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ABSTRACT

Parallel manipulators are a form of closed loop linkages and have a wide range of
applications e.g. surgical robots, flight smulators, pointing devices etc. Parallel mechanisms
have many advantages over serial manipulator. Higher accuracy, stiffness and increased payload
capacity are the characteristics of parallel manipulator. In spite of many advantages, they have
limited workspace and more singularity regions. So, redundant architectures have become
popular. However, redundancy leads to infinite solutions for inverse kinematic problem. The
current work addresses this issue of resolving the redundancy of kinematically redundant planar
parallel manipulators using optimization based approach. First the conventional non-redundant
3-RPR planar parallel manipulator is presented. Afterwards the kinematically redundant
counterpart 3-PRPR is discussed and actuation redundant 4-RPR has been touched upon briefly.
Computer simulations have been performed for the kinematic issues using MATLAB
programme . The workspace of redundant and non-redundant parallel manipulators have been
obtained. The generalized stiffness matrix has been derived based upon the Jacobian model and
the principle of duality between kinematics and statics. A stiffness index has been formulated
and the isotropy of stiffness index is used as the criterion for resolving redundancy. A novel
spiral optimization metaheuristics has been used to achieve the isotropic stiffness within the
selected workshape and the results are compared against particle swarm optimization. The
results obtained from the novel Spiral optimization are found to be more effective and closer to
the objective function as compared to the particle swarm optimization. Optimum redundant
parameters are obtained as a result of the analysis. A wooden skeletal prototype has also been

fabricated to enhance the understanding of the mechanism workability.
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Chapter-1

| ntroduction

Parallel mechanisms are found recently in many applications including machine tools,
robots and simulation platforms etc. Unlike serial manipulator used in most industrial
robots, here, al the joint motors are located at ground level and a sort of stiffness
improvising mechanism is provided in the structure. Thus, essentially, a parale linkage
provides advantages such as improved stiffness to weight ratio and more accurate path
following capabilities. They are finding several applications in micro and nano level
devices. Basic pardled linkage is a 6-DOF stewart-Guff spatial platform studied by
several researchers. More recently, planar parallel mechanisms are being employed in
several application areas. Most common, planar parallel linkages are 3-RRR, 3-RPR and
3-PRR linkages. Here, the underscore denotes the actuator location in the mechanism; for
example 3-RRR indicates that the mechanism has 3 chains each having three revolute
joints with first revolute joint as actuation joint. All these mechanisms drive a platformin
a plane motion (3 degrees of freedom) allowing the platform point (cutting tool) to move
according to a desired path/trgjectory. Main disadvantages of these linkages are their
relatively small workspace and huge singularities within the workspaces. At singularities,
the mechanism either loses (forward) or gains (inverse) a degree of freedom and cannot
perform the action as per the instructions. Such mechanisms with sufficient DOF for a
specific end-effector task may not have the ability to achieve alternative paths when
attempting a task due to their uniqueness of solution. In order to alleviate these problems,

several efforts are made in literature. An important attempt in this direction is to provide



redundancy in the mechanism. Redundancy refers to the adding additional actuator to
achieve the same three degrees of freedom at the platform point (end-effector).
Additional actuators may avoid singular postures and improvise dexterity in path
planning just like a serial human hand mechanism. But, the mechanism becomes more
complex leading to severa possible joint solutions to achieve a desired task. Resolving
the complexity in kinematics and dynamics of mechanisms is one of the important issues
in redundant parallel mechanisms.

1.1 Redundant Parallel Manipulators

There are mainly two different types of redundancy in parallel manipulators. (@)
kinematic redundancy and (b) actuation redundancy. A paralel manipulator is said to be
kinematically redundant when its mobility is more than the degrees of freedom at the
moving platform. We often use this type of redundancy for enhancing the workspace.

Fig.1.1 shows an example of kinematically redundant manipulators.

N Passive revolute joint Active joints

Fig.1.1 Kinematically redundant Fig.1.2 Redundantly actuated

The mobility or degrees of freedom M is given by M=A(L-J-1)+2f;, j=1,2,...J; with A as
motion parameter (3 in case of planar and 6 in case of spatial), L and J as total number of

links and joints respectively and f; as the degree of freedom at each joint in the linkage. In



case of kinematically redundant manipulators, mobility M is greater than A and is equal
to the number of actuators used in the mechanism.

On the other hand, a paralel manipulator is redundantly actuated when the
number of actuators is greater than the mobility of the mechanism (Fig.1.2). Redundant
actuation does not change mobility of mechanism M, but increases only the number of
actuators. That is mobility M=A and the number of actuators used in linkage are greater
than this mobility M.

Redundant actuation in parallel manipulator can be implemented by the following
approaches. The first one is to actuate some of the passive joints within the branches of
the parallel manipulator. The second one is to add some additional branches beyond the
minimum necessary to actuate the parallel manipulator. The last one can be the hybrid of
the above two approaches.

1.2 Liteaturereview

Several earlier works explained various insights of paralel redundant manipulators.
These can be grouped under different headings like: workspace, singularities, dynamics
and control and so on. Here, a brief literature relating to redundant parallel manipulators
is described.

A systematic classification of redundancies in parallel manipulators was proposed
by Lee and Kim [1] and Marlet [2]. Accordingly, there are three types of redundancies,
Type I, Type Il and Type Il that are achieved by adding additiona joint to existing
limbs, replacing passive joints in current limbs with active ones and adding additional

limbs. Redundancy can provide practical advantages to industrial manipulators.



Redundantly actuated linkages

Abundant literature is available on redundantly actuated manipulators since early
2000. Firmani and Podhorodeski [3] presented a study of the effect of redundant actuators
on the existence of force-unconstrained configurations of planar paralel layout of joints.
Successively, a methodology of using scaling factors to determine the force capabilities
of redundantly-actuated parallel manipulators was also presented [4]. Wu et a. [5]
described dynamics and control of a three degree of freedom paralel kinematic machine
tool with actuation redundancy. Muller and Hufnagel [6] presented computed torque
control scheme in redundant coordinates to control redundantly actuated paralel
kinematic machine. A 2 degree of freedom model was used to illustrate methodology.
More recently, an idea of optimizing antagonistic stiffness for redundantly actuated
mechanisms for resolving redundancy was proposed by Shin et a.[7].
Kinematically redundant manipulators
Mohamed and Gosselin [8] addressed the issue of kinematic redundancy using 3-RRR
mechanism. The requirement may be improvement of dexterity or stiffness etc. Thisisan
important observation, since it helps identify the utility of the redundant mechanism.
Wang and Gosselin [9] carried out analysis and design of parallel manipulator both
planar as well as spatial using kinematic redundancy. A significant reduction in the
singularity region was obtained via addition of the redundancy.

