
TARGET DETECTION BY RADAR USING 

LINEAR FREQUENCY MODULATION 

Thesis submitted in partial fulfillment of the requirements for the degree of 

Bachelor of Technology 

In 

Electronics and Communication Engineering 

 

By 

Goutam Acharya (110EI0234) 

Swayangsiddha Pandey(110EC0177) 

 

 

 

 

Department of Electronics and Communication Engineering 

National Institute of Technology, Rourkela 

Rourkela - 769008, Odisha, India 

May 2014 



TARGET DETECTION BY RADAR USING 

LINEAR FREQUENCY MODULATION 

Dissertation submitted in 

May 2014 

To the department of 

Electronics and Communication Engineering 

Of 

National Institute of Technology, Rourkela 

In partial fulfillment for the requirements of the degree of 

Bachelor of Technology 

By 

Goutam Acharya (110EI0234) 

Swayangsiddha Pandey (110EC0177) 

Under the supervision of 

Prof. Ajit Kumar Sahoo 

Department of Electronics and Communication Engineering 

National Institute of Technology, Rourkela 

Rourkela - 769008, Odisha, India 

May 2014 



 

Department of Electronics and Communication Engineering 

National Institute of Technology, Rourkela 

Rourkela-769008, Odisha, India 

 

 

 

CERTIFICATE 
 

 

 

This is to certify that the work on the thesis entitled Target Detection by Radar using Linear 

Frequency Modulation by Goutam Acharya and Swayangsiddha Pandey is a record of original 

research work carried out under my supervision and guidance for the partial fulfillment of the 

requirements for the degree of Bachelor in Technology in the department of Electronics and 

Communication Engineering, National Institute of Technology, Rourkela.  

 

 

 

Place: NIT Rourkela      Prof. Ajit Kumar Sahoo 

Date: May, 2014      Professor, ECE Department 

      NIT, Rourkela, Odisha 

  

 



 

 

 

 

ACKNOWLEDGEMENT 
 

 

 

 

First and foremost, I would like to express my sincerest of gratitude towards my project supervisor 

and guide Prof. Ajit Kumar Sahoo for his advice during my project work. He has perennially 

encouraged me to stay focused on achieving my goal. His observations and insights helped me to 

establish the overall direction of the research and to move forward with investigation in depth. He 

has helped me greatly and been a source of knowledge. 

 

 

I would like to extend my thanks to our HOD, Prof. Sukhdev Meher and to all the professors of 

the department for their support. 

 

 

I would like to thank administrative and technical staff members of the Department who have been 

kind enough to advise and help me in their respective roles. 

 

 

Last, but not the least, I would like to acknowledge the love, support and motivation I received 

from my parents and therefore I dedicate this thesis to my family. 

 

 

Goutam Acharya (110EI0234) 

Swayangsiddha Pandey (110EC0177) 

 

 

 



 

 

 

ABSTRACT 

 

 

Range Detection is the maximum distance across which a target can detect a target. Range 

Resolution is the ability of the Radar to distinguish between two closely spaced targets. Range 

Resolution can be enhanced by using short duration pulses. But using short duration pulses results 

in less Range Detection. To overcome these shortcomings pulse compression techniques are used. 

We use a Linear Frequency Modulated (LFM) Wave for pulse compression purposes as it gives a 

wide operating bandwidth. It involves two types of correlation processes: matched filter processing 

and stretch processing. Matched Filter is used for narrow band and Stretch Processor is used for 

wide-band signals. In this thesis we have analyzed both these processes and the effects of Time-

Bandwidth Product, change in Doppler Frequency and effect of different kinds of windows on the 

LFM wave. Also masking effect is observed on the echo of a distant target due to the echo of a 

nearby target. The various methods to remove the masking effect are inspected. 
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1.1 BASIC RADAR 
 

Radar is an acronym for RAdio Detection and Ranging. It is an electromagnetic system used for 

detecting and locating objects by transmitting the signals and receiving the transmitted signals 

from the objects within its range. The echoes received are used to extract information about the 

target such as range, angular position, velocity and other characteristics. The reflected energy that 

is returned to the radar not only indicates the presence of a target, but by comparing the received 

echo signal with the transmitted signal, various information can be extracted regarding the target[4]. 

