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Abstract 

 We analyse incremental and diffusion co-operative schemes in which nodes share information 

to some neighbour nodes in order to estimate desired parameter of interest locally in the 

presence of noise. Each node works as an adaptive filter and having its own learning ability. In 

incremental co-operative fashion a node takes information from previous node and after local 

estimation the information is sent to next node whereas in diffusion the input is taken from 

various nodes so that after each iteration the behaviour of distributed network is observed. We 

employ LMS structure for updating the observations.  

The convergence performance and computational complexity of LMS-filter is very important 

consideration for the point of view of speed boost and cost reduction. The convergence 

performance of a filter depends on eigenvalue spread of covariance matrix of input data or in 

other words inversely proportional to the eigenvalue spread of the input data. If input data is 

de-correlated the eigenvalue spread is less and if input data is correlated the eigenvalue spread 

is more. Transform domain filter has data de-correlation properties of transforms like DCT & 

DFT. The data de-correlation by the unitary transforms is depends on the orthogonal property 

of individual transform. Hence we get improved convergence performance by applying 

transform domain to input data followed by power normalization of input data. If the input data 

is fully de-correlated the covariance matrix of input data is proportional to the identity matrix.  

Similarly when a FIR filter has long length of filter coefficients, then the computation cost 

becomes very high. Which results to time consuming for real time applications. Block adaptive 

filter makes processing block-by-block rather sample-by-sample in order to reduce the cost 

factor. Block Adaptive filters of various type are employed to reduce the computational cost of 

filter. Block adaptive filters are employed via DFT, DCT, DHT and Overlap-Add DFT 

methods, which are capable to lead better convergence performance as well as better cost 

reduction.  

We achieved good convergence performance and less computational cost. The response in 

simulation seems very good and mean square error (MSE) is plotted for various methods.  

Key-words: - Diffusion, Distributed Network, DFT, DCT, DHT, Overlap-Add DFT, Block 

Adaptive Filter. 
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CHAPTER 1 

INTRODUCTION    

 

We have a distributed network in which many nodes are distributed spatially. The work of 

nodes is to observe the temporal data which is coming from various spatial resources of vary 

different profiles in statistical sense. The nodes have to observe the desired parameter of 

interest which is coming from one or more spatially resources. The unwanted observations are 

kept in category of noise. In diffusion co-operative scheme the nodes exchange information 

with some other neighborhood nodes and update the observations every iteration of time. Each 

node works as an individual adaptive filter in order to estimate the desired parameter through 

local observations [1] – [2]. The estimation of desired parameter is done individually by each 

node and these estimations are locally fused to neighboring connected nodes for their further 

estimation respectively. Time to time local estimation of each get updated and local fusion by 

neighbor nodes provides spatial data that make the scheme co-operative in fashion. We can say 

that estimation at each node is depend on both temporal data and spatial data provided by 

neighboring nodes [6] – [12]. By the creation of this structure, distributed network is ready to 

respond in real time situation for different statistical profile of both temporal and spatial data 

[3] - [4].   

Each node works as an adaptive filter and least mean square (LMS) is employed to update the 

estimation at every iteration. Now the question is the convergence of LMS, which open a totally 

different section of work. We need lowest settling time or fast convergence in order to work 

for real time environment. A transform domain approach is employed here to improve the 

convergence. The basic function of unitary transform like Discrete Fourier Transform (DFT) 

and Discrete Cosine Transform (DCT) to de-correlate the input data. First the input data is 

processed by unitary transforms and then power normalization of input data takes place [5]. 

The convergence performance of a filter depends on eigenvalue spread of covariance matrix of 

input data or in other words inversely proportional to the eigenvalue spread of the input data. 

If input data is de-correlated the eigenvalue spread of covariance matrix of input data is less, 

and if input data is correlated the eigenvalue spread of covariance matrix of input data is more. 

Hence it is far better to apply transform domain processing. We get improved convergence 
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performance. If the input data is fully de-correlated the covariance matrix of input data is 

proportional to the identity matrix.  

Another important section of work is computational complexity or computational cost of entire 

processing, because in distributed network a large number of nodes are employed and each 

node estimates the desired parameter of interest locally at every iteration of time. The 

mathematical calculation during local estimation play an important role in speed of estimation. 

If computational cost is high, our distributed network is less suitable for real time applications. 

If the length of filter employed in distributed network is very large, then the estimation of 

desired parameter takes more to evaluate the observations. Block-LMS is very useful when 

computational cost becomes more. The processing of adaption in Block-LMS is done block-

by-block rather than sample-by-sample, which is normally used in all other types of LMS 

scheme. Here Block-Adaptive Filter is employed which contains both transform domain 

properties as well as block-by-block processing of data. Block Adaptive Filters are prepared 

by using transform like DFT, DCT, DHT and Overlap-Add DFT.Theoretically Block-LMS is 

most suitable as compare to other LMS schemes. Because it employs both transform domain 

characteristics which is beneficial in convergence performance of filter and other is block-by-

block processing of data, which is beneficial in the sense of cost reduction. The computational 

cost reduction is determined by a factor which is greater than one. The cost reduction factor is 

a function of filter length and block size of data. Both these characteristics make the adaptive 

filter more suitable for real time environment.  

The employment of Block Adaptive filter at each node must be done carefully because at each 

node Block Adaptive Filter creates many sub-band filters that is depends on the block size. 

When we work with only one Block Adaptive filter then it is very simple. But in case of 

distributed network where each node shares information with some neighboring nodes, useful 

care must be taken. Because at each node there are many sub-band filters and the information 

exchange becomes a challenge. So a particular sub-band filter must be share the information to 

the same positioned sub-band filter of neighboring node.        

The Eigen value spread of a matrix is defined as the ratio of largest eigen value to smallest 

eigen value. Before applying transformation to the input, the eigen value spread is approximate 

equal to(1 + 𝜌)2/(1 − 𝜌)2. The eigen value spread after applying DFT transformation to input 

data and power normalization of input data is(1 + 𝜌)/(1 − 𝜌). Where in case of DCT eigen 

value spread is (1 + 𝜌) [5].   
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CHAPTER 2 

DISTRIBUTED NETWORKS & DISTRIBUTED STRATEGIES    

 

A distributed network is a network consisting of many nodes that are located at different places. 

The nodes observe the parameter of interest from the environment and evaluate the desire 

parameter of interest locally by exchanging information with their neighboring nodes. The 

connectivity between the nodes are characterized by basically methods. 

1. Incremental strategy 

2. Diffusion strategy 

3. Probabilistic strategy 

  

I have worked on first two schemes incremental and diffusion. 

2.1 INCREMENTAL CO-OPERATIVE STRATEGY  

A distributed network containing many nodes and nodes are exchanging information from 

other nodes by incremental co-operative scheme is analyzed. The nodes have to respond in real 

time situation in order to estimate desire parameter of interest. Each node is capable to estimate 

the desire parameter of interest at local level with the help of observations taken by itself and 

information provided by neighboring node. In incremental fashion one node is allowed to take 

information from last node and after local estimation same node has to send the information to 

the next node. The connection of nodes forms a close like structure in this co-operative scheme. 

These type of distributed networks are useful in the applications like linking PCs to each other, 

laptops linking, cell phones linking, sensors linking, and in control networks. Applications will 

range from sensor networks to precision agriculture, environment monitoring, disaster relief 

management, smart spaces, target localization, as well as medical applications [8]–[15]. 
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Figure-2. 1 Incremental strategy 

    

 

 

As shown above each node is receiving information from previous node & sending to next 

node after local estimation. Now suppose a distributed network consisting of N nodes, 

connected via incremental co-operative scheme as shown above. The observations taken by 

nodes from the environment are aroused from different resources with different statistical 

profiles. 

 

 

The mathematical equations to describe the entire process is as follows- 

𝑓𝑜𝑟 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛    𝑖 ≥ 0, 𝑟𝑒𝑝𝑒𝑎𝑡 

𝑘 = 1,2,3, ……𝑁       (𝑘 𝑑𝑒𝑛𝑜𝑡𝑒𝑠 𝑘𝑡ℎ𝑛𝑜. 𝑜𝑓 𝑛𝑜𝑑𝑒) 

𝜓0
𝑖 = 𝑊𝑖−1 

𝜓𝑘
𝑖 = 𝜓𝑘−1

𝑖 + 𝜇𝑘𝑢𝑘,𝑖
∗ (𝑑𝑘(𝑖) − 𝑢𝑘,𝑖𝜓𝑘−1

𝑖 ),      𝑘 = 1,2,3, ……𝑁 … … … … (2.1.1) 

𝑊𝑖 = 𝜓𝑛
𝑖        
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Figure-2. 2 Processing by node k in Incremental co-operation strategy 

 

 

 

 

 

 

2.2 Diffusion Co-operative Strategy  

A distributed network containing many nodes and nodes are exchanging information from 

other nodes by diffusion co-operative scheme is analyzed. The nodes have to respond in real 

time situation in order to estimate desire parameter of interest. Each node is capable to estimate 

the desire parameter of interest at local level with the help of observations taken by itself and 

information provided by pre-defined neighboring nodes. The share of information taken by a 

particular node from its predefined neighboring node is depends on total number of nodes 

connected to that particular node. Diffusion a very good scheme for distributed networks to 

work in real time phenomenon.  
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Figure-2. 3Processing by node k in diffusion co-operative scheme 

 

I have worked on basically two topologies of diffusion which is shown below. 

 

Figure-2. 4  A distributed network with 7 nodes in diffusion co-operation scheme 
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Figure-2. 5 A distributed network with 20 nodes in diffusion co-operation scheme 

 

 

𝑓𝑜𝑟 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛    𝑖 ≥ 0, 𝑟𝑒𝑝𝑒𝑎𝑡 

𝑘 = 1,2,3, ……𝑁       (𝑘 𝑑𝑒𝑛𝑜𝑡𝑒𝑠 𝑘𝑡ℎ𝑛𝑜. 𝑜𝑓 𝑛𝑜𝑑𝑒) 

𝜙𝑘
(𝑖−1)

= ∑ 𝐶𝑘𝑙𝜓𝑙
𝑖−1,            𝜙𝑘

(−1)
= 0

𝑙𝜖𝑁𝑘,𝑖−1

 

𝜓𝑘
(𝑖)

= 𝜙𝑘
(𝑖−1)

+ 𝜇𝑘𝑢𝑘,𝑖
∗ (𝑑𝑘(𝑖) − 𝑢𝑘,𝑖𝜙𝑘

(𝑖−1)
)… … … … (2.2.1)  
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CHAPTER 3 

TRANSFORM DOMAIN & BLOCK ADAPTIVE FILTERING      

3.1 Frequency Domain Processing by Unitary         Transforms 

We know that unitary transforms like DFT, DCT are well known for their orthogonal nature 

which is helpful in data de-correlation at the input stage. The characteristics of input is rarely 

known in co-relation sense [13] – [17]. The transform used in this scheme must full-fill 𝑇𝑇∗ =

𝑇∗𝑇 = 𝐼 . Where 𝑇  denotes the transform matrix of DFT and DCT. Two basic steps are 

followed in this mechanism- 

1>   The input regressor must be processed by transform matrix. 

2>  Power normalization of transformed input regressor. 

 

The weight updating equation of Adaptive Filter is- 

𝑊𝑖 = 𝑊𝑖−1 + 𝜇𝑢𝑖
′(𝑑(𝑖) − 𝑢𝑖𝑊𝑖−1) 

The length of filter is considered as 𝑀. So the size unitary transform matrix is 𝑀 × 𝑀. 

