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ABSTRACT 

Identification of crack location and depth in structural elements such as beams, columns, and 

slabs, etc., subjected to time varying loads will help them to retrofit before failure thereby its 

life and structural capabilities can be greatly improved. It is not always possible to detect the 

initial cracks by visual inspection.  

Laboratory test results of isotropic simply supported beam and Cantilever beams with 

different crack location and crack depths data are collected from literatures as in terms of 

system natural frequencies and crack locations for single crack and multi cracks. Different 

models are developed for crack detention using Natural frequencies as Input and Crack Depth 

and locations as Output. 

 At first an attempt made for simply supported beam having a Single crack detection using 

Artificial Neural Network (ANN) Model. Different ANN models are developed using 

different training functions and found Levenberg-Marquartd (LM) fits best among others 

which is evaluated in terms of R-square value. The Comparison has been made between 

developed ANN models and regression models. It shows that the ANN models can perform 

well than regression models. Further the simple equation has been presented for evaluation of 

crack depth based on the performance of the models developed.  

Secondly, the problem involves detection of multi crack damage in a Cantilever beam using 

ANN Model and Response Surface Method (RSM). To achieve better results in RSM higher 

degree equation is used. Thefinal performances of each model are evaluated in terms of R- 

value. And, it is found that ANN fits the equation reasonably good. Crack Depth and Crack 

location can be detected using ANN approaches which may be helpful in retrofitting the 

structures. 
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CHAPTER-1 

INTRODUCTION 

 

1.1 Background and Motivation 

 

Engineering structures play akey role within the lives of a modern community.They are 

usually designed to possess longer life period. The failure or poor performance of engineering 

structures may cause disruption of facility or might result in loss of human lives and property. 

It is therefore, very important to ensure that the structural members perform safely  

Many techniques are used within the past for damage identification. Some of these are visual 

(e.g. dye penetrant method) and different use sensors to find local damages (e.g. acoustic 

emission, magnetic flux, eddy current, radiographs and thermal fields). These ways are time 

consuming and cannot find that a structure is damage free without testing the complete 

structure in minute details. Moreover, if a crack is buried deep inside the structure it may not 

be detectable by these localized methods. Based on the changes within the modal parameters 

researchers have developed several prediction techniques like Artificial Neural Network 

(ANN), response surface method etc. most of them are for damage identification. The 

techniques are designed with an aim for faster and correct estimation of damage present 

within the structures. 

 

1.2 Focus of the thesis 

  
The process of observance and identifying damage is great importance in civil engineering. 

The structures related to, civil should be free from cracks and make sure it is safe. Cracks in 

buildings or any engineering systems may lead to catastrophic failure and should be detected 

early.The effects of damage on structural members are changes in frequencies, mode shapes 

and damping of structures. So it is very easy measurement of natural frequencies is simpler 

than that of structural damping, damage will be find from dynamic analysis of the structure 

using natural frequencies. 

the prime importance is that dynamic characteristics of cracked structures in structural health 

monitoring and non-destructive damage testing because the identified vibration data will be 

used to observe, quantify, and locations extent of the cracks or damages in a every structure 

member.The cracks present within the system are also considered to develop the analytical 

model to review the impact of cracks on the modal response of the system. But large no of 
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attempts has been created to find whether structural element damage has occurred because of 

the positionor extent of any such damage. In the present scenario increasing interests within 

the use of artificial neural networks (ANNs) for the health monitoring and damage detections. 

The usefulness of neural networks in finding the damage has been improved due to their 

ability to deal with the analysis of the structural damage with intensive a computation.The 

most desirable feature of the approach is that it's ready to detect damage with previous 

information (Natural frequencies)about a model of the structure. It may effectively cope with 

qualitative and incomplete information, making it extremely promising for detecting 

structural damage (Kao and hung 2003). Therefore, a well-designed neural network is ready 

to serve as a real time computing machine for structural health monitoring. 

The current analysis aims at the development of a single crack and multi crack identification 

for intelligent condition monitoring of structures using the change in modal parameters of the 

structural member.For this purpose, data have been collected for simply supported and 

cantilever for single crack and multi crack prediction respectively.Comparison has been made 

between ANN and regression methods for single crack, ANN and Response surface methods 

for multi crack. 
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1.3 Organization of the thesis 

 

After the brief introduction concerning damage detection using ANN technique, a thorough 

review of earlier works and present works relating prediction of damage are mentioned in 

Chapter-2 to reach the data are collected for single crack and multi cracks from available 

literatures. 

Chapter-3 shows the current methodology adopted for ANN commonly used Levenberg-

Marquartd neural network,regression, response surface method. Further to its modelling  

Chapter-4 Results and developed modelsfor ANN, Regression and response surface method. 

Finally a comparison study is formed in terms of statistical parameters a like Correlation 

Coefficient (R), and Root Mean Square Error (RMSE). Equations given for the most effective 

fit. 

