
Test Case Generation

using UML

Behavioral & Structural Models

Pankaj Gupta

(Roll No: 212CS3120)

Department of Computer Science and Engineering

National Institute of Technology Rourkela

Rourkela-769 008, Odisha, India

June 2013

Test Case Generation

using UML

Behavioral & Structural Models

Thesis submitted in partial fulfillment of the requirements for the degree of

Master of Technology

in

Computer Science and Engineering
(Specialization: Software Engineering)

by

Pankaj Gupta
(Roll No.- 212CS3120)

under the supervision of

Prof. D.P. Mohapatra

Department of Computer Science and Engineering

National Institute of Technology Rourkela

Rourkela, Odisha, 769 008, India

June 2013

Department of Computer Science and Engineering
National Institute of Technology Rourkela
Rourkela-769 008, Odisha, India.

Certificate

This is to certify that the work in the thesis entitled Test Case Generation

using UML Behavioral & Structural Models by Pankaj Gupta is a record

of an original research work carried out by him under my supervision and guidance

in partial fulfillment of the requirements for the award of the degree of Master of

Technology with the specialization of Software Engineering in the department

of Computer Science and Engineering, National Institute of Technology Rourkela.

Neither this thesis nor any part of it has been submitted for any degree or academic

award elsewhere.

Place: NIT Rourkela (Prof. D.P. Mohapatra)
Date: June 1, 2014 Professor, CSE Department

NIT Rourkela, Odisha

Acknowledgment

I am grateful to numerous local and global peers who have contributed towards

shaping this thesis. At the outset, I would like to express my sincere thanks to

Prof. Durga Prasad Mohapatra for his advice during my thesis work. As my

supervisor, he has constantly encouraged me to remain focused on achieving my

goal. His observations and comments helped me to establish the overall direction

to the research and to move forward with investigation in depth. He has helped

me greatly and been a source of knowledge.

I am very much indebted to Prof. Santanu Kumar Rath, Head-CSE, for his

continuous encouragement and support. He is always ready to help with a smile.

I am also thankful to all the professors at the department for their support.

I would like to thank all my friends and lab-mates for their encouragement and

understanding. Their help can never be penned with words.

I must acknowledge the academic resources that I have got from NIT Rourkela.

I would like to thank administrative and technical staff members of the Department

who have been kind enough to advise and help in their respective roles.

Last, but not the least, I would like to dedicate this thesis to my family, for

their love, patience, and understanding.

Pankaj Gupta

Roll-212cs3120

Abstract

Quality software can be developed when it is properly tested. Due to increase

in the size and complexity of object-oriented software, manual testing has become

time, resource and cost consuming. Properly designed test cases discover more

errors and bugs present in the software. The test cases can be generated much

early in the software development process, during the design phase.

The unified modeling language (UML) is the most widely used language to

describe the analysis and designs of object-oriented software. Test cases can be

derived from UML models more efficiently. In our work, we propose a novel ap-

proach for automatic test case generation from the combination of UML class and

activity diagrams. In our approach, we first draw the UML class and activity

diagrams using IBM Rational Software Architect (RSA). Then, export the XML

metadata interchange (XMI) from IBM Rational Software Architect (RSA). The

XMI file is processed to extract variables from the class and predicates from ac-

tivity diagram using Java code. The predicates are then used to generate the

test cases. We have not used any intermediate form which makes the automation

difficult. Our approach achieves 100% branch coverage and suitable for mutation

testing and unit testing.

In our next work, we focus on UML composite structure diagram to gener-

ate test scenarios for integration testing. In our approach, we first draw the UML

composite structure diagram using IBM Rational Software Architect (RSA). Then,

export the XML metadata interchange (XMI) representation of composite struc-

ture diagram from IBM Rational Software Architect. Then, we parse the XMI

code and generate the Component Structure Graph (CSG) automatically. Sub-

sequently, we propose two algorithms to generate test scenarios for Top-Down

and Bottom-Up integration approach. The generated test scenarios are sufficient

enough to find the component in which probability of bug presence is maximum.

Keywords:Unified Modeling Language, test cases, test scenarios, integration

testing, mutation testing.

Contents

Certificate ii

Acknowledgement iii

Abstract iv

List of Figures viii

List of Tables ix

1 Introduction 1

1.1 Model Based Testing . 1

1.1.1 Benefits of Model Based Testing 2

1.2 Motivation . 3

1.3 Problem Statement and Objectives 3

1.4 Thesis Organization . 4

2 Basic Definitions and Concepts 6

2.1 Test Case . 6

2.2 Testing Techniques . 6

2.2.1 Black Box Testing Technique 6

2.2.2 White Box Testing Technique 7

2.2.3 Grey Box Testing Technique 7

2.3 Overview of UML diagrams . 7

2.4 Coverage Criteria . 8

2.5 Integration Testing . 8

2.6 Mutation Testing . 10

2.6.1 Types of Mutation Testing 10

2.6.2 Mutation Operator . 10

v

2.6.3 Relational Operator Mutant 11

2.6.4 Mutation Score . 12

2.7 Equivalence Class Partitioning . 12

2.7.1 Boundary Value Analysis . 12

2.8 XMI Metadata Interchange (XMI) 13

3 Review of Related Work 14

3.1 Test case generation using combination of UML diagrams 14

3.2 Test Case Generation for Integrating testing Using UML diagrams . 16

4 Test Case generation from combination of class and activity dia-
grams 18

4.1 Testing Coverage Criteria . 18

4.1.1 Mutation coverage . 18

4.1.2 Decision coverage: . 19

4.2 Relevant UML Diagrams . 20

4.2.1 Activity Diagram . 20

4.2.2 Class diagrams . 20

4.3 Proposed Approach . 21

4.4 Proposed algorithm . 23

4.4.1 Description of algorithm . 23

4.5 Case Study . 25

4.5.1 Working of algorithm . 29

4.5.2 Analysis of mutation coverage 32

5 Test Scenario Generation from UML Composite Structure Dia-
gram 34

5.1 Basic Concepts and Definitions . 35

5.1.1 Composite structure diagram 35

5.2 Proposed Approach . 36

5.2.1 Proposed Algorithm . 37

5.2.2 Description of Algorithm . 38

5.3 Case Study . 39

5.3.1 Working of Algorithm . 41

6 Conclusion and Future Work 46

6.1 Test Case generation from combination of class and activity diagrams 46

6.2 Test Scenario Generation from UML Composite Structure Diagram 47

Bibliography 48

List of Figures

1.1 Model Based Testing Process . 2

4.1 Java code for CADExtrator . 25

4.2 Class Diagram of Railway Reservation System 26

4.3 Activity Diagram of Railway Reservation System 28

4.4 XMI code of Railway Reservation System 30

4.5 Screenshot of generated test cases 33

5.1 Basic Symbols of Composite Structure Diagram 36

5.2 Block diagram of proposed approach 36

5.3 Composite Structure Diagram of Railway Reservation System . . . 40

5.4 XMI code of Railway Reservation System 41

5.5 Java code for CSDExtractor . 42

5.6 Composite Structure Graph of Composite Structure Diagram in

Figure 5.3. 43

5.7 Test Scenarios generated for Top-Down and Bottom-Up Integration

Testing . 45

viii

List of Tables

4.1 Outcome of different possible relation 19

4.2 Table showing test input with expected output 31

4.3 Outcome of different possible relational operator mutant 32

4.4 Outcome of different possible mutant 32

ix

Chapter 1

Introduction

Software testing usually involves executing a program on a set of tests and com-

paring the expected output with the actual output [1]. Testing is done to find

the errors, which may latter cause system failure. The Testing phase is carried

out in three steps: test case generation, test execution and test evolution [2].

Test case generation requires a lot of effort and remaining two steps are relatively

easy. Further, due to increase in size and complexity of software, the generation

of effective test cases is becoming much more difficult. Manual testing requires a

lot of time, cost and most important it is error-prone. So, automated testing is

becoming more popular, as it require less manpower. If the testing process begins

before implementation, cost of the software development is reduced. Testing also

measures the software quality in terms of its capability for reliability, correctness,

maintainability, testability, usability and re-usability. Some of the objectives of

testing are as follows:

� A quality test case should have high probability of finding an error.

� It ensures quality of the product.

� Software testing prevents the occurrence of failure.

1.1 Model Based Testing

Model based testing is testing technique in which test cases are derived from a

model that describes some (usually functional) aspects of the system under test

1

Chapter 1 Introduction

(SUT). A model is a depiction of a system’s behavior. Models help us understand

and envisage the system behavior. Model based testing involves three steps

1. Creating a model of system requirements for testing.

2. Generating test data from this requirement-model representation.

3. Verifying your design algorithm with generated test cases

A typical deployment of MBT in industry goes through the four stages shown

in 1.1 The model is generally created from the requirement specification document.

Figure 1.1: Model Based Testing Process

The model is then used to generate the test suites. These test suites contain both

the test oracle and test sequence. Test sequence is used to control the system under

test. Test Oracle is used for determining whether a test has failed or passed. A

failure indicates that the system does not perform according to user requirement.