The DFT matrix is defined as- 

[𝐹]𝑘𝑚 =
1

√𝑀
𝑒−

𝑗2𝜋𝑚𝑘
𝑀 ,                    𝑘,𝑚 = 0,1,2, ………𝑀 − 1 

Similarly the DCT matrix is defined as- 

[𝐶]𝑘𝑚 = 𝛼(𝑘) cos (
𝑘(2𝑚 + 1)𝜋

2𝑀
) ,                      𝑘, 𝑚 = 0,1,2, ………𝑀 − 1 

Where  

𝛼(0) =
1

√𝑀
         𝑎𝑛𝑑         𝛼(𝑘) =

2

√𝑀
    𝑓𝑜𝑟 𝑘 ≠ 0 

The transformed regressor is – 

�̅�𝑖 = 𝑢𝑖𝑇 

Which give the transformed regressor in DFT & DCT as- 

 

Figure-3. 1 Transformed input regressor 
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The covariance matrix of transformed regressor is- 

𝑅𝑢 = 𝐸(�̅�𝑖 ∗ �̅�𝑖) = 𝑇∗(𝐸(𝑢𝑖 ∗ 𝑢𝑖)) 

𝑅𝑢 = 𝑇∗𝑅𝑢𝑇 

Now the weight matrix of filter is also processed by unitary transform matrix as- 

�̅�𝑖 = 𝑇∗𝑊𝑖 

Now the weight updating equation can be written as- 

�̅�𝑖 = �̅�𝑖−1 + 𝜇�̅�𝑖
∗(𝑑(𝑖) − �̅�𝑖𝑊𝑖−1),           �̅�−1 = 0  

Now in order to proceed for power normalization process, means the input regressor is divide 

by input power to normalize. 

Let’s define a new term – 

𝜆𝑘(𝑖) = 𝛽𝜆𝑘(𝑖 − 1) + (1 − 𝛽)|�̅�𝑖(𝑘)|2 ,               𝑘 = 0,1,2,……𝑀 − 1 

Where 0 ≪ 𝛽 < 1.generally 𝛽 is very close to one �̅�𝑖(𝑘) denotes the k-th entry of regressor �̅�𝑖 

With the help of this power normalization factor, a diagonal matrix D is defined as – 

𝐷𝑖 = 𝑑𝑖𝑎𝑔{𝜆𝑘(𝑖)} 

Finally including all required concept, the weight updating equation becomes- 

�̅�𝑖 = �̅�𝑖−1 + 𝜇𝐷𝑖
−1�̅�𝑖

∗𝑒(𝑖)      … … … … (3.1.1)       

 

 

 

3.1.1 Implementation of DFT-LMS 

Suppose the length of filter is 𝑀. Similarly the input data also need to form in input regressor 

each of size 𝑀 [13] – [17]. The construction of input regressor is like- 

𝑢𝑖−1 = [𝑢(𝑖 − 1)    𝑢(𝑖 − 2)    ……     𝑢(𝑖 − 𝑀 + 1)    𝑢(𝑖 − 𝑀)] 

And 

𝑢𝑖 = [𝑢(𝑖)    𝑢(𝑖 − 1)     𝑢(𝑖 − 2)    ……    𝑢(𝑖 − 𝑀 + 1)] 

Now these input regressor are need to be processed by unitary transform matrix as- 

�̅�𝑖(𝑘) =
1

√𝑀
∑ 𝑢(𝑖 − 𝑚)

𝑀−1

𝑚=0

𝑒−
𝑗2𝜋𝑚𝑘

𝑀  

�̅�𝑖−1(𝑘) =
1

√𝑀
∑ 𝑢(𝑖 − 1 − 𝑚)

𝑀−1

𝑚=0

𝑒−
𝑗2𝜋𝑚𝑘

𝑀  

Putting n=m+1 
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�̅�𝑖−1(𝑘) =
1

√𝑀
∑ 𝑢(𝑖 − 𝑛)

𝑀

𝑛=1

𝑒−
𝑗2𝜋(𝑛−1)𝑘

𝑀  

 

We got an interesting result – 

�̅�𝑖(𝑘) =  𝑒−
𝑗2𝜋𝑘

𝑀 �̅�𝑖−1(𝑘) +
1

√𝑀
[𝑢(𝑖) − 𝑢(𝑖 − 𝑀)] 

Let’s define a new diagonal matrix S 

𝑆 =

[
 
 
 
 
 
1

𝑒−
𝑗2𝜋
𝑀

1𝑒−
𝑗4𝜋
𝑀

⋱

𝑒−
𝑗2𝜋(𝑀−1)

𝑀 ]
 
 
 
 
 

 

Or  

𝑆 = 𝑑𝑎𝑖𝑔(1, exp (−
𝑗2𝜋

𝑀
) , ……… . . exp (−

𝑗2𝜋(𝑀 − 1)

𝑀
) )  ,   𝑘 = 0,1, … .𝑀 − 1 

 

 

Now easily the input regressor is written in vector form as- 

�̅�𝑖 = �̅�𝑖−1𝑆 +
1

√𝑀
[𝑢(𝑖) − 𝑢(𝑖 − 𝑀)][1     1……1] 

 

Let’s 𝜆𝑘(−1) = 𝑣𝑒𝑟𝑦 𝑠𝑚𝑎𝑙𝑙 + 𝑣𝑒 𝑛𝑢𝑚𝑏𝑒𝑟, �̅�−1 = 0   & �̅�−1 = 0 𝑎𝑛𝑑 𝑟𝑒𝑝𝑒𝑎𝑡 𝑓𝑜𝑟 𝑖 ≥ 0 

�̅�𝑖 = �̅�𝑖−1𝑆 +
1

√𝑀
[𝑢(𝑖) − 𝑢(𝑖 − 𝑀)][1     1……1] 

𝜆𝑘(𝑖) = 𝛽𝜆𝑘(𝑖 − 1) + (1 − 𝛽)|�̅�𝑖(𝑘)|2                     𝑘 = 0,1, ………𝑀 − 1 

𝐷𝑖 = 𝑑𝑖𝑎𝑔{𝜆𝑘(𝑖)} 

𝑒(𝑖) = 𝑑(𝑖) − �̅�𝑖�̅�𝑖−1 

�̅�𝑖 = �̅�𝑖−1 + 𝜇𝐷𝑖
−1�̅�𝑖

∗  𝑒(𝑖)… … … … (3.1.2)  
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3.1.2 Implementation of DCT-LMS 

Suppose the length of filter is 𝑀. Similarly the input data also need to form in input regressor 

each of size 𝑀 [13] – [17]. The construction of input regressor is like- 

𝑢𝑖−1 = [𝑢(𝑖 − 1)    𝑢(𝑖 − 2)    ……     𝑢(𝑖 − 𝑀 + 1)    𝑢(𝑖 − 𝑀)] 

And    𝑢𝑖 = [𝑢(𝑖)    𝑢(𝑖 − 1)     𝑢(𝑖 − 2)    ……    𝑢(𝑖 − 𝑀 + 1)] 

Now these input regressor are need to be processed by unitary DCT matrix and the relationship 

given as- 

𝑆 =

[
 
 
 
 
2

2cos (𝜋/𝑀)

2cos (2𝜋/𝑀)

⋱
2cos ((𝑀 − 1)𝜋/𝑀)]

 
 
 
 

 

 

�̅�𝑖 = �̅�𝑖−1𝑆 − �̅�𝑖−2 + [ 𝜙(0)    𝜙(1)……… . 𝜙(𝑀 − 1)] 

Let’s 𝜆𝑘(−1) = 𝑣𝑒𝑟𝑦 𝑠𝑚𝑎𝑙𝑙 + 𝑣𝑒 𝑛𝑢𝑚𝑏𝑒𝑟, �̅�−1 = 0   & �̅�−1 = 0 𝑎𝑛𝑑 𝑟𝑒𝑝𝑒𝑎𝑡 𝑓𝑜𝑟 𝑖 ≥ 0 

𝑎(𝑘) = [𝑢(𝑖) − 𝑢(𝑖 − 1)] cos (
𝑘𝜋

2𝑀
)     𝑘 = 0,1, …… .𝑀 − 1 

𝑏(𝑘) = (−1)𝑘[𝑢(𝑖 − 𝑀) − 𝑢(𝑖 − 𝑀 − 1)] cos (
𝑘𝜋

2𝑀
)            𝑘 = 0,1, … . .𝑀 − 1 

𝜙(𝑘) = 𝛼(𝑘)[𝑎(𝑘) − 𝑏(𝑘)]            𝑘 = 0,1, … . .𝑀 − 1 

�̅�𝑖 = �̅�𝑖−1𝑆 − �̅�𝑖−2 + [ 𝜙(0)    𝜙(1)……… . 𝜙(𝑀 − 1)] 

𝜆𝑘(𝑖) = 𝛽𝜆𝑘(𝑖 − 1) + (1 − 𝛽)|�̅�𝑖(𝑘)|2                     𝑘 = 0,1, ………𝑀 − 1 

𝐷𝑖 = 𝑑𝑖𝑎𝑔{𝜆𝑘(𝑖)} 

𝑒(𝑖) = 𝑑(𝑖) − �̅�𝑖�̅�𝑖−1 

�̅�𝑖 = �̅�𝑖−1 + 𝜇𝐷𝑖
−1�̅�𝑖

∗𝑒(𝑖)… … … … (3.1.3)  

3.2 Block Adaptive Filters 

In transform domain adaptive filtering, the convergence issue of LMS is rectified because of 

input data de-correlation by unitary transforms like DCT & DFT. When the issue is related to 

computational cost, Block Adaptive Filters are preferred. Because Block Adaptive Filter utilize 



Page | 17 
 

Block LMS & also the unitary transforms like DCT & DFT. In Block LMS the data processing 

is done block by block rather than sample by sample.   

 

Consider a FIR channel of length M. suppose the channel is excited by a zero mean random 

sequence. 

𝒖𝑖 = [𝑢(𝑖)  𝑢(𝑖 − 1)  𝑢(𝑖 − 2) …………𝑢(𝑖 − 𝑀 + 1)] 

𝒅(𝑖) = 𝒖𝑖𝑔 + 𝑣(𝑖) 

𝐺(𝑧) = 𝑔(0) + 𝑔(1)𝑧−1 + 𝑔(2)𝑧−2 + ………𝑔(𝑀 − 1)𝑧−𝑀+1 = ∑ 𝑔(𝑘)𝑧−𝑘

𝑀−1

𝑘=0

  

�̂�(𝑖) = 𝑢𝑖𝑤𝑖−1 

𝑒(𝑖) = 𝑑(𝑖) − �̂�(𝑖) 

𝑤𝑖 = 𝑤𝑖−1 + 𝜇𝑢𝑖
∗𝑒(𝑖)… … … … (3.2.1)  

The above set-up requires 𝑂(𝑀) number of operations per sample. But when M is too large in 

size then the cost of this implementation is very large & prohibitive. In these kind of situations 

adaptive implementation is preferred [18] – [20]. 

In this adaptive implementation by block adaptive method, the process is very similar to LMS. 

The error {𝑒(𝑖)}& the estimate {𝑑(𝑖)} is calculated in appropriate manner. The input data is 

converted to transformed regressor & processing is done in block-by-block manner rather than 

sample-by-sample manner. The resultant computation cost is reduced by a factor which is 

greater than one. Block adaptive filter has also better convergence than simple LMS because 

the eigenvalue spread of covariance matrix of transformed input regressor is reduced as 

compared to original input data. 
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Figure-3. 2 Mechanism of Transform Domain Filtering 

 

3.2.1 Block Convolution 
Suppose there is a long FIR filter. The long length of filter is responsible for high computational 

cost. We need to convert this long length into some blocks of small length without doing 

adaptation process [13] – [17]. So first of all block implementation process should be done. 

 

Now consider a long FIR filter having impulse response 𝑔 & its transfer function 𝐺(𝑧), z-

transform of input and output as {𝑈(𝑧), 𝑌(𝑧)}. Input and output in time domain are{𝑢(𝑖), 𝑦(𝑖)}. 

𝑌(𝑧) ≜ ∑ 𝑦(𝑖)
∞

𝑖=0
𝑧−𝑖 

  

𝑈(𝑧) ≜ ∑ 𝑢(𝑖)
∞

𝑖=0
𝑧−𝑖 

The relationship of input and output with filter in z-domain is- 

𝑌(𝑧) = 𝐺(𝑧)𝑈(𝑧) 
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Figure-3. 3 general input/output relationship 

 

A block is consist of several samples. Block processing means, processing of several samples 

at the same time. Hence it is called block processing. 