In Chapter-5, the major conclusions emerged from the studies are reported and the future 

scope of work is indicated. 
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CHAPTER-2 

LITERATURE REVIEW 

 

2.1 Single and multi cracks 

A modified neural network which is counter propagation was developed by Szewczyk and 

Hajelaused (1994) to carry out the inverse mapping among a vector of the stiffness of 

individual structural elements and the vector of the global static displacements under a testing 

load. The sample data was generated using a finite element program. It shows that the network 

function which is an associative memory device is capable of satisfactory diagnostics even in 

the presence of noisy or incomplete measurements. 

Sureshetal.[2004]haspresentedamethodconsideringtheflexuralvibrationina cantilever beam 

having transverse crack. They computed model frequency parameters analytically for various 

crack locations and depths and these parameters are used to train the neural network to 

identify the damage location and size. H e r e ,  they have made a study of the comparison of 

performance of two widely used neural network i.e.multi- layer perception (MLP) network, 

radial basis function (RBF) network and shown the variation of actual output with the 

network output. Finally, they stated that the radial basis function network performance is 

superior to multi-layer perception network. 

Masri et al. (1996) made a feed forward neural network for detecting the changes in the 

characteristics of structure-unknown systems. The approach is based on the use of vibration 

measurements from a "healthy" system for training a neural network for identification 

purposes. Subsequently, the trained network was fed comparable vibration measurements 

from the same structure under different episodes of response in order to monitor the health of 

the structure. 

Zhao and Ivan (1998)used a neural network which is counter propagation to locate structural 

damage for a beam, frame and support movements of a beam in its axial direction. They 

considered a variety of diagnostic parameters including static displacements, natural 

frequencies, mode shapes and other parameters based on mode shapes. The method first 

demonstrated a plane frame, based on static displacements then applied to continuous beams 

using dynamic properties of structures. The required data were obtained through computer 

simulation by finite element analysis. 
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A structural damage detection method was studied by Chang et al. (2000) in which a 

modified back-propagation learning algorithm i.e. an improved steepest descent algorithm 

was proposed which overcomes the possible saturation ofthe sigmoid function and speeds up 

the training process. The concept of orthogonal array adopted here significantly reduces the 

number of training data while maintaining the data completeness. The NN model was first 

trained off-line using training data which was initially collected that contains various damage 

cases, as outputs and their corresponding dynamic characteristics, which include natural 

frequencies and first mode shape curvature, calculated from the finite element (FE) model as 

inputs. 

Zang and Imregun(2001) proposed BP neural network for structural damage detection using 

measured frequency response functions (FRFs) input data. Even if the training time and 

convergence-related problems could be overcome by parallel processing on fast CPU arrays, 

network over fitting would still remain a major obstacle. When the number of variables is 

much greater than the number of training samples, neural networks can focus on local details 

of individual training samples which may well be meaningless in a global context would still 

remain a major obstacle. A principal component analysis (PCA)-based data reduction 

technique was applied here to the measured FRFs for data reduction. The methodology above 

was validated using simple numerical test cases based on Finite element models of beam and 

plate structures 

A novel neural network-based approach was developed by Kao and Hung (2003) for detecting 

structural damage. The proposed approach involves two steps. The first step, system 

identification, uses neural system identification networks (NSINs) to identify the undamaged 

and damaged states of a structural system. The second step, structural damage detection, uses 

the aforementioned trained NSINs to generate free vibration responses with the same initial 

condition or impulsive force. Comparing the periods and amplitudes of the free vibration 

responses of the damaged and undamaged states allows the extent of changes to be assessed. 

They have used a more effective adaptive L-BFGS learning algorithm for the model. To 

demonstrate the feasibility of using the proposed approach it was applied both on a numerical 

example and experimental example. 

A Back -propagation neural network has been proposed by Maity and Saha (2004) to 

recognize the behaviour of the undamaged structure as well as of the structure with various 

possible damaged states. They have used Gradient Descent as training algorithm for the 
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model. The model was applied on a simple cantilever beam. A FEM was used to calculate 

strain and displacement were used as possible candidates for damage identification .The 

superiority of strain over displacement for identification of damage has been observed in this 

study. 

Fang et al. (2005) showed structural damage detection on a cantilevered beam using 

frequency response functions (FRFs) as input data to the back-propagation neural network 

(BPNN). The data were generated by experimentally. A tunable steepest descent (TSD) 

algorithm using heuristics is investigated. It improves the convergence speed significantly 

without sacrificing the algorithm simplicity and the computational effort. 

Jeyasehal and Sumangala (2006)proposed an artificial neural network (ANN) based approach 

for the assessment of damage in pre-stressed concrete (PSC) beams. To generate the training 

and test data for the ANN an experimental program has been carried out. It has been 

demonstrated that it is possible to assess the damage with reasonable accuracy by the ANN 

learning by a back propagation algorithm with stiffness and natural frequency as test inputs 

A BPNN method was developed by Haryanto et al. (2007) for estimating the existence, 

location and extent of stiffness reduction in structure, which is indicated by the changes of the 

structural static parameters such as deflection and strain. LavenbergMerquardt algorithm was 

applied as training algorithm. The proposed techniques were applied to detect damage in a 

fixed end beam. The structural response of strain and displacement due to specific loading 

was obtained by FEM. 