1.1.1 Benefits of Model Based Testing

1. Model-based testing is easily understood by both the business and developer

communities.

2. Model-based testing divides business rationale from testing code.

2

Chapter 1 Introduction

3. Model-based testing is the quickest approach to get utilization of automated

testing.

4. Model-based testing empowers us to switch testing instrument if required or

help various stages utilizing the same model.

5. Model-based testing focuses on requirement coverage.

6. Design more and code less.

1.2 Motivation

Now-a-days most of the project is developed in object-oriented language. These

object-oriented languages are quite large and complex in nature because of its

features, like encapsulation, inheritance, polymorphism. Automatically generating

test cases from code of object-oriented programs are very much difficult because

of its feature like encapsulation, inheritance, polymorphism, etc. The unified

modeling language (UML) is most widely used language to model object-oriented

designs. UML diagrams an important source of test case generation. In the

recent days, researchers have considered different UML diagrams for generating

test cases. Identifying error early during the design phase is much more efficient

than identifying error after developing code. Integration testing and mutation

testing are two important testing techniques in the testing process. In our thesis,

we generate test cases from combination of class and activity diagram which is

suitable for mutation testing. Next, we generate test scenarios from the UML

composite structure diagram which is suitable for integration testing.

1.3 Problem Statement and Objectives

Software testing is a time consuming and expensive process in the software devel-

opment life cycle. In traditional software testing methodology, if any, error occurs

in the coding phase, then we have to go to that part of the code and design doc-

ument from beginning to sort out the error. This issue can be solved by starting

the testing process from the initial stage of the SDLC. In mode-based testing, test

3

Chapter 1 Introduction

cases can be designed from design phase, which is the second state in SDLC. UML

is most widely used to represent models and we can design test cases from UML

model very effectively. So based on the above, we have set the following objective.

� To propose a methodology to automatically generate test cases using com-

bination of class and activity diagram.

� To propose a methodology to automatically generate the test scenarios using

the UML composite structure diagram.

� Implementation of the proposed approach and evaluate their coverage such

as decision coverage and mutation coverage.

1.4 Thesis Organization

The rest of the thesis is organized as follows.

Chapter-2, includes basic concepts and different terminologies used in the rest

of the thesis. The chapter contains the definitions of test case, test scenario, cov-

erage criteria, integration testing, mutation testing. Then, we present some basic

concepts of equivalence class partitioning with an example. Finally, we discuss

the concepts of XML Metadata Interchange (XMI).

Chapter-3, provides a brief review of the related work relevant to our contri-

bution. We have discussed various model based testing approaches and test case

generation technique, in this chapter.

Chapter-4, present the technique for test case generation using a combination

of class and activity diagram. We first discuss a few basic concepts and definitions

used in describing our methodology. Next, we describe our proposed methodology

to generate test cases. Finally, we illustrate our methodology with an example of

the Railway Reservation System.

4

Chapter 1 Introduction

Chapter-5, present the technique for test scenario generation using Compos-

ite Structure diagrams. We first discuss a few basic concepts and definitions used

in describing our methodology. Next, we describe our proposed methodology to

generate test scenarios. Finally, we illustrate our methodology with an example

of the Railway Reservation System.

Chapter-6, concludes the thesis with a summary of our contributions. We

also briefly discuss the possible future extensions to our work.

5

Chapter 2

Basic Definitions and Concepts

It is essential to discuss some basic concepts and definitions to understand the

thesis report. In this chapter, we have discussed some of the basic concepts and

terminologies, on which our research is based.

2.1 Test Case

Test cases are built using specifications and requirements document, i.e., what the

system needs to perform.

A test case is a triplet (I, S, O) where I is the data input to the system,S

is the state of the system to which the data is input, and O is the expected

output obtained from the system [4]. Combination of test cases with which a

given software product is to be tested is called test suite [5].

2.2 Testing Techniques

Testing techniques are mainly divided into three categories:

2.2.1 Black Box Testing Technique

Black-box testing examines the functionality of an system without having the

knowledge of internal logic of code. In a black box testing the tester only knows

the inputs and what the expected outcomes should be and not how the program

arrives at those outputs. It also known as functional testing.

6

Chapter 2 Basic Definitions and Concepts

2.2.2 White Box Testing Technique

In white box testing test cases are designed based on analysis of some aspect of

source code and is based on some heuristic. White box testing is also called glass

testing, open box testing and structural testing. To perform white box testing on

a application, the analyzer needs to have learning of the inward working of the

code.

2.2.3 Grey Box Testing Technique

Grey black box testing is a combo of black box testing and white box testing. The

analyzer has the constrained learning of the inside workings of a application. It is

focused around the interior information structures and calculations for planning

the experiments more than black box testing however short of what white box

testing. This system is imperative when directing integration testing between two

modules of code composed by two separate developers, where just interfaces are

uncovered for test.

2.3 Overview of UML diagrams

Unified Modeling Language (UML) is defined as a graphical idiom for envisioning,

identifying, creating and documenting the artifacts of a software system. UML

is a blueprint of the actual system and helps in documentation of the system [3].

It makes any complex system easily understandable by the disparate developers

who are working on different platforms. Another benefit is that UML model is

not a system or platform specific. Modeling is an indispensable part of the huge

software project, which as well facilitates in the improvement of Medium and

small projects. The UML 2.0 has fourteen diagrams, to model different software

artifacts. The increase in its popularity encourages us to use these models as an

important source for test case generation.

There are three important types of uml diagrams.

1. Structure diagram: Structure diagrams highlight the things that must

be available in the system being modelled. Structure modeling captures

7

Chapter 2 Basic Definitions and Concepts

static features of a system. Some of structural diagrams are Object Dia-

gram, Component Diagram, Class Diagram, Package Diagram, Composite

Structure Diagram, and Deployment Diagram etc.

2. Behavioral diagram: behavioral diagrams describe the interaction in the

system. It represents the interaction among the structural diagram. Behav-

ioral diagram shows the dynamic nature of the system. Some of behavioral

diagrams are Activity Diagram, Use Case Diagram, and State Machine Di-

agram etc.

3. Interaction diagrams : It highlights the flow of data and control among

the things present in the system being modeled. Some of interaction dia-

grams are Interaction Overview Diagram, Sequence Diagram, Communica-

tion Diagram, Timing Diagram and etc.

2.4 Coverage Criteria

Code coverage is a measure used to depict the degree to which the source code of a

program is tested by a specific test suite. A program with high code coverage has

been more comprehensively tested and has a minor chance of containing software

bugs.

Some of the coverage criteria are.

1. Statement coverage: All the statement in a code is executed at least once.

2. Branch Coverage: Every decision in the program has taken all possible

outcomes at least once.

2.5 Integration Testing

In integration testing, all the individual components are tested by combining them

into a group [7]. Integration testing is done once all the components are tested in-

dividually i.e after the unit testing is completed. Integration testing is performed

to find faults that occur when two or more components interact with each other [8].

8

Chapter 2 Basic Definitions and Concepts

During integration testing some of the components may not be ready for integra-

tion, so we require stub and driver to simulate the behavior of actual components.

If everything works until we add Component C2 and then Component C1 stops

working, then it implies that the error may be likely present in either component

C1 or C2.

Stubs: Stubs are dummy code that simulates the functionality of low level com-

ponents [7].

Driver: Driver is dummy code that simulates the functionality of high level com-

ponents [7].

There are four major types of integration testing.

1. Top-Down: In top-down integration testing first top level components are

integrated and tested, then lower level components are tested step by step

after that. Stubs are created to simulate lower level components which may

not be completed initially [9].

2. Bottom-Up: In bottom-up integration testing lower level components are

integrated and tested, and then upper level components are tested step by

step after that. Drivers are created to simulate the upper level components

which may not be completed initially [9].

3. Sandwich: Sandwich integration testing is the combination of both bottom-

up and top-down integration testing.

4. Big Bang: In this testing some or all the component is integrated and

tested.

Among the four types of integration testing techniques, top-down and bottom-up

techniques are most widely used in industry. The Big Bang approach requires

less time and cost to integrate. However, it is difficult to find the component in

which error is present. System testing is performed once all the components are

integrated and unit tested completely. In this paper, we generate test scenarios

using Top-down and Bottom-Up integration approach.

9

Chapter 2 Basic Definitions and Concepts

2.6 Mutation Testing

Mutation testing is a method of inserting faults into programs to test whether the

tests pick them up, thereby validating or invalidating the tests. Mutant is said to

be killed when the test cases are able to detect change in mutant otherwise it is

said to be alive. The quality of test cases are measured by percentage of mutant

killed.

Mutation testing is one of the error-based testing methods. The goal in mu-

tation testing is to construct a set of test cases T which will distinguish between

a given program P and its mutant program P [10]. The mutant P is generated

by applying mutation transformations to components of P [10]. There is only one

change made in each mutant program.

2.6.1 Types of Mutation Testing

There are two types of mutation testing.