The basic principle of radar is shown is Figure 1.1. A transmitter generates a signal (a short pulse 

or sine wave) that is radiated into the space through a antenna. A part of the transmitted signal is 

intercepted by the target object and is reflected back in many directions. The reflected signal is 

collected by the antenna of the radar which inputs it to a receiver. Processing occurs to detect the 

presence of the target and to determine its location. A single antenna is generally used on a time-

shared basis for both transmitting and receiving where the radar signal is a continuous series of 

pulses. Range can be measured by calculating the time the signal takes to travel to the target and 

return back. 

 

Fig 1.1- Basic Principle of Radar 
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1.2 RANGE OF A TARGET 
The range to a target is determined by the time it takes for a radar signal to travel to the target and 

back. Suppose TR is the time taken by the signal to travel to a target situated at a distance R and 

back. Thus the total time taken is given by 

TR=2R/c 

Where c is the speed of light, c=3 x 108 m/s. 

Thus the range to the target is  

R=cTR/2 

1.2.1 Maximum Unambiguous Range 

Once a signal is radiated into space sufficient time has to elapse to allow all echo signals to return 

before the next pulse is transmitted. If the time between signals is too short, an echo signal from a 

long range object may arrive after the transmission of the next pulse. Such an echo may be 

misleading. Maximum unambiguous range is given by 

Run=cTp/2 

Where Tp is the pulse repetition period 

 

Fig 1.2-A Radar Pulse 

Two important factors must be taken into consideration before designing a Radar 

1. Range Resolution 

2. Range Detection 
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1.3 RADAR DESIGN 
 

1.3.1 Range Resolution 

It is the ability of the Radar to detect and distinguish between two closely spaced targets. Range 

resolution depends on the pulse width of the transmitted pulse. The range resolution is given by 

Rres=
𝑐

2𝐵
 

Where B is the bandwidth of the transmitted pulse 

Hence smaller the bandwidth of the transmitted pulse the greater is the range resolution. 

1.3.2 Range Detection 

It is the ability of the RADAR to detect objects within a long range. The greater the distance of the 

object the RADAR can detect the better the Range Detection. The maximum range detection 

depends on the strength of the received echo. The radiated pulse should have a high energy to 

receive a high strength echo. 

1.3.3 Designing the transmitter 

A very short pulse requires high peak power to get the adequate energy for large distance 

transmission. However to handle a high peak power pulse the radar equipment becomes heavier 

and sparking occurs in the antenna instruments. A pulse having a low peak power and a longer 

duration has to be used at the transmitter for a good range detection. At the receiver end, the echo 

should have a short width and high peak power for a better range resolution[4]. 

Fig 1.3-Transmitter and Receiver Signals 

Hence pulse compression is carried out. 
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1.4 OBJECTIVE OF THE THESIS 
 

 Pulse compression through various correlation operators and their response to wide-band 

and narrow-band signals 

 Analyzing the LFM signal considering the time bandwidth product, Doppler Effect and effect 

of windows.  

 

 Masking effect removal using matched filter and stretch processor.  

 

1.5 ORGANIZATION OF THESIS 
 Chapter 2- this chapter analyses the pulse compression through linear frequency modulation 

in depth. It examines the matched filter response on a LFM wave, effect of windows, and 

effect of Doppler shift on LFM waves. 

 

 Chapter 3-this chapter discusses the stretch processing technique in pulse compression. 

Stretch processing is mainly used in case of wide-band signal. 

 

 Chapter 4- this chapter tell us about the masking effect and the various methods to remove it. 

It discusses the stretch processing technique for masking effect removal 

 

 Chapter 5- It concludes the thesis and tells us about the future work on the topic 

 

1.5 CONCLUSION 
 

The introduction to Radar is given. The equations for range and the maximum unambiguous range 

is given. The various factors to be considered while designing an antenna is mentioned and the 

type of pulse required for each case is discussed. After considering all the factors the need for pulse 

compression is shown. The objective of the thesis is also discussed. 
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2.1 PULSE COMPRESSION INTRODUCTION 
 

Pulse Compression technique is continuously used in Radars and Sonars and echography to 

increase the range resolution, range detection as well as increase the signal-to-noise ratio 

(SNR). This is achieved by modulating the transmitted pulse and then correlating the received 

pulse with the transmitted signal[1]. 