The input samples must be converted into blocks (suppose length of block is B), and we get 

same length blocks at the output stage. The input and output in block vector as- 

𝑢𝐵,𝑛 ≜ [

𝑢(𝑛𝐵 + 𝐵 − 1)
⋮

𝑢(𝑛𝐵 + 1)
𝑢(𝑛𝐵)

]                                         𝑦𝐵,𝑛 ≜ [

𝑦(𝑛𝐵 + 𝐵 − 1)
⋮

𝑦(𝑛𝐵 + 1)
𝑦(𝑛𝐵)

] 

Where B is block size & n is block index (no of blocks)  

For example – the block size B is 3, the relation of block vectors of input/output {𝑢𝐵,𝑛, 𝑦𝐵,𝑛} 

with input/output sequence{𝑢(𝑖), 𝑦(𝑖)} as- 

      𝑢(0)  𝑢(1)  𝑢(2)   → 𝑢3,0                                                                      𝑦(0)  𝑦(1)  𝑦(2)   → 𝑦3,0 

      𝑢(3)  𝑢(4)  𝑢(5)   → 𝑢3,1                                                                      𝑦(3)  𝑦(4)  𝑦(5)   → 𝑦3,1 

      𝑢(6)  𝑢(7)  𝑢(8)   → 𝑢3,2                                                                      𝑦(6)  𝑦(7)  𝑦(8)   → 𝑦3,2 

                     ⋮          ⋮ 

The input and output block vectors in z-domain can be represented as{𝑈𝐵(𝑧)𝑌𝐵(𝑧)}. 

 

 

Figure-3. 4 Input/output relationship in block manner 

The above relationship can be represented in mathematical form as- 

𝑈𝐵(𝑧) ≜ ∑ 𝑢𝐵,𝑛𝑧−𝑛∞
𝑛=0              𝑌𝐵(𝑧) ≜ ∑ 𝑦𝐵,𝑛𝑧−𝑛∞

𝑛=0  
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The block processing with input and output is done above in both domain. Now we have to 

deal with long length FIR filter𝐺(𝑧). The block size is B, hence we need to find B poly-phase 

component of FIR filter. Suppose the length of FIR filter is M. So each poly-phase component 

is of length M/B. 

  𝑃0(𝑧) = 𝑔(0) + 𝑔(𝐵)𝑧−1 + 𝑔(2𝐵)𝑧−2 + ⋯ 

  𝑃1(𝑧) = 𝑔(1) + 𝑔(𝐵 + 1)𝑧−1 + 𝑔(2𝐵 + 1)𝑧−2 + ⋯ 

  𝑃3(𝑧) = 𝑔(2) + 𝑔(𝐵 + 2)𝑧−1 + 𝑔(2𝐵 + 2)𝑧−2 + ⋯ 

                       ⋮ 

  𝑃𝐵−1(𝑧) = 𝑔(𝐵 − 1) + 𝑔(2𝐵 − 1)𝑧−1 + 𝑔(3𝐵 − 1)𝑧−2 + ⋯ 

Here it is observed that first B coefficients of FIR filter transfer function 𝐺(𝑧) becomes the 

first coefficients of 𝑃𝑘(𝑧) [13] – [17]. The second B coefficients of 𝐺(𝑧) becomes the second 

coefficients of 𝑃𝑘(𝑧) and so on.  

For example- B=3 and M=12, there will be three poly-phase components as- 

 

 𝑃0(𝑧) = 𝑔(0) + 𝑔(3)𝑧−1 + 𝑔(6)𝑧−2 + 𝑔(9)𝑧−3 

 𝑃1(𝑧) = 𝑔(1) + 𝑔(4)𝑧−1 + 𝑔(7)𝑧−2 + 𝑔(10)𝑧−3 

 𝑃2(𝑧) = 𝑔(2) + 𝑔(5)𝑧−1 + 𝑔(8)𝑧−2 + 𝑔(11)𝑧−3 

We can also represent 𝐺′(𝑧) in terms of 𝑃𝑘(𝑧). For e.g. B=3 

𝐺′(𝑧) = [

𝑃0(𝑧)

𝑧−1𝑃2(𝑧)

𝑧−1𝑃1(𝑧)

𝑃1(𝑧)
𝑃0(𝑧)

𝑧−1𝑃2(𝑧)

𝑃2(𝑧)
𝑃1(𝑧)
𝑃0(𝑧)

]… … … … (3.2.2) 

Here 𝐺′(𝑧)  is a pseudo circulant matrix. Generally when all element below the diagonal 

elements of a circulant matrix is multiplied by 𝑧−1 is known as pseudo circulant matrix. The 

input/output block vector can be related to filter in z-domain as- 

𝑌𝐵(𝑧) = 𝐺′(𝑧)𝑈𝐵(𝑧)… … … … (3.2.3) 
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The implementation of 𝐺(𝑧) is still not efficient. We need to define 𝐺′(𝑧) further specifically 

for practical point of view. 𝐺′(𝑧) Can be further factored as- 

𝐺′(𝑧) = 𝑃′(𝑧)𝑄(𝑧)… … … … (3.2.4) 

Here  𝑃′(𝑧) is 𝐵 × 2𝐵 − 1 matrix function which is a Toeplitz structure. Generally a circulant 

matrix is called as Toeplitz when identical entries along the diagonals with first row is 

circularly shifted to the right, one shift at a time in order to form other rows. For e.g. B=3 

𝑃′(𝑧) = [

  𝑃0(𝑧)  𝑃1(𝑧)      𝑃2(𝑧)        0               0

    0         𝑃0(𝑧)      𝑃1(𝑧)     𝑃2(𝑧)         0

      0            0           𝑃0(𝑧)      𝑃1(𝑧)   𝑃2(𝑧)
]… … … … (3.2.5) 

Where 𝑄(𝑧) is a (2𝐵 − 1) × 𝐵  matrix with two blocks (one upper block and other lower 

block) upper block is identity block and lower block is unit delay block. For e.g. B=3 

𝑄(𝑧) =

[
 
 
 
 
 

1 0 0
0 1 0
0 0 1

𝑧−1 0 0
0 𝑧−1 0

]
 
 
 
 
 

… … … … (3.2.6) 

 

3.2.2 Block Convolution by Using DFT 
Now the challenge is to use DFT in the block convolution scheme. When the work is done with 

DFT, the sequences are required to be power of two. So it is more suitable to define further 

{𝑃′(𝑧), 𝑄(𝑧)} as- 

  𝑃′′(𝑧) = [

  𝑃0(𝑧)  𝑃1(𝑧)      𝑃2(𝑧)        0               0          0 

    0         𝑃0(𝑧)      𝑃1(𝑧)     𝑃2(𝑧)         0         0

   0            0          𝑃0(𝑧)      𝑃1(𝑧)     𝑃2(𝑧)     0

]… … … … (3.2.7) 

 

𝑄′′(𝑧) =

[
 
 
 
 
 

1 0 0
0 1 0
0 0 1

𝑧−1 0 0
0 𝑧−1 0
0 0 𝑧−1]

 
 
 
 
 

… … … … (3.2.8) 

The new dimensions of {𝑃′′(𝑧), 𝑄′′(𝑧)} becomes 𝐵 × 2𝐵 and 2𝐵 × 𝐵 respectively by padding 

a column of zeros to 𝑃′(𝑧) and row of zeros to 𝑄(𝑧).  
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Formulation of Transfer Function-By using the matrices {𝑃′′(𝑧), 𝑄′′(𝑧)} as defined above 

an another matrix 𝐶(𝑧) we define as- 

𝐶(𝑧) =

[
 
 
 
 
 
 

  𝑃0(𝑧)  𝑃1(𝑧)      𝑃2(𝑧)        0               0          0 

    0         𝑃0(𝑧)      𝑃1(𝑧)     𝑃2(𝑧)         0         0

   0            0          𝑃0(𝑧)      𝑃1(𝑧)     𝑃2(𝑧)     0

 0          0        0                      𝑃0(𝑧)𝑃1(𝑧)         𝑃2(𝑧) 
𝑃2(𝑧)      0    0           0           𝑃0(𝑧)        𝑃1(𝑧)

   𝑃1(𝑧)          𝑃2(𝑧)        0             0            0        𝑃0(𝑧) ]
 
 
 
 
 
 

… … … … (3.2.9) 

 

 

Now 𝑃′′(𝑧) can be gain from the top three rows of 𝐶(𝑧) as- 

𝑃′′(𝑧) = [𝐼𝐵     0𝐵×𝐵]𝐶(𝑧)… … … … (3.2.10) 

Where 𝐼𝐵 denotes the identity matrix of dimension  𝐵 × 𝐵  and  0𝐵×𝐵 denotes the null matrix 

of dimension  × 𝐵 .   

Let’s define the DFT matrix of dimension 2𝐵 × 2𝐵  as- 

[𝐹]𝑘𝑚 ≜ 𝑒
−𝑗2𝜋𝑚𝑘

2𝐵                      𝑘,𝑚 = 0,1, …2𝐵 − 1 

 

A well-known result is that when any circulant matrix can be diagonalized by the DFT matrix 

[13] – [17]. In similar fashion the circulant matrix 𝐶(𝑧) can be diagonalized as- 

𝐶(𝑧) = 𝐹∗𝐿(𝑧)𝐹 … … … … (3.2.11) 

Where 𝐶(𝑧) is a diagonal matrix function which is defined as- 

𝐿(𝑧) =

[
 
 
 
𝐿0(𝑧)

𝐿1(𝑧)

 ⋱
𝐿2𝐵−1(𝑧)]

 
 
 

… … … … (3.2.12) 

Where 𝐿𝑘(𝑧) represents the series of sub-band FIR filters with length of each filter is M/B. We 

can say that the first row of 𝐶(𝑧) can be related to the diagonal entries of 𝐿(𝑧). For e.g. B=3, 

the relation can be defined that- 
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[
 
 
 
 
 
𝑃0(𝑧)

𝑃1(𝑧)
𝑃2(𝑧)

0
0
0 ]

 
 
 
 
 

= 𝐹

[
 
 
 
 
 
𝐿0(𝑧)

𝐿1(𝑧)
𝐿2(𝑧)
𝐿3(𝑧)
𝐿4(𝑧)
𝐿5(𝑧)]

 
 
 
 
 

… … … … (3.2.13) 

The above relation tells that poly-phased component can mapped into the diagonal component 

𝐿(𝑧) and vice-versa. 

Combining the equations and we get- 

𝐺′′(𝑧) = [𝐼𝐵     0𝐵×𝐵]𝐶(𝑧)𝑄′′(𝑧) 

𝐺′′(𝑧) = [𝐼𝐵      0𝐵×𝐵]𝐹∗𝐿(𝑧)𝐹𝑄′′(𝑧) 

The above mathematical representation can represented by diagram as- 

 

Figure-3. 5 Block convolution 

 

In time domain formulation the first matrix dimension is 2𝐵 × 𝐵. Hence we need to rearrange 

the input block vector to make 2𝐵 columns of input vector as- 

𝑢2𝐵,𝑛 = [
𝑢𝐵,𝑛

𝑢𝐵,𝑛−1
] 

 

For example: - at n=1 
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𝑢2𝐵,1 =

[
 
 
 
 
 
𝑢(5)

𝑢(4)
𝑢(3)
𝑢(2)
𝑢(1)
𝑢(0)]

 
 
 
 
 

 

The real effect of 𝑄′′(𝑧) is to convert serial to parallel data. In other way we can also represents 

the serial to parallel conversion as follows. Let ↓ 𝐵 denotes the decimator of order B, we can 

say that- 

   

 

Where the relation between input and output is- 𝑧(𝑛) = 𝑢(𝑛𝐵),            𝑛 = 0,1,2…… 

Here n represents lower rate signal and i represents higher rate signal. The input block vector 

of size 𝐵 can constructed by the above decimation implementation. After the block formation 

we have to put two consecutive blocks in a column which results a block vector {𝑢𝐵,𝑛, 𝑢𝐵,𝑛−1} 

.  