� Weak mutation testing: In weak mutation coverage [10], we suppose that

a program contains a particular simple kind of fault.

Weak mutation testing are of two types. Operator coverage requires test

cases that differentiate operators from other operators. Operand coverage

requires test cases that differentiate operands from other operands.

� Strong mutation testing: In strong mutation, a mutant m of a given

program p is said to be killed only if mutant m gives a different output from

the original program p.

Both strong and weak mutation testing can be applied to general classes of pro-

grams in any language.

2.6.2 Mutation Operator

Mutation Operators are the operators that can be applied to the original pro-

gram to make it a mutated one. Since we are considering object oriented pro-

10

Chapter 2 Basic Definitions and Concepts

gramming (OOP) now a days like Java and C++ etc, some of the OOP mutation

operators are:

� Access Modifiers.

� Argument order change.

� Arithmetic Operator change.

� Relational operator change.

� Parameter Change.

2.6.3 Relational Operator Mutant

A relational operator compares two values and determines the relationship between

them. Most of the programming language has six kinds of relational operators; >,

>=, <, <=, ==, ! =. Because these operators take two operands, only replace-

ment is allowed for the relational operators. In relational operator mutant one

relational operator is replaced with other relational operator [11].

Example:

Original LOC:

if(x>=y)

printf(correct);

else

printf(wrong);

If we change the relational operator then possible mutant are:

Mutant1: x>y;

Mutant2: x<=y;

Mutant3: x<y;

Mutant4: x=y;

Mutant5: x! =y;

11

Chapter 2 Basic Definitions and Concepts

2.6.4 Mutation Score

Mutation score (MS) is the ratio of the number of Dead Mutants over the number

of Non Equivalent Mutants. The goal is to have a score of one 100 % , which

means that all faults in all mutants have been detected; the more dead mutants

the higher the score will be. This technique is used for adequacy testing. The

formula for mutation score is given below:

MS = (killed Mutants/ Total Mutants)*100%

2.7 Equivalence Class Partitioning

In the equivalence class partitioning approach, the domain of input values to the

program under test is partitioned into a set of equivalence classes. Test cases are

designed for each equivalence class. All the test cases belonging to same class

behaves similarly.

� Suppose you have a software which accepts values between 100-200, so the

valid partition will be (100-200), equivalence partitions will be like:

Invalid partition below to 99, valid partition 100-200, invalid partition 201 and

above

2.7.1 Boundary Value Analysis

In Boundary value analysis test cases are designed using the values at the bound-

aries of different equivalence classes. An effective test case design requires test

cases to be designed such that they maximize the probability of finding errors.

Test cases designed with boundary input values have a high chance to find errors.

For example, programmers may improperly use < instead of <=, or conversely <=

for <, etc. The test cases generated for equivalence class partitioning discussed in

the above section 2.7.

� Test Cases 1: Generate test case precisely at the extremes of input domain

i.e. values 100 and 200.

12

Chapter 2 Basic Definitions and Concepts

� Test Cases 2: Generate test case precisely, just below the limits of input

domains i.e. values 99 and 199.

� Test Cases 3: Generate test case precisely, just above the limits of input

domains i.e. values 101 and 201.

2.8 XMI Metadata Interchange (XMI)

XML Metadata Interchange (XMI) is an interchange format for metadata defined

in terms of the Meta-Object Facility (MOF) standard [12]. XMI plays a key role in

IBM Rational Software Architecture to represent UML models in XMI metadata

format [13].

13

Chapter 3

Review of Related Work

This chapter presents an overview of the existing method to generate test data us-

ing UML diagrams. First, we discuss the previous related work done by researchers

on the topic of test scenario generation using UML diagrams for integration testing

and then Proceed to discuss the related work done in Test case generation from a

combination of UML diagrams.

3.1 Test case generation using combination of

UML diagrams

Wang et al. [17] proposed an approach to generate the test case from an interaction

and class diagrams. The test adequacy criteria they used is the coverage of the

design model elements. They have adopted the category partition approach to

get the function units, then for each function unit, generate test cases from class

diagram criteria. The method sequence from the interaction diagram is used to

generate sequence of the signals in the test case. The generated test cases are able

to meet all message path criteria.

A method is introduced by Asthana et al. [18] for generating test cases using

class and sequence diagrams. First, they get the lower and upper bound of variable

from the given class diagram. Then, they have traversed the sequence diagram to

obtain all the variable passed. Out of these variables, they found out the variables

on which the output will differ and have applied robustness testing on these vari-

ables to compare the results. They have automated the process by parsing xml

14

Chapter 3 Review of Related Work

metadata interchage (XMI) and not used any intermediate representation.

A method is proposed by Swain et al. [19] to generate test case based on use

case and sequence diagram. They constructed Concurrent Control Flow Graph

(CCFG) from sequence diagrams and Use case Dependency Graph (UDG) from

use case diagram to generate test sequence. They have used UML 2.0 sequence

diagram for generating test cases. They have developed a semi automated tool

(ComTest) which takes XMI representation of sequence diagram as input and

generate the test cases. Their testing strategies to derive test cases uses full

predicate coverage criteria. The generated test cases are suitable for detecting

dependency of use cases and synchronization and messages, object interaction

and operational faults.

A methodology is proposed by Swain et al. [6] to prioritize test scenario from

UML communication and activity diagrams. They presented an integrated ap-

proach and a prioritization technique to generate cluster-level test scenarios from

UML communication and activity diagrams. First, they convert the communica-

tion and activity diagrams into a tree representation respectively. Then combines

the tree representation of diagrams into intermediate tree named as COMMACT

tree. The COMMACT tree is then traversed to generate the test scenarios. They

have proposed a prioritization metric considering the coupling or impact or influ-

ence of activity and methods. They considered the criticality of guard conditions

to perform those activities and methods. Their approach generates prioritized test

scenarios and test scenarios are not redundant.

Pilskalns et al. [20] presented a graph based approach to combine the informa-

tion form sequence diagrams and class diagrams. In this approach, first sequence

diagram is transformed into an object-method directed acyclic graph (OMDAG).

The values of variable in class diagram are then associated with objects in OMDAG

during path traversal. The execution sequence and attribute value of generated

test cases is stored into an object method execution table (OMET). This approach

achieves the All message paths and Attribute criteria.

Boghdady et al. [21] have proposed test case generation technique from a ac-

15

Chapter 3 Review of Related Work

tivity diagram. They proposed an algorithm that automatically creates a table

called Activity Dependency Table (ADT). The activity dependency table is then

used to create a directed graph called Activity Dependency Graph (ADG). At last

ADG with the ADT are used to generate the final test cases. The basic step that

was taken to generate test cases are 1) Generation of ADT.2) Generation of ADG

3) Test case Generation 4) validate generated test cases.

Kansomkeat et al. [22] have proposed a methodology to generate test cases

by converting activity diagrams into the Condition-Classification Tree Method

(CCTM). They have generated the test cases in three steps 1) Generate condition-

classification trees using UML. activity diagram. 2) Create test case table. 3)

Generate test cases. They first build an I/O explicit Activity Diagram (IOAD)

from an ordinary UML activity diagram and then transforms it into a directed

graph, from which test cases for the initial activity diagram are derived.

Kim et al. [24] uses activity diagram to generate test cases. They first convert

the activity diagram into I/O explicit Activity Diagram (IOAD). IOAD is then

converted to directed graph. Directed graph is then traversed to generate the test

cases. The criteria for conversation is based on the single stimulus principle, which

avoid the state explosion problem. They have used the all-paths test coverage

criterion.

3.2 Test Case Generation for Integrating testing

Using UML diagrams

Many researchers have been working in generating test cases from different UML

diagrams. In this section, we review the existing work which are nearly related to

our approach. Sarma et al. [14] have proposed automatic test case generation from

UML sequence diagram. They transformed the sequence diagram into sequence

diagram graph. The sequence diagram is then traversed to generate test cases.

The generated test cases are used for system testing and to detect interaction and

scenario fault.

Traon et al. [7] proposed a methodology for planning integration and regression

16

Chapter 3 Review of Related Work

testing from an object-oriented (OO) model. They discussed the refinement pro-

cess of the OO design to produce a model of structural system test dependencies

graph (TDG). The generated graph TDG is used for ordering classes and methods

to be tested for integration and regression testing. They minimized the number

of stubs required during testing process.

Hartmann et al. [15] proposed an approach for modeling components and inter-

action among them. They used UML statecharts to model the dynamic behavior

of the components as well as the communication between them. The interaction

between the components is done via message exchange containing no parameters

and values. In our approach their is no constraint on message. Components can

interact via message containing parameters and values.

Hanh et al. [8] proposed two integration testing strategies. First one is based on

deterministic approach and is called Triskell. The second approach is based on

genetic algorithm and is called Genetic. They first build the UML class diagram

and Package diagram to find the dependency between components. The gathered

information is converted into test dependency graph (TDG). Their objective was

stub minimization and testing resource allocation. This approach is not suitable

for finding erroneous components. In our approach, the probability to find the

component in which bug is present is more.