Ebrahimi [10] dealt with analysis of four different types of kinematically
redundant planar parallel manipulators. They compared the dexterous workspace for the
kinematically redundant planar parallel manipulators with conventional non-redundant

planar paralel case. Later-on, Ebrahimi et al.[11] presented a novel redundant 3-PRRR



architecture, considering its advantages over the non-redundant one. The same authors
[12] proposed actuation schemes for 3-RRR and 3-PRRR using optimization procedures.
The problem of finding a valid actuation scheme for parallel manipulators is one of the
least explored. Two techniques were presented, first one based upon the condition
number of the Jacobian matrix and the second scheme was derived from scaled in-circle
radius method. It was shown that the solutions obtained from scaled incircle radius
method provide better manipulability. Ebrahimi et al. aso [13] conducted the path
planning for 3-RPRR kinematically redundant planar parallel manipulator. The
dexterous workspace and the actuation scheme for 3-RPRR were obtained using an index
of closeness to singularity and condition number. Different actuation schemes were
compared using manipulability and results indicated that kinematically redundant 3-
RPRR is advantageous over 3-PRR.

Cha et a. [14-15] dealt with redundancy resolution problem by considering
singularity avoidance using 3-RRR mechanism and to found out the permissible limits of
the kinematically redundant active base diders in order to avoid singularities aong a
specified trgectory.

Chen et a. [16] dedt with improving the positional accuracy of parallel
manipulator using kinematic redundancy. With the kinematically redundant variables,
optimum configurations were selected for which the error transmission is least and output
errors were optimized instead of being determined.

Kortlarski et al. [17] proved the utility of kinematic redundancy to increase the

useable workspace of parallel manipulator with the help of 3-(P)RRR and 3-(P)RPR .



The workspace was obtained using an interval based method for singularity avoidance
along a specified trajectory.

Kotlarski et a. [18] also proposed five different strategy for resolving kinematic
redundancy. The position of redundant joints was formulated in terms of optimal values
of maximal homogenized pose errors of the end effector. Further it was proven that
classical continuous optimization techniques resulted in same performance variables that
could be obtained by discrete optimization techniques.

Zarkandi [19] carried out singularity analysis on a 3-PRRR kinematically
redundant manipulator. Weihmann et al. [20] carried-out optimization based computation
of the force capabilities of a 3-RPRR manipulator without considering the tragectory.
Ruggius and Carretero [21] evaluated the kinematic performance of 3-PRPR planar
paralel manipulator. Jacobian and workspace analysis was conducted. The results
indicated improved performance in comparision to 3-RPR conventional manipulator.

Gallant et a. [22] proposed a geometrical procedure to determine the dexterous
workspace of n-RRRR and n-RRPR kinematicaly redundant planar parallel
manipulators. The workspace of the kinematically redundant manipulator was devel oped
from the intersection of the kinematic sub-chains forming each limb and Gauss
divergence theorem was applied to calculate the dexterous workspace area. It was shown
that for kinematically redundant RRRR and RRPR limbs workspaces are dependent on
the type of the non-redundant part and the dimensions of the redundant linkage.

Thanh et al. [23] deat with modelling and dynamics identification of

kinematically redundant paralel robots. A set of minima dynamic parameters were



obtained from lagrangian equations using coordinate partitioning method. The direct
search technique was used for optimization of dynamic parameters.

More recently, Boudreau and Nokleby [24] proposed a solution to the problem of
redundancy resolution of the redundant parallel manipulator following a desired
trajectory by optimizing the joint torques. The base architecture for the work was the
conventional non-redundant 3-RPR planar parallel manipulator.

Redundancy resolution to obtain the kinematic solution of a parallel manipulator
is thus based on the application considered. For example, in load carrying applications
like machining, one has to account stiffness maximization, while in pick-and-place
applications as in printed circuit board assemblies, one has to account dexterity and
singularities as criterion.

1.3 Objectives and Scope
In kinematics of redundant parallel robots, inverse kinematics results in multiple
solutions for a given pose. So, one has to consider redundancy-resolution issues, which
should account joint physical limits as well as environmenta factors. The redundancy-
resolution issue is solved by using pseudo-inverse-based formulation and by considering
different optimization criteria, such as maximizing the singularity-free workspace and
improvising dexterity etc. However, it is found that the redundancy-resolution can be
effectively achieved by using online optimization techniques.
In present work, the following objectives are planned:

(1) Consider a planar configuration and introduce kinematic redundancy

(i) Arrive the kinematics and workspace characteristics in comparison to  non-

redundant case



(i)  Select the stiffness improvisation as the criterion and define isotropic stiffness
index in terms of Jacobian matrix.

(iv)  Choose a workpath inside the workspace of manipulator and divide it into
several check points. At each point, the objective is to achieve isotropic
stiffness index.

(v) To maximize the stiffness index, two non-conventional global optimization
schemes are to be considered.

(vi)  The identified optimized locations of redundant prismatic joints are to be
tested with forward static analysis problem.

(vii) Create the optimized dimensions of redundant manipulator in ADAMS
simulation environment and test the inverse solution.

(viii) Finally fabricate a prototype of assembly and propose the guidelines for its
control.

The remaining part of thesis is organized as follows:. chapter-2 explains the kinematics
and definition of stiffness matrix of redundant parallel manipulator under consideration.
Chapter-3 deals with the description of two latest meta-heuristic algorithms (new spira
optimization scheme and Particle swarm optimization) for solving the stiffness
optimization of the manipulator. Results and discussion of the work are presented in

chapter-4. In chapter-5, summary and future direction of the work is explained.



Chapter 2
Mathematical Modeling

2.1 The 3-RPR Manipulator Description

The base architecture on which the study is based is presented in Figure 2.1.

Lt

Fig. 2.1The 3-RPR Manipulator

It is a conventional and non-redundant type of manipulator. There are three limbs that
connect the platform on the ground to the platform that moves, a point on which can be
used as end effector. The former is labeled as L;L,L3 and the latter as M1M2M3. The
vertices L, and M1 are constrained through a leg with three joints. One of which is active
and the other two are passive. The former is prismatic joint while the latter one is,
revolute. The important feature of the manipulator is that it contains no complex

singularity curves inside the workspace, unlike its popular 3-RRR counterpart. But, the



mechanical construction becomes heavy due to the inherent presence of a prismatic joint.

The extension of any prismatic joint ist;;, i.e. i limb and j™ joint.

2.2 Inverse Kinematics of 3-RPR Manipulator

In order to compute the velocities or displacements at limb joints for a desired
trgjectory of the end effector, inverse kinematics is necessary. There are two coordinate
systems, shown in Fig 2.2. A fixed one which is on ground with the larger platform
L,LoL3. A mobile one that is attached to the end effector platform M1M,M3. They are
notated as O’-X-Y and O-x-y respectively.

A vector equation can be written for the system as follows:

{O°Mi}={0’O}+[RH{OM'}} (21)

cos¢ —sing

where [R] is the rotation matrix { ,
sing cos¢

}, vector O’0O= {);} and {OM';} is

vector from O to M; expressed in moving frame O-x-y.

Expanding the equation in matrix format,

R e iy
2.3 Veocity Analysis of 3-RPR Manipulator
The time derivative of displacement resultsin velocity. The displacements of prismatic
joints are ti,, tx and tz. The kinematic equations are written from the loop-closure
equations and differential kinematics is written by taking first derivative of loop-closure

eguations. From kinematic equations, a mapping from end effector velocities in cartesian

space to actuator velocities in joint space can be obtained, termed as the Jacobian. The

10



Jacobian matrix is the relation of small perturbation of input and the response of output.