Figure-3. 6 Formation of two consecutive input blocks 

         

         

      

Figure: using 2𝐵 decimator formulation of block data vector 𝑐𝑜𝑙{𝑢𝐵,𝑛, 𝑢𝐵,𝑛−1} 

↓ 𝑩 𝑢(𝑖) 𝑧(𝑛) 
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After dealing with matrix 𝑄′′(𝑧) the resulting block vector processed by DFT matrix and hence 

resulting vector becomes 2𝐵 × 1 transformed vector as- 

𝑢2𝐵,𝑛
′ ≜ 

[
 
 
 
 

𝑢0
′ (𝑛)

𝑢1
′ (𝑛)
⋮
⋮

𝑢2𝐵−1
′ (𝑛)]

 
 
 
 

= 𝐹 [
𝑢𝐵,𝑛

𝑢𝐵,𝑛−1
] 

Now the entries 𝑢2𝐵,𝑛
′  are fed into the series of sub-band filters {𝐿𝑘(𝑧)} and the resulting 

outputs are processed by the conjugated DFT matrix𝐹∗. In the final response top 𝐵 outputs are 

kept and lower 𝐵 outputs are discarded. 

As the decimation process is done at the input stage to form samples into blocks, in the same 

fashion the response at output stage can be interpolated with the help of  ↑ 𝐵 interpolater. The 

interpolator convert the output data from parallel to serial fashion. The representation of 

functioning of interpolator is shown below. 

    

 

The mathematical representation of the above diagram is- 

 

𝑦(𝑖) = {
𝑧 (

𝑖

𝐵
)                     𝑖𝑓

𝑖

𝐵
 𝑖𝑠 𝑎𝑛 𝑖𝑛𝑡𝑒𝑟𝑔𝑒𝑟 

0                                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

 

𝑧(𝑛) 𝑦(𝑖) ↑ 𝑩 
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Figure-3. 7 Block convolution full 

 

Computational complexity-of block convolution has three steps as- 

Step -1:- The first transformed vector contains- 

𝐹 [
𝑢𝐵,𝑛

𝑢𝐵,𝑛−1
] 

It requires total number of 𝐵 log2 2𝐵 complex multiplications. 

Step-2:- Total number of 2B filters are present and each filter is having length M/B. Each filter 

requires M/B number of inner products. So total no of complex multiplications are 2𝐵 ∗
𝑀

𝐵
=

2𝑀. 

 

Step-3:- At last transform stag 2B outputs are generated. It requires total number of 𝐵 log2 2𝐵 

complex multiplications. 

For step 1-3, a total number of 2𝑀 + 2𝐵 log2 2𝐵 complex multiplications is required for each 

block of input of size B. 

The filter 𝐿𝑘(𝑧) is also calculated from 𝐺(𝑧) as- 
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[

𝐿0(𝑧)
𝐿1(𝑧)

⋮
𝐿2𝐵−1(𝑧)

] =
1

2𝐵
𝐹∗ [

𝑃0(𝑧)
⋮

𝑃𝐵−1(𝑧)
0𝐵×1

] 

For e.g. B=3, M=12 

[
 
 
 
 
 
𝑙00

𝑙10

𝑙20

𝑙30

𝑙40

𝑙50

𝑙01

𝑙11

𝑙21

𝑙31

𝑙41

𝑙51

𝑙02

𝑙12

𝑙22

𝑙32

𝑙42

𝑙52

𝑙03

𝑙13

𝑙23

𝑙33

𝑙43

𝑙53]
 
 
 
 
 

=
1

6
𝐹∗

[
 
 
 
 
 
𝑔(0)
𝑔(1)
𝑔(2)

0
0
0

𝑔(3)
𝑔(4)
𝑔(5)

0
0
0

𝑔(6)
𝑔(7)
𝑔(8)

0
0
0

𝑔(9)
𝑔(10)
𝑔(11)

0
0
0 ]

 
 
 
 
 

 

 

 

The computational cost required for above step is M/B DFT’s of size 2B each. The total cost 

becomes 𝑀 log2(2𝐵) complex multiplications. But in adaptive filter implementation phase 

𝐿𝑘(𝑧) is updated in every iteration. If the size of block is normalized, there will be 
𝑀

𝐵
log2(2𝐵) 

complex multiplication per input sample. 

Finally the total cost associated with time domain block convolution is- 

2𝑀

𝐵
+ (

𝑀

𝐵
+ 2) log2(2𝐵) 

Finally the conclusion is that – 

1> The direct convolution method requires 𝑂(𝑀) operations per sample. 

2> Frequency domain implementation requires 𝑂(2𝑀/𝐵) operations per sample. 

3> The reduction in computational complexity is decided by the block size B. 

4> But the larger block size B also results to delay in signal path. 

Comparison of computational complexity- 

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑑𝑜𝑚𝑎𝑖𝑛 𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡

𝑑𝑖𝑟𝑒𝑐𝑡 𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡
=

2𝑀

𝐵
+(

𝑀

𝐵
+2) log2(2𝐵)

𝑀
 … …… (3.2.14)  
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3.2.3 DFT Unconstrained Block Adaptive filter:- 
As discussed above the block adaptive implementation requires block-by-block processing 

with transform domain implementation of data. Both of these combined technique give better 

computational cost reduction as well as better convergence performance. Let’s make the 

analysis step-by-step;- 

Step 1> Convert the input repressor and noise signal in blocks and then make the two 

consecutive input block vector into block column-wise    

𝑢𝐵,𝑛 ≜ [

𝑢(𝑛𝐵 + 𝐵 − 1)
⋮

𝑢(𝑛𝐵 + 1)
𝑢(𝑛𝐵)

]      𝑣𝐵,𝑛 = [

𝑣(𝑛𝐵 + 𝐵 − 1)
⋮

𝑣(𝑛𝐵 + 1)
𝑣(𝑛𝐵)

]                       

𝑢2𝐵,𝑛 = [
𝑢𝐵,𝑛

𝑢𝐵,𝑛−1
]… … … … (3.2.15) 

Step 2- Now make the input block vector into transformed regressor by the DFT matrix- 

𝑢2𝐵,𝑛
′ = 𝐹 ∗ 𝑢2𝐵,𝑛 = 𝑐𝑜𝑙{𝑢𝑘

′ (𝑛),            𝑘 = 0,1, ……… ,2𝐵 − 1}… … … … (3.2.16) 

Where 𝑢𝑘
′ (𝑛) is a transformed regress foe each sub-band filter and length of 𝑢𝑘

′ (𝑛) for each k 

is M/B, which is represented as- 

𝑢𝑘
′ (𝑛) = [𝑢𝑘

′ (𝑛)……… 𝑢𝑘
′ (𝑛 −

𝑀

𝐵
+ 1)] ,             𝑘 = 0,1,2, ………2𝐵 − 1 

Step 3- The FIR filter of length B is converted into 2B sub-band filters, each having length 

M/B by the following relation (also explained above)- 

  

[

𝐿0(𝑧)
𝐿1(𝑧)

⋮
𝐿2𝐵−1(𝑧)

] =
1

2𝐵
𝐹∗ [

𝑃0(𝑧)
⋮

𝑃𝐵−1(𝑧)
0𝐵×1

]… … … … (3.2.17) 

Step 4- The desired output is calculated as structure of filter is depicted and converted into 

block vector of size B. 

𝑦𝑘
′ (𝑛) = 𝑢𝑘,𝑛

′ 𝐿𝑘,              𝑘 = 0,1, ……… ,2𝐵 − 1 

𝑑𝐵,𝑛 = [𝐼𝐵       0𝐵×𝐵]𝐹∗𝑦𝑘
′ (𝑛) + 𝑣𝐵,𝑛 

Step 5- The actual output is also calculated in same fashion as- 
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𝑦1𝑘
′ (𝑛) = 𝑢𝑘,𝑛

′ 𝑙𝑘,𝑛−1,              𝑘 = 0,1, ……… ,2𝐵 − 1 

�̂�𝐵,𝑛 = [𝐼𝐵       0𝐵×𝐵]𝐹∗𝑦1𝑘
′ (𝑛) 

Step 6- The error vector is difference of desired output vector and actual output vector- 

𝑒𝐵,𝑛 = 𝑑𝐵,𝑛 − �̂�𝐵,𝑛 

Step 7- This error vector is processed by DFT matrix and last B outputs are neglected as- 

𝑒2𝐵,𝑛
′ = 𝐹 [

𝐼𝐵
0𝐵×𝐵

] 𝑒𝐵,𝑛 = 𝑐𝑜𝑙{𝑒𝑘
′ (𝑛),               𝑘 = 0,1, ………2𝐵 − 1} 

Step 8- The weight of each sub-band filter is updated separately with normalized Block LMS 

as- 

𝑙𝑘,𝑛 = 𝑙𝑘,𝑛−1 +
𝜇

𝜆𝑘
𝑢𝑘,𝑛

′∗ 𝑒𝑘
′ (𝑛),            𝑘 = 0,1, ………2𝐵 − 1… … … … (3.2.18) 

Where is calculated as-                                       𝜆𝑘(𝑛) = 𝛽𝜆𝑘(𝑛 − 1) + (1 − 𝛽)|𝑢𝑘
′ (𝑛)|2 

Step 9-The actual output block vector and error block vector are interpolated with the help of 

size B interpolator as- 

�̂�𝐵,𝑛 = 𝑐𝑜𝑙{�̂�(𝑛𝐵 + 𝐵 − 1),……… , �̂�(𝑛𝐵 + 1), �̂�(𝑛𝐵)} 

 𝑒𝐵,𝑛 = 𝑐𝑜𝑙{𝑒(𝑛𝐵 + 𝐵 − 1),……… , 𝑒(𝑛𝐵 + 1), 𝑒(𝑛𝐵)} 

Step 10- Mean square error is calculated by the output of interpolator of error vector- 

𝑚𝑠𝑒 = 𝑒(𝑖).∗ 𝑒(𝑖) 
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Figure-3. 8 Unconstrained DFT Block Adaptive Filter 
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3.2.4 DFT Constrained Filter Implementation  
While computing for above DFT unconstrained scheme, we observe that the computation of 

𝑙𝑘,𝑛 is not satisfying the constraint of eq-222. It seems that for each iteration in time domain 

the following equation is not giving matrix whose last B rows are zero.  

𝐹

[
 
 
 
 

𝑙0,𝑛
𝑇

𝑙1,𝑛
𝑇

⋮
𝑙2𝐵−1,𝑛
𝑇 ]

 
 
 
 

 

  

To make the arrangement constrained equation - (3.2.13) must be satisfied after every iteration 

n, and it can be possible if multiply equation-(3.2.13) by [
𝐼𝐵

0𝐵×𝐵
] . 

It means the arrangement seems to be like- [
×

0𝐵×𝐵
] = [

𝐼𝐵
0𝐵×𝐵

] 𝐹

[
 
 
 
 

𝑙0,𝑛
𝑇

𝑙1,𝑛
𝑇

⋮
𝑙2𝐵−1,𝑛
𝑇 ]

 
 
 
 

 

We can also express the above relation in poly-phase component form as- 

[
 
 
 
 
 
 
 
 

𝑝0,𝑛
𝑇

𝑝1,𝑛
𝑇

⋮
𝑝𝐵−1,𝑛

𝑇

0𝐵×𝐵

]
 
 
 
 
 
 
 
 

= [
𝐼𝐵

0𝐵×𝐵
] 𝐹

[
 
 
 
 

𝑙0,𝑛
𝑇

𝑙1,𝑛
𝑇

⋮
𝑙2𝐵−1,𝑛
𝑇 ]

 
 
 
 

… … … … (3.2.19) 

In similar fashion we can also calculate the reverse by applying the following relation as- 

[
 
 
 
 

𝑙0,𝑛
𝑐𝑇

𝑙1,𝑛
𝑐𝑇

⋮
𝑙2𝐵−1,𝑛
𝑐𝑇 ]

 
 
 
 

=
1

2𝐵
𝐹∗

[
 
 
 
 
 
 
 
 

𝑝0,𝑛
𝑇

𝑝1,𝑛
𝑇

⋮
𝑝𝐵−1,𝑛

𝑇

0𝐵×𝐵

]
 
 
 
 
 
 
 
 

 

The new estimates 𝑙𝑘,𝑛
𝑐𝑇  are satisfying the product  
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𝐹

[
 
 
 
 

𝑙0,𝑛
𝑐𝑇

𝑙1,𝑛
𝑐𝑇

⋮
𝑙2𝐵−1,𝑛
𝑐𝑇 ]

 
 
 
 

 

Gives last B rows zeros in the resultant matrix. 