Wu et al. [16] proposed test criteria to test component-based software using UML

diagrams. They used UML statechart diagram to characterize the internal behav-

ior of objects in a component. They have used interaction diagrams to evaluate

the control flows of components. In most of the related work researchers consider

the combination of different UML diagram, but this is not suitable to represent

the components.

17

Chapter 4

Test Case generation from
combination of class and activity
diagrams

In this chapter, we use UML class and activity diagrams as design specification.

We present a testing methodology to test Object Oriented software based on

combination of class and activity diagram. Our approach achieves much important

coverage like branch coverage and mutation coverage. This chapter describes our

proposed methodology in detail.

4.1 Testing Coverage Criteria

In this section, we define testing coverage criteria based on activity diagram. Now,

we discuss some of the relevant coverage criteria which are achieved in our ap-

proach.

4.1.1 Mutation coverage

The effectiveness of test cases can be evaluated using a fault injection technique

called mutational analysis. Mutation testing is a process by which faults are in-

jected into the system to verify the efficiency of the test cases. The product of

mutation analysis is a measure called Mutation Score, which indicates the per-

centage of mutants killed by a test set.

Relational mutation: Let R be an arithmetic relation, and suppose that R’ is

a wrong relation mutation of R [8]. Suppose R is of the form x r y and R’ is x r’

18

Chapter 4Test Case generation from combination of class and activity diagrams

y. If R is executed over data for which x<y, x=y, and x>y, then in at least one

case it will give a different output from R’. This can be seen by examining Table

4.1. For each possible kind of relation, the outcome of R and R’ will differ in at

least one case.

Table 4.1: Outcome of different possible relation

x<y x<=y x>y x>=y x==y x! =y
T F F T T F
F T F F T T
F F T T F T

4.1.2 Decision coverage:

Every decision in the program has taken all possible outcomes at least once. de-

cision coverage is also called as branch coverage. Formula for branch coverage

is:

Decision Coverage=(Number of decision outcomes executed/Total number of

decision outcomes)∗100%

Eg:

Original LOC:

if(a>=b)

printf(correct);

else

printf(wrong);

To achieve 100 % decision coverage both the FALSE and TRUE condition

of the IF statement should be covered. To achieve this we need to consider the

following test cases.

� Test Cases 1: a=10, b=5 makes the if condition TRUE.

� Test Cases 2: a=5,a=10 makes the if condition FALSE.

So, to achieve the 100 % decision coverage minimum two number of test cases are

required.

19

Chapter 4Test Case generation from combination of class and activity diagrams

4.2 Relevant UML Diagrams

In this section first we describe activity diagram in detail. Next, we describe the

class diagram.

4.2.1 Activity Diagram

Activity diagram describes the workflow behavior of the system [33]. Activity

diagram shows the flow of activities through the system. Activity diagram is used

to model the dynamic behavior of the system. Some of common symbol used

in activity diagram is; activity, transitions, swimlanes, initial node, final node,

fork, join, decision, merge and swimlanes. Activity represent a business process.

An initial node is a control node at which flow starts. Final node indicates that

an activity is completed. A typical activity diagram has one initial node and

one or more final node. Transition show the control flow among the activities.

A branch node has one incoming transition and multiple outgoing transitions.

Each output transition is labeled which represent the Boolean expression to be

satisfied to choose the branch. A merge node has multiple incoming transitions

and one outgoing transition. In activity diagram, concurrent execution behavior

is represented by fork-join structure. Fork represents the start and join, represent

the end of concurrent execution. Fork node splits the flow into multiple concurrent

flows. A fork node has one incoming flow and multiple outgoing flow. Join node

combines multiple concurrent flow into a single flow. Join node has multiple

incoming flow and a single outgoing flow. Swimlanes are used to arrange the

actions of an activity into areas corresponding to different object that perform the

action.

4.2.2 Class diagrams

A class diagram describes the structure of a system by showing the system’s classes,

their attributes, operations, and the relationships among classes. It represents the

static view of the system. The class diagram can be used for constructing ex-

ecutable code of the software application. The class diagrams can be directly

20

Chapter 4Test Case generation from combination of class and activity diagrams

mapped with object oriented languages and thus widely used at the time of con-

struction. Some of the basic symbols used in class diagram are; class, relation-

ship, multiplicity etc. In class diagram classes are represented with boxes which

contains three parts; the top part contains the name of class, the middle part

contains the attribute of the class, the bottom part contains the methods which

the class can perform. There are three types of relationships: association, gener-

alization/specialization and aggregation. Classes represent the problem concepts;

associations model the semantic relationships between problem concepts [17]. In

Generalization relationship one of the two related classes is considered to be a

specialized form of the other class. The aggregation is one kind of association. A

multiplicity indicates how many instances of one class are related to another class.

4.3 Proposed Approach

In this section, we discuss our proposed approach to generate test scenarios from

class and activity diagrams. The four basic steps in our approach are

1. Construct activity and class diagram.

2. Generate the XMI code.

3. Parse the XMI code.

4. Apply our proposed algorithm.

5. Calculate the decision coverage.

Construct activity and class diagram: Initially the activity diagram and

class diagram are constructed using IBM Rational Software Architect (RSA). RSA

is most widely used tool to construct the UML diagrams.

generate the XMI code: Next, we export the XMI code of the relevant

diagrams draw in step 1 using RSA. XMI format is the standard format used

for UML diagrams portability across different object-oriented software. A single

combined XMI file for the whole project is generated using RSA tool. The XMI file

21

Chapter 4Test Case generation from combination of class and activity diagrams

contains all the necessary information needed to inter-operate between different

tools and transfer UML diagrams.

Parse the XMI code:

We develop a parser called CADExtractor shown in Figure 4.1. The CADEx-

tractor extract the necessary information such as name of attribute present in

the class diagram, predicates present in activity diagram from the XMI code.

CADExtractor traverse the XMI file in sequential order. For each class, obtain

the attributes present in the class.

<packagedElement xmi:type=”uml:Class” xmi:id=”˙V1FPg6-zEeOOwoWso8qpsg”

name=”bankaccount”>

<ownedAttribute xmi:type=”uml:Property” xmi:id=”˙V1FPhq-zEeOOwoWso8qpsg”

name=”numberofattempt” visibility=”private”>

As we can see in the sample XMI file, there exists a class bankaccount with

one of the attribute numberofattempt. XMI-IDs are used as reference for later

processing. For each activity, obtain the predicate.

<edge xmi:type=”uml:ControlFlow” xmi:id=”˙V1FPOK-zEeOOwoWso8qpsg”

name=”numberofattempt>3” source=”˙V1FO3a-zEeOOwoWso8qpsg”

target=”˙V1FO3q-zEeOOwoWso8qpsg”>

As we can see in the sample XMI file, there exist a decision numberofattempt>3.

All these class attribute and predicate is stored in attributearray and decisionar-

ray respectively. These two arrays are given as input to our proposed algorithm.

The total number of decision node in stored in variable totalnumberofbranch and

the output is stored in outputarray.

proposed algorithm: To implement our proposed work, we developed al-

gorithm Integrated test case generation algorithm (ITCGA). Detail of ITCGA is

discussed in section 4.4.

Calculate the decision coverage: The formula for calculating the decision

coverage is:

decision coverage=(number of decision outcome exercized/(number of decision

22

Chapter 4Test Case generation from combination of class and activity diagrams

outcome))*100%

Each decision node in activity diagram takes two possible outcome. So,

total number of decision outcome=number of decision node*2.

Total number of decision outcome exercized is obtained by Algorithm 1.

4.4 Proposed algorithm

In this section, we present our ITCGA algorithm 1 to generate test cases, in pseudo

code form.

4.4.1 Description of algorithm

Input to our Algorithm 1 is attributearray, decisionarray. Output of the Algorithm

1 is set of test cases and total number of branch covered. At the beginning of

algorithm 1, the testcaseid and branchcovered variable are initialized to null. The

Algorithm traverse the decisionarray in sequencial order. We have considered the

binary relational operator such as ==, ! =, >, <, >=, <= i.e., each operator

has two operands. The left operand is extracted and it is checked whether it

is present in decisionarray or not. If it is not present the algorithm display the

message that operand is not present in any class, otherwise test case is generated.

The left operand of an operator is variable and the right operand is an integer

value. Right operand is assigned to testinput variable and the value of testcaseid

is incremented by 1. Left operand is assigned to testcondition variable. Next,

algorithm check for the type of operator. If the operator is >= the algorithm

print the two test case as (testcaseid, testcondtion, testinput, expected output).

