(phi);
pb3y=PB3x*sin(phi)+PB3y*cos(phi);

%cOOrdinates fOr platfOrm revOlute jOint in platfOrm cOOrdinate system

%platfOrm revOlute jOint B1
B1x=x+PB1x*cos(phi)-PB1y*sin(phi);
B1y=y+PB1x*sin(phi)+PB1y*cos(phi);
%platfOrm revOlute jOint B2
B2x=x+PB2x*cos(phi)-PB2y*sin(phi);
B2y=y+PB2x*sin(phi)+PB2y*cos(phi);
%platfOrm revOlute jOint B3
B3x=x+PB3x*cos(phi)-PB3y*sin(phi);
B3y=y+PB3x*sin(phi)+PB3y*cos(phi);

%lengths fOr first prismatic actuatOr

p11=sqrt((A1x-O1x)^2+(A1y-O1y)^2);
p21=sqrt((A2x-O2x)^2+(A2y-O2y)^2);
p31=sqrt((A3x-O3x)^2+(A3y-O3y)^2);

%lengths fOr secOnd prismatic actuatOr

p12=sqrt((B1x-A1x)^2+(B1y-A1y)^2);
p22=sqrt((B2x-A2x)^2+(B2y-A2y)^2);
p32=sqrt((B3x-A3x)^2+(B3y-A3y)^2);

%unit vectOr alOng base prismatic jOint

n11=(1/p11)*[(A1x-O1x) (A1y-O1y)];
n21=(1/p21)*[(A2x-O2x) (A2y-O2y)];
n31=(1/p31)*[(A3x-O3x) (A3y-O3y)];

%unit vectOr alOng prOximal prismatic jOint

n12=(1/p12)*[(B1x-A1x) (B1y-A1y)];
n22=(1/p22)*[(B2x-A2x) (B2y-A2y)];
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n32=(1/p32)*[(B3x-A3x) (B3y-A3y)];

%A matrix normalized using platform radius

A=[ n12(1) n12(2) (n12(2)*pb1x-n12(1)*pb1y)/prad;
n22(1) n22(2) (n22(2)*pb2x-n22(1)*pb2y)/prad;
n32(1) n32(2) (n32(2)*pb3x-n32(1)*pb3y)/prad];

%B matrix

B=[ n11*n12' 1   0        0      0        0;
0        0   n21*n22' 1      0        0;
0        0   0        0      n31*n32' 1];

%Homogeneous Overall jacObian fOr 3-prpr kinematically redundant
manipulator

J=pinv(B)*A;
kj=1;
stiff=kj*J'*eye(6)*J;
cnd=cond(stiff);
% cnd=cond(J,2);
%joint torque calculation at each point.

Z=abs(1/cnd-1);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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