

Transform Domain Filtering in Incremental and

Diffusion Strategies over Distributed Networks

A Thesis submitted in partial fulfillment of the Requirements for the degree of

Master of Technology

In

SIGNAL AND IMAGE PROCESSING

by

Sumit Kumar

Roll No: 212EC6189

Department of Electronics and Communication Engineering

National Institute of Technology Rourkela

Rourkela, Odisha, 769008

May 2014

CORE Metadata, citation and similar papers at core.ac.uk

Provided by ethesis@nitr

https://core.ac.uk/display/53190167?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Transform Domain Filtering in Incremental and

Diffusion Strategies over Distributed Networks

A Thesis submitted in partial fulfillment of the Requirements for the degree of

Master of Technology

In

SIGNAL AND IMAGE PROCESSING

by

Sumit Kumar

Roll No: 212EC6189

Under the Guidance of

Prof. U. K. Sahoo

Department of Electronics and Communication Engineering

National Institute of Technology Rourkela

Rourkela, Odisha, 769008

May 2014

CERTIFICATE

DEPARTMENT OF ELECTRONICS AND COMMUNICATION

ENGINEERING

NATIONAL INSTITUTE OF TECHNOLOGY, ROURKELA

ROURKELA- 769008, ODISHA, INDIA

This is to certify that the work in this thesis entitled “Transform Domain Filtering in

Incremental and Diffusion Strategies over Distributed Networks” by Mr.

SUMIT KUMAR is a record of an original research work carried out by his during 2013-2014

under my supervision and guidance in partial fulfilment of the requirement for the award of the

degree of Master of Technology in Electronics and Communication Engineering (Signal and

Image Processing), National Institute of Technology, Rourkela. Neither this thesis nor any part

of it, to the best of my knowledge, has been submitted for any degree or diploma elsewhere.

Place: NIT Rourkela Prof. U. K. Sahoo

Date: 30th May 2014 Assistant Professor

Declaration

I certify that

a) The work comprised in the thesis is original and is done by myself under the

supervision of my supervisor.

b) The work has not been submitted to any other institute for any degree or

diploma.

c) I have followed the guidelines provided by the Institute in writing the thesis.

d) Whenever I have used materials (data, theoretical analysis, and text) from

other sources, I have given due credit to them in the text of the thesis and

giving their details in the references.

e) Whenever I have quoted written materials from other sources, I have put them

under quotation marks and given due credit to the sources by citing them and

giving required details in the references.

DEPARTMENT OF ELECTRONICS AND COMMUNICATION

ENGINEERING

NATIONAL INSTITUTE OF TECHNOLOGY, ROURKELA

ROURKELA- 769008, ODISHA, INDIA

Sumit Kumar

 212EC6189

Page | 1

Acknowledgements

The work posed in this thesis is by far the most substantial attainment in my life and it would

be unimaginable without people who affirmed me and believed in me. First and foremost I

evince my profound reverence and deep regards to my guide Prof. U. K. Sahoo for exemplary

guidance, supervising and constant encouragement throughout the course of this thesis. A

gentleman embodied, in true form and spirit, I consider it to my good fortune to have

consociated with him.

I would like to evince a deep sense of gratitude to estimable Prof. S. Meher, Head of the

Department of Electronics and Communication Engineering for providing us with best

facilities and his timely suggestions.

My special thanks to Prof. L.P. Roy, Prof. A. K. Sahoo of Department of Electronics and

Communication Engineering for their constant inspiration and encouragement during my

research. I want to thank all other faculty members of Department of Electronics and

Communication Engineering for their constant support and encouragement during my research.

My special thanks to Ph.D. scholars Sananda Kumar for their help, cooperation and

encouragement. I would like to thank all my friends who made my journey at NIT Rourkela an

indelible and gratifying experience.

Finally, my heartfelt gratitude towards my family for their tireless love and support throughout

my life. They taught me the value of hard work by their own life example. They gave me

tremendous support during my stay in NIT Rourkela.