Other test case is (testcaseid, testcondtion, testinput+1, expected output). If the

operator is > the algorithm print the one test case as (testcaseid, testcondtion,

testinput+1, expected output). If the operator is <= the algorithm print the

two test case as (testcaseid, testcondtion, testinput, expected output). Other test

case is (testcaseid, testcondtion, testinput-1, expected output). If the operator is

< the algorithm print the one test case as (testcaseid, testcondtion, testinput-1,

expected output). If the operator is ! = the algorithm print the one test case

23

Chapter 4Test Case generation from combination of class and activity diagrams

Algorithm 1 Integrated Test Case Generation Algorithm (ITCGA)
Input: attributearray, decisionarray, outputarray
Output: set of test cases, number of branch covered

1: testcaseid← φ
2: branchcovered← φ
3: testinput← φ
4: testcondition← φ
5: operatorsymbol← φ
6: for each elementj in decisionarray do
7: testcondition← leftoperand
8: if testcondition present in attributearray then
9: operatorsymbol← operator
10: testinput← rightoperand
11: if operatorsymbol==′ ≥′ then
12: branchcovered← branchcovered+ 1
13: print (testcaseidi, testcondition, testinput, outputarrayj)
14: testcaseid← testcaseid+ 1
15: print (testcaseidi, testcondition, testinput+1, outputarrayj)
16: else
17: if operatorsymbol==′ >′ then
18: branchcovered← branchcovered+ 1
19: testcaseid← testcaseid+ 1
20: print (testcaseidi, testcondition, testinput+1, outputarrayj)
21: end if
22: else
23: if operatorsymbol==′ <′ then
24: branchcovered← branchcovered+ 1
25: testcaseid← testcaseid+ 1
26: print (testcaseidi, testcondition, testinput-1, outputarrayj)
27: end if
28: else
29: if operatorsymbol==′ ≤′ then
30: branchcovered← branchcovered+ 1
31: testcaseid← testcaseid+ 1
32: print (testcaseidi, testcondition, testinput, outputarrayj)
33: testcaseid← testcaseid+ 1
34: print (testcaseidi, testcondition, testinput-1, outputarrayj)
35: end if
36: else
37: if operatorsymbol==′ =′ then
38: branchcovered← branchcovered+ 1
39: testcaseid← testcaseid+ 1
40: print (testcaseidi, testcondition, testinput, outputarrayj)
41: testcaseid← testcaseid+ 1
42: end if
43: else
44: if operatorsymbol==′ 6=′ then
45: branchcovered← branchcovered+ 1
46: testcaseid← testcaseid+ 1
47: print (testcaseidi, testcondition, testinput-1, outputarrayj)
48: print (testcaseidi, testcondition, testinput+1, outputarrayj)
49: end if
50: end if
51: else
52: Print testcondition not present in any class
53: end if
54: end for

24

Chapter 4Test Case generation from combination of class and activity diagrams

Figure 4.1: Java code for CADExtrator

as (testcaseid, testcondtion, testinput-1, expected output). Other test case is

(testcaseid, testcondtion, testinput+1, expected output). If the operator is == the

algorithm print the two test case as (testcaseid, testcondtion, testinput, expected

output). The process is repeated until decisionarray is empty.

4.5 Case Study

We consider the example of railway reservation system to discuss our proposed

approach. We model the class diagram and activity diagram of railway reservation

system in RSA which is shown in Figure 4.2 and Figure 4.3 respectively.

Figure 4.2 represents the class diagram of railway reservation system. There

are five classes named as; train, bankaccount, passenger, ticket, railwaysystem.

Each class has three parts. There are five attributes in train class; trainno, train-

name, numberofseatleft, source and destination. The train class does not perform

any operation so, it does not contain any method. There are four attribute in the

passenger class; name, age, gender, contact number. The passenger can book and

25

Chapter 4Test Case generation from combination of class and activity diagrams

Figure 4.2: Class Diagram of Railway Reservation System

cancel ticket via bookTicket and the cancelTicket method in passenger class. The

ticket class has four attributes; pnrno, dateofjourney, timeofbooking, numberof-

passenger. Similary the bankaccount and railwaysystem have their corresponding

attribute and method as given in figure 1. The link between train and passenger

class is 1 to * association. A train can have any number of passengers. The link

between ticket and passenger is 1 to 1..5 association, i.e. With a single ticket

maximum five people can travel. The link between passenger and bank account

is 1 to 1..3 composition. A passenger can have three bank account and composi-

tion relationship indicates that when a passenger does not exist his bank account

will also not exist. Similarly, link between ticket and the railwaysystem is * to 1

composition.

Figure 4.3 shows the activity diagram for railway reservation system. First

user visits the website. Then the user enters form and to station code and enter

the book ticket button. Now the system check in time of booking, in case it is

greater than or equal to 8, the system will ask for entering the date of journey;

26

Chapter 4Test Case generation from combination of class and activity diagrams

otherwise the system displays an error message to the user that Inter incoming

day booking not allowed before 8 AM. The user then enters the date of journey.

Now the system check for date of journey, in case it is below or equal to 60 days

the system shows the list of trains; otherwise it shows an error message that date

of journey is beyond the advance reservation period. The user then selects one

of the trains. Next, the system check for whether the seat is available or not; in

case seat is available, the system display an information detail form; otherwise the

system display a message to the user that seat not available. The user then enters

the number of passengers. The system checks for number of people travelling if it

is greater than or equal to 5; the system displays the error message that number of

passengers per ticket cannot exceed 5; otherwise the system will ask for entering

the mobile number. The user then enters the mobile number. The system check

for number of digits in mobile number; in case number of digits is equal to 10

it send the validation code; otherwise the system displays an error message that

please enter the 10 digit number. The system checks for senior citizens; if the age

is greater than 60 then it will show to be eligible for senior citizen concession, the

passenger should be 60 years or more error message; otherwise the system will

display the amount.

The user chooses to pay amount and the system will display the list of banks.

The user chooses one of the bank and enter username name and password. User

proceed further and enter the profile password. If the user enters the wrong

password an error message will be displayed that profile password is wrong, please

try again. The number of attempts should not be greater than 3, if it exceeds 3

the system will display number of attempt exceeds 3 your account is blocked for

1 day. In order to generate the ticket total balance should then be greater than

the amount; otherwise insufficient amount message is displayed. The transfer of

control is represented by swimlanes. Three swimlane are required to represent the

control flow, first for passenger, second for railway authority, third for the bank.

The flow between the activity are represented by arrows.

27

Chapter 4Test Case generation from combination of class and activity diagrams

Figure 4.3: Activity Diagram of Railway Reservation System

28

Chapter 4Test Case generation from combination of class and activity diagrams

The exported XMI code of constructed diagrams is given as input to our parser

CADExtractor show in Figure 5.5, that extract the necessary information and

given as input to Algorithm 1.

4.5.1 Working of algorithm

The Algorithm 1 begin by reading the element of decisionarray in sequential order.

First element is the predicate timeofbooking<8. leftoperand timeofbooking is as-

signed to variable testcondition, rightoperand 8 is assigned to variable testinput

and the operator < is assigned to operatorsymbol. Now algorithm check whether

timeofbooking is present in attributearray or not. since it is present the if condi-

tion is satisfied and it check for type of operator. since the operator symbol is <

it matches the appropriate if...elseif....else statement and output is printed as (1,

timeofbooking, 7, Inter incoming day booking not allowed befor 8 AM). The value

of variable branchcovered and testcaseid is increment by 1.

The algorithm then proceed to next element which is found to be timeofbooking>=8.

leftoperand timeofbooking is assigned to variable testcondition, rightoperand 8 is

assigned to variable testinput and the operator >= is assigned to operatorsymbol.

Now algorithm check whether timeofbooking is present in attributearray or not.

since it is present the if condition is satisfied and it check for type of operator.

since the operator symbol is >= it matches the appropriate if...elseif....else state-

ment. Output printed is (2, timeofbooking, 8, show date of journey button) and

(2, timeofbooking, 9, show date of journey button). The value of variable branch-

covered is increment by 1 and testcaseid is incremented by 2.

Above process is repeated until the decisionarray becomes empty. Overall test

cases generated is shown in table 4.2 and the value of branchcovered becomes 16.

Next, decision coverage is calculated in following way: since there is only one con-

dition in decision node, there is only two possible outcome one is true and other

is false.

number of decision node are: 8

number of decision outcome: 8*2

number of decision outcome excersized: 16

29

Chapter 4Test Case generation from combination of class and activity diagrams

Figure 4.4: XMI code of Railway Reservation System

branch coverage=(number of decision outcome exercized/(number of decision out-

comes))*100

branch coverage=100%

30

Chapter 4Test Case generation from combination of class and activity diagrams

Table 4.2: Table showing test input with expected output

testcaseid testcondition input expected output
1 timeofbooking 7 Inter incoming day booking not allowed be-

fore 8 AM
2 timeofbooking 8 show date of journey button
3 timeofbooking 9 show date of journey button
4 dateofjourney 61 date of journey is beyond advance reservation

period
5 dateofjourney 60 show list of train
6 dateofjourney 59 show list of train
7 numberofseatleft 0 display seat not available
8 numberofseatleft 1 goto information detail page
9 numberofseatleft 2 goto information detail page
10 age 61 To be eligible for senior citizen concession,

the passenger should be 60 years or more
11 age 60 display amount
12 age 59 display amount
13 numberofattempt 4 number of attempt exceeds 3 your account is

blocked for 1 day
14 numberofattempt 3 profile password is wrong please try again
15 numberofattempt 2 profile password is wrong please try again
16 balance 5000 deduct money
17 balance 5001 deduct money
18 balance 4999 insufficient amount
19 numberofdigit 9 please enter a valid 10 digit mobile no.
20 numberofdigit 11 please enter a valid 10 digit mobile no.
21 numberofdigit 10 send validation password
22 numberofpassenger 6 number of passenger per ticket can not ex-

ceed 5
23 numberofpassenger 5 process furthur detail
24 numberofpassenger 4 process furthur detail

31

Chapter 4Test Case generation from combination of class and activity diagrams

4.5.2 Analysis of mutation coverage

Table 4.3 show the result of actual operator and its mutants. The actual opera-

tor is timeofbooking<8 and its mutants are timeofbooking>8, timeofbooking<=8,

timeofbooking>=8, timeofbooking==8, timeofbooking! =8. Similarly, for predi-

cate numberofdigit==8 the outcome of different possible mutant is shown in Table

4.4.