 

Fig 2.1-Block diagram of a radar antenna 

 

Several methods of pulse compression of pulse compression have been used in the past. The most 

common and popular among them is the Linear Frequency Modulation (LFM) which was invented 

by R.H Dickie in 1945. The other popular pulse compression techniques include Costas codes, 

Binary-phase codes, poly-phase codes and non-linear frequency modulation. 
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2.2 LINEAR FREQUENCY MODULATION 
 

 

Linear Frequency Modulation is used in radar systems frequently to achieve wide-operating 

bandwidths. In this case the frequency of the transmitted wave either increases (up-chirp) or 

decreases (down-chirp) with time. 

 

 

 

 

 

 

Fig 2.2 -Increasing Frequency(Upchirp)  Fig2.3-Decreasing Frequency(Downchirp) 

 

The instantaneous phase of the chirp signal is expressed as: 

 

Ø(t) = 2π(f1t + 
𝟏

𝟐
kt2) 

K = 
𝑩

𝑻
 

Instantaneous Frequency is given by  

f(t) = 
𝑑(𝑓1𝑡+

1

2
𝑘𝑡2)

𝑑𝑥
 = f1 + kt 

 

 



 

 

9 CHAPTER 2: PULSE COMPRESSION 

TARGET DETECTION BY RADAR USING LINEAR FREQUENCY MODULATION |  

Fig 2.4-Relationship between frequency and Time in LFM wave 

Frequency increases linearly with time and hence is called as Linear Frequency Modulation. The 

response of an unmodulated pulse and an LFM pulse are shown below 

 

 

 

 

 

 

 

Fig 2.5-Unmodulated Pulse matched filter response 

 

 

 

 

 

 

 

Fig 2.6-Frequency modulated pulse matched filter pulse 
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2.3 MATCHED FILTER 
 

In radar applications the reflected pulse is used to determine the presence of the target. The 

reflected signal is corrupted with Additive White Gaussian noise (AWGN). The probability of 

detection depends upon the signal-to-noise ratio (SNR) rather than the exact shape of the signal 

received. Hence it is required to maximize the SNR rather than preserving the shape of the signal. 

A filter that maximizes the output SNR is called matched filter. A matched filter is a linear filter 

whose impulse response is found for a signal in such way that the output of the filter yields 

maximum SNR when the signal along with noise is passed through it. A matched filter essentially 

performs an auto correlation between the transmitted signal and the received signal[4]. 

Fig 2.7-Matched Filter response 

2.3.1 Matched Filter Basics 

The signal power to noise power is given by 

 

SP-Signal Power 

NP-Output Noise Power 

s0(t0)-value of signal at t=t0 

-mean square value of noise 

 

If S(f) is the Fourier transform of s(t), then s0(t) is obtained as 
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The value of s0(t) at t=t0 is 

Substituting we get 

Using Schwarz inequality, the numerator can be written as 

the equality holds good when 

where K1 is an arbitrary constant and ∗ stands for complex conjugate. Using the equality sign which 

corresponds to maximum SNR output we get 

It is obvious that the maximum SNR is a function of the energy of the signal but not the shape. 

Taking inverse Fourier transform of the impulse response of matched filter is obtained as 

 

Taking Convolution the equation for s0(t) is obtained as the auto-correlation of the sent signal 

 

 

Thus it is observed that the matched filter essentially performs the auto-correlation between the 

transmitted signal and the received signal. 
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2.4 AMBIGUITY FUNCTION 
 

2.4.1 Matched Filter Response of Narrow band-pass signals 

The output of the matched filter is obtained as 

It is observed that the matched filter output of narrow band-pass signal has a complex envelope 

u0(t) which is obtained by passing the complex envelope u(t) through its own matched filter. 

 

2.4.2 Matched filter response of a Doppler shifted signal 

The output is obtained as 

 
This is the Ambiguity Function (AF) 

 

The Ambiguity Function describes the output of the matched filter when the input signal is delayed 

by 𝜏 and Doppler shifted by fd relative to the values for which the matched filter is designed. 
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SIMULATIONS 
 

Time Bandwidth Product – 5 

Fig 2.8-Real Part of LFM waveform 

 

Fig 2.9-Imaginary Part of LFM waveform 
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Fig 2.10-Frequency Spectrum of LFM waveform 
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2.5 WINDOW FUNCTIONS 
 

Windows are expressions which have a specific value within a given range and have a value of 

zero outside the range. One example is a rectangular window which has a constant value inside 

the interval and have a zero value outside. When the window function is multiplied with the given 

signal they only give a value where they overlap and give zero outside. 