The distance formulais adapted to the coordinate system in Fig 2.2.

Fig. 2.2 Seperated Limb with Coordinate System
ti’=(Mxi — Lx)” +(Myi — Lyi)?, i=1,2,3 (23)
where M,; and My; are calculated from equation (2.1) and (2.2) as follows,

Myi=x+(M'ix cosp- M'iy sing) and My;=y+( M'ix sing- M’y cosd) (2.9)

Time-derivative of Eq.(2.3) yields:

25k, = 2(M g =L )M, +2(M yi Lyi)M yi (2.5)

M, =X—(M' sinf + M, cosf )f =%—OM ,f (2.6)
M =y+(M' cosf —M" sinf)f =y+OM f 2.7)

A. = Mi B Li

2= (2.8)

11



And

f,= (%= (M, sinf + M, cosf )f ), + (¥ + (M, cosf —M", sinf)f)A, (2.9)
Simplifying,
t, = (X-OM yif.)ﬁi2x +(y+OM xif.)ﬁiZy (2.10)
Expanding and Rearranging using matrix form,
t.12 ﬁ12>< ﬁ12y oM x1ﬁ12y -OM y1ﬁ12><
fzz = ﬁsz ﬁ22y oM x2ﬁ22y -OM y2ﬁ22x : y (211)
t.32 rA‘szx ﬁ32y oM x3ﬁ32y -OM y3ﬁ32x f
Thisisequivaent to,
Ax=Bg (2.12)

That is the standard form of velocity equation for parallel manipulators. Comparing the

two A and B matrices can be found and the Jacobian can be computed as,

J=B"A (2.13)

2.4The 3-PRPR manipulator description

The mechanical architecture of the 3-PRPR parallel manipulator considered is shown in
the Fig 2.3. It consists of a base platform, triangle O;0,03; and a mobile platform,
triangle MM ;M3 The end effector may be chosen as any suitable point on the mobile
platform. The mobile platform is connected to the base platform through three parallel
seria linkages called as limbs. Each limb consists of four joints, an actuated base
prismatic joint along O1L1, a base revolute joint at L;, an actuated distal prismatic joint
along L1M; and aplatform revolute joint at M;. Two prismatic joints are actuated. There

are three limbs, hence twelve joints, but only six of them are actuated. The mechanism s

12



a planar one and has three degree of freedom. But the number of actuated joints is six.

So three extrajoints has to be actuated through a redundancy resolution agorithm.

Fig. 2.3The 3-PRPR Manipulator
2.5 Kinematic and Jacobian Analysis of The 3-PRPR manipulator
The displacements of base prismatic joints are ti;, to; and tz;. The displacements of
distal prismatic joints are ti;, t» and tzx. The velocity equations for the 3-PRPR
mechanism can be obtained by modifying the kinematic equations of the 3-RPR to take
into account the first time derivatives of base dider positions. Writing the displacement

constraint from Fig. 2.4 in as equation 2.14.

Ri

Fig. 2.4 Seperated limb of the 3-PRPR mechanism

tio” = (My — Li)® +(Myi — Lyi)%, i=1,2,3 (2.14)

13



where, M, = x-(M', sinf +M", cosf )f =%—OM f (2.15)
M, = y+(M",cosf —M", sinf)f = y+OM f (2.16)

Writing the time derivative of equation (2.14) and not neglecting the base slider motion,

2ti2fi2 = 2(M X in )(M X in ) + 2(M yi Lyi )(M yi Ly|) (217)
f,=(X=(M", sinf + M cosf )f —t,f,, ), + (¥ +(M", cosf —M' sinf)f —t,n, ),
(2.18)
Where,
. L-0O
W= (2.19)
. M -L
M= (2.20)
t, = (Xx-OM yif. —tyny, )N, + (Y +OM xif. _filnily)ﬁiZy (2 21)
Expanding the equation 2.21 and rearranging in the matrix form,
T
t R R R R .
r.‘11T N, 1 0 0 0 0 -12 Mo, I']12y OM x1n12y -OM yinlzx X (2 22)

{ " ~ ~
0 0 nnT n, 1 0 0 f21 =Ny Ny oM x2Maoy — oM veloox |71 Y
T R . R . .
0 0 0 0 Ny Ny, 1 fzz Ny, y n32y oM ><3n32y -OM y3n32>< f
t

Thisisequivaent to,

Ax=Bg (2.23)
That is the standard form of velocity equation for parallel manipulators.

Comparing thetwo A and B matrices can be found and the jacobian can be computed as,

14



J=B"A (2.24)

2.6 The 4-RPR Manipulator

In order to understand the advantages of kinematicaly redundant linkage against
redundantly actuated mechanism, in present case, we also considered 4-RPR (one extra
leg) redundantly actuated linkage. The mechanical architecture of the 4-RPR planar
paralel manipulator is shown in the Fig 2.5. It consists of a base platform, Lilolslq
and amobile platform, M1M,M3M4 The end effector may be chosen as any suitable point
on the mobile platform. The mobile platform is connected to the base platform through
four parale serial linkages called as limbs. Each limb consists of three joints, a base
revolute joint at L,, an actuated distal prismatic joint along L;M; and a platform revolute
joint at M1. The prismatic joint is actuated. There are four limbs, hence twelve joints,
but only four of them are actuated. The mechanism is a planar one and has three degree
of freedom. But the number of actuated joints is four. So the extra joint has to be

actuated through a redundancy resolution a gorithm.

1.

L
L
IS 1] ]

™

Fig. 2.5 The 4-RPR Manipulator
2.7 Kinematics and Jacobian Analysis of The 4-RPR Manipulator

The kinematics of the 4-RPR can be derived from the constraint equations of the four

prismatic joints. The displacements of prismatic joints are t;, t;, tsand t;. The

15



displacements of distal prismatic joints are constrained within the minimum and
maximum joint limits. The velocity equations for the 4-RPR mechanism can be obtained

as follows, Writing the displacement constraint from Fig.2.6,

¥

AL M
T
I i o v
X

Wi

L1

Fig. 2.6 Seperated limb of The 4-RPR mechanism

=M, -L)*+(M, —L,)? (2.25)
2t =2(M; - LM, +2(M, - L, )M, (2.26)
Where,
M, =Xx—(M", sinf + M cosf )f =x-OM ,f 2.27)
M =y+(M' cosf —M" sinf)f =y+OM f (2.28)
Putting,
A oMi-L
' t (2.29)
t = (x— (M, sinf +M", cosf)f )i, +(y+(M", cosf —M" sinf)f ), (2.30)
Simplifying,
f, = (X—OM f)fi, +(y+OM f)i, (2.31)

Expanding and writing in matrix form,

16



t'1 I:\llx I;\]1y OM xlnly -OM ylnlx
¢| |, A, OM_A —OM_ A,
.2 _ AZ A2y 2 A2y y2A2 y (232)
t3 Ny n3y oM x3n3y -OM y3n3x f
t‘4 I:\]4>< r,i4y OM x4ﬁ4y -OM y4ﬁ4x
Thisis equivaent to,
Ax=Bg (2.33)

That is the standard form of velocity equation for parallel manipulators. Comparing the

two A and B matrices can be found and the jacobian can be computed as,

J=B'A (2.34)
2.8 Generalized Stiffness Matrix

Severa authors worked out on stiffness index as one of the measure of manipulator
performance. A brief literature of few papersis cited below:

Simaan and Shoham [25] considered the stiffness synthesis of a kinematically redundant
paralel robot. The proposed a polynomial solution for the geometric parameters in order
to achieve a stiffness matrix. A six degree of freedom double planar parallel manipulator
was studied and the polynomial obtained possessed 384 real solutions.