The whole process of unconstrained DFT implementation is repeated in constrained DFT block 

adaptive filter as above, but finally the sub-band weights are modified as- 

[
 
 
 
 

𝑙0,𝑛
𝑐𝑇

𝑙1,𝑛
𝑐𝑇

⋮
𝑙2𝐵−1,𝑛
𝑐𝑇 ]

 
 
 
 

=
1

2𝐵
𝐹∗ [

𝐼𝐵
0𝐵×𝐵

] 𝐹

[
 
 
 
 

𝑙0,𝑛
𝑇

𝑙1,𝑛
𝑇

⋮
𝑙2𝐵−1,𝑛
𝑇 ]

 
 
 
 

… … … … (3.2.20) 

 Other all parameter calculation is same. 
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Figure-3. 9 Constrained DFT Block Adaptive Filter 
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3.2.5 Overlap-Add DFT Block Adaptive Filter 

As DFT block implementation discussed above, in similar way all the terms can be calculated 

for overlap-Add Block Adaptive Filter. 

𝐺′(𝑧) = �̅�1(𝑧)�̅�1(𝑧) 

For e.g.  B=3 

�̅�1(𝑧) =

[
 
 
 
 
 

0
𝑃2(𝑧)
𝑃1(𝑧)
𝑃0(𝑧)

0
0

0
0

𝑃2(𝑧)
𝑃1(𝑧)
𝑃0(𝑧)

0

0
0
0

𝑃2(𝑧)
𝑃1(𝑧)
𝑃0(𝑧)]

 
 
 
 
 

 

�̅�1(𝑧) = [
𝑧−1

0
0

0
𝑧−1

0

0
0

𝑧−1

1
0
0

0
1
0

0
0
1
] 

 

�̅�1(𝑧) = 𝐶(𝑧) [
0𝐵×𝐵

𝐼𝐵
] 

 

𝐺′(𝑧) = �̅�1(𝑧)𝐶(𝑧) [
0𝐵×𝐵

𝐼𝐵
] = �̅�1(𝑧)𝐹

∗𝐿(𝑧)𝐹 [
0𝐵×𝐵

𝐼𝐵
] 

 

�̅�1(𝑧) = [0𝐵×𝐵 𝐼𝐵] + 𝑧−1[𝐼𝐵 0𝐵×𝐵] 

 

𝐺′(𝑧) = [0𝐵×𝐵 𝐼𝐵]𝐹∗𝐿(𝑧)𝐹 [
0𝐵×𝐵

𝐼𝐵
] + 𝑧−1[𝐼𝐵 0𝐵×𝐵]𝐹∗𝐿(𝑧)𝐹 [

0𝐵×𝐵

𝐼𝐵
]… … … … (3.2.21) 

 

The relation between the matrix 𝐹 [
0𝐵×𝐵

𝐼𝐵
] and 𝐹 [

𝐼𝐵
0𝐵×𝐵

] is given as- 

𝐹 [
𝐼𝐵

0𝐵×𝐵
] = 𝐽𝐹 [

0𝐵×𝐵

𝐼𝐵
] 

Where J is a matrix of size2𝐵 × 2𝐵 which is having ± alternatively. 
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𝐽 = 𝑑𝑖𝑎𝑔{1,−1,1, −1,…… ,1, −1} 

Substituting the above relation in equation- 

𝐺′(𝑧) = [0𝐵×𝐵 𝐼𝐵]𝐹∗𝐿(𝑧)(𝐼 + 𝑧−1)𝐹 [
0𝐵×𝐵

𝐼𝐵
]  

The new transformed input regression can be expressed as- 

𝑠𝑘
′ (𝑛) = 𝑢𝑘

′ (𝑛) + (−1)𝑘𝑢𝑘
′ (𝑛 − 1),               𝑘 = 0,1,2,………2𝐵 − 1… … … … (3.2.22) 

Unconstrained Overlap-Add DFT Block Adaptive filter:- 

Step 1- Convert the input repressor and noise signal in blocks and then make the two 

consecutive input block vector into block column-wise    

𝑢𝐵,𝑛 ≜ [

𝑢(𝑛𝐵 + 𝐵 − 1)
⋮

𝑢(𝑛𝐵 + 1)
𝑢(𝑛𝐵)

]      𝑣𝐵,𝑛 = [

𝑣(𝑛𝐵 + 𝐵 − 1)
⋮

𝑣(𝑛𝐵 + 1)
𝑣(𝑛𝐵)

]                       

𝑢2𝐵,𝑛 = [
0𝐵×1

𝑢𝐵,𝑛
] 

Step 2- Now make the input block vector into transformed regressor by the DFT matrix- 

𝑢2𝐵,𝑛
′ = 𝐹 ∗ 𝑢2𝐵,𝑛 = 𝑐𝑜𝑙{𝑢𝑘

′ (𝑛),            𝑘 = 0,1, ……… ,2𝐵 − 1} 

The input regressor block vector is obtained as- 

𝑠2𝐵,𝑛
′ = 𝑢2𝐵,𝑛

′ + 𝐽𝑢2𝐵,𝑛−1
′ = 𝑐𝑜𝑙{𝑠𝑘

′ (𝑛),         𝑘 = 0,1,2, ………2𝐵 − 1 } 

Where 𝑠𝑘
′ (𝑛) is a transformed regressor for each sub-band filter and length of 𝑠𝑘

′ (𝑛) for each k 

is M/B, which is represented as- 

𝑠𝑘
′ (𝑛) = [𝑠𝑘

′ (𝑛)……… 𝑠𝑘
′ (𝑛 −

𝑀

𝐵
+ 1)] ,             𝑘 = 0,1,2, ………2𝐵 − 1 

Step 3- The FIR filter of length B is converted into 2B sub-band filters, each having length 

M/B by the following relation (also explained above)- 

 

[

𝐿0(𝑧)
𝐿1(𝑧)

⋮
𝐿2𝐵−1(𝑧)

] =
1

2𝐵
𝐹∗ [

𝑃0(𝑧)
⋮

𝑃𝐵−1(𝑧)
0𝐵×1

] 
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Step 4- The desired output is calculated as structure of filter is depicted and converted into 

block vector of size B. 

𝑦𝑘
′ (𝑛) = 𝑠𝑘,𝑛

′ 𝐿𝑘,              𝑘 = 0,1, ……… ,2𝐵 − 1 

𝑑𝐵,𝑛 = [𝐼𝐵       0𝐵×𝐵]𝐹∗𝑦𝑘
′ (𝑛) + 𝑣𝐵,𝑛 

Step 5- The actual output is also calculated in same fashion as- 

𝑦1𝑘
′ (𝑛) = 𝑠𝑘,𝑛

′ 𝑙𝑘,𝑛−1,              𝑘 = 0,1, ……… ,2𝐵 − 1 

�̂�𝐵,𝑛 = [𝐼𝐵       0𝐵×𝐵]𝐹∗𝑦1𝑘
′ (𝑛) 

Step 6- The error vector is difference of desired output vector and actual output vector- 

𝑒𝐵,𝑛 = 𝑑𝐵,𝑛 − �̂�𝐵,𝑛 

Step 7- This error vector is processed by DFT matrix and last B outputs are neglected as- 

𝑒2𝐵,𝑛
′ = 𝐹 [

𝐼𝐵
0𝐵×𝐵

] 𝑒𝐵,𝑛 = 𝑐𝑜𝑙{𝑒𝑘
′ (𝑛),               𝑘 = 0,1, ………2𝐵 − 1} 

Step 8- The weight of each sub-band filter is updated separately with normalized Block LMS 

as- 

𝑙𝑘,𝑛 = 𝑙𝑘,𝑛−1 +
𝜇

𝜆𝑘
𝑠𝑘,𝑛

′∗ 𝑒𝑘
′ (𝑛),            𝑘 = 0,1, ………2𝐵 − 1… … … … (3.2.23) 

Where is calculated as-                                       𝜆𝑘(𝑛) = 𝛽λ𝑘(𝑛 − 1) + (1 − 𝛽)|𝑠𝑘
′ (𝑛)|2 

Step 9- The actual output block vector and error block vector are interpolated with the help of 

size B interpolator as- 

�̂�𝐵,𝑛 = 𝑐𝑜𝑙{�̂�(𝑛𝐵 + 𝐵 − 1),……… , �̂�(𝑛𝐵 + 1), �̂�(𝑛𝐵)} 

         𝑒𝐵,𝑛 = 𝑐𝑜𝑙{𝑒(𝑛𝐵 + 𝐵 − 1),……… , 𝑒(𝑛𝐵 + 1), 𝑒(𝑛𝐵)} 

Step 10- Mean square error is calculated by the output of interpolator of error vector- 

𝑚𝑠𝑒 = 𝑒(𝑖).∗ 𝑒(𝑖) 
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Figure-3. 10 Unconstrained Overlap-Add DFT Block Adaptive Filter 
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Figure-3. 11 Constrained Overlap-Add DFT Block Adaptive Filter 
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3.2.6 DHT Based Block Adaptive Filter 

A DHT matrix is defined as- 

[𝐻]𝑚,𝑘 =
1

√𝐾
[cos (

2𝑚𝑘𝜋

𝐾
) − sin (

2𝑚𝑘𝜋

𝐾
)] , .          𝑚, 𝑘 = 0,1,2, ……𝐾 − 1 

The Hartley matrix also satisfies both symmetric and orthogonal property as- 

 

𝐻𝐻𝑇 = 𝐻2 = 𝐼 

𝐴(𝑧) =

[
 
 
 
 
𝑎0(𝑧) 𝑎1(𝑧) 𝑎2(𝑧) 𝑎2(𝑧) 𝑎1(𝑧)

𝑎1(𝑧) 𝑎0(𝑧) 𝑎1(𝑧) 𝑎2(𝑧) 𝑎2(𝑧)

𝑎2(𝑧)
𝑎2(𝑧)
𝑎1(𝑧)

𝑎1(𝑧)
𝑎2(𝑧)
𝑎2(𝑧)

𝑎0(𝑧) 𝑎1(𝑧) 𝑎2(𝑧)
𝑎1(𝑧) 𝑎0(𝑧) 𝑎1(𝑧)
𝑎2(𝑧) 𝑎1(𝑧) 𝑎0(𝑧)]

 
 
 
 

… … … … (3.2.24) 

𝑃(𝑧) = [𝐼𝐵     0𝐵×2𝐵]𝐴(𝑧) [
01×2𝐵−1

𝐼2𝐵−1

0𝐵×2𝐵−1

]… … … … (3.2.25) 

. 