Li and Yang (2008) presented a novel method of damage identification for beam using 

artificial neural network (ANN) based on statistical property of structural response. Back-

propagation ANN with Lavenberg Merquardt algorithm as training algorithm has been used 

here and the changes of variances of structural response as input vector and damage status 

(location and extent) as output was adopted for identifying the damage in beam. A FEA model 

was developed to generate the data. 

Mehrjoo et al. (2008) have presented a damage detection inverse algorithmic program to 

estimate the damage intensities of joints in bridge structure using back propagation neural 

network methodology.  
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Agosto et al. (2008) have applied the neural network methodology with a combination of 

vibration and thermal damage detection signatures to develop a damage defection tool. They 

need applied the developed technique on sandwich composite for the aim of crack detection.  

Saravanan et al. (2010) have prohibited the strength of an artificial neural network, wavelet 

and proximal support vector machine supported damage detention Methodology for a beam. 

The activation functions used by researchers in designing of artificial neural network are 

presented below in the table. 

Table 2.1: Examples of Activation Functions used in ANN 
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2.2 Data collection 

2.2.1 Single crack 

The data are has  collected  from the literature Owolabi et al. (2003) shown in Table below 

.The problem involves determination of damage extent for a simply supported aluminium 

beam using ANN by taking input parameters as natural frequency (1st mode, 2nd mode & 3rd 

mode) and depth of crack ratio as output parameters. The acceleration frequency responses 

were noted at seven totally different points on the beam model through an experiment by 

using a dual channel frequency analyser. The cracks were generated as single open transverse 

cracks with a thickness of 0.4 mm approximately. 

 Table 2.2: Properties of the beam: 

Beam width  25.4 mm 

Beam depth  25.4 mm 

Beam length  650 mm 

Young’s modulus of the beam 0.70x10
11

 N/m
2
 

Poisson’s Ratio 0.35 

Density 2696 kg/m
3
 

 

The data of Natural Frequencies for simply supported beam with or without cracks are taken 

Owolabi et al. (2003) 
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2.2.2 Multi crack 

 

                                 Fig 2.1:Cantiliver beam with multi crack 

Beam width  0.050m 

Beam depth  0.0060 m 

Beam length  0.80m 

Yong’s modulus of the beam 0.724x10
11

 N/m
2
 

Poisson’s Ratio 0.334 

Density 2713 kg/m
3
 

 

For the preparation of the model analysis crack depths a1=a2=0.0003, ...., 0.003m (difference 

of every depths=0.0003m) are imported at the 17crack locations L1=0.04... 0.68m 

(difference of every length =0.04m) and L2=0.08... 0.72m (difference of every length 

=0.04m).Totally a hundred and seventy casesfor 10 depths and seventeen crack locations are 

used for the primary 3 natural frequencies. The patterns that include a hundred and seventy 

sets of information are used 

Natural Frequencies for cantilever beams with multi cracks are taken from the literature 

Mogal Shyamal (2009). 
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CHAPTER-3 

PREDICTION METHODS 

 

3.1 Artificial Neural Networks (ANN)  

Neural Networks that are simplified models of the biological neuron system, may be a 

massively parallel distributed processing system created from extremely interconnected 

process elements known as neurons that have the flexibility to be told and thereby acquire 

knowledge and make it available for use (Rajsekaran et al. 2008). 

 

3.1.1 Biotic model of a neuron 

The neuron (cell) forms the interconnected element in the biological nervous system. That 

unit is a straightforward process receiving and processing theinput from one neuron to other 

through its input path known as dendrites. An activity associate all of a neuron is or non-

process. If  the  mixedinput sign is robust enough, it create  the  input signal to  its output  

path  is known as axons that branch up  and  joints  to  totally different  neuron’s  input  

through  a  junction  called  as  synapses. Thequantity  of  input sign transferred  is governed  

by  the junction strength  which  is  synthetic  naturally. This junction strength is found to be 

changedall out the learning process of the brain. Therefore this is a remembrance unit of each 

linkage (Das, 2005). 

 

Fig 3.1: Biological Neural Network (Ref: www.the projectspot.com) 
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3.1.2 Model of an artificial neuron 

 

Fig 3.2 Artificial (Mathematical) model of a neuron 

The on top of fig shows the simple model of an artificial neuron. Here O1, O2….On are being 

the inputs to the artificial neuron. W1B, W2B, WnB is the weights hooked up to the input links. 

The weights are increasing trend of the inputs to accomplish for the strength of the union. 