The LFM wave was introduced in the following 5 windows 

2.5.1 Rectangular Window 

The rectangular window has a constant value over its length. 

w(n)=1.0 for n=0, 1, 2, ….. , N-1 

where N is the length of the window and w is the window value.  

It just limits the signal to a given finite range. 

2.5.2 Hanning Window 

The hanning window looks like the half cycle of a cosine wave. It is given by the equation. 

w(n)=0.5-0.5cos
2𝜋𝑛

𝑁
 

For n=0,1,2, … , N-1 

where N is the window length and w is the window value.  

2.5.3 Hamming Window 

The Hamming window is similar to a Hanning window. The equation is given by 

w(n)=0.54-0.4cos
2𝜋𝑛

𝑁
 

For n=0,1,2,….,N-1 
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2.5.4 Kaiser Window 

The Kaiser window is a more flexible smoothing window whose shape can be changed using the 

parameter β. w=Kaiser(L, beta) returns a L-point Kaiser window in the column vector w. β 

parameter affects the side-lobe attenuation of the Fourier transform window. 

2.5.5 Blackmanharris Window 

The BlackmanHarris does window sampling using a ‘sflag’. This can either be periodic or 

symmetric. The periodic flag is generally used for Fourier transform so that spectral analysis can 

be done. The equation is given by 

w(n)=a0-a1cos
2𝜋𝑛

𝑁
 + a2cos

2𝜋2𝑛

𝑁
 – a3cos

2𝜋3𝑛

𝑁
 

where –N/2<n<N/2 and window length is given by L=N+1. 

 

Peak Side-lobe Ratio (PSR) 

It is given by 

 

PSR = 10 log10
𝑃𝑒𝑎𝑘 𝐿𝑜𝑏𝑒 𝑃𝑜𝑤𝑒𝑟

𝑆𝑖𝑑𝑒 𝐿𝑜𝑏𝑒 𝑃𝑜𝑤𝑒𝑟
 

 

 

Simulation Results 

The LFM signal with a time-bandwidth product of 50 and 500 was taken and passed through the 

above 4 windows and the simulation was viewed using MATLAB. 
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SIMULATIONS 

Fig 2.11-LFM signal of TBP 50 through a Hanning window 

 

Fig 2.12- LFM signal of TBP 500 through a Hanning window 
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Fig 2.13- LFM signal of TBP 50 through a Hamming window 

Fig 2.14- LFM signal of TBP 500 through a Hamming window 

 

 

 



 

 

19 CHAPTER 2: PULSE COMPRESSION 

TARGET DETECTION BY RADAR USING LINEAR FREQUENCY MODULATION |  

 

Fig 2.15- LFM signal of TBP 50 through a Kaiser window 

 

Fig 2.16- LFM signal of TBP 500 through a Kaiser window 
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Fig 2.17- LFM signal of TBP 50 through a Blackmanharris window 

 

Fig 2.18- LFM signal of TBP 500 through a Blackmanharris window 
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Table 2.1: PSR values with respect to TBP for different windows 

WINDOW TYPE PSR WITH TBP 50 PSR WITH TBP 500 

Hanning -46 -46.5 

Hamming -50 -50.5 

Kaiser -33 -34 

Blackmanharris -118 -130 

Inferences 

 We can observe that the Blackmanharris window gives the best PSR and hence is best 

suited for ide-lobe reduction and rectangular window has the worst PSR value and is 

unsuitable for side-lobe reduction. 

 TBP values least affects the side-lobe reduction while using windows. In higher order 

cosine windows like the Blackmanharris window the effect of TBP on PSR value is large. 

 The value of β used in a Kaiser window gives the relation between side-lobe level and the 

main lobe width. Higher values of β gives better side-lobe reduction but also result in 

widening of the main lobe. Widening of the main lobe leads to reduction in range 

resolution. 