From the table 4.3 and 4.4 we can conclude that mutants are giving different

output in at least one case. Hence, the test cases obtained is able to detect all the

possible mutant.

Table 4.3: Outcome of different possible relational operator mutant

testcaseid actual op-
erator

mutant mutant mutant mutant mutant

timeof -
booking <
8

timeof -
booking >
8

timeof -
booking ≤
8

timeof-
booking≥8

timeof -
booking =
8

timeof -
booking 6=
8

1 T F T F F T
2 F F T T T F
3 F T F T F T

Table 4.4: Outcome of different possible mutant

testcaseid actual op-
erator

mutant mutant mutant mutant mutant

numberof -
digit = 10

numberof -
digit > 10

numberof -
digit ≤ 10

numberof-
digit≥
10

numberof -
digit < 10

numberof -
digit 6= 10

19 F F T F T T
20 F T F T F T

21 T F T T F F

32

Chapter 4Test Case generation from combination of class and activity diagrams

Figure 4.5: Screenshot of generated test cases

33

Chapter 5

Test Scenario Generation from
UML Composite Structure
Diagram

Unit testing is the first step in the software testing process. Unit testing ensures

that each component is developed correctly [15]. In software testing, most of the

bugs go unidentified even after unit testing is performed successfully. When the

components are integrated, they may not perform as per the requirement, due to

badly designed interface. So efficient test scenario needs to be generated in order

to identify the bugs when two or more components are combined together. Once

unit testing is done, integration testing is performed to find errors in component

interface when they interact with each other. The Unified Modeling Language

(UML) composite structure diagram is a suitable diagram for describing the in-

teractions between system components.

The components are written in different programming languages, and exe-

cutes on various platforms [25]. Components interact with each other by passing

messages [26]. The component performs correctly when tested individually. But

when integrated with new component unexpected result may occur [25]. Testing

methodology is categorized into two types: black box and white box. Black box

testing is testing the software based on user requirements, without any knowledge

of the internal structure of program [27]. White box testing requires the knowl-

edge of the internal structure of the component [28]. In component-based software

implementation of the component is not available [25]. Due to this it is difficult

34

Chapter 5 Test Scenario Generation from UML Composite Structure Diagram

to apply white-box techniques to test component-based software.

5.1 Basic Concepts and Definitions

In this section, we discuss some of basic terminology which are required to under-

stand our work.

5.1.1 Composite structure diagram

Composite structure diagram visualizes the internal structure of a component, in-

cluding the interaction between component [29]. Composite structure diagram is

a kind of the component diagram used in modeling a system. Some of the symbols

present in composite structure diagram is show in Figure 5.1.

1. Component: A Component is an independent piece of code that provides

access to the services through some dedicated interfaces [30].

2. Port: Port represents a group of messages or operation calls that pass either

into or out of a component.

3. Interface: It provides a medium through which components interact with

each other.

4. Provided interface: A component with a provided interface port supplies

services that it implements to other components requiring these services.

5. Required interface: A component with a required interface port receive

services that are implemented by other components.

Test Criteria: In Top-Down integration testing, at-most (n-1) stubs are cre-

ated, where n is the number of nodes [31]. In Bottom-Up integration testing,

at-most (n-l) drivers are created, where n is the total number of nodes and l is the

number of leaf nodes [31].

35

Chapter 5 Test Scenario Generation from UML Composite Structure Diagram

Figure 5.1: Basic Symbols of Composite Structure Diagram

Composite Structure Graph (CSG): Composite structure graph G (V,E)

is a set of nodes connected by edges. V is the set of nodes representing components

and E is the set of directed edges joining the calling and called vertices.

5.2 Proposed Approach

In this section, we discuss our proposed approach to generate test scenarios from

composite structure diagram. The block diagram of our proposed approach is

shown in Figure 5.2.

Figure 5.2: Block diagram of proposed approach

Initially the Composite Structure diagram is constructed using IBM Rational

Software Architect (RSA). Diagram is then exported to XMI code. We develop a

parser called CSDExtractor shown in Figure 5.5. The CSDExtractor extract the

necessary information such as component name, dependency between components

36

Chapter 5 Test Scenario Generation from UML Composite Structure Diagram

etc from the XMI code. Based on the extracted information composite structure

graph (CSG) is generated. Gvedit [32] tool is used to visualize the graph. Each

component in composite structure diagram is represented as a node in the CSG.

The component name in composite structure diagram corresponds to node name

in CSG. The required and provided interface are represented as directed edges

from one node to another. In each pair of node there is one callee node and an-

other called node. Callee node represents the component which requires services

and the called node represents the component which provides services. Root node

represents the component which does not provide services and leaf nodes repre-

sents these components which does not require services in CSG. To implement our

proposed work, we developed two algorithms named Top-Down test scenario gen-

eration algorithm (TDTSGA) and Bottom-Up test scenario generation algorithm

(BUTSGA) given in Algorithm 2 and Algorithm 3, respectively. We have modified

breath first search to TDTSGA, as we can not directly apply breath first search

in Top-Down approach. We discuss the details of implementation of our proposed

approach in Section 5.2.1.

5.2.1 Proposed Algorithm

This section, we present our proposed algorithm to generate test scenarios, in

pseudo code form.

Algorithm 2 Top-Down Test Scenario Generation Algorithm (TDTSGA)
Input: Composite Structure Graph(CSG)
Output: Set of test scenario.

1: Stack S=φ
2: Queue Q =φ
3: x=φ
4: testscenario=φ
5: Enque(Q,root)
6: repeat
7: x=Deque(Q)
8: push(S,x)
9: for i= 1 to n do
10: Enque(Q,yi)
11: end for
12: testscenarioj = elements of Stack S ∪ elements of queue Q
13: until Q is not empty
14: MakeEmpty(S)
15: Exit

37

Chapter 5 Test Scenario Generation from UML Composite Structure Diagram

5.2.2 Description of Algorithm

TDTSGA takes CSG as its input and generates a set of test scenarios as its output.

Algorithm 2 maintains a queue Q, a stack S and a variable testscenario. At the

beginning of algorithm 2, the stack, queue and testscenario variable are initialized

to null. First, the root node of CSG is inserted into Q. Next, the element is deleted

from Q and is pushed into S. All the neighboring nodes of the deleted node are

inserted into Q. Now the content of S and Q are assigned to variable testscenario.

The testscenario indicates that the components present in S are to be tested by

integrating it with stub components present in Q. For the termination of the

algorithm, it checks whether Q is empty or not. If it is not empty, an element is

deleted from the queue and the process is repeated otherwise S is emptied.

Algorithm 3 Bottom-Up Test Scenario Generation Algorithm(BUTSGA)
Input: Composite Structure Graph(CSG)
Output: Set of test scenario.

1: Stack S1 =φ
2: Stack S2 =φ
3: Stack S3 =φ
4: testscenario=φ
5: x= φ
6: y=φ
7: for i= 1 to n do
8: Push(S1, xi) ;
9: end for
10: repeat
11: y = Pop(S1)
12: for For i= 1 to m do
13: Push(S2, yi)
14: Push(S3, yi
15: end for
16: repeat
17: z = Pop(S3)
18:
19: for For i= 1 to p do
20: Push(S2, zi)
21: end for
22: until S3 is not empty
23: if S1 is empty then
24: testscenarioj = elements of Stack S2 ∪ Y
25: else
26: testscenarioj = elements of Stack S2 ∪ Y take as driver
27: end if
28: MakeEmpty(S2)
29: until S1 is not empty
30: Exit

BUTSGA algorithm is applied to generate test scenarios for Bottom-Up in-

tegration testing. BUTSGA takes CSG as its input and generates a set of test

scenarios as its output. Algorithm 3 maintains three stacks: S1, S2 and S3 and

38

Chapter 5 Test Scenario Generation from UML Composite Structure Diagram

three variable x, y and testscenario. At the beginning of the algorithm 3, all the

stacks and variables are initialized to null. This algorithm first traverses all the

non-leaf nodes using Breath First Search (BFS) and pushes all the visited nodes

into S1. An element is popped from S1 and is assigned to variable y. All the

neighboring nodes of the deleted node are pushed into S2, and stack S3. An ele-

ment is popped from S3 and is assigned to variable z. All the neighboring nodes of

deleted node are pushed into S2. All the neighboring nodes of the element present

in the S3 are then pushed into stack S2 until S3 is empty. Now the content of S2

and y are assigned to testscenario. The testscenario indicates that the component

present in S2 are to be tested by integrating it with driver component present in

y. The contents of stack S2 are deleted and are checked whether the stack S1 is

empty or not. If it is empty, then algorithm 3 terminates else the above procedure

is repeated again.