𝐴(𝑧) = 𝐻𝐿(𝑧)𝐻 … … … … (3.2.26) 

𝐿(𝑧) =

[
 
 
 
𝐿0(𝑧)

𝐿1(𝑧)

⋱
𝐿3𝐵−1(𝑧)]

 
 
 
… … … … (3.2.26) 

 

 

[
 
 
 
 
 
 
 

0
𝑃0(𝑧)

⋮
𝑃𝐵−1(𝑧)
0𝐵−1×1

𝑃𝐵−1(𝑧)
⋮

𝑃0(𝑧) ]
 
 
 
 
 
 
 

= 𝐻 [

𝐿0(𝑧)
𝐿0(𝑧)

⋮
𝐿3𝐵−1(𝑧)

]… … … … (3.2.27) 
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𝐺′(𝑧) = [𝐼𝐵     0𝐵×2𝐵]𝐴(𝑧) [
01×2𝐵−1

𝐼2𝐵−1

0𝐵×2𝐵−1

]𝑄(𝑧) 

𝐺′(𝑧) = [𝐼𝐵     0𝐵×2𝐵]𝐻𝐿(𝑧)𝐻 [
01×2𝐵−1

𝐼2𝐵−1

0𝐵×2𝐵−1

]𝑄(𝑧) 

𝐺′(𝑧) = [𝐼𝐵     0𝐵×2𝐵]𝐴(𝑧) [
01×2𝐵−1    

𝐼2𝐵−1

0𝐵×2𝐵−1

   
0
0
0
]𝑄(𝑧)… … … … (3.2.28) 

 

3.2.7 Unconstrained DHT Block Adaptive Filter Implementation  

Step 1- Convert the input repressor and noise signal in blocks and then make the two 

consecutive input block vector into block column-wise    

𝑢𝐵,𝑛 ≜ [

𝑢(𝑛𝐵 + 𝐵 − 1)
⋮

𝑢(𝑛𝐵 + 1)
𝑢(𝑛𝐵)

]      𝑣𝐵,𝑛 = [

𝑣(𝑛𝐵 + 𝐵 − 1)
⋮

𝑣(𝑛𝐵 + 1)
𝑣(𝑛𝐵)

]                       

𝑢2𝐵,𝑛 = [
𝑢𝐵,𝑛

𝑢𝐵,𝑛−1
] 

Step 2- Now make the input block vector into transformed regressor by the DHT matrix- 

𝑢𝐾,𝑛
′ = 𝐻 [

01×2𝐵−1    
𝐼2𝐵−1

0𝐵×2𝐵−1

   
0
0
0
] 𝑢2𝐵,𝑛 = 𝑐𝑜𝑙{𝑢𝑘

′ (𝑛),            𝑘 = 0,1, ……… ,𝐾 − 1} 

Where 𝑢𝑘
′ (𝑛) is a transformed regressor for each sub-band filter and length of 𝑢𝑘

′ (𝑛) for each 

k is M/B, which is represented as- 

𝑢𝑘
′ (𝑛) = [𝑢𝑘

′ (𝑛)……… 𝑢𝑘
′ (𝑛 −

𝑀

𝐵
+ 1)] ,             𝑘 = 0,1,2, ………𝐾 − 1 

Step 3- The FIR filter of length B is converted into K sub-band filters, each having length M/B 

by the following relation (also explained above)- 



Page | 41 
 

[

𝐿0(𝑧)
𝐿1(𝑧)

⋮
𝐿𝐾−1(𝑧)

] = 𝐻−1

[
 
 
 
 
 
 
 

0
𝑃0(𝑧)

⋮
𝑃𝐵−1(𝑧)
0𝐵−1×1

𝑃𝐵−1(𝑧)
⋮

𝑃0(𝑧) ]
 
 
 
 
 
 
 

… … … … (3.2.29) 

Step 4- The desired output is calculated as structure of filter is depicted and converted into 

block vector of size B. 

𝑦𝑘
′ (𝑛) = 𝑢𝑘,𝑛

′ 𝐿𝑘,              𝑘 = 0,1, ……… ,𝐾 − 1 

𝑑𝐵,𝑛 = [𝐼𝐵      0𝐵×2𝐵]𝐻 ∗ 𝑐𝑜𝑙{𝑦0
′(𝑛), ……… 𝑦𝐾−1

′ (𝑛)} + 𝑣𝐵,𝑛 

Step 5- The actual output is also calculated in same fashion as- 

𝑦1𝑘
′ (𝑛) = 𝑢𝑘,𝑛

′ 𝑙𝑘,𝑛−1,              𝑘 = 0,1, ……… ,𝐾 − 1 

�̂�𝐵,𝑛 = [𝐼𝐵      0𝐵×2𝐵]𝐻 ∗ 𝑐𝑜𝑙{𝑦10
′ (𝑛), ……… 𝑦1𝐾−1

′ (𝑛)} 

Step 6- The error vector is difference of desired output vector and actual output vector- 

𝑒𝐵,𝑛 = 𝑑𝐵,𝑛 − �̂�𝐵,𝑛 

Step 7- This error vector is processed by DHT matrix and last B outputs are neglected as- 

𝑒𝐾,𝑛
′ = 𝐻 [

𝐼𝐵
02𝐵×𝐵

] 𝑒𝐵,𝑛 = 𝑐𝑜𝑙{𝑒𝑘
′ (𝑛),               𝑘 = 0,1, ………𝐾 − 1} 

Step 8- The weight of each sub-band filter is updated separately with normalized Block LMS 

as- 

𝑙𝑘,𝑛 = 𝑙𝑘,𝑛−1 +
𝜇

𝜆𝑘
𝑢𝑘,𝑛

′∗ 𝑒𝑘
′ (𝑛),    𝑘 = 0,1, ……… (𝐾 − 1)… . . …… (3.2.30) 

Where is calculated as-                  𝜆𝑘(𝑛) = 𝛽 ∗ 𝜆𝑘(𝑛 − 1) + (1 − 𝛽)|𝑢𝑘
′ (𝑛)|2 

Step 9- The actual output block vector and error block vector are interpolated with the help of 

size B interpolator as- 

�̂�𝐵,𝑛 = 𝑐𝑜𝑙{�̂�(𝑛𝐵 + 𝐵 − 1),……… , �̂�(𝑛𝐵 + 1), �̂�(𝑛𝐵)} 

        𝑒𝐵,𝑛 = 𝑐𝑜𝑙{𝑒(𝑛𝐵 + 𝐵 − 1),……… , 𝑒(𝑛𝐵 + 1), 𝑒(𝑛𝐵)} 
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Step 10- Mean square error is calculated by the output of interpolator of error vector- 

𝑚𝑠𝑒 = 𝑒(𝑖).∗ 𝑒(𝑖) 

 

 

Figure-3. 12 Unconstrained DHT Block Adaptive Filter 
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3.2.6 Constrained DHT Block Adaptive Filter Implementation  

As discussed previous in case of DFT and DCT block adaptive filter implementation the 

significant difference is observed between unconstrained and constrained filter 

implementation. The same situation repeats here in case of DHT block adaptive filter 

implementation.  

The above unconstrained implementation is rectified at the final stage of sub-band filter weight 

update process. The new update equation is-  

 

[
 
 
 
𝑙0,𝑛
𝑐𝑇

𝑙1,𝑛
𝑐𝑇

⋮
𝑙𝐾−1
𝑐𝑇 ]

 
 
 

= 𝐻 [

0
0.5𝐼𝐵 0 0.5𝐼𝐵

#

0 0 0
0.5𝐼𝐵

# 0 0.5𝐼𝐵

]

[
 
 
 
𝑙0,𝑛
𝑇

𝑙1,𝑛
𝑇

⋮
𝑙𝐾−1
𝑇 ]

 
 
 

… … … … (3.2.31) 

Where 𝐼𝐵
# is anti-diagonal identity matrix. 
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Figure-3. 13 Constrained DHT Block Adaptive Filter 
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3.2.7 Block Adaptive Filter Based On DCT 

The block adaptive filter which based on discrete cosine transform (DCT) is motivated here. 

The DCT matrix of size 𝐾 × 𝐾 is defined as- 

[𝐶]𝑘,𝑚 = 𝛼(𝑘) cos (
𝑘(2𝑚+1)𝜋

2𝐾
) ,                  𝑘,𝑚 = 0,1,2, ………𝐾 − 1  

 

Where   𝛼(0) =
1

√𝐾
   &   𝛼(𝑘) = √

2

𝐾
  , 𝑘 ≠ 0. 𝑘  Denotes row index and 𝑚  denotes column 

index. As previous discussion we know that 𝐾 × 𝐾  matrix [𝐶]𝑘,𝑚   diagonalizes circulant 

matrix  𝐴(𝑧) which can be expressed as- 

𝐴(𝑧) = 𝑇(𝑧) + 𝐻(𝑧) + 𝐵(𝑧)… … … … (3.2.32) 

Where 𝑇(𝑧) is symmetric Toeplized matrix and 𝐻(𝑧) is Hankel matrix which is related to 

𝑇(𝑧), 𝐵(𝑧) is border matrix which is also related to 𝑇(𝑧). For e.g. - K=4  

𝑇(𝑧) = [

𝑡0(𝑧)
𝑡1(𝑧)
𝑡2(𝑧)
𝑡3(𝑧)

𝑡1(𝑧)
𝑡0(𝑧)
𝑡1(𝑧)
𝑡2(𝑧)

𝑡2(𝑧)
𝑡1(𝑧)
𝑡0(𝑧)
𝑡1(𝑧)

𝑡3(𝑧)
𝑡2(𝑧)
𝑡1(𝑧)
𝑡0(𝑧)

]… … … … (3.2.33) 

 

𝐻(𝑧) = [

𝑡0(𝑧)
𝑡1(𝑧)
𝑡2(𝑧)
𝑡3(𝑧)

𝑡1(𝑧)

𝑡2(𝑧)
𝑡3(𝑧)

0

𝑡2(𝑧)
𝑡3(𝑧)

0
−𝑡3(𝑧)

𝑡3(𝑧)
0

−𝑡3(𝑧)
−𝑡2(𝑧)

]… … … … (3.2.34) 

 

𝐵(𝑧) =

[
 
 
 
 
 −

𝑡0(𝑧)

√2
− 1

𝑡1(𝑧)

𝑡2(𝑧)

𝑡3(𝑧)

𝑡1(𝑧)
0
0
0

𝑡2(𝑧)
0
0
0

𝑡3(𝑧)
0
0
0

]
 
 
 
 
 

(√2 − 2)… … … … (3.2.35) 

For B=2 

𝑃(𝑧) = [
𝑃0(𝑧)

0

𝑃1(𝑧)
𝑃0(𝑧)

0
𝑃1(𝑧)

]… … … … (3.2.36) 
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𝑇(𝑧) =

[
 
 
 
 

0 𝑃0(𝑧)    𝑃0(𝑧)      0      0

𝑃0(𝑧)   0    𝑃0(𝑧) 𝑃0(𝑧) 0

𝑃0(𝑧) 𝑃0(𝑧) 0   𝑃0(𝑧) 𝑃0(𝑧)

0     𝑃0(𝑧) 𝑃0(𝑧)  0      𝑃0(𝑧)

0        0       𝑃0(𝑧)  𝑃0(𝑧)   0 ]
 
 
 
 

… … … … (3.2.37) 

𝐴(𝑧) =

[
 
 
 
 
 0 √2𝑃0(𝑧)    √2𝑃0(𝑧)      0      0

√2𝑃0(𝑧)   0    𝑃0(𝑧) 𝑃0(𝑧) 0

√2𝑃0(𝑧) 𝑃0(𝑧) 0   𝑃0(𝑧) 𝑃0(𝑧)

0     𝑃0(𝑧) 𝑃0(𝑧)  0      𝑃0(𝑧)

0        0       𝑃0(𝑧)  𝑃0(𝑧)   0 ]
 
 
 
 
 

… … … … (3.2.38) 

The dimension of 𝐾 × 𝐾 matrix is defined ass- 

𝐾 = {

7𝐵−4

2
           𝑖𝑓 𝐵 𝑖𝑠 𝑒𝑣𝑒𝑛

7𝐵−3

2
            𝑖𝑓 𝐵 𝑖𝑠 𝑜𝑑𝑑

 … … … … (3.2.39) 

For any one block of size B, the first row of 𝑇(𝑧) is having the formation like- 

[01×𝐵−1    𝑃0(𝑧)… 𝑃𝐵−1(𝑧)     01×𝛼] 

Which is having (B-1) no. of zeros in starting and 𝛼 no. of zeros in ending. 