Legnani et a. [26] discussed isotropy and decoupling of n-dof paralel
manipulators. The use of Jacobian matrix in achieving isotropy was revived. The
application of these concepts to Gough-Stewart platform indicated that it can be isotropic,
but not decoupled. A modification was proposed which resulted in two six degree of
freedom isotropic and decoupled parallel manipulators.

Bandyopadhyay and Ghoshal [27] derived the Jacobian of Stewart platform that
led an algebraic formulation in terms of an eigen value problem to obtain isotropy of the

mechanism. The criterion for isotropy was expressed in terms of minimum number of
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algebraic equations. Two families of manipulators with isotropic form were obtained
using the symbolic algebraic equations.

Wu et al. [28] considered the effect of adding an additiona leg to a 3-DOF paralle
manipulator in terms of stiffness and natura frequency. The stiffness and natura
frequency increased with the addition of aleg. But, addition of another leg was shown to
be unnecessary. It was proposed to maintain symmetry of the mechanism in order to
leave other kinematic paramters such dexterity unaffected.

A brief outline of stiffness prediction from kinematic equationsis provided below:

Let q be the velocity of joint ratesand X be the end effector velocity state,

Then, we have from jacobian analysis,
For infinitesimal displacement

oq = Jox (2.36)
This relates the infinitessimal joint displacement with the infinitessimal end efector

displacement,

From duality between kinematics and dynamics,

.
F=Jf 2.37)
where F= End effector force vector

f = Joint Force Vector.

Stiffness is defined as force per unit displacement, hence joint forces can be defined as,
f =K,doq (2.38)

K, =diagK;......K,]
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Hence,
F = J7K,Jox (2:39)
Hence, The stiffness matrix is,

K=J7K,J (2.40)
Here, K; isadiagona matrix containing stiffness of each actuator joint (known as rigidity
coefficient). This stiffness is essential index in paralel manipulators for the following
reasons:

(2) the higher stiffness can improve the dynamic accuracy.

(2) stiffness affects control performance.

To measure this matrix in different directions, the eigenvalues of stiffness matrix may be
utilized. However, the units of the different entries of the matrix are not uniform, the
dimensions of the eigenvalues of the stiffness include both force/length and force-length.
Hence, the eigenvaue problem for stiffness is dimensionaly inconsistent. Alternatively,
the diagonal elements of stiffness matrix reflect pure stiffness.

Detailed expression for stiffness used in present work is given in next chapter.
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Chapter 3

Optimization Technigques

This chapter presents a formulation of a present optimization criterion and two latest
globa optimization solution techniques via metaheuristics namely, spiral optimization
and particle swarm optimization schemes.
3.1 Formulation of Optimization Problem
Optimization problem requires definition of objective function along with the constraints.
Often both objective functions and constraints are nonlinear functions of a design
variables. In the present work, we considered the redundant joint variables as the design
parameters, so as to resolve the redundancy while satisfying the isotropic stiffness
conditions over the workpath considered at the end effector.

Find the redundant joint locations so as to make the condition number of stiffness
matrix S closeto one. Here, Sisdefined as:

_ mineigvalue([K])

~ maxeigvalue([K]) (3.1)
Where [K ] isthe stiffness matrix defined earlier in chapter 2,
Formulation is as follows,
At every checkpoint
Minimize |S-1]
Subject to: ( the limits for the base prismatic actuators)
tin St (i=1,2,3) (3.2
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We start from a selected workspace shape such as circle and square where the end-
effector operates and at these locations, objective is to achieve isotropic stiffness index.
The optimization procedure is as follows, at each checkpoint:

Step 1: Begin with arandom set of feasible input candidate solutions.

Step 2: Define a series of checkpoints.

Step 3: Start with initial solution set.

Step 4: Compute Jacobian and hence, the Stiffness matrix at each checkpoint.

Step 5: compute the objective function and update the solution set based on selected
meta-heuristics.

Step 6: Compare the updated vector set with the previous ones and store the potential
candidates

Step 7: Repeat the procedure until optimal solution isfound.

The discretization of the work region to a series of checkpoints, both on the boundary as
well as on the inside reduce the computational requirements. The mechanism is useful if
it isableto track any point within the desired workspace definitely while working against
some load.

3.2 Spiral Optimization M ethodology

Search agorithms are very often used for the purpose of solving optimization problems.
Often many of the search algorithms are inspired from the phenomena in nature, e.g.
bacteria foraging or birds flocking for food. Such higher order search principles are easy
to implement, very robust and prone to convergence. The phenomenon that inspired this
principle is present in various forms in nature such as in spiras generating

logarithmically asin a shell.
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Tamura and Y asuda [29,30] worked out a two dimensional spiral optimization algorithm
and later proposed n-dimensiona spiral optimization algorithm by extending the two
dimensional algorithm. The n-dimensional rotation matrices were obtained as a
composition of modified forms of 2-D rotation matrices. The algorithm was tested on
different benchmark problems and the effectiveness of the algorithm was found to be
competent as compared to other metaheuristics.

The method based on spiral optimization is quite suitable for higher dimensional
problems. The spiral model begins by intiating randomly points representing solutions to
a problem which converge iteratively to the centre of a spiral from the intial point. Each

point in the progressive spira is updated according to equation (3.3),

XY = Ry X* - (Ry-1IN) X (3.3)
Where,
X**1 = Updated feasible solution
X* = Previous feasible solution
Rm = The rotation matrix ( here m refers to the number of design
variables)

In - Identity matrix of order mxm.
r=radius of spiral (taken avaluefrom0to 1)
Equation (3.4) gives the rotation matrix in the two dimensiona space in terms of spiral

angle ¢:

_|cosf  —sinf 34
RZ_Linf cosf } (34

In order to adopt the spiral optimization algorithm to n-dimensional problems, the

concept of rotation in n-dimensions has to be formulated mathematically. One approach
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to define the n-dimensional rotation matrices is to generalize the concept based on the
two dimensional rotation matrices. The higher order matrices can be composed from the
primary two dimensional rotation matrices with the help of egn (3.5).