5.3 Case Study

We consider the example of railway reservation system to discuss our proposed ap-

proach. We model the composite structure diagram of railway reservation system

in RSA which is shown in Figure 5.3. We consider 12 components named as hu-

maninterface, loginpage, signuppage, homepage, planmyticket, bookedhistory, can-

cellation, bankgateways, getpnrstatus, goforcancellation, getsms and printticket.

We have considered the 11 interfaces named as interface1, interface2, interface3,

interface4, interface5, interface6, interface7, interface8, interface9, interface10,

interface11.we consid 22 ports named as port1, port2, port3, port4, port5, port6,

port7, port8, port9, port10, port11, port12, port13, port14, port15, port16, port17,

port18, port19, port20, port21, port22. The ports are used to connect the interfaces

of two components. The two components are connected via interface. There are

two type of interfaces: required interface and provider interface. The component

c1 which require services is connected through the required interface to the pro-

vided interface of the components that provides these required services. In Figure

5.3, humaninterface and loginpage interact with each other via interface1. When

39

Chapter 5 Test Scenario Generation from UML Composite Structure Diagram

Figure 5.3: Composite Structure Diagram of Railway Reservation System

we connect the required and provider interface of humaninterface and loginpage,

then interface1 1 is created automatically. The interaction between humaninter-

face and signuppage occurs via interface2. Similarly, interface2 1 is created, when

we connect the required and provider interface of humaninterface and signuppage,

respectively. Similarly, all the components are connected to each other via required

and provided interface.

The exported XMI code of composite structure diagram is given as input to

our parser CSDExtractor show in Figure 5.5, that results in composite structure

graph (CSG) as shown in Figure 5.6. The CSG has 12 nodes and 7 leaf nodes.

As discussed in Section 2.5, testing criteria requires 11 stubs to be created for

Top-down integration approach and 5 drivers need for Bottom-Up integration

approach.

40

Chapter 5 Test Scenario Generation from UML Composite Structure Diagram

Figure 5.4: XMI code of Railway Reservation System

5.3.1 Working of Algorithm

Test scenario generation process starts with the root node of CSG. Stubs are cre-

ated for each component which are called by root component. Thus, the generated

test scenarios at the first level of integration are: testscenario1= {humaninterface}

stub for {loginpage, signuppage}. In the second level, replace one of the stub with

actual component and integrate it with stubs of the next level. Second test sce-

nario, testscenario2 = {humaninterface, loginpage} stub for {signuppage, home-

page}. Suppose humaninteface component worked correctly during the generation

of first test scenario, but on integrated with signuppage it does not work correctly.

Then, we can ensure that error may be present either in interface of humaninter-

face component or in interface of signuppage component. This process of test

scenario generation continues till all the components are integrated. In all total

11 numbers of stubs are created during the process: loginpage, signuppage, home-

page, planmyticket, bookedhistory, cancellation, bankgateway, printticket, getsms,

goforcancellation, getpnrstatus. After executing the TDTSGA algorithm we get

41

Chapter 5 Test Scenario Generation from UML Composite Structure Diagram

Figure 5.5: Java code for CSDExtractor

the following results for Top-Down integration:

1. testscenario1= {humaninterface} stub for {loginpage, signuppage}

2. testscenario2 = {humaninterface, loginpage} stub for {signuppage, home-

page}

3. testscenario3 = {humaninterface, loginpage, signuppage} stub for {homepage}

4. testscenario4 = {humaninterface, loginpage, signuppage, homepage} stub for

{planmyticket, bookedhistory, cancellation}

5. testscenario5 = {humaninterface, loginpage, signuppage, homepage, plan-

myticket} stub for {bookedhistory, cancellation, bankgateway}

6. testscenario6 = {humaninterface, loginpage, signuppage, homepage, plan-

myticket, bookedhistory} stub for {cancellation, bankgateway, printticket,

getsms, goforcancellation, getpnrstatus}

42

Chapter 5 Test Scenario Generation from UML Composite Structure Diagram

Figure 5.6: Composite Structure Graph of Composite Structure Diagram in Figure
5.3.

7. testscenario7 = {humaninterface, loginpage, signuppage, homepage, plan-

myticket, bookedhistory, cancellation} stub for {bankgateway, printticket,

getsms, goforcancellation, getpnrstatus}

8. testscenario8 = {humaninterface, loginpage, signuppage, homepage, plan-

myticket, bookedhistory, cancellation, bankgateway} stub for {printticket,

getsms, goforcancellation, getpnrstatus}

9. testscenario9 = {humaninterface, loginpage, signuppage, homepage, plan-

myticket, bookedhistory, cancellation, bankgateway, printticket} stub for

{getsms, goforcancellation, getpnrstatus}

10. testscenario10 = {humaninterface, loginpage, signuppage, homepage, plan-

myticket, bookedhistory, cancellation, bankgateway, printticket, getsms} stub

for {goforcancellation, getpnrstatus}

11. testscenario11 = {humaninterface, loginpage, signuppage, homepage, plan-

myticket, bookedhistory, cancellation, bankgateway, printticket, getsms, go-

forcancellation}stub for {getpnrstatus}

12. testscenario12 = {humaninterface, loginpage, signuppage, homepage, plan-

myticket, bookedhistory, cancellation, bankgateway, printticket, getsms, go-

forcancellation, getpnrstatus}

43

Chapter 5 Test Scenario Generation from UML Composite Structure Diagram

This result contains all the possible test scenarios that are generated by Algo-

rithm 2 based on the given CSG as shown in Figure 5.6.

Bottom-Up integration starts with the leaf node components of the composite

structure graph shown in Figure 5.6. For each set of leaf nodes, a driver is created

as the parent node of these leaf nodes. Thus, the generated test scenario at first

iteration of integration are testscenario1 = {bankgateway , driver-planmyticket}.

When bankgateway is integrated with planmyticket, if it does not perform correctly

as from first test scenario, then we can assume that, error may be likely to be

present in either bankgateway or planmyticktet interface. In the second iteration,

replace the driver with actual component and integrate it with driver of next

level. This process of test scenarios generation continues till all the components

are integrated. In all total 5 drivers are created: bookedhistory, planmyticket,

homepage, loginpage, humaninterface.

After executing the algorithm BUTSGA, we get the following results for Bottom-

Up integration:

1. testscenario1 = {printticket, getsms, goforcancellation, getpnrstatus} driver

for {bookedhistory}

2. testscenario2 = {bankgateway} driver for {planmyticket}

3. testscenario3 = {planmyticket, bookedhistory, cancellation, printticket, getsms,

goforcancellation, getpnrstatus, bankgateway} driver for {homepage}

4. testscenario4 = {homepage, planmyticket, bookedhistory, cancellation, printticket,

getsms, goforcancellation, getpnrstatus, bankgateway} driver for {loginpage}

5. testscenario5 = {loginpage, signuppage, homepage, planmyticket, booked-

history, cancellation, printticket, getsms, goforcancellation, getpnrstatus,

bankgateway} driver for {humaninterface}

6. testscenario6 = {humaninterface, loginpage, signuppage, homepage, plan-

myticket, bookedhistory, cancellation, printticket, getsms, goforcancellation,

getpnrstatus, bankgateway}

44

Chapter 5 Test Scenario Generation from UML Composite Structure Diagram

Figure 5.7: Test Scenarios generated for Top-Down and Bottom-Up Integration
Testing

Figure 5.7 shows the result obtained in both Top-Down and Bottom-Up Inte-

gration Testing.

45

Chapter 6

Conclusion and Future Work

The major aim of our research was to automate the test cases generation from

UML diagrams. Below, we summarize the important contributions of our work.

At the end, some suggestions for future work are given.

6.1 Test Case generation from combination of

class and activity diagrams

In this paper, we discussed a methodology to automatically generate test scenar-

ios from the combination of class diagram and activity diagram. The proposed

methodology is completely model-based and suitable for mutation testing. We

developed a parser (CADExtractor) to generate the test cases automatically. We

implemented the proposed algorithm Integrated test case generation algorithm

(ITCGA). We have achieved the 100% branch coverage and the generated test

cases are suitable for unit testing and mutation testing. The test cases are able

to detect all the relational operators mutant. The generated test cases are not

redundant. In the future, we further will generalize the approach by considering

float, string data type.