Sumit Kumar

Page | 2

List of contents

Chapter no. Page no

ACKNOWLEDGEMENT 1

ABSTRACT 5

CHAPTER-1 INTRODUCTION 6

CHAPTER-2 DISTRIBUTED NETWORKS & DISTRIBUTED STRATEGIES 8

 2.1 INCREMENTAL CO-OPERATIVE STRATEGY 8

 2.2 DIFFUSION CO-OPERATIVE STRATEGY 10

CHAPTER-3 TRANSFORM DOMAIN & BLOCK ADAPTIVE FILTERING 13

 3.1 FREQUENCY DOMAIN PROCESSING BY UNITARY TRANSFORMS 13

 3.1.1 IMPLEMENTATION OF DFT-LMS 14

 3.1.2 IMPLEMENTATION OF DCT-LMS 16

 3.2 BLOCK ADAPTIVE FILTERS 16

 3.2.1 BLOCK CONVOLUTION 18

 3.2.2 BLOCK CONVOLUTION BY USING DFT 21

 3.2.3 DFT UNCONSTRAINED BLOCK ADAPTIVE FILTER 28

 3.2.4 DFT CONSTRAINED FILTER IMPLEMENTATION 31

 3.2.5 OVERLAP-ADD DFT BLOCK ADAPTIVE FILTER 34

 3.2.6 DHT BASED BLOCK ADAPTIVE FILTER 39

 3.2.7 UNCONSTRAINED DHT BLOCK ADAPTIVE FILTER

 IMPLEMENTATION 38

 3.2.6 CONSTRAINED DHT BLOCK ADAPTIVE FILTER

 IMPLEMENTATION 43

 3.2.7 BLOCK ADAPTIVE FILTER BASED ON DCT 45

 3.2.8 UNCONSTRAINED DCT BLOCK ADAPTIVE FLTER

 IMPLEMENTATION 47

 3.2.9 CONSTRAINED DCT BLOCK ADAPTIVE FILTER IMPLEMENTATION 50

 3.2.10 COMPUTATIONAL COMPLEXITY OF OVERALL

 BLOCK ADAPTIVE FILTER 51

Page | 3

CHAPTER-4 FREQUENCY DOMAIN FILTERING BY UNITARY TRANSFORMS

 IN DIFFUSION & INCREMENTAL STRATEGIES OVER DISTRIBUTED N/W 53

 4.1 BLOCK ADAPTIVE FILTERING IN DIFFUSION STRATEGY

 OVER DISTRIBUTED NETWORK 57

 4.2 DFT BLOCK ADAPTIVE FILTERING PROCESSING IN DIFFUSION

 CO-OPERATIVE SCHEME 58

CHAPTER-5 RESULTS 61

CHAPTER-6 CONCLUSION & FUTURE WORK 66

REFERENCE 67

Page | 4

List of Figures

Figure-2. 1 Incremental strategy 9

Figure-2. 2 Processing by node k in Incremental co-operation strategy 10

Figure-2. 3Processing by node k in diffusion co-operative scheme 11

Figure-2. 4 A distributed network with 7 nodes in diffusion co-operation scheme 11

Figure-2. 5 A distributed network with 20 nodes in diffusion co-operation scheme 12

Figure-3. 1 Transformed input regressor 13

Figure-3. 2 Mechanism of Transform Domain Filtering 18

Figure-3. 3 general input/output relationship 19

Figure-3. 4 Input/output relationship in block manner 19

Figure-3. 5 Block convolution 23

Figure-3. 6 Formation of two consecutive input blocks 24

Figure-3. 7 Block convolution full 26

Figure-3. 8 Unconstrained DFT Block Adaptive Filter 30

Figure-3. 9 Constrained DFT Block Adaptive Filter 33

Figure-3. 10 Unconstrained Overlap-Add DFT Block Adaptive Filter 37

Figure-3. 11 Constrained Overlap-Add DFT Block Adaptive Filter 38

Figure-3. 12 Unconstrained DHT Block Adaptive Filter 42

Figure-3. 13 Constrained DHT Block Adaptive Filter 44

Figure-3. 14 Unconstrained DCT Block Adaptive Filter 49

Figure-3. 15 Constrained DCT Block Adaptive Filter 51

Figure 4. 1 Working of nodes in Incremental strategy by Transform Domain Filtering 55