Rotations in m-dimensional Spaceis given by

R™ = ﬁ(ll_[ Rnnli,m+1—j (f n-i,ml-j ) (3.5)

For m=3, i.e. in three dimensional space,
3 3-1 i
R = H H Risn; (Faisag)) (3.6)
i=1  j=1
2 i

=[TTIR s Faia )

i1 j=1

SR’ = R§,3 (f 2,3) Rf,'z (f 1,2) Rf,'s (f 1,3) (37)

The composition of the rotations can be obtained as follows,

o -
cosf.. —sinf,.
M) = b ") 3.8
Rittis) sinf,,  cosf, (38)
L 1_ mxm
In 3 Dimensional Space, following sub-matrices are used to obtain Ry, from eq.(3.5).
cosf —sinf O
R,=|sinf cosf O (3.9
0 0 1
1 0 0
R,;=|0 cosf —sinf (3.10)

0 sinf  cosf
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cosf 0O -—sginf
R;=| 0 1 0 (3.11)
sinf 0 cosf

Flowchart of the algorithm is shown in Fig.3.1. The agorithm starts by initializing the
parameters of spiral algorithm. Number of iterations has to be set by the analyst. The
spiral angle and spiral radius are chosen based on experiments with the algorithm to

obtain convergent results.

Select parameters
(r, Nmax, ¢, number of search points), k=1

A
Initiate randomly the pointsin
feasible solution zone

Compute fitness function f(Xi) and
select minimum as centre X*

v

Update Xi, i=1,2,...m
Xi(k+1)=r.Rm(¢).Xi(k)-(r.Rm(¢)-In).xX*

l

k<Nmax

A 4

k=k+1 yes

no

Print Xi, f(X;)

4
( stop )

Fig.3.1 Flowchart of spiral optimization scheme
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Some parameters suggested by Tamura and Yasuda [30] are shown in Table3.1.

However, we have to carry-out trails to get correct set.

Table.3.1 Spiral Optimization Parameters

r f

(Spiral Radius) (Spiral Angle)

0.95 p
4
0.95 p
2
0.90 p
4

Next, arandom set of vectors is generated within the feasible solution region. For each
vector, the objective function is evaluated and the optimum solution is chosen as the
starting point for a spiral with the parameters selected in the previous step. Each point is
updated according to the equation (3.3). The centre of the spiral is chosen as the starting
point of next iteration. After final iteration, the convergent solution is obtained and
stored.

Here, k is the iteration number and Nmax is maximum number of iterations. A code has
been written in MATLAB programming language. Any other programming language can
also be used. The pseudo code with the procedure, parameters and formulae is provided

here. The pseudocodeisin line with the algorithm presented in flow chart in Fig.3.1.

25



Pseudo code:

%I nitialize Parameters
f =pi/3; ; r=0.8;
Nmax=50; m=3;

In=eye(3);

%Generate Rotation Matrices

cosf —sinf O i 1 0 0 cosf O -—sgnf
R,=|sinf cosf Ol R;=|0 cosf -snf|'R,= 0 1 o0
0 0 1 0 sinf  cosf sinf 0 cosf
an:R12R13R23
% Set Constraints
Xmin=[0;0;0];

Xmax:[Xl; Xz; X3] ;

% I nitial Variables Through Random Vectors
Loop
For 1:m
Xm= Xmin+rand(Xmax-Xmin);

End

Loop

For 1:Nmax
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objf(m)=fitness(Xm);

Xgar=max(ohjf);

%Constrain solution within limits
For k=1:m
X = Ry XK - (R - 1IN) Xgar
If(Xm(k)>Xmax || Xm(k)<Xmin(k))
Xm(K)=Xmin+rand(Xmax-Xmin);
End
End
End

Print(“%d, optimum value”, X«a)

The code was run on windows 7 platform in the Matlab environment on a machine with i-
3 processor and 1 GHz speed. The novel algorithm is effective and gives convergent
results for multidimensional problems.

3.3 Particle Swarm Optimization

Thisis one of the most popular optimization techniques. This has been inspired from the
harmony in the flocking behavior of birds searching for food. This has been captured in
the form of a dynamic principle. In this algorithm, a population of particles is spread
over the feasible solution region. Then, each particle is updated based on the behavior of
particlesin its locality as well as particles in the generation. This is a dynamic process,

one has to keep track of the best optimal values obtained by each particle and aso, the
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best value in the generation. A few such generations when iterated would lead towards a
converging optimal solution.
Kennedy and Eberhart [31] presented the particle swarm optimization algorithm. The
basic frame work of the algorithm based on flocking behavior of birds is simply based on
three rules. First is to keep track of the speed of neighbourhood particles, second move
towards the centre of the motion of the complete group and thirdly, not to jump out of
bounds of solution.
The increment in the position of each particle is based on two factors as shown in Fig.
3.2.

1. Socia weight

2. Personal weight

Vil
social woght
Yk
parzonal we:ght
Fig 3.2 Particle Swarm

The conventional PSO approach is presented as a step-by-step method bel ow:
(1) Define the initial swarm of populations, initialize the velocities and other
constants.
(2) Evauate fitness function for each particle of the swarm in each population.
(3) Store the personal best of each particle and obtain the global best of the

population ‘Ghest’.
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(4) If the new fitness value is better than the previous one , it becomes the new
personal best and the new global best is obtained from the current values of each
particle’s personal best “Pbest’.

(5) The new particle velocity is updated according to the following equation.

V1=V +Cyri(Pbest-X i)+ Cora(Gbest-Xy) (3.12)
Where, V.1 = Updated particle velocity

V= Current Particle velocity

X= Current particle position

C,=C,=Socia weight factors=2

ri=r,=randomly distributed value between 0 & 1.

(6) Update the particle position as follows,

Xir1=Xk+Via (3.13)
Always one has to check the velocity and position upper and lower limits.
(7) After a number of iterations, a converging solution is obtained and the algorithm

is stopped.

Selection of optimum parameters for particle swarm optimization is not a trivial task.

But, in order to obtain global minima, proper selection of w, ¢; and ¢, isrequired. Li-

ping et al. [32] presented criterion for selecting optimum parameters and Table 3.2 shows

some suggested values.

Table. 3.2 PSO parameters

w 0.72984
C1 2.05*w
Co 2.05*w
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Fig. 3.3 shows the flowchart of the algorithm to implement particle swarm optimization

in the present work.

Initiate particles randomly,set the parameter,
w,cl1,c2, Nmax.

A
Evaluate fitness function for each
particle position

F(% (1)
v

If F(X (t)) <pbest
Then, pbest= F (X; (t))
Gbest=min(pbest;)

v

A 4

Update
Vi (t+1) =V, (t) + N (Xppes, = Xiqry) + Cala (Xgpes — X (1))

X(t+) =X (t)+Vv (t+2

i=i+1

yes

Isi > Nmax?

no

Print gbest

stop

Fig 3.3 Flowchart for Particle Swarm Optimization
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Similar to spiral optimization scheme, a simple program is developed in MATLAB for
testing the present objective function. The code is initialy tested for standard quadratic
nonlinear objective functions. The parameters in this algorithm are higher than that in

spiral optimization scheme.
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Chapter 4

Results and Discussions

This chapter presents the simulation results relating to kinematics and optimization issues

of non-redundant and redundant 3-RPR parallel manipulator.