2.6 DETECTION OF TARGET 
Simulation Results 

The LFM signal was used to detect three targets and the received echo was allowed to pass through 

3 windows. 

Fig 2.19- Detection of 3 targets using a LFM wave 
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Fig 2.20-Detection of 3 targets using a LFM wave passed through a Kaiser window 

Fig 2.21- Detection of 3 targets using a LFM wave passed through a Hamming window 

2.7 DOPPLER EFFECT ON LFM SIGNALS 
The Doppler Effect is observed in signals when there is a moving target. Radars use the Doppler 

frequency shift to extract information about the velocity of the target. The Doppler frequency is 

given by fd in the ambiguity function of the matched filter 

ℵ(𝜏, fd)=∫ 𝑢(𝑡). 𝑢 ∗ (𝑡 − 𝜏)
∞

−∞
𝑒𝑖2𝑓𝜋𝑓𝑑𝑡 ⅆ𝑡 

The Doppler Effect is checked by passing the signal through the windows and studying the change 

in PSR. The LFM signal was passed through the four windows with varying Doppler frequency 

and the results were studied. 
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SIMULATIONS 

Fig 2.22-LFM signal having fd/B=0.1 passed through a Hanning window 

Fig 2.23- LFM signal having fd/B=0.2 passed through a Hanning window 
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Fig 2.24- LFM signal having fd/B=0.1 passed through a Hamming window 

 

Fig 2.25- LFM signal having fd/B=0.2 passed through a Hamming window 
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Fig 2.26- LFM signal having fd/B=0.1 passed through a Kaiser window 

 

Fig 2.27- LFM signal having fd/B=0.2 passed through a Kaiser window 
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Fig 2.28- LFM signal having fd/B=0.1 passed through a Rectangular window 

Fig 2.29- LFM signal having fd/B=0.2 passed through a Rectangular window 
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Table 2.2-PSR values for various fd/B values for different windows 

 

 

Inferences 

 PSR value decreased with increase in the Doppler Effect when passed through the windows 

(Kaiser, Hanning, Hamming and Rectangular). 

 We see that the rectangular window gives the worst value of PSR and hence is unsuitable 

for use while the Hamming window gives the best PSR value and can be used for detection 

of the target velocity through the Doppler Effect. 

 

2.8 CONCLUSION 
 

Linear Frequency Modulation is used for Radar Pulse Compression Techniques because it 

provides a wide operating bandwidth. It is one of the popular used methods for pulse compression. 

The design of matched filter was reviewed and it was found that performing the auto-correlation 

between the transmitted signal and the received signal gives the maximum SNR. To obtain side-

lobe reduction windowing techniques was used. The LFM signal was passed through 5 windows 

and the relationship between PSR and TBP product was observed. We found that the PSR value 

increased with increase in TBP. We also observed that the Blackmanharris window provided the 

best PSR value and thus is the best suited window for side-lobe reduction. Besides the Doppler 

Effect on the PSR value was also studied. 

 

Window Type PSR (fd/B=0.1) PSR (fd/B=0.2) 

Hanning -31 -30 

Hamming -38 -32 

Kaiser -24 -20 

Rectangular -15 -12 
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3.1 INTRODUCTION 
 

Stretch processing or “active correlation” provides high range resolution in pulse compression. 

Normally it is used for LFM waveforms having high bandwidth. Stretch Processing is used to 

process large bandwidth signals using narrowband techniques. Stretch processing has simple 

requirements like a analog to digital converter a and a FFT processor. During processing, first we 

have to mix the received signal with the replica of transmitted signal.  After this we give the output 

to the ADC converter. Finally narrowband filters are used. 

When we have targets at a close range, then the output of LPF have constant tones corresponding 

to the respective target’s position. It converts time delay into frequency.  This is because mixing 

the received signal with reference signal and then performing low pass filtering is same as 

subtracting received frequency chirp from replica. 