Figure 4. 2 Working of nodes in Diffusion strategy by Transform Domain Filtering 56

Figure 4. 3 Nodes with four sub nodes 57

Figure 4. 4 The connectivity between sub-nodes of each node 58

Figure-5. 1 Comparison of LMS, DFT-LMS & DCT-LMS 61

Figure-5. 2 Diffusion convergence performance 62

Figure-5. 3 Incremental convergence performance 62

Figure-5. 4 Overlap-Add DFT Block Adaptive Filter 63

Figure-5. 5 DFT Block Adaptive Filter 63

Figure-5. 6 DCT Block Adaptive Filter 64

Figure-5. 7 DFT Block Adaptive Filter in Diffusion Strategy 64

Figure-5. 8 Overlap-Add DFT Block Adaptive Filter in Diffusion Strategy 65

Figure-5. 9 DHT Block Adaptive Filter 65

Page | 5

Abstract

 We analyse incremental and diffusion co-operative schemes in which nodes share information

to some neighbour nodes in order to estimate desired parameter of interest locally in the

presence of noise. Each node works as an adaptive filter and having its own learning ability. In

incremental co-operative fashion a node takes information from previous node and after local

estimation the information is sent to next node whereas in diffusion the input is taken from

various nodes so that after each iteration the behaviour of distributed network is observed. We

employ LMS structure for updating the observations.

The convergence performance and computational complexity of LMS-filter is very important

consideration for the point of view of speed boost and cost reduction. The convergence

performance of a filter depends on eigenvalue spread of covariance matrix of input data or in

other words inversely proportional to the eigenvalue spread of the input data. If input data is

de-correlated the eigenvalue spread is less and if input data is correlated the eigenvalue spread

is more. Transform domain filter has data de-correlation properties of transforms like DCT &

DFT. The data de-correlation by the unitary transforms is depends on the orthogonal property

of individual transform. Hence we get improved convergence performance by applying

transform domain to input data followed by power normalization of input data. If the input data

is fully de-correlated the covariance matrix of input data is proportional to the identity matrix.

Similarly when a FIR filter has long length of filter coefficients, then the computation cost

becomes very high. Which results to time consuming for real time applications. Block adaptive

filter makes processing block-by-block rather sample-by-sample in order to reduce the cost

factor. Block Adaptive filters of various type are employed to reduce the computational cost of

filter. Block adaptive filters are employed via DFT, DCT, DHT and Overlap-Add DFT

methods, which are capable to lead better convergence performance as well as better cost

reduction.

We achieved good convergence performance and less computational cost. The response in

simulation seems very good and mean square error (MSE) is plotted for various methods.

Key-words: - Diffusion, Distributed Network, DFT, DCT, DHT, Overlap-Add DFT, Block

Adaptive Filter.

Page | 6

CHAPTER 1

INTRODUCTION

We have a distributed network in which many nodes are distributed spatially. The work of

nodes is to observe the temporal data which is coming from various spatial resources of vary

different profiles in statistical sense. The nodes have to observe the desired parameter of

interest which is coming from one or more spatially resources. The unwanted observations are

kept in category of noise. In diffusion co-operative scheme the nodes exchange information

with some other neighborhood nodes and update the observations every iteration of time. Each

node works as an individual adaptive filter in order to estimate the desired parameter through

local observations [1] – [2]. The estimation of desired parameter is done individually by each

node and these estimations are locally fused to neighboring connected nodes for their further

estimation respectively. Time to time local estimation of each get updated and local fusion by

neighbor nodes provides spatial data that make the scheme co-operative in fashion. We can say

that estimation at each node is depend on both temporal data and spatial data provided by

neighboring nodes [6] – [12]. By the creation of this structure, distributed network is ready to

respond in real time situation for different statistical profile of both temporal and spatial data

[3] - [4].