Where 𝛼 is defined as- 

𝛼 = {

3𝐵−2

2
          𝑖𝑓 𝐵 𝑖𝑠 𝑒𝑣𝑒𝑛

3𝐵−1

2
          𝑖𝑓 𝐵 𝑖𝑠 𝑜𝑑𝑑

 … … … … (3.2.40) 

 

Then 𝑃(𝑧) is derived from 𝐴(𝑧) as- 

 

𝑃(𝑧) = [0𝐵×𝛾     𝐼𝐵     0𝐵×2𝐵−2]𝐴(𝑧) [
0𝛼×(2𝐵−1)

𝐼2𝐵−1
]… … … … (3.2.41) 

Where 𝛾 is defined as- 

𝛾 = {

𝐵

2
                𝑖𝑓 𝐵 𝑖𝑠 𝑒𝑣𝑒𝑛

𝐵 + 1

2
         𝑖𝑓 𝐵 𝑖𝑠 𝑜𝑑𝑑

… … … … (3.2.42) 
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The matrix 𝐴(𝑧) can be diagonalized by 𝐶 as- 

𝐴(𝑧) = 𝐶𝐿(𝑧)𝐶𝑇 … … … … (3.2.43) 

Where 𝐿(𝑧) = 𝑑𝑖𝑎𝑔{𝐿𝑘(𝑧)} has K entries. The relation is given as- 

√2𝐾

[
 
 
 
 
0(𝐵−1)×1

𝑃0(𝑧)
⋮

𝑃𝐵−1(𝑧)
0𝛼×1 ]

 
 
 
 

= 𝐶 [

𝐿0(𝑧)
𝐿1(𝑧)

⋮
𝐿𝐾−1(𝑧)

]… … … … (3.2.44) 

Now the final decomposition is – 

𝐺′(𝑧) = [0𝐵×𝛾     𝐼𝐵     0𝐵×2𝐵−2]𝐴(𝑧) [
0𝛼×(2𝐵−1)

𝐼2𝐵−1
] 𝑄(𝑧) 

𝐺′(𝑧) = [0𝐵×𝛾     𝐼𝐵     0𝐵×2𝐵−2]𝐶𝐿(𝑧)𝐶𝑇 [
0𝛼×(2𝐵−1)

𝐼2𝐵−1
] 𝑄(𝑧) 

𝐺′(𝑧) = [0𝐵×𝛾     𝐼𝐵     0𝐵×2𝐵−2]𝐶𝐿(𝑧)𝐶𝑇 [
0𝛼×(2𝐵−1)

𝐼2𝐵−1

0
0
]𝑄(𝑧)… … … … (3.2.45) 

 

3.2.8 Unconstrained DCT Block Adaptive Filter Implementation 

 As discussed above the block adaptive implementation requires block-by-block processing 

with transform domain implementation of data. Both of these combined technique give better 

computational cost reduction as well as better convergence performance. Let’s make the 

analysis step-by-step;- 

Step 1- Convert the input repressor and noise signal in blocks and then make the two 

consecutive input block vector into block column-wise    

𝑢𝐵,𝑛 ≜ [

𝑢(𝑛𝐵 + 𝐵 − 1)
⋮

𝑢(𝑛𝐵 + 1)
𝑢(𝑛𝐵)

]      𝑣𝐵,𝑛 = [

𝑣(𝑛𝐵 + 𝐵 − 1)
⋮

𝑣(𝑛𝐵 + 1)
𝑣(𝑛𝐵)

]                       

𝑢2𝐵,𝑛 = [
𝑢𝐵,𝑛

𝑢𝐵,𝑛−1
] 

Step 2- Now make the input block vector into transformed regressor by the DCT matrix- 

𝑢𝐾,𝑛
′ = 𝐶𝑇 [

0𝛼×(2𝐵−1)

𝐼2𝐵−1

0
0
] 𝑢2𝐵,𝑛 = 𝑐𝑜𝑙{𝑢𝑘

′ (𝑛),            𝑘 = 0,1, ……… ,𝐾 − 1} 
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Where 𝑢𝑘
′ (𝑛) is a transformed regressor for each sub-band filter and length of 𝑢𝑘

′ (𝑛) for each 

k is M/B, which is represented as- 

𝑢𝑘
′ (𝑛) = [𝑢𝑘

′ (𝑛)……… 𝑢𝑘
′ (𝑛 −

𝑀

𝐵
+ 1)] ,             𝑘 = 0,1,2, ………𝐾 − 1 

Step 3- The FIR filter of length B is converted into K sub-band filters, each having length M/B 

by the following relation (also explained above)- 

 

[

𝐿0(𝑧)
𝐿1(𝑧)

⋮
𝐿𝐾−1(𝑧)

] = √2𝐾𝐶−1

[
 
 
 
 
0(𝐵−1)×1

𝑃0(𝑧)
⋮

𝑃𝐵−1(𝑧)
0𝛼×1 ]

 
 
 
 

 

Step 4- The desired output is calculated as structure of filter is depicted and converted into 

block vector of size B. 

𝑦𝑘
′ (𝑛) = 𝑢𝑘,𝑛

′ 𝐿𝑘,              𝑘 = 0,1, ……… ,𝐾 − 1 

𝑑𝐵,𝑛 = [0𝐵×𝛾      𝐼𝐵      0 ]𝐶 ∗ 𝑐𝑜𝑙{𝑦0
′(𝑛),……𝑦𝐾−1

′ (𝑛)} + 𝑣𝐵,𝑛 

Step 5- The actual output is also calculated in same fashion as- 

𝑦1𝑘
′ (𝑛) = 𝑢𝑘,𝑛

′ 𝑙𝑘,𝑛−1,              𝑘 = 0,1, ……… ,2𝐵 − 1 

�̂�𝐵,𝑛 = [0𝐵×𝛾      𝐼𝐵      0 ]𝐶 ∗ 𝑐𝑜𝑙{𝑦0
′(𝑛),……𝑦1𝐾−1

′ (𝑛)} 

Step 6- The error vector is difference of desired output vector and actual output vector- 

𝑒𝐵,𝑛 = 𝑑𝐵,𝑛 − �̂�𝐵,𝑛 

Step 7- This error vector is processed by DFT matrix and last B outputs are neglected as- 

𝑒2𝐵,𝑛
′ = 𝐹 [

𝐼𝐵
0𝐵×𝐵

] 𝑒𝐵,𝑛 = 𝑐𝑜𝑙{𝑒𝑘
′ (𝑛),               𝑘 = 0,1, ………𝐾 − 1} 

Step 8- The weight of each sub-band filter is updated separately with normalized Block LMS 

as- 

𝑙𝑘,𝑛 = 𝑙𝑘,𝑛−1 +
𝜇

𝜆𝑘
𝑢𝑘,𝑛

′∗ 𝑒𝑘
′ (𝑛),        𝑘 = 0,1, … (𝐾 − 1) … … … … (3.2.46) 

Where is calculated as-                 𝜆𝑘(𝑛) = 𝛽𝜆𝑘(𝑛 − 1) + (1 − 𝛽)|𝑢𝑘
′ (𝑛)|2 
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Step 9- The actual output block vector and error block vector are interpolated with the help of 

size B interpolator as- 

�̂�𝐵,𝑛 = 𝑐𝑜𝑙{�̂�(𝑛𝐵 + 𝐵 − 1),……… , �̂�(𝑛𝐵 + 1), �̂�(𝑛𝐵)} 

        𝑒𝐵,𝑛 = 𝑐𝑜𝑙{𝑒(𝑛𝐵 + 𝐵 − 1),……… , 𝑒(𝑛𝐵 + 1), 𝑒(𝑛𝐵)} 

Step 10- Mean square error is calculated by the output of interpolator of error vector- 

𝑚𝑠𝑒 = 𝑒(𝑖).∗ 𝑒(𝑖) 

 

 

Figure-3. 14 Unconstrained DCT Block Adaptive Filter 
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3.2.9 Constrained DCT Block Adaptive Filter Implementation 
As discussed previous in case of DFT block adaptive filter implementation the significant 

difference is observed between unconstrained and constrained filter implementation. The same 

situation repeats here in case of DCT block adaptive filter implementation.  

The above unconstrained implementation is rectified at the final stage of sub-band filter weight 

update process. The new update equation is-  

[
 
 
 
𝑙0,𝑛
𝑐𝑇

𝑙1,𝑛
𝑐𝑇

⋮
𝑙𝐾−1
𝑐𝑇 ]

 
 
 

= 𝐶𝑇 [

0𝐵×(𝐵−1)

𝐼𝐵
0𝐵×𝛼

] 𝐶

[
 
 
 
𝑙0,𝑛
𝑇

𝑙1,𝑛
𝑇

⋮
𝑙𝐾−1
𝑇 ]

 
 
 

… … … … (3.2.47)  
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Figure-3. 15 Constrained DCT Block Adaptive Filter 

 

 

3.2.10 Computational complexity of overall block adaptive filter 

The computational complexity of all block adaptive filter can be calculated very easily. We are 

computing here computational cost for constrained DFT block adaptive filter. The entire process 

of cost evaluation is divided into four stages. 
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1. Decomposition of sub-bands of input and error signal 

The block size is B for input and error signal {𝑢(𝑖), 𝑒(𝑖)} and their transformed vectors 

{𝑢2𝐵,𝑛
′ , 𝑒2𝐵,𝑛

′ } respectively. For each block of B input samples, DFT of size 2B is needed. 

We know that cost of A size DFT is 
𝐴

2
log2 𝐴 complex operations.   

1

𝐵
2(𝐵 log2(𝐵)) = 2 log2 2𝐵    𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑠𝑎𝑚𝑝𝑙𝑒 

2. Updating process of sub-band filters 

There are 2B sub-band filters each having length 𝑀/𝐵  by using N-LMS with power 

normalization. The update is for one input block size B. P-long N-LMS filter needed about 

2P complex operations. So- 

1

𝐵
2𝐵

2𝑀

𝐵
=

4𝑀

𝐵
        𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑠𝑎𝑚𝑝𝑙𝑒 

3. Enforcement of constraints 

 The step in which sub-band filter weights 𝐿𝑘(𝑧) are processed with DFT matrix, total 2B 

sub-band filters with each of size M/B. the complexity is very similar to part one but here 

we need to compute for M/B transforms. 

1

𝐵
∗

𝑀

𝐵
(𝐵 log2(𝐵)) = 𝑀 log2 2𝐵           𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑠𝑎𝑚𝑝𝑙𝑒   

4. Inverse transformation  

The mapping of signal from 𝑦𝑘
′ (𝑛) into 𝑦𝑘(𝑛) needed one DFT of size 2B. 

𝐵 log2(2𝐵)         𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑠𝑎𝑚𝑝𝑙𝑒  … … … … (3.2.48)   

 

Finally we can say that  

4𝑀

𝐵
+ (

𝑀

𝐵
+ 3) log2(2𝐵)           𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑠𝑎𝑚𝑝𝑙𝑒  

 The over-all conclusion is that the computational cost is 𝑂(𝑀/𝐵) operations per sample where 

as in simple FIR filter it is 𝑂(𝑀) operations per samples. 
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CHAPTER 4 

FREQUENCY DOMAIN FILTERING BY UNITARY TRANSFORMS 

IN DIFFUSION & INCREMENTAL STRATEGIES OVER 

DISTRIBUTED NETWORKS  

  

By the help of unitary transforms like DCT & DFT we can improve the convergence performance 

of an adaptive filter. The unitary transforms DFT & DCT have orthogonal properties, which are 

helpful in input data de-correlation. Hence the eigen value spread of covariance matrix of input 

data is less and we can easily get better convergence performance. Two basic steps must be 

followed in this implementation- 

1>   The input regressor must be processed by transform matrix at each node. 

2>  Power normalization of transformed input regressor at each node. 

Let’s s denotes the no. of nodes (𝑠 = 1,2, ……𝑁 ). N denotes total no. of nodes. 

The weight updating equation of Adaptive Filter is- 

𝑊𝑠,𝑖 = 𝑊𝑠,𝑖−1 + 𝜇𝑢𝑠,𝑖
′ (𝑑𝑠(𝑖) − 𝑢𝑠,𝑖𝑊𝑠,𝑖−1),             𝑠 = 1,2, ……𝑁 

The length of filter is considered as 𝑀. So the size unitary transform matrix is 𝑀 × 𝑀. 