The Block Diagram for Stretch Processor is given 

 

Fig 3.1-Block Diagram for a Stretch Processor 

 

The main parts in the block diagram are a mixer, a spectrum analyzer, a LFM generator and a 

timing circuit 
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3.2 STRETCH PROCESSOR CONFIGURATION 
 

The radar transmitted signal is given by the following equation- 

s(t)= cos(2𝜋 (𝑓0𝑡 +
𝐵

2ℐ′ 𝑡2))  0<t<ℐ 

Where f0 is the start frequency of the LFM signal, the reference signal is given by 

S ref (t)=2 cos(2𝜋 (𝑓0𝑡 +
𝐵

2ℐ′ 𝑡2))  0<t<T rec 

Where T rec is the received window and is given by 

    T rec = 
2(𝑅𝑚𝑎𝑥−𝑅𝑚𝑖𝑛)

𝑐
 

Here we have assumed that there is a point scattered at a range rather received signal is given 

by 

S r(t)=a cos 2𝜋𝑓0(𝑡 − ∆𝜏) +
𝜇

2
(𝑡 − ∆𝜏)2 

Where ‘a’ is proportional to the target range cross section, antenna gain and range attenuation 

and 
2𝑅

𝑐
 is the time delay. 

The output of the mixer is the multiplication of the received signal and the reference signal. The 

low pass filtering of the signal is done. Since ℐ’= 
2𝑅

𝑐
 the above signal is approximated. Taking the 

FFT transform of the signal results in a peak at some frequency which indicates the presence of 

a target. 

SIMULATION 
Table 3.1-Simulation Parameters for Stretch Processing 

Bandwidth 10 GHz 

Scattered Range 1.5, 7.5, 15.5 

Frequency (f0) 5.6 GHz 

Win Kaiser 
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Fig 3.2-Uncompressed Echo of Stretch Processing for 3 targets 

Fig 3.3-Detection of targets 



 

 

32 CHAPTER 3: STRETCH PROCESSING  

TARGET DETECTION BY RADAR USING LINEAR FREQUENCY MODULATION |      

 

3.3 CONCLUSION 
 

A stretch processing helps the signal processor to get rid of its bandwidth problem by rejecting all-

range processing to obtain a narrow-band processor. In case of a matched filter we search for 

targets over the entire pulse repetition interval (PRI). However in stretch processing we are 

confined to a range extent that is smaller than the uncompressed pulse duration. We can’t use 

stretch processing for search applications because it requires looking for targets spread over a large 

range. We could however use stretch processing for track purposes where we already know the 

location of the target but want to obtain a more accurate measurement for it.  
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4.1 MASKING EFFECT INTRODUCTION 
 

When noise is present in radar signal processing we have to perform correlation between 

transmitted and received signals. The received signals collected from the nearby targets usually 

generate very high side lobes in the above correlation function. The signals received from long 

distance targets are weak. The weaker echoes are masked by the strong echoes of nearby targets. 

This effect is known as Masking Effect. 

Masking effect can be minimized or removed by different methods. Doppler shift is one of the old 

methods for removing masking effect. However it doesn’t remove all strong echoes completely. 

We can use method based on signal stretch processing, which gives an improved result than the 

previous described methods. We can detect weak targets in the presence of the strong echoes. 

In practical situation, in addition to other targets the weather clutter echoes and ground clutter 

echoes are also present at receiver signal. In pulse radar the noise reflected echoes are separated in 

time. When these are characterized in integration time the clutter and target echoes overlap causing 

interference known as masking effect.  

For single target detection we use matched filter which is tuned to range and velocity of the target. 

So in case of multiple targets it can’t be possible. When the matched filter is tuned to the nearby 

target echo from far target is considered as noise, so it becomes difficult to track it. If we tune the 

matched filter with far target the strong echoes increases the noise level. 

 

4.2 METHODS TO REMOVE MASKING EFFECT 
 

 Removal of ground clutter and weather cutter from the received signal .we can use adaptive 

lattice filter for this purpose.  

 Elimination of nonzero Doppler clutter. For this we can produce a model of the target 

echoes having non-zero Doppler frequency and subtract from received signal.  

 We can have target echo modelling by considering the time shift and Doppler shift of 

transmitted signal. This method is used for comparatively slow moving targets. 
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4.3 MASKING EFFECT REMOVAL USING RANGE 

DOPPLER FUNCTION 
 

Initially we have to calculate the range Doppler cross-correlation function. Then in second step we 

have to find maximum of the Doppler cross-correlation function and thus locate the strongest 

echoes. The coordinates of maximum help in estimation of the target velocity and range and 

modelling of strong target echo. We have to subtract the modelled signal from the received signal.  