Each node works as an adaptive filter and least mean square (LMS) is employed to update the

estimation at every iteration. Now the question is the convergence of LMS, which open a totally

different section of work. We need lowest settling time or fast convergence in order to work

for real time environment. A transform domain approach is employed here to improve the

convergence. The basic function of unitary transform like Discrete Fourier Transform (DFT)

and Discrete Cosine Transform (DCT) to de-correlate the input data. First the input data is

processed by unitary transforms and then power normalization of input data takes place [5].

The convergence performance of a filter depends on eigenvalue spread of covariance matrix of

input data or in other words inversely proportional to the eigenvalue spread of the input data.

If input data is de-correlated the eigenvalue spread of covariance matrix of input data is less,

and if input data is correlated the eigenvalue spread of covariance matrix of input data is more.

Hence it is far better to apply transform domain processing. We get improved convergence

Page | 7

performance. If the input data is fully de-correlated the covariance matrix of input data is

proportional to the identity matrix.

Another important section of work is computational complexity or computational cost of entire

processing, because in distributed network a large number of nodes are employed and each

node estimates the desired parameter of interest locally at every iteration of time. The

mathematical calculation during local estimation play an important role in speed of estimation.

If computational cost is high, our distributed network is less suitable for real time applications.

If the length of filter employed in distributed network is very large, then the estimation of

desired parameter takes more to evaluate the observations. Block-LMS is very useful when

computational cost becomes more. The processing of adaption in Block-LMS is done block-

by-block rather than sample-by-sample, which is normally used in all other types of LMS

scheme. Here Block-Adaptive Filter is employed which contains both transform domain

properties as well as block-by-block processing of data. Block Adaptive Filters are prepared

by using transform like DFT, DCT, DHT and Overlap-Add DFT.Theoretically Block-LMS is

most suitable as compare to other LMS schemes. Because it employs both transform domain

characteristics which is beneficial in convergence performance of filter and other is block-by-

block processing of data, which is beneficial in the sense of cost reduction. The computational

cost reduction is determined by a factor which is greater than one. The cost reduction factor is

a function of filter length and block size of data. Both these characteristics make the adaptive

filter more suitable for real time environment.

The employment of Block Adaptive filter at each node must be done carefully because at each

node Block Adaptive Filter creates many sub-band filters that is depends on the block size.

When we work with only one Block Adaptive filter then it is very simple. But in case of

distributed network where each node shares information with some neighboring nodes, useful

care must be taken. Because at each node there are many sub-band filters and the information

exchange becomes a challenge. So a particular sub-band filter must be share the information to

the same positioned sub-band filter of neighboring node.

The Eigen value spread of a matrix is defined as the ratio of largest eigen value to smallest

eigen value. Before applying transformation to the input, the eigen value spread is approximate

equal to(1 + 𝜌)2/(1 − 𝜌)2. The eigen value spread after applying DFT transformation to input

data and power normalization of input data is(1 + 𝜌)/(1 − 𝜌). Where in case of DCT eigen

value spread is (1 + 𝜌) [5].

Page | 8

CHAPTER 2

DISTRIBUTED NETWORKS & DISTRIBUTED STRATEGIES

A distributed network is a network consisting of many nodes that are located at different places.

The nodes observe the parameter of interest from the environment and evaluate the desire

parameter of interest locally by exchanging information with their neighboring nodes. The

connectivity between the nodes are characterized by basically methods.

1. Incremental strategy

2. Diffusion strategy

3. Probabilistic strategy

I have worked on first two schemes incremental and diffusion.

2.1 INCREMENTAL CO-OPERATIVE STRATEGY

A distributed network containing many nodes and nodes are exchanging information from

other nodes by incremental co-operative scheme is analyzed. The nodes have to respond in real

time situation in order to estimate desire parameter of interest. Each node is capable to estimate

the desire parameter of interest at local level with the help of observations taken by itself and

information provided by neighboring node. In incremental fashion one node is allowed to take

information from last node and after local estimation same node has to send the information to

the next node. The connection of nodes forms a close like structure in this co-operative scheme.