The DFT matrix is defined as- 

[𝐹]𝑘𝑚 =
1

√𝑀
𝑒−

𝑗2𝜋𝑚𝑘
𝑀 ,                    𝑘,𝑚 = 0,1,2, ………𝑀 − 1 

Similarly the DCT matrix is defined as- 

[𝐶]𝑘𝑚 = 𝛼(𝑘) cos (
𝑘(2𝑚 + 1)𝜋

2𝑀
) ,                      𝑘, 𝑚 = 0,1,2, ………𝑀 − 1 

Where  

𝛼(0) =
1

√𝑀
         𝑎𝑛𝑑         𝛼(𝑘) =

2

√𝑀
    𝑓𝑜𝑟 𝑘 ≠ 0 

The transformed regressor is – 

�̅�𝑠,𝑖 = 𝑢𝑠,𝑖𝑇 

Which give the transformed regressor in DFT & DCT as- 

 

 

 

 

𝑭 𝑪 

 

𝒖𝒔,𝒊 

 

𝒖𝒔,𝒊 

 

�̅�𝒔,𝒊 �̅�𝒔,𝒊 
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Now the weight matrix of filter is also processed by unitary transform matrix as- 

�̅�𝑠,𝑖 = 𝑇∗𝑊𝑠,𝑖,         𝑠 = 1,2, ……𝑁  

Now the weight updating equation can be written as- 

�̅�𝑠,𝑖 = �̅�𝑠,𝑖−1 + 𝜇�̅�𝑠,𝑖
∗ (𝑑𝑠(𝑖) − �̅�𝑠,𝑖𝑊𝑠,𝑖−1),    �̅�𝑠,−1 = 0,   𝑠 = 1,…𝑁       … (4.1)  

Now in order to proceed for power normalization process, means the input regressor is divide 

by input power at each node to normalize. 

Let’s define a new term – 

𝜆𝑠,𝑘(𝑖) = 𝛽𝜆𝑠,𝑘(𝑖 − 1) + (1 − 𝛽)|�̅�𝑠,𝑖(𝑘)|
2
 ,    𝑘 = 0,1,2,…𝑀 − 1, 𝑠 = 1,2, …𝑁 … (4.2) 

Where 0 ≪ 𝛽 < 1.generally 𝛽 is very close to one �̅�𝑖(𝑘) denotes the k-th entry of regressor �̅�𝑖 

With the help of this power normalization factor, a diagonal matrix D is defined as – 

𝐷𝑠,𝑖 = 𝑑𝑖𝑎𝑔{𝜆𝑠,𝑘(𝑖)}…… (4.3) 

Finally including all required concept, the weight updating equation becomes- 

�̅�𝑠,𝑖 = �̅�𝑠,𝑖−1 + 𝜇𝐷𝑠,𝑖
−1�̅�𝑠,𝑖

∗ 𝑒𝑠(𝑖)…… (4.4) 
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Figure 4. 1 Working of nodes in Incremental strategy by Transform Domain Filtering 
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Figure 4. 2 Working of nodes in Diffusion strategy by Transform Domain Filtering 
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4.1 Block adaptive filtering in diffusion strategy over distributed 

network 

A distributed network containing many nodes and nodes are connected to each other by diffusion 

co-operative scheme. The purpose of each node is to estimate desire parameter of interest by 

exchanging information with pre-defined neighbouring nodes. Each node is considered as an 

adaptive filter. As many of block adaptive filters are discussed above, the important thing is that, 

each filter is further divided into many sub filters. The number of sub-filter of a particular 

adaptive filter is depends on the size of block B.  

We can consider a particular node as a group of sub-node. Suppose a node is exchanging data 

with other node, it means all the sub-nodes of that particular node are exchanging information 

with all sub-nodes of other node. Each sub-node can exchanging the information with other sub-

node at equal position. Foe e.g. node A and B are sharing information to each other, then first 

sub-node of node A can exchange information with first sub-node of node B.  For e.g. 4 nodes 

are in a network and connected to each other and each node is having 4 sub nodes as shown- 

 

 

Figure 4. 3 Nodes with four sub nodes 
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Figure 4. 4 The connectivity between sub-nodes of each node 

       

 

 

 

4.2 DFT block adaptive filtering Processing in diffusion co-operative 

scheme 

1> Block Adaptive filter based on DFT :-  

Each node is considered here as a block adaptive filter, which is consisting of many sub-nodes.  

The sub-nodes are represented by k. total no of modes are N and node is represented by s.    

Step 1- Convert the input repressor and noise signal of each node in blocks and then make the 

two consecutive input block vector into block column-wise    
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𝑢𝑠,𝐵,𝑛 ≜ [

𝑢𝑠(𝑛𝐵+𝐵−1)

⋮
𝑢𝑠(𝑛𝐵+1)

𝑢𝑠(𝑛𝐵)

]      𝑣𝑠,𝐵,𝑛 = [

𝑣𝑠(𝑛𝐵+𝐵−1)

⋮
𝑣𝑠(𝑛𝐵+1)

𝑣𝑠(𝑛𝐵)

]                       

𝑢𝑠,2𝐵,𝑛 = [
𝑢𝑠,𝐵,𝑛

𝑢𝑠,𝐵,𝑛−1
] 

Step 2- Now make the input block vector into transformed regressor at each node s by the DFT 

matrix- 

𝑢𝑠,2𝐵,𝑛
′ = 𝐹 ∗ 𝑢𝑠,2𝐵,𝑛 = 𝑐𝑜𝑙{𝑢𝑠,𝑘

′ (𝑛),            𝑠 = 1,2, …𝑁,        𝑘 = 0,1,2𝐵 − 1} 

Where 𝑢𝑠,𝑘
′ (𝑛)a transformed regressor is for each node s and each sub-band filter k and length 

of 𝑢𝑠,𝑘
′ (𝑛) is M/B for each k, which is represented as- 

𝑢𝑠,𝑘
′ (𝑛) = [𝑢𝑘

′ (𝑛)……… 𝑢𝑠,𝑘
′ (𝑛 −

𝑀

𝐵
+ 1)] ,           𝑠 = 1,2, …𝑁, 𝑘 = 0,1, … 2𝐵 − 1 

Step 3- The FIR filter of length M is converted into 2B sub-band filters, each having length 

M/B by the following relation (also explained above)- 

[

𝐿𝑠,0(𝑧)

𝐿𝑠,1(𝑧)
⋮

𝐿𝑠,2𝐵−1(𝑧)

] =
1

2𝐵
𝐹∗ [

𝑃𝑠,0(𝑧)

⋮
𝑃𝑠,𝐵−1(𝑧)

0𝐵×1

]…… (4.5) 

Step 4- The desired output is calculated as structure of filter is depicted and converted into 

block vector of size B. 

𝑦𝑠,𝑘
′ (𝑛) = 𝑢𝑠,𝑘,𝑛

′ 𝐿𝑠,𝑘,              𝑘 = 0,1, ……… ,2𝐵 − 1…… (4.6) 

𝑑𝑠,𝐵,𝑛 = [𝐼𝐵      0𝐵×𝐵]𝐹∗𝑦𝑠,𝑘
′ (𝑛) + 𝑣𝑠,𝐵,𝑛 …… (4.7) 

Step 5- The actual output is also calculated in same fashion as- 

𝑦1𝑠,𝑘
′ (𝑛) = 𝑢𝑠,𝑘,𝑛

′ 𝑙𝑠,𝑘,𝑛−1,              𝑘 = 0,1, ……… ,2𝐵 − 1 

�̂�𝑠,𝐵,𝑛 = [𝐼𝐵      0𝐵×𝐵]𝐹∗𝑦1𝑠,𝑘
′ (𝑛)…… (4.8) 

Step 6- The error vector is difference of desired output vector and actual output vector- 

𝑒𝑠,𝐵,𝑛 = 𝑑𝑠,𝐵,𝑛 − �̂�𝑠,𝐵,𝑛 

Step 7- This error vector is processed by DFT matrix and last B outputs are neglected as- 
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𝑒𝑠,2𝐵,𝑛
′ = 𝐹 [

𝐼𝐵
0𝐵×𝐵

] 𝑒𝑠,𝐵,𝑛 = 𝑐𝑜𝑙{𝑒𝑠,𝑘
′ (𝑛),               𝑘 = 0,1, ………2𝐵 − 1} 

Step 8- The weight of each sub-band filter is updated separately with normalized Block LMS 

as- 

𝑙𝑠,𝑘,𝑛 = 𝑙𝑠,𝑘,𝑛−1 +
𝜇

𝜆𝑘
𝑢𝑠,𝑘,𝑛

′∗ 𝑒𝑠,𝑘
′ (𝑛),            𝑘 = 0,1, … 2𝐵 − 1   &  𝑠 = 1,2, …𝑁 …… (4.9) 

Where 𝜆𝑠,𝑘 is calculated as- 

 𝜆𝑠,𝑘(𝑛) = 𝛽𝜆𝑠,𝑘(𝑛 − 1) + (1 − 𝛽)|𝑢𝑠,𝑘
′ (𝑛)|

2
 ,       𝑠 = 1,2, …𝑁                 …  … (4.10)                                 

Step 9- The actual output block vector and error block vector are interpolated with the help of 

size B interpolator as- 

�̂�𝑠,𝐵,𝑛 = 𝑐𝑜𝑙{�̂�𝑠(𝑛𝐵 + 𝐵 − 1),……… , �̂�𝑠(𝑛𝐵 + 1), �̂�𝑠(𝑛𝐵)} 

       𝑒𝑠,𝐵,𝑛 = 𝑐𝑜𝑙{𝑒𝑠(𝑛𝐵 + 𝐵 − 1),……… , 𝑒𝑠(𝑛𝐵 + 1), 𝑒𝑠(𝑛𝐵)} 
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CHAPTER 5 

RESULTS    

 

Figure-5. 1 Comparison of LMS, DFT-LMS & DCT-LMS 

𝜇 = 0.07 

𝑀 = 5 

𝛽 = 0.9 
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Figure-5. 2  Diffusion convergence performance 

 

Figure-5. 3 Incremental convergence performance 
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Figure-5. 4  Overlap-Add DFT Block Adaptive Filter 

 

Figure-5. 5 DFT Block Adaptive Filter 
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Figure-5. 6 DCT Block Adaptive Filter 

 

Figure-5. 7 DFT Block Adaptive Filter in Diffusion Strategy 
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Figure-5. 8 Overlap-Add DFT Block Adaptive Filter in Diffusion Strategy 

 

 

Figure-5. 9 DHT Block Adaptive Filter 
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Figure 1 DHT Block Adaptive Filter 

CHAPTER 6 

CONCLUSION & FUTURE WORK    

 

By using unitary transforms DCT & DFT; the convergence performance is improved in both 

diffusion and incremental co-operation schemes. The DCT gives better results than DFT in 

convergence performance. The simulation results are shown above.  

Similarly block adaptive filter of many types like DFT, DCT, DHT and Overlap-Add DFT are 

employed successfully in both constrained and unconstrained form. Constrained form of these 

filters gives better results. Mainly block filter are used to reduce the computational cost. Here 

we found that the cost is reduced to 𝑂(𝑀/𝐵) operations per sample which is  𝑂(𝑀) operations 

per sample in simple filter. DFT and Overlap-Add block adaptive filters are giving better results 

and other two are more sensitive to noise. So DFT and Overlap-Add block adaptive filters are 

successfully employed in diffusion co-operation scheme and simulation results are shown 

above. 

 

For future work point of view, we will study other transforms like KLT, DWT etc. and try to 

apply these transforms in block adaptive filters. The existing block adaptive filter expression 

should be look beyond the straight forward algebra to modify the existing filters.  

Similarly in diffusion we will focus on other parameter to exchange with other nodes like input 

data, power of input in order to increase the efficiency of the distributed networks.     
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