4.1 Workspace and Singularity Analysis of 3-RPR manipulator

In order to illustrate the stiffness index optimization, we considered a working zone
within the manipulator reachable workspace. In genera, the workspace of the parallel
manipulator consists of the set of points that can be reached by the end effector through a
feasible configuration of its interna parts. There are many types of workspaces, namely
dexterous workspace, reachable workspace, constant orientation workspace. The
constant orientation workspace consists of the set of points reachable by the end effector
at afixed platform orientation. The reachable workspace consists of al points reachable
by the end effector with at least one orientation. The dexterous workspace consists of the
region spanned by the end effector with any orientation of the platform. Singularities
occur when the configuration of the mechanism at a point in space becomes unstable.
The mechanism either becomes locked up or some degrees of freedom are lost. At such
points, the Jacobian of the mechanism becomes singular. Some singularity regions are
grouped around the corners i.e. near workspace boundaries only. When manipulator
works around the singular points or near singular regions, its accuracy, rigidity and other
performances will become worse. In order to compute the workspace, a numeric

discretization process is adopted. Table 4.1 shows the geometric parameters considered in
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the kinematic analysis. To enhance workspace, often equilateral triangular platforms are

considered. All the prismatic joints are having same range of sliding motion.

Table 4.1 Geometric Parameters of The 3-RPR
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The singularities are present near the boundaries of the workspace only. So the complete

central region is available for practical applications. But, still a significant amount of
space islost to singularities which can be recovered with the help of redundancies.
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From Fig. 4.1 and Fig. 4.2, it is clear that the workspace for large orientation angle has

maximal singularity free region. The workspace is limited due to the interference of the
linkages. The singular region is reachable, but controllability of the actuation scheme is

lost leading to unstable behaviour.

larger workspace of the 3

workspace of the 3



20 : 4 ¢ 3PRPR
T T
Sedltiitititiitititls
SREEEEIIEERIILERELIEERLRL,

- ltEatitibatteiatatitaatitatitls,
o | sHEERREERLEERRRREEEEEEEEEEREIEEELEs
o (RRRRRBIBLIRRRRRILMNRRRERRRIMNRECEREN
5 ogttiiiitaatantttaatnttttiatitittat,
O T§383883083888888883088388888888888883888
S 8
o SERLRRERRBERERERLLERRRELLERECLLLLLEELLL
> [

it

100 “SERRREREREERRRRBRIIRIRIDIREREERRERE

L

-20 . :OOOOOOOOO:

20 -0 0 10 20

X-coordinate

Fig. 4.3 The 3-PRPR reachable workspace

The 3-PRPR has no definite workspace shape, rather a variable workspace. But, it
expands the workspace capability of the 3-RPR, by allowing singular configurations to
become reachable via the internal reconfiguration of redundant parameters, thereby
enhancing the workspace of the 3-RPR. Fig. 4.4 shows the workspace of 4-RPR actuation
redundant manipulator containing the smaller workspace of 3-RPR. It represents another
interesting case of redundancy which can be used to enhance capabilities such as
workspace, stiffness etc of the non-redundant manipulator. Present work focuses on

kinematically redundant manipulator analysis. So, workspace point of view
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4.2 Simulation Resultsusing ADAMS software

It stands for automated

Msc ADAMS is a commercia multibody dynamic anaysis tool.

It allows to create the model of complete

dynamic analysis of mechanical systems.

mechanical system including kinematic pairs and constraints. With the help of Msc

geometric parameters in Table 4.1 was created as

a modd of 3-RPR with

ADAMS,

shown in Fig. 4.5. The base position of the model could be varied parametrically. An

inverse kinematic simulation was run for a circular trgjectory within the workspace and

there were no direct link intereferences, the

the feasibility of motion was tested. Since

solutions were feasible for the kinematic analysis of the mechanism.
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Joint 3

Joint 1

Joint 2

Fig. 4.5 Multibody Model of the 3-RPR Mechanism

A circular path was chosen with following equations for the end effector,
x=rcos(t), y=rsin(t);
where,

x and y are the coordinates of the end effector

r is the radius of the trajectory. Specified 10 mm for current simulation of t=10
seconds.
The joint displacements as recorded during the inverse kinematic simulation are shown in
Figures 4.6, 4.7 and 4.8. The active dlider joint displacements are measured aong the
joint axes and displacements are found to be within the joint limits. In a similar way, we

can obtain passive revolute joint angular displacements as a function of time.
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The above inverse displacement solutions are verified with our code based on kinematic
eguations described earlier and it is found that an exact coincidence has occurred.

4.3 StiffnessIndex Analysis and Optimization

The mechanism is useful if it is able to track any point within the desired workspace
while working against some load. Since, for any useful work, the error due to deflection
of the point tracing the required trajectory must be contained within limits. In case of
redundancy obtained due to additional actuators in each limb of the manipulators, there
exists infinite poses for achieving atarget point within workspace. Hence, thereis a need
to resolve this difficulty. Further, the stiffness of mechanism is dependent on
configuration of the mechanism; hence any strategy that takes into account stiffness as
the driving factor will benefit the design procedure as a whole. Fig.4.9 shows an atlas of
stiffness index for non-redundant 3-RPR linkage in a constant orientation pose. This is

also developed with a Jacobian matrix formulation subroutine. It is seen that the stiffness
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index at most of the locations especially at the central work region is relatively small and

requires improvement.
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Fig.4.9 Atlas of stiffnessindex of 3-RPR mechanism

Envelop of usable workspace acts as a primary constraint and all the computations are
performed on selected checkpoints within this space. It is seen that in manufacturing
industry, many components are required to be fabricated on same machine. Majority of
components consists of various features with standard shapes as circles, boundaries,
triangle etc. In order to fabricate such components, the workspace of the device include

should contain the desired feature boundary.

As a next case, 3-PRPR mechanism is considered with the specified range of redundant
base dider actuator positions (0 to 5 cm). The maximum possible workspace with
symmetrically laid base dliders is likewise computed as equivalent 3-RPR mechanism.

Within the workspace, some region in the form of circular and square shapesis separately
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considered as the working path of mechanism to present the optimization analysis.
Objective is to achieve a maximum stiffness close to unity at the boundaries of these
shapes and at interior choosen points. So the program employs Jacobian analysis at every
Cartesian location of work shape compute the stiffness matrix and finally the stiffness
index. This analysis involves nonlinear terms and requires some efficient optimization

scheme.

Since, it is difficult and time taking to perform computation at each point within
the workspace, certain selected points are used for the purpose of optimization. These
points are referred to as checkpoints. Checkpoints may lie within or on the boundary of

the workspace. The two workspaces under study are shown in Fig.4.10.