These type of distributed networks are useful in the applications like linking PCs to each other,

laptops linking, cell phones linking, sensors linking, and in control networks. Applications will

range from sensor networks to precision agriculture, environment monitoring, disaster relief

management, smart spaces, target localization, as well as medical applications [8]–[15].

Page | 9

Figure-2. 1 Incremental strategy

As shown above each node is receiving information from previous node & sending to next

node after local estimation. Now suppose a distributed network consisting of N nodes,

connected via incremental co-operative scheme as shown above. The observations taken by

nodes from the environment are aroused from different resources with different statistical

profiles.

The mathematical equations to describe the entire process is as follows-

𝑓𝑜𝑟 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑖 ≥ 0, 𝑟𝑒𝑝𝑒𝑎𝑡

𝑘 = 1,2,3, ……𝑁 (𝑘 𝑑𝑒𝑛𝑜𝑡𝑒𝑠 𝑘𝑡ℎ𝑛𝑜. 𝑜𝑓 𝑛𝑜𝑑𝑒)

𝜓0
𝑖 = 𝑊𝑖−1

𝜓𝑘
𝑖 = 𝜓𝑘−1

𝑖 + 𝜇𝑘𝑢𝑘,𝑖
∗ (𝑑𝑘(𝑖) − 𝑢𝑘,𝑖𝜓𝑘−1

𝑖), 𝑘 = 1,2,3, ……𝑁 … … … … (2.1.1)

𝑊𝑖 = 𝜓𝑛
𝑖

Page | 10

Figure-2. 2 Processing by node k in Incremental co-operation strategy

2.2 Diffusion Co-operative Strategy

A distributed network containing many nodes and nodes are exchanging information from

other nodes by diffusion co-operative scheme is analyzed. The nodes have to respond in real

time situation in order to estimate desire parameter of interest. Each node is capable to estimate

the desire parameter of interest at local level with the help of observations taken by itself and

information provided by pre-defined neighboring nodes. The share of information taken by a

particular node from its predefined neighboring node is depends on total number of nodes

connected to that particular node. Diffusion a very good scheme for distributed networks to

work in real time phenomenon.

Page | 11

Figure-2. 3Processing by node k in diffusion co-operative scheme

I have worked on basically two topologies of diffusion which is shown below.

Figure-2. 4 A distributed network with 7 nodes in diffusion co-operation scheme

Page | 12

Figure-2. 5 A distributed network with 20 nodes in diffusion co-operation scheme

𝑓𝑜𝑟 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑖 ≥ 0, 𝑟𝑒𝑝𝑒𝑎𝑡

𝑘 = 1,2,3, ……𝑁 (𝑘 𝑑𝑒𝑛𝑜𝑡𝑒𝑠 𝑘𝑡ℎ𝑛𝑜. 𝑜𝑓 𝑛𝑜𝑑𝑒)

𝜙𝑘
(𝑖−1)

= ∑ 𝐶𝑘𝑙𝜓𝑙
𝑖−1, 𝜙𝑘

(−1)
= 0

𝑙𝜖𝑁𝑘,𝑖−1

𝜓𝑘
(𝑖)

= 𝜙𝑘
(𝑖−1)

+ 𝜇𝑘𝑢𝑘,𝑖
∗ (𝑑𝑘(𝑖) − 𝑢𝑘,𝑖𝜙𝑘

(𝑖−1)
)… … … … (2.2.1)

Page | 13

CHAPTER 3

TRANSFORM DOMAIN & BLOCK ADAPTIVE FILTERING

3.1 Frequency Domain Processing by Unitary Transforms

We know that unitary transforms like DFT, DCT are well known for their orthogonal nature

which is helpful in data de-correlation at the input stage. The characteristics of input is rarely

known in co-relation sense [13] – [17]. The transform used in this scheme must full-fill 𝑇𝑇∗ =

𝑇∗𝑇 = 𝐼 . Where 𝑇 denotes the transform matrix of DFT and DCT. Two basic steps are

followed in this mechanism-

1> The input regressor must be processed by transform matrix.