Thus the entire input IB received by the some of the artificial neuron is             

nnBBB OWOWOWi  ...........2211B
 

   



n

i

xiBOW
1

     (3.1) 

To develop the output OB, the summation is passed to a mathematical filter called activation 

function or transfer function that gives the output i.e. OB= f (IB) 

3.1.3 Architecture of an artificial neural network 

 

Fig 3.3:  Typical model of a neural network 
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The neurons are termed as interconnected dealing out elements or nodes in a calculated model 

of the artificial neural network. The networks consistsaccomplice input vector of elements x l 

(l = 1, 2…, Ni) is relay through a relation that's high tended by weight w jl to gives the hidden 

unit z j (j = 1… N h) 

zj= 


Ni

l

w
1

jlxl+bj0     (3.2) 

Where  Ni is  the  number  of  input  unitsandNhis  the  increasedhidden  units.The weighted 

input and a bias bj0make up the hidden layer or units. An error weight that plays as a constant 

joined to the weight is a bias. This input goes through a layer of activation function (f) which 

gives 

rj=


Ni

l

w
1

jlxl+bj0      (3.3) 

The transfer functions are created because of the nonlinearity in the relationships with input 

output. The commonly used transfer functions are hyperbolic tangent sigmoid,sigmoid and 

logistic sigmoid functions given below. 

.  

f(z)=
ze1

1
      (3.4)                                                                                                                                                       
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      (3.5)                                                                                                                                                   

The summation outputs pass through another layer of filters 
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And another transfer function F to give output y (k = 1… N0) 
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This way it continues based upon hidden and output layers. This hidden layer and output layer 

gives unknown parameters in relation of weights when nonlinear activation function produces 

to a highly nonlinear function. 

 

3.1.4 Learning / Training Process 

The learning techniques in artificial neural network noticeto the strength of the network to 

learn from their nature and upgrade the performances. The  weights are  adjustable  for each 

run  of  the  network and are  found  from  a  set of information  through  the process  of  

trainingor learning  . The learning method could be split into two maindivisions. 

1) Unsupervised learning. 

2) Supervised learning. 

Supervised Learning input pattern used to train the network is related to an output pattern, 

which is the target or desired output. A coach is assumed to be present throughout the learning 

process; once a comparison is made between the networks computed output and the correct 

expected output to determine the error (Rajsekaran and Vijayalakshmi 2008). 

The weights and the thresholds arethe network parameters are updated during the training 

procedure to reduce the sum of squares of the residuals among the measured and predicted 

output. In unsupervised learning target output is not given to the network. The weights are 

adjusted based on other criteria called Kohonen learning rule    

The main objective is to minimize the error between actual to predicted output. 

   
2

1

0

)(, 
 


sN

l

N

lk
klllk yxyUWE       (3.8)                                                                                 

Where Ns is  the  number  of  samples,  No is  the  number  of  outputs,  U and W are  the 

weights of the  output  and hidden  layer, respectively,  and the predicted output from inputs x 

isy(x). 

      The most normally used neural network is feed forward back-propagation neural network 

that follows the supervised learning process. It’s in the main suited for the prediction type 

problem.The Figure shows typical architecture of a back propagation algorithm. Here the 

technique is processed forward from given input to actual output layer errors are calculated 
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following back in another controlthe obtained changed weights with higher work. In back-

propagationlearning technique, the connected weights are at random selected. Depends up on 

the initial weights and bias the error propagated is reduces throughback propagation 

algorithm(Das, 2005)(Eq. 3.8). 

 

Fig 3.4: Typical back propagation neural network 

 

In every initial training result the weight vector is adjusted towardsthe control of maximum 

decrease of E that is scaled by alambda (λ) learningrate. Methodically, a weights and bias is 

renewing to different value(Eq. 3.9). 

,Eww oldnew           (3.9) 
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The gradient of sigmoidal function is calculated by subtraction and the subtraction operator. 

This givesthe reduced new weights from starting irregular values. Back-propagation training 

functions mostly use the supervised learning. However, once hiddennumber of layers and 

therefore the data point and the number of variables will rise in learning process. Time taking 

for the neural network learning and training will be slow as increase with the problem size. 

Newly, it reachesa local minimum in weight space if it may be a gradient based algorithm, 

That problem increasing the speed of the algorithm can be solved by growing the step size and 

to avoid the local minima a momentum factor to be used. 

3.1.5 Testing of network 

At the end of the training part, the associated trained weights of the neurons are stored in the 

ANN memory. In the next part, testing part, the trained network is fed a new set of data. The 

ANN predictions (using the trained weight) are compared to the target output values to assess 

the ability  of the network  to produce (generalize) correct response to the testing patterns  that 

only broadly speaking  resembles the data in the training part. Once the training and testing 

gives the fine results for the predicted output are found to be successful, the corresponding NN 

can be place to use in employment (Das et al., 2005). 

3.1.6 Choice of inputs 

Artificial neural network is a knowledge driven approach. Through input and output data the 

model parameters are developed and also the model is relevant for that problem. Model inputs 

are important in the data driven approach.so, in artificial neural network the selection of the 

inputs should choose correct. Presenting an all variety of inputs to neural networks usually 

will be size increasing and that infusing the decreasing the model speed. So, there is a use of 

the proper selection of the inputs in this technique (Guyon and Elisseeff, 2003, Olden et al., 

2004).  

The choice of input variable is based on a previous data on causal variables in conjunction with 

inspection of plots of potential inputs and outputs. If the relationship to be model is less 

understood, analytical techniques like cross-correlation analysis or principal component analysis 

are used.in separate networks the stepwise approach can also be used for training for each 

variable. The results are adding for every training and network is working at its best separately 

assumed. This will be adding unless the new extra variable end still the performance should be 
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improved. This method has the advantages of being unable to take the certain mixture of 

variables can be pointless on their own (Guyon and Elisseeff, 2003). 