Fig.4.10 Workspaces with considered checkpoints

There are two work envelopes, a circular and a square.  The checkpoints are marked on
the boundary as well as on the inside. All points cannot be considered as it would form
an exhaustive, but a very time consuming search and computational cost would go up.
Hence, it iswise to discretize or mesh the workspace. Only, selected checkpoints need to
be computationally verified for obtaining the optimal solution. First the optimization is

conducted with spiral optimization scheme and then using particle swarm optimization.
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The computer programs are developed for both these schemesin MATLAB environment
and are verified with some standard problems. The constraints in the present formulation
are the base joint lower and upper limits of displacements and velocities. The following

parameters are employed (Tables 4.2 and 4.3) :

Table 4.2 Spiral Optimization algorithm parameters

r=0.8; a constant

Nmax=1000; maximum iterations

m=number of variables=3;

Spiral angle for rotation matrix is 60 degree.

The parameters used in PSO:

Table 4.3 Particle swarm algorithm parameters

nv=3;number of variables

popsize=50;size of population

Generations=1000;n0. of generations

w = 0.72984; a constant

cl=205*w;

c2=205* w;

Case Study I:
A circular workspace is chosen first for the purpose of illustration. The workspace is
discretized into twelve checkpoints: Eight checkpoints are on the boundary and four

checkpoints lie inside the workspace. At each and every check point with specified (x,y)
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coordinates, we require to find the Jacobian and stiffness at some pre-set values of base
prismatic joint locations using simple 3-RPR kinematics. The convergence of the
stiffness index is plotted against number of iteration cycles for first checkpoint as shown

inFig.4.11.
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Fig. 4.11 Convergence of The Optimal Index at First Checkpoint

In order to test the validity of the obtained solution, one can test the mechanism for a set
of joint forces, to see whether the output forces and moments are reasonable or not. A
force of 10 Newton is applied at each distal actuator at fixed optimal base slider positions
for each check point and the corresponding end-effector forces are computed through

static analysis. Fig.4.11 shows the outputs. The values obtained are of reasonable levels.
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Fig. 4.12 Generalized End Effector Forces For a Test Input

(Input Force 10 Newton)

The effectiveness of the agorithm is compared with particle swarm optimization.
Fig.4.13 shows, chart of optimal values of stiffness index obtained from particle swarm
against spira optimization. The spira optimization is seen to be effective as the optimal

values are much closer to unity.

Case Study 1I: Square Work region

A square work region with a given side length is considered. It is aso divided into twelve
checkpoints. There are eight on boundary and four on inside. The calculations are
performed for the checkpoints on square workspace in the same way as done for the

circular envelope earlier.
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Fig. 4.13 Comparision between SO and PSO

After the first checkpoint, the procedure repeats on the subsequent points to perform the
computations. One by one, al checkpoints shall be covered. Aninitial set of solutionsis
assumed for each case at the beginning. Then finally after a number of iterations, the
procedure begins to give a convergent set and ultimate a solution is obtained. The

convergence map is shown for one checkpoint asin Fig.4.14.
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Fig. 4.14 Convergence for first checkpoint
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Similar to circular case, a test the validity of the obtained solutions is performed by
applying some input joint force and carry-out forward analysis to predict the end-effector
forces. This is a mark of stiffness measure. Fig.4.15 shows the computed end-effector

force vector at each point.
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Fig. 4.15 Genera End Effector Forces (test input of 10 Newton)

Fig.4.16 shows the optimum stiffness index values obtained from PSO in comparison to

spiral optimization scheme.
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Fig. 4.16 Optimized stiffness indices at each check point
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Novel spiral optimization scheme has given interesting results and corresponding

optimized design variables are depicted for both casesin Table 4.4.

Table 4.4 Optimum design variables

Circular workshape Square workshape

Pt. No. ty (M) to (M) ts(m) | Pt. No. ty (M) tz (M) t3(m)
1 3.09 4.98 0.06 1 2 4 0.65
2 4.99 4.98 4.95 2 0.56 4.98 3.25
3 0.05 3.23 4.98 3 0.05 2.55 3.22
4 111 0.23 4.96 4 111 0.23 4.96
5 1.99 4.01 0.06 5 4.98 4.83 4.76
6 212 3.02 4.5 6 4.99 1.56 3.12
7 3.08 3.33 4.89 7 0.02 2.09 143
8 1.50 2.33 4.66 8 4.99 4.89 0.06
9 4.30 4.40 4.85 9 1.39 4.99 3.90
10 4.08 0.91 2.97 10 0.09 2.92 1.97
11 4.84 4.98 4.90 11 4.11 4.98 4.99
12 3.09 4.98 0.06 12 252 4.98 1.56
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4.4 Fabrication issues of scaled prototype

Within the limitations of time and resources, a simple manual set up for understanding of
redundancies in 3-RPR linkage is developed using wooden and aluminum materia at
workshop. Initialy, a solid model is drawn in Solidworks software and the feasibility is
tested as done in ADAMS environment. The fabricated model shown in Fig.4.17 consists

of the same 3-RPR mounted on variable base.

Base Slider

Prismatic Joint

End effector
(mobile platform)

Pin Joint

Aluminium Frame
(Ground Link)

Fig. 4.17 Wooden skeleton model of the 3-PRPR

The model consists of a mobile platform, a fixed base and limb sub-assemblies. The
mobile platform was carved out of a wooden plate as an equilateral triangle of 5 cm side

length. Table 4.5 lists the dimensions.

Table 4.5 Parts and Materials
Component Material Dimensions
End Effector Plate Timbre wood 5cm
Base Platform Aluminum Frame 30 cm
Limb Sub assembly Timbre wood 10 cm ( dead lenth)
20 cm (max extension)




The assembly consists of following parts:

1.Base platform: Base Platform, is fabricated from aluminum frame. There are two
functions of the base platform. It serves as the ground link as well as accommodate the
base dlider joint. The mechanism intended to serve as a reconfigurable 3-PRPR planar
paralel manipulator. Hence, the revolute joint of the limb sub assembly as shown in
figure 4.18 should travel along the aluminium frame to allow changes in the position of

the first passive revolute joint of the 3-RPR configuration resting on it.

2. Limb Sub assemblies: The limb sub assemblies were made out of wood. Dry
timberwood is used for the fabrication. Each limb consist of three components, a base
mount, a base cylinder and stepped rod. The base mount was fitted on to the aluminium
frame with a dlot to alow the relative base slider motion. The base cylinder has been pin
jointed to the base mount at one end to permit relative rotational motion. The stepped
wooden rod fits at one end into the base cylinder. The other end of the stepped rod is pin

jointed to the end effector plate.