2> Power normalization of transformed input regressor.

The weight updating equation of Adaptive Filter is-

𝑊𝑖 = 𝑊𝑖−1 + 𝜇𝑢𝑖
′(𝑑(𝑖) − 𝑢𝑖𝑊𝑖−1)

The length of filter is considered as 𝑀. So the size unitary transform matrix is 𝑀 × 𝑀.

The DFT matrix is defined as-

[𝐹]𝑘𝑚 =
1

√𝑀
𝑒−

𝑗2𝜋𝑚𝑘
𝑀 , 𝑘,𝑚 = 0,1,2, ………𝑀 − 1

Similarly the DCT matrix is defined as-

[𝐶]𝑘𝑚 = 𝛼(𝑘) cos (
𝑘(2𝑚 + 1)𝜋

2𝑀
) , 𝑘, 𝑚 = 0,1,2, ………𝑀 − 1

Where

𝛼(0) =
1

√𝑀
 𝑎𝑛𝑑 𝛼(𝑘) =

2

√𝑀
 𝑓𝑜𝑟 𝑘 ≠ 0

The transformed regressor is –

�̅�𝑖 = 𝑢𝑖𝑇

Which give the transformed regressor in DFT & DCT as-

Figure-3. 1 Transformed input regressor

Page | 14

The covariance matrix of transformed regressor is-

𝑅𝑢 = 𝐸(�̅�𝑖 ∗ �̅�𝑖) = 𝑇∗(𝐸(𝑢𝑖 ∗ 𝑢𝑖))

𝑅𝑢 = 𝑇∗𝑅𝑢𝑇

Now the weight matrix of filter is also processed by unitary transform matrix as-

�̅�𝑖 = 𝑇∗𝑊𝑖

Now the weight updating equation can be written as-

�̅�𝑖 = �̅�𝑖−1 + 𝜇�̅�𝑖
∗(𝑑(𝑖) − �̅�𝑖𝑊𝑖−1), �̅�−1 = 0

Now in order to proceed for power normalization process, means the input regressor is divide

by input power to normalize.

Let’s define a new term –

𝜆𝑘(𝑖) = 𝛽𝜆𝑘(𝑖 − 1) + (1 − 𝛽)|�̅�𝑖(𝑘)|2 , 𝑘 = 0,1,2,……𝑀 − 1

Where 0 ≪ 𝛽 < 1.generally 𝛽 is very close to one �̅�𝑖(𝑘) denotes the k-th entry of regressor �̅�𝑖

With the help of this power normalization factor, a diagonal matrix D is defined as –

𝐷𝑖 = 𝑑𝑖𝑎𝑔{𝜆𝑘(𝑖)}

Finally including all required concept, the weight updating equation becomes-

�̅�𝑖 = �̅�𝑖−1 + 𝜇𝐷𝑖
−1�̅�𝑖

∗𝑒(𝑖) … … … … (3.1.1)

3.1.1 Implementation of DFT-LMS

Suppose the length of filter is 𝑀. Similarly the input data also need to form in input regressor

each of size 𝑀 [13] – [17]. The construction of input regressor is like-

𝑢𝑖−1 = [𝑢(𝑖 − 1) 𝑢(𝑖 − 2) …… 𝑢(𝑖 − 𝑀 + 1) 𝑢(𝑖 − 𝑀)]

And

𝑢𝑖 = [𝑢(𝑖) 𝑢(𝑖 − 1) 𝑢(𝑖 − 2) …… 𝑢(𝑖 − 𝑀 + 1)]

Now these input regressor are need to be processed by unitary transform matrix as-

�̅�𝑖(𝑘) =
1

√𝑀
∑ 𝑢(𝑖 − 𝑚)

𝑀−1

𝑚=0

𝑒−
𝑗2𝜋𝑚𝑘

𝑀

�̅�𝑖−1(𝑘) =
1

√𝑀
∑ 𝑢(𝑖 − 1 − 𝑚)