3.1.7 Division of data and pre-processing 

In neural network models to know the generalization it is required to divide the information 

into sub-sets which is a trained set and an independent tested set. A group of data based on 

amount of data points is preferred as a validation set which avoids over fitting. Also training, 

testing and validation sets represent data set.  ANNs do not require extrapolating i.e. not use 

to determine the correlations for information values, beyond the range those had been trained. 

After division of information into training, testing and validation set, pre-process of data to an 

appropriate type before application of ANNs is required. To avoid the dimensional 

dissimilarities in input parameters, pre-processing is required. The variables need to be scaled 

in such a manner to commensurate with the limits of activation function used for output layer. 

Example: If the output of logistic functions are in between 1 to 1, the data are scaled between 

1 to 0.9 or 0 .2 to 0 (Maity and Saha, 2004). In case of hyperbolic tangent sigmoid function, 

data is scaled between [-1, 1]. If the transfers function within the output layer is linear 

(unbounded), scaling is not essential. However, for effective application of ANNs scaling to a 

uniform range is adopted. 

3.1.8 Generalization 

Training minimizes the error, use to get optimized weight vectors. Also, reducing it may 

create overtraining as the whole error in the network once new knowledge is given to the 

trained network. Over fitting happens if numbers of training points in coaching set are 

insufficient. The error in the network drives to a very less value (Das, 2005). 

The network required to be equally efficient for new data throughout testing or validation i.e. 

generalization. It is an important aspect for efficient implementation of ANN. There are many 

ways for generalization as early stopping or cross validation and Bayesian regularization. In 

the early one the error in validation or testing set is controlled by training process. Validation 

error may decrease in initial phase of training, as well as training set error. If the network 

over fit the data, error in validation set rises. The training is stopped, if validation error 

increases for a number of iterations thus weights and biases at minimum validation error are 

returned. An independent set is preferred to assess the performance of the model at different 

learning stages. The available information is divided into three subsets: training, testing and 
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validation set i.e. data intensive. This is not suitable if the data set size is small and the 

response obtained in early stopping is not extremely smooth compared to Bayesian 

regularization as it do not require validation data set that is separated out of the training data 

and it uses all of the data.  

3.2 Regression 

When we are examining the relationship between a quantitative outcome and a single 

quantitative input explanatory variable, simple linear regression is the most commonly 

considered analysis methods (The “simple" part tells us we are only considering a single 

explanatory variable.) In multiple regressions we usually have many different values of the 

explanatory input variable, and we usually assume that values between the observed values of 

the explanatory variables are also possible values of the explanatory variables. We postulate a 

linear relationship between the outcome and the value of the explanatory input variable.  

3.2.1 Regression Analysis 

It is a statistical technique for considering linear and non-linear relations.Below it is showing 

the general form in equation (3.11) 

                                  Y=b0 + b1X1i + b2X2i+      (3.11) 

Where, ‘Y’ is the secondary variable, and X1i, …. ,Xki are the independent variables. Finally, ‘

 ’is the residual term, which represents the composite effect  

The result of a regression is a set of estimates of the regression constants bo,b1,.,bk.These 

values are finding for the coefficients by making the residue is ‘0’and the standard deviation 

errors are small that can neglect. The result is outlined in the obtained equation: 

   Ypred = b0 + b1X1i + b2X2i     (3.12) 

3.2.2 Multiple Regressions 

Multiple regressions are an expansion of linear regression having only one dependent 

variable(Y) and more than independent variables(X).The sum of squared deviations of the 

observed and predicted Y is a minimum when predicted value of Y is a linear transformation 

of the X variables. The calculations are more complicated as the relationships among all the 

weights assigned to the variables. The reading of the results is more complex for the same 
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reason.This conversion is simplein the case of linear conversion of two variables. The "b" 

values are called regression weights and are computed in a way that minimizes the sum of 

squared deviations 

 2

1

')(



N

i

ii YY        (3.13) 

The variation is only the intercept (b0) and slope (b1) in the case of linear were estimated, 

while in multiple regression case, three weightswere estimated (b0, b1, and b2). 

3.3 Response Surface Methodology (RSM) 

Response surface methodology (RSM) is a collection of mathematical and statistical 

techniques for prediction. The main objective is to identify the damage (output variable) which 

is influenced by several independent variables (input variables). An experiment is a series of 

tests, called runs, in which changes are made in the input variables in order to identify the 

reasons for changes in the output response. 

Originally, the RSM was developed to model experimental responses (Box and Draper, 1987), 

and then migrated into the modelling of numerical experiments. The difference is in the type 

of error generated by the response. In physical experiments, inaccuracy can be due, to 

measurement errors while, in computer experiments, numerical noise is a result of incomplete 

convergence of iterative processes, round-off errors or the discrete representation of 

continuous physical phenomena (Giunta et al., 1996; van Campen et al., 1990, Toropov et al., 

1996). In RSM, the errors are assumed to be random. 