This resulting signal consists of all noise signal and weak echoes which have to be processed 

further using adaptive echo cancellation till all the noise floor is delivered and echoes are removed. 

All the calculations are done in time domain. For better quality of cancellation there should be 

better resampling of reference signal. 

In the third stage cancellation of strong echoes are covered in frequency domain. Here we subtract 

the product of estimated complex amplitude and normalized strong echo from the received signal. 

For this purpose we sort the strong echoes accordingly from strongest to weakest. 

In the final and fourth stage the range Doppler cross coefficient is estimated and the weak targets 

are detected. This procedure is effective for point targets and applicable for medium and low range 

resolution radar. For high range resolution we have to implement stretch processing in point 

cancellation method. 

 

4.4 MASKING EFFECT REMOVAL USING STRETCH 

PROCESSING 
 

4.4.1 Linear Interpolation Method 

Here we calculate the linear combinations of adjacent original samples for the computation 

of new samples. It is one of the simplest re-sampling methods, known as method of curve 

fitting. It is very fast but has poor accuracy. 
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4.4.2 Poly-phase method 

It uses poly phase filter which is effective way of upsampling by an integer N and 

simultaneously downsampling by another integer factor M. They obtain a stretch factor 

M/N which is usually close to 1. Firstly from an oversampled point set we calculate sample 

values using simple poly phase resampler. Secondly we use a simple linear interpolation 

for finding more accurate value at a required point between samples. 

 

4.4.3 Spectrum based method 

This method is based on the conversion of signal to spectral domain and making 

manipulation in the domain. After manipulation spectrum is converted back to time 

domain. This method allow resampling factor of N/M. It uses an efficient IFFT algorithm. 

If the resampling factor can’t be expressed as a ratio of two integer then chirp z transform 

resampling method is used. 

 

Table 4.1- Simulation Parameters for Masking Effect 

Bandwidth 0.1 GHz 

Scatter Range 20, 100 

Radar Cross-Section 2, 0.05 

Time Period 5 µs 
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SIMULATION 
 

Fig 4.1-Masked output using only matched filter 

Fig 4.2-Unmasked output using only matched filter 
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Fig 4.3- Masked output using matched filter and stretch processing 

 

Fig 4.4- Unmasked output using matched filter and stretch processing 
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4.5 CONCLUSION 
 

In radar pulse compression we have used both Matched filter and Stretch processing. Both are 

suitable for side lobe reduction and improving SNR value. But Matched filter is generally used for 

narrowband signal and Stretch processing is used for wideband signal. In case of stretch processors 

give up all range processing to get the narrow band signal processors whereas match filter look for 

targets in entire waveform pulse repetition interval(PRI). So we can’t use stretch processing for 

search purpose as it requires look for a large range extend. Instead we use it for tracking as we 

already know the range approximately. Matched filter can also be used for wideband signal but 

only up to a certain range. 
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5.1 CONCLUSION 
 

From the thesis we saw that pulse compression could be achieved using two methods; using a 

matched filter or through stretch processing. Matched Filter performs a correlation between the 

received signal and the replica of the transmitted signal. Stretch Processing converted the time 

delay between the signals into frequency. Stretch Processing is preferred because it gives enhanced 

range resolution. It also provides better side-lobe reduction than matched filter processing. 

Besides the effect of windows on the LFM signals was studied. The LFM wave was passed through 

5 windows 

1. Rectangular Window  2. Hanning Window   3. Hamming Window 

4. Kaiser Window   5. Blackmanharris Window 

We also noticed that the better side-lobe reduction was achieved by using the Blackmanharris 

window. 

Masking Effect was examined. Masking Effect is observed when strong echoes of a nearby target 

mask the weaker echoes from distant targets. The various methods to remove masking effect were 

discussed and the stretch processing method to remove masking effect was implemented. 

 

5.2 FUTURE WORK 
 

Pulse Compression was achieved through linear frequency modulation. Other techniques for pulse 

compression can be implemented. Phase-coded Modulation methods can also be used for 

achieving pulse compression. Costas Codes, Baker Codes etc. are used for this purpose. Besides 

non-linear frequency modulation technique can also be implemented. 
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