𝑀−1

𝑚=0

𝑒−
𝑗2𝜋𝑚𝑘

𝑀

Putting n=m+1

Page | 15

�̅�𝑖−1(𝑘) =
1

√𝑀
∑ 𝑢(𝑖 − 𝑛)

𝑀

𝑛=1

𝑒−
𝑗2𝜋(𝑛−1)𝑘

𝑀

We got an interesting result –

�̅�𝑖(𝑘) = 𝑒−
𝑗2𝜋𝑘

𝑀 �̅�𝑖−1(𝑘) +
1

√𝑀
[𝑢(𝑖) − 𝑢(𝑖 − 𝑀)]

Let’s define a new diagonal matrix S

𝑆 =

[

1

𝑒−
𝑗2𝜋
𝑀

1𝑒−
𝑗4𝜋
𝑀

⋱

𝑒−
𝑗2𝜋(𝑀−1)

𝑀]

Or

𝑆 = 𝑑𝑎𝑖𝑔(1, exp (−
𝑗2𝜋

𝑀
) , ……… . . exp (−

𝑗2𝜋(𝑀 − 1)

𝑀
)) , 𝑘 = 0,1, … .𝑀 − 1

Now easily the input regressor is written in vector form as-

�̅�𝑖 = �̅�𝑖−1𝑆 +
1

√𝑀
[𝑢(𝑖) − 𝑢(𝑖 − 𝑀)][1 1……1]

Let’s 𝜆𝑘(−1) = 𝑣𝑒𝑟𝑦 𝑠𝑚𝑎𝑙𝑙 + 𝑣𝑒 𝑛𝑢𝑚𝑏𝑒𝑟, �̅�−1 = 0 & �̅�−1 = 0 𝑎𝑛𝑑 𝑟𝑒𝑝𝑒𝑎𝑡 𝑓𝑜𝑟 𝑖 ≥ 0

�̅�𝑖 = �̅�𝑖−1𝑆 +
1

√𝑀
[𝑢(𝑖) − 𝑢(𝑖 − 𝑀)][1 1……1]

𝜆𝑘(𝑖) = 𝛽𝜆𝑘(𝑖 − 1) + (1 − 𝛽)|�̅�𝑖(𝑘)|2 𝑘 = 0,1, ………𝑀 − 1

𝐷𝑖 = 𝑑𝑖𝑎𝑔{𝜆𝑘(𝑖)}

𝑒(𝑖) = 𝑑(𝑖) − �̅�𝑖�̅�𝑖−1

�̅�𝑖 = �̅�𝑖−1 + 𝜇𝐷𝑖
−1�̅�𝑖

∗ 𝑒(𝑖)… … … … (3.1.2)

Page | 16

3.1.2 Implementation of DCT-LMS

Suppose the length of filter is 𝑀. Similarly the input data also need to form in input regressor

each of size 𝑀 [13] – [17]. The construction of input regressor is like-

𝑢𝑖−1 = [𝑢(𝑖 − 1) 𝑢(𝑖 − 2) …… 𝑢(𝑖 − 𝑀 + 1) 𝑢(𝑖 − 𝑀)]

And 𝑢𝑖 = [𝑢(𝑖) 𝑢(𝑖 − 1) 𝑢(𝑖 − 2) …… 𝑢(𝑖 − 𝑀 + 1)]

Now these input regressor are need to be processed by unitary DCT matrix and the relationship

given as-

𝑆 =

[

2

2cos (𝜋/𝑀)

2cos (2𝜋/𝑀)

⋱
2cos ((𝑀 − 1)𝜋/𝑀)]

�̅�𝑖 = �̅�𝑖−1𝑆 − �̅�𝑖−2 + [𝜙(0) 𝜙(1)……… . 𝜙(𝑀 − 1)]

Let’s 𝜆𝑘(−1) = 𝑣𝑒𝑟𝑦 𝑠𝑚𝑎𝑙𝑙 + 𝑣𝑒 𝑛𝑢𝑚𝑏𝑒𝑟, �̅�−1 = 0 & �̅�−1 = 0 𝑎𝑛𝑑 𝑟𝑒𝑝