46

Chapter 6 Conclusion and Future Work

6.2 Test Scenario Generation from UML Com-

posite Structure Diagram

In this paper, we discussed a methodology to automatically generate test scenar-

ios from UML composite structure diagram. The proposed methodology is com-

pletely model-based and suitable for integration testing. We developed a parser

(CSDExtractor) to generate the composite structure graph automatically from

input composite structure diagram. We implemented two proposed algorithm,

Top-Down Test Scenario Generation Algorithm (TDTSGA) and Bottom-Up Test

Scenario generation algorithm (BUTSGA) to generate test scenarios for Top-Down

and Bottom-Up Integration. The generated test scenarios are sufficient enough to

find the component in which probability of bug presence is maximum. In future,

we plan to use coupling measure to detect the fault prone components.

In most of the work generated test cases cannot be directly fed into the system

under test (SUT). So, our next work is to propose a methodology to feed the test

cases directly into the system under test (SUT).

47

Bibliography

[1] P. Ammann and J. Offutt, Introduction to software testing. Cambridge Uni-

versity Press, 2008.

[2] P. N. Boghdady, N. L. Badr, M. Hashem, and M. F. Tolba, “A proposed test

case generation technique based on activity diagrams.,” International Journal

of Engineering & Technology, vol. 11, no. 3, 2011.

[3] J. Arlow and I. Neustadt, UML 2 and the unified process: practical object-

oriented analysis and design. Pearson Education, 2005.

[4] S. K. Swain, S. K. Pani, and D. P. Mohapatra, “Model based object-oriented

software testing.,” Journal of Theoretical & Applied Information Technology,

vol. 14, 2010.

[5] M. Aggarwal and S. Sabharwal, “Test case generation from uml state machine

diagram: A survey,” in Computer and Communication Technology (ICCCT),

2012 Third International Conference on, pp. 133–140, IEEE, 2012.

[6] R. K. Swain, V. Panthi, D. P. Mohapatra, and P. K. Behera, “Prioritizing

test scenarios from uml communication and activity diagrams,” Innovations

in Systems and Software Engineering, pp. 1–16, 2013.

[7] Y. Le Traon, T. Jeron, J.-M. Jezequel, and P. Morel, “Efficient object-oriented

integration and regression testing,” Reliability, IEEE Transactions on, vol. 49,

no. 1, pp. 12–25, 2000.

[8] V. Le Hanh, K. Akif, Y. Le Traon, and J.-M. Jezeque, “Selecting an effi-

cient oo integration testing strategy: an experimental comparison of actual

48

BIBLIOGRAPHY BIBLIOGRAPHY

strategies,” in ECOOP Object-Oriented Programming, pp. 381–401, Springer,

2001.

[9] P. C. Jorgensen and C. Erickson, “Object-oriented integration testing,” Com-

munications of the ACM, vol. 37, no. 9, pp. 30–38, 1994.

[10] W. E. Howden, “Weak mutation testing and completeness of test sets,” Soft-

ware Engineering, IEEE Transactions on, no. 4, pp. 371–379, 1982.

[11] Y.-S. Ma and J. Offutt, “Description of class mutation operators for java,”

2005.

[12] J. Kovse and T. Harder, “Generic xmi-based uml model transformations,” in

Object-Oriented Information Systems, pp. 192–198, Springer, 2002.

[13] B. Demuth, H. Hussmann, and S. Obermaier, “Experiments with xmi based

transformations of software models,” in Workshop on Transformations in

UML, 2001.

[14] M. Sarma, D. Kundu, and R. Mall, “Automatic test case generation from

uml sequence diagram,” in Advanced Computing and Communications, 2007.

ADCOM 2007. International Conference on, pp. 60–67, IEEE, 2007.

[15] J. Hartmann, C. Imoberdorf, and M. Meisinger, “Uml-based integration test-

ing,” in ACM SIGSOFT Software Engineering Notes, vol. 25, pp. 60–70,

ACM, 2000.

[16] Y. Wu, M.-H. Chen, and J. Offutt, “Uml-based integration testing for

component-based software,” in COTS-Based Software Systems, pp. 251–260,

Springer, 2003.

[17] Y. Wang and M. Zheng, “Test case generation from uml models,” in 45th

Annual Midwest Instruction and Computing Symposium, Cedar Falls, Iowa,

vol. 4, 2012.

49

BIBLIOGRAPHY BIBLIOGRAPHY

[18] S. Asthana, S. Tripathi, and S. K. Singh, “A novel approach to generate

test cases using class and sequence diagrams,” in Contemporary Computing,

pp. 155–167, Springer, 2010.

[19] S. K. Swain, D. P. Mohapatra, and R. Mall, “Test case generation based on use

case and sequence diagram,” International Journal of Software Engineering,

IJSE, vol. 3, no. 2, pp. 21–52, 2010.

[20] O. Pilskalns, A. Andrews, S. Ghosh, and R. France, “Rigorous testing by

merging structural and behavioral uml representations,” in UML The Uni-

fied Modeling Language. Modeling Languages and Applications, pp. 234–248,

Springer, 2003.

[21] P. N. Boghdady, N. L. Badr, M. Hashem, and M. F. Tolba, “A proposed test

case generation technique based on activity diagrams.,” International Journal

of Engineering & Technology, vol. 11, no. 3, 2011.

[22] S. Kansomkeat, P. Thiket, and J. Offutt, “Generating test cases from uml

activity diagrams using the condition-classification tree method,” in Software

Technology and Engineering (ICSTE), 2010 2nd International Conference on,

vol. 1, pp. V1–62, IEEE, 2010.

[23] D. Kundu and D. Samanta, “A novel approach to generate test cases from uml

activity diagrams.,” Journal of Object Technology, vol. 8, no. 3, pp. 65–83,

2009.

[24] H. Kim, S. Kang, J. Baik, and I. Ko, “Test cases generation from uml activ-

ity diagrams,” in Software Engineering, Artificial Intelligence, Networking,

and Parallel/Distributed Computing, 2007. SNPD 2007. Eighth ACIS Inter-

national Conference on, vol. 3, pp. 556–561, IEEE, 2007.

[25] Y. Wu, M.-H. Chen, and J. Offutt, “Uml-based integration testing for

component-based software,” in COTS-Based Software Systems, pp. 251–260,

Springer, 2003.

50

BIBLIOGRAPHY BIBLIOGRAPHY

[26] S. C. Lee and J. Offutt, “Generating test cases for xml-based web component

interactions using mutation analysis,” in Software Reliability Engineering,

2001. ISSRE 2001. Proceedings. 12th International Symposium on, pp. 200–

209, IEEE, 2001.

[27] S. H. Edwards, “A framework for practical, automated black-box testing of

component-based software,” Software Testing, Verification and Reliability,

vol. 11, no. 2, pp. 97–111, 2001.

[28] P. Godefroid, M. Y. Levin, D. A. Molnar, et al., “Automated whitebox fuzz

testing.,” in NDSS, vol. 8, pp. 151–166, 2008.

[29] T. Sekulin, Implementing a business process into an ERP solution. PhD

thesis, uniwien, 2008.

[30] Y. Wu and J. Offutt, “Maintaining evolving component-based software with

uml.,” in CSMR, pp. 133–142, 2003.

[31] N. Chauhan, Software Testing: Principles and Practices. Oxford University

Press, 2010.

[32] http://www.graphviz.org/Download..php.

[33] G. Booch, J. Rumbaugh, and I. Jacobson, The unified modeling language user

guide. Pearson Education India, 1999.

51

	Certificate
	Acknowledgement
	Abstract
	List of Figures
	List of Tables
	Introduction
	Model Based Testing
	Benefits of Model Based Testing

	Motivation
	Problem Statement and Objectives
	Thesis Organization

	Basic Definitions and Concepts
	Test Case
	Testing Techniques
	Black Box Testing Technique
	White Box Testing Technique
	Grey Box Testing Technique

	Overview of UML diagrams
	Coverage Criteria
	Integration Testing
	Mutation Testing
	Types of Mutation Testing
	Mutation Operator
	Relational Operator Mutant
	Mutation Score

	Equivalence Class Partitioning
	Boundary Value Analysis

	XMI Metadata Interchange (XMI)

	Review of Related Work
	Test case generation using combination of UML diagrams
	Test Case Generation for Integrating testing Using UML diagrams

	Test Case generation from combination of class and activity diagrams
	 Testing Coverage Criteria
	Mutation coverage
	Decision coverage:

	Relevant UML Diagrams
	Activity Diagram
	Class diagrams

	Proposed Approach
	Proposed algorithm
	Description of algorithm

	Case Study
	Working of algorithm
	Analysis of mutation coverage

	Test Scenario Generation from UML Composite Structure Diagram
	Basic Concepts and Definitions
	Composite structure diagram

	Proposed Approach
	Proposed Algorithm
	Description of Algorithm

	Case Study
	Working of Algorithm

	Conclusion and Future Work
	Test Case generation from combination of class and activity diagrams
	Test Scenario Generation from UML Composite Structure Diagram

	Bibliography