Base cylinder

Stepped rod

~

Base Mount

Fig. 4.18 Limb sub assembly

3. End effector: The end effector plate is carved out of timbre wood. It is an equilateral
triangle with side length 5 cm. The end effector plate is connected to the three limb sub

assemblies through pinned joints to permit relative rotational motions.
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The workability of the mechanism is the next issue and it is planned to provide a
reconfigurable end-effector (gripper) instead of rigid mobile platform. The trgectory

tracking issues are yet to be verified with the use of linear motors in the assembly.
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Chapter 5

Conclusion

In this work, the redundancy resolution for the 3-PRPR kinematically redundant
paralel manipulator has been achieved using two optimization schemes namely: spira
and particle swarm optimizations to obtain the isotropic stiffness index inside a work
region by proper selection of base slider positions. The optimum base dlider positions has
been obtained for the mechanism at selected checkpoints of a usable workshape defined
within the maximum workspace of the kinematically redundant mechanism. Circular and
square workshapes were considered, where twelve checkpoints distributed over the
boundary and inner region of the workshape were selected in order to minimise the time
and cost of computations while maintaining the accuracy of the results. The optimum
base dlider positions obtained by novel spiral otimization algorithm were closer to the
desired objective function when compared against the particle swarm optimization
technique. The workspace and singularity regions of 3-RPR linkage has been obtained
and it is found that an enhancement can be obtained with the help of kinematic
redundancy. The case of 4-RPR actuation redundant manipulator was briefly discussed
and its workspace was analyzed. The solid model of the mechanism analysed in
ADAMS software has given some interesting inverse kinematics outputs. After achieving
optimal locations, forward kinematic analysis was carried out to verify the closeness of
selected work shape and a'so the corresponding output forces were obtained from a given

joint torques. A scaled model of the mechanism was fabricated and attempted to verify
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the workspace features. In overall sense, the present study aids in the analysis and

design of kinematically redundant manipulators effectively.

5.1 Future Scope

As future scope of this work, the 3-PRPR dimensions are to be arrived for any
generalized work shapes with isotropic stiffness as criterion. An actua prototype with a
computer controlled user interface is to be developed. The control system anaysis and
implementation for the manipulation is to be developed. A multiobjective formulation
including other performance indices such as dexterity is to be set up. The dynamic
analysis of the mechanism is an important task in the future. As an interesting case, a
gpatial form of 3-RPR manipulator with vertical prismatic bases can also be made up and

the present algorithm can be verified for the spatial parallel manipulator in future.
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APPENDIX
Listing of the function file for 3-PRPR

%%% FUNCTION TO COMPUTE OBJECTI VE ( STI FFNESS | NDEX) FOR THE OPTI M ZATI ON
%880 PROGRAMS.

function Z = ani ket 2( X3, x, Yy, phi)
| =5;

L=30;

prad=l/sqrt(3);

dm n=0;

drmax=30;

%ut put in cartesian space
% phi =pi / 3;

% x=2.5;

% y=2.5;

% edundant paranet er
s1=X3(1);
$2=X3(2);
s$3=X3(3);

U COOrdinates O platfOmlCcatiOns in platfOmcOOdinate system

% OOrdi nates fOr OL
Olx= -(L/2);

Oly= - (L/(2*sqrt(3)));
%€ OOrdi nates fO 2
@2x= (L/2);

Qy= - (L/(2*sqrt(3)));
%€ OOrdinates fO O3
Bx= 0;

@By= (L/sqrt(3));

%OOrdinates fOr first prismatic jAQnt paranetrically defined

%00 dinates fOr Al

Alx= Olx+s1;

Aly= -(L/(2*sqrt(3)));
%O0Ordinates fOr A2

A2x= O2x-s2*cos(pi/6);

A2y= QRy+s2*sin(pi/6);

% OOrdinates fOr A3

A3x= s3*sin(pi/6);

A3y= -s3*cos(pi/6)+(L/sqrt(3));

% C0Ordinates fOr platfOmrevOute jGnts in platfOmcOOdi nate system

%€ OOrdi nates fOr Bl
PB1x=(-1/2);
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PBly=(-1/(2*sqrt(3)));
% OOrdinates fOr B2
PB2x=(11/2);
PB2y=(-1/(2*sqrt(3)));
%OOrdi nates fOr B3
PB3x=(0) ;
PB3y=(1/sqrt(3));

% OOrdinates fO platfOmrevOute jGnt in platfOmcOOdi nate system

%platfOmrevOute jGnt Bl
pb1x=PB1x*cos( phi)-PBly*si n(phi);
pbly=PB1x*si n( phi ) +PBly*cos(phi);
%latfOmrevOute jG nt B2
pb2x=PB2x* cos( phi ) - PB2y*si n( phi ) ;
pb2y=PB2x*si n( phi ) +PB2y*cos(phi);
Y%platfOmrevOute jG nt B3
pb3x=PB3x*cos( phi ) - PB3y*si n( phi);
pb3y=PB3x*si n( phi ) +PB3y*cos(phi);

%OOrdinates fO platfOmrevOute jGnt in platfOmcOOdi nate system

%platfOmrevOute jGnt Bl
Blx=x+PBlx*cos(phi) - PBly*si n(phi);
Bly=y+PBl1x*si n( phi ) +PBly*cos(phi);
%platfOmrevOute jG nt B2
B2x=x+PB2x* cos( phi ) - PB2y*si n(phi);
B2y=y+PB2x*si n( phi ) +PB2y* cos( phi);
%latfOmrevOute jG nt B3
B3x=x+PB3x* cos( phi ) - PB3y*si n(phi);
B3y=y+PB3x*si n( phi ) +PB3y*cos( phi);

%engths fOr first prismatic actuatOr

pll=sqgrt ((Alx- Olx)*2+( Aly- Oly)"2);
p2l=sqrt ( ( A2x- A2x) "2+( A2y- Q2y) "2) ;
p3l=sqgrt ( ( A3x- @8x) "2+( A3y- QBy) "2) ;

% engths fOr secOnd prismatic actuatOr
pl2=sqrt ((Blx- Alx)"2+(Bly- Aly)"2);

p22=sqrt ( ( B2x- A2x) "2+( B2y- A2y) *2) ;

p32=sqrt (( B3x- A3x) "2+( B3y- A3y) "2);

%unit vectOr al Ong base prismatic j O nt
n1l=(1/pll)*[ (Alx- Olx) (Aly-OLly)];

n21=(1/ p21) *[ (A2x- 2x) (A2y- Ry)];

n31=(1/ p31) *[ (A3x- Bx) (A3y-RBy)];

%unit vectOr alOng prOximal prismatic j O nt

n12=( 1/ pl2)*[ (Blx- Alx) (Bly-Aly)];
n22=( 1/ p22) *[ ( B2x- A2x) (B2y-A2y)];



n32=( 1/ p32) *[ (B3x- A3x) (B3y-A3y)];
%A matrix normalized using platformradius
A=[ nl12(1) n12(2) (n12(2)*pblx-nl12(1)*pbly)/prad,

n22(1) n22(2) (n22(2)*pb2x-n22(1)*pb2y)/ prad;
n32(1) n32(2) (n32(2)*pb3x-n32(1)*pb3y)/prad];

9B matri x
B=[ nli*nl2' 1 0 0 0 0;
0 0 n21*n22' 1 0 0;
0 0 0 0 n31*n32' 1];
%1fonogeneous Overall jacObian fOr 3-prpr kinematically redundant

mani pul at or

J=pi nv(B) *A;

kj =1;

stiff=kj*J' *eye(6)*J;

cnd=cond(stiff);

% cnd=cond(J, 2);

% oi nt torque cal cul ation at each point.

Z=abs(1/cnd-1);
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