 

This involves performance original system with a similar, more computationally tractable 

system model. This similar equation typically takes the form of a first order to n
th

 order 

polynomial; the typical equation is shown in equation (3.14) 

 

    (3.14) 

Finding the constants through the linear regressionis easy.It should be noted that not all 

response methods require a polynomial function as an approximation and the response 

function is not required to be linear in the parameters. Typical function is shown in Eq. 3.15. 
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By trying the two variables as input, the following input data matrix can be constructed 
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Where,n corresponds to the number of observations in rows. The response of the system can 

find by using the above made inputs shown in Eq. 3.16 

Z=[O1    O2    O3   .   .  .   On]
 T        

(3.16) 

 

The first otder is not fits best then we will go for the second order polynomial the matris is 

defined 

 

 

 

 

 

Where n is the number observations. Six is the minimum number of observations to give the 

best  second order polynomial, only the first two columns are needed for this example. In 

general X=[1:X
*
] 

The normal equationshown in Eq. 3.17can be solved for the constants 

(3.17) 

The performanceof the system  
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These response can be graphically represented,three dimensional space or count plot to see 

the response through visual . Response drawn in the below fig(3.5) xi , xjand by keping all 

other variables constant.  

 

Fig 3.5: 3D Response surface plots 

 

3.4 Modelling 

3.4.1 Network Data Preparation  

In the present analysis ANN models are developed by taking input parameters as changes in 

the natural frequency ratio (1st mode, 2nd mode & 3rd mode) and crack depth ratio (CDR) 

and crack location ratio (CLR) as output parameters. The minimum and maximum values of 

inputs and outputs are given in Table 1 and the properties of the material tested are given in 

Table 3.1. 

Table 3.1:Minimum and Maximum values of data set 

Inputs Outputs 

Fundamental Natural Frequency Ratio ( c ) Crack Length 

Ratio (L1/L) 

Crack Depth Ratio 

(A/H) 1st Mode (f1) 2nd Mode (f2) 3rd Mode (f3) 

0.7065 0.8175 0.8014 0.0625 0 

1 1 1 0.875 0.7 

 



21 | P a g e  
 

Pre-processing of data helps in generalization of ANN models. Hence all data in the set has 

been scaled in the range of -1 to +1 by a simple linear normalization function. 

12
minmax

min 















XX

XX
X n     (3.19) 

Where,Xn, Xmax and Xmin are the normalized, maximum and minimum values of data in 

vector. Properties of the beam tested had already shown above 

3.4.2Development of ANN Models  

An Artificial Neural Network (ANN) consists of a set of interconnected elements called 

neurons that provide a response or output from a series of inputs. In the present study ANN 

models are developed using Levenberg- Marquardt training algorithm as this algorithm is 

often the fastest back propagation algorithm in MATLAB Neural Network Toolbox and is 

highly recommended as a first choice supervised algorithm. First nine models for prediction 

of crack depth ratio (CDR) and next nine for crack length ratio (CLR).  

The details network basic structure of ANN models developed and activation function used 

are given in Table 4.1the number of hidden neurons depends primarily on the nature of the 

data. However, there are no strict rules for choosing the number of hidden layers and the 

number of neurons in each hidden layer. Most back-propagation neural networks will have 

one or two hidden layers, with the number of neurons in the hidden layers usually falling 

somewhere between the total number of input and output neurons. In our approach, the 

number of hidden layers and the corresponding neurons were decided by the corresponding 

learning performance of the neural network during the training and testing of network.In this 

case, a network having one hidden layer with maximum of 3 neurons is used. Therefore, the 

basic structure of the back propagation neural network adopted here is 3–1–1. It has been 

checked to have the best performance by varying the numbers of hidden layers and neurons. 

In the training phase, 80% inputs from training set along with corresponding desired outputs 

used to train the network. 

 The weights in the neural network were changed iteratively according to the generalized 

delta rule. 15% of total set were used for testing and 5% data are used for validation. The 

data’s are randomly selected for model training, testing and validation. A major difference 

between training and testing is that in the test case, the weights in the network are not 

updated. Since the earliest work by dynamics parameters such as natural frequencies and 
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mode shapes have been widely applied for damage detection, as the modal parameters are 

functions of structural properties. This implies that any degradation of the structural 

properties results in changes of the modal parameters. The general mathematical equation 

relating the input variables and the output can be written as, 
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3.4.3 Development of Regression Models  

The multiple linear regression models has been developed which is extension of a simple 

linear regression model to incorporate three explanatory variables such as Fundamental 

natural Frequency ratio (1
st
 mode, 2

nd 
mode, and 3

rd
 mode). Multiple regression modelling 

is now a mainstay of statistical analysis in most fields because of its power and flexibility. 

The predicted and actual values for both CDR and CLR are shown in Figure 4.1. The general 

form of multiple linear regressions is shown below, 

           (3.21) 

Where Y is output, b0,b1,..,bn are constants and x1,x2,….,xn are the explanatory variables. 

 

3.4.3 Development of RSMModels  

The first, second and Third order models has been developed to incorporate three input 

variables such as Fundamental natural Frequency (1
st
 mode, 2

nd 
mode, and 3

rd
 mode). It is 

most advantageous for than others mostly it is used for the optimization.The predicted 

equations for both CDR and CLR are shown in equation 4.6 & 4.7. The general form of 

response surface method is shown below, 

 

 

           (3.22) 
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CHAPTER-4 

RESULTS AND DISCUISSIONS 

 

4.1 Results for single crack 

Table 4.1: shows the performance of various model created for prediction of both CDR and 

CLR. It is found that the network structure of 3-1-1 with log sigmoid activation function can 

better predict the CDR value with a testing R-value of 0.967. Comparison of RMSE of 

various developed ANN models for CDR prediction is given in Figure 4.1 shows that the 

ANN model with tansig activation function gives lesser RMSE values than others. However 

considering overall R-values of all models the one with tansig gives higher value as shown in 

table 4.1 with increase of hidden neuron. For the sake of simplicity a simple equation (4.1) is 

presented for prediction of CDR.  

 

Table4.1: Performance Of ANN Model Developed for CDR and CLR prediction 

R- Values for CDR predictive models 

Network 

structure 

Tansig Logsig Purelin 

Training Testing Validation Training Testing Validation Training Testing Validation 

3-1-1 0.965 0.968 0.95 0.963 0.967 0.961 0.865 0.929 0.83 

3-2-1 0.962 0.966 0.979 0.959 0.989 0.874 0.856 0.948 0.965 

3-3-1 0.989 0.980 0.963 0.975 0.966 0.891 0.847 0.961 0.985 

R- values for CLR predictive models 

3-1-1 0.369 0.561 0.729 0.352 0.596 0.32 0.307 0.699 0.223 

3-2-1 0.28 0.56 0.542 0.29 0.586 0.22 0.129 0.58 0.377 

3-3-1 0.463 0.674 0.2316 0.256 0.846 0.6 0.183 0.528 0.044 

 Best fitting 
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Best fitting R-Square 

 

 

Fig 4.1:  Comparison of RMSE of various developed ANN models for CDR prediction 

The ANN model for prediction of CDR as follows, 

`  6837.0
1

231.868







ne
CDR     (4.1) 

Where 0953.492973.24179.186104.0 321  fffn  

The above equation gives R-value of 0.967. 
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Activation Function In The Hidden Neuron 

Regression

ANN (Training)

ANN (Testing)

RMSE  of CDR predictive models Regression 

Network 

structure 

Tansig Logsig Purelin  

Training Testing Training Testing Training Testing 

 

 

3-1-1 0.170 0.203 0.195 0.173 0.339 0.381 0.335 

3-2-1 0.175 0.200 0.190 0.178 0.335 0.372  

3-3-1 0.094 0.142 0.148 0.196 0.355 0.347  

RMSE Of CLR predictive models  

3-1-1 0.68 0.59 0.68 0.56 0.63 0.65  

3-2-1 0.59 0.96 0.64 0.62 0.67 0.44 0.7674 

3-3-1 0.62 0.80 0.67 0.51 0.67 0.63  
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Figure 4.2:  Actual And Predicted Values Of CLR And CDR (regression) 

The non linear regression equation has been presented for the prediction of CDR having R-

value of 0.933 as follows, 

 

Where,
022.2

)641.43119.21344.21044.0ln( 321 


fff
CDR   (4.2) 

f1, f2 and f3 are the frequency ratios (1st mode, 2nd mode, and 3rd mode). 

Multiple linear regressions for prediction of both CDR and CLR have been carried out and 

the actual and predicted response is shown in figure 4.1. It is noted that the predicted 

response of CDR to actual CDR showing high correlation coefficient of 0.731 when fitted 

with linear model. Using a simple nonlinear function, the linear model has been transformed, 

model giving high correlation coefficient of 0.871 when fitted with exponential function. The 

nonlinear regression equation is presented in equation (4.2). The predicted values of CDR 

through all model with actual value is presented in figure 4.2. This shows that the ANN 

model with network structure of 3-1-1 can predict the CDR value in more realistic than other 

models followed by nonlinear regression model. 
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4.2 ANN Results for multi crack 

The performance of various ANN models for prediction of crack depth, location of first crack 

and second crack is shown in below.  

Table 4.2:shows it is found that the network structure of 3-1-1 with tan sigmoid activation 

function will predict the crack depth value with a testing R-value of 0.99. Shows,the ANN 

models with logsig activation functions provide lesser R-value than others. But considering 

overall R-values of all models the one with tansig provides higher value as shown in table 

4.1. For the sake of simplicity a straightforward equation (4.3) is presented for prediction of 

crack depth. 

Table 4.2:R-values for crack depth predictive models 

Network 

structure 

Logsig Purelin Tansig 

testing training validation testing training validation testing training validation 

3-1-1 0.99 0.89 0.89 0.99 0.88 0.92 0.99 0.91 0.97 

Best fitting R-Square 

Predicted equation or crack depth (d)
1

1
2

2
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Table 4.3shows prediction forfirst crack location. It is found that the network structure of 3-1-

1 with tan sigmoid activation function can better predict the first crack location value with a 

testing R-value of 0.99. Shows the ANN model with logsig activation function gives lesser R-

value than others. However considering overall R-values of all models the one with tansig 

gives higher value as shown in table 4.4. For the sake of simplicity a simple equation (4.4) is 

presented for prediction of crack depth. 

Table 4.3:R-values for first crack length(L1) predictive models 

Network 

Structure 

Logsig Purelin Tansig 

testing training validation testing training validation testing training validation 

3-1-1 0.98 0.89 0.91 0.97 0.91 0.91 0.99 0.89 0.95 

 

Predicted equation for first crack (L1)
1

1
1

1

2

2






B

B

e

e

    
(4.4)

 
 

 

 

  

Table 4.4shows prediction forsecond crack location. It is found that the network structure of 

3-1-1 with tan sigmoid activation function can better predict the secondcrack location value 

with a testing R-value of 0.98. Showsthe ANN model with purelin activation function gives 

lesser R-value than others. However considering overall R-values of all models the one with 

tansig gives higher value as shown in table 4.5. For the sake of simplicity a simple equation 

(4.5) is presented for prediction of crack depth. 

Table 4.4:R-values for second crack length(L2) predictive models 

network 

structure 

logsig purelin tansig 

testing training validation testing training validation testing training validation 

3-1-1 0.96 0.93 0.93 0.90 0.91 0.96 0.98 0.92 0.97 

 

Predicted equation for Second crack (L2)      (4.5)                                                                                                                                                            
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4.3 RSM Resultsfor multi crack 

Table 4.5Response surface methodsfor prediction of both crack depth (d)and crack lengths 

(L1&L2) have been carried out and predicted response is shown in figure 4.5. It is noted that 

the predicted response to actual showing high correlation coefficient when fitted with 3
rd

 

order equation. Using a 3
rd

 degree equation, the 1
st
 degree equation has been transformed, 

model giving high correlation coefficient of 0.92, 0.94 and 0.96 for respective depth, first 

crack and second crack locations.when comparing the both the ANN model with network 

structure of 3-1-1 can predict the best results in terms of the R-value in more realistic than 

other models followed by response surface method. 

The 3
rd

 order equation for crack depth and both lengths is presented below (4.6&4.7). 

Table 4.5:R-values in RSM predictive models 

Polynomial 

degree 
Crackdepth(d) First crack length(L1) Second crack length(L2) 

1st degree eq. 0.77 0.93 0.94 

2nd degree eq. 0.89 0.94 0.95 

3rd degree eq. 0.92 0.95 0.96 

 

Equation Predicted for crack depth(d) 

 

 

         

        (4.6) 

 

Equation Predicted forboth cracks (L1&L2) 
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CHAPTER-5 

CONCLUSION AND SCOPE FOR FUTURE WORK 

 

5.1Conclusion 

The effectiveness for damage assessment in beams has been presented using different 

prediction techniques. In these thesis damage detection problems for single crack and multi 

crack has been considered for beams having different boundary conditions namely simply 

supported beam and Cantilever beam. 

 

 At first, different models (ANN and regression) considering frequencies as inputs for 

prediction of damages (crack depth and crack location) for a simply supported beam is 

developed. The performance of developed model is accessed by R-value and RMSE. 

Comparison between ANN and regression model has been made. This developed ANN 

models perform better than other developed models. Simple equations have been presented 

for prediction of CDR with relatively high R-value which is discussed in Chapter-4. 

 

The second problem presents damage assessment for multi crack in Cantilever beams using 

data from literature. The performances of different ANN models have been accessed 

considering the statistical parameters R. Later, the same is predicted using Response Surface 

Method (RSM) and corresponding error is found using R value.  

From the present study the following conclusions can be made. 

(1) Equation is developed for the both the ANN and Regression analysis among the both 

neural network gives good result in terms of correlation coefficient (R)  

(2) In case of multi crack the response surface method in 3rd order equation give the R= 0.96 

and equation is given 

(3) Neural network gives best fit for multi crack, when it is compared with RSM 

(4) It can be observed that the damage extent can be found out using ANN models trained 

with only natural frequencies with reasonable accuracy. 
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(5) This developed model can also be used for different varied applications of engineering, 

given the predefined values as input to the system. The networks here produced reasonable 

performances for the identification of cracks. 

 

5.2 Scope for future work 

In the present study, damage extent has been acknowledged in simply supported beam and 

Cantilever beam with single and multi-open cracks. However,it’s absolutely difficult to find 

out damage of the beam without any information. Therefore, using natural frequencies as 

input data then it is easyfind the location of damage. The end of the day scope of the present 

investigation will be expressed as follows.  

(1) ANN model for detecting crack and location of cracks in cantilever or fixed end beam 

with totally different materials.  

(2) ANN model for detecting damage in beam with multi cracks with totally different 

boundary conditions. 

(3) Crack detection in beam using hybrid neuro fuzzy technique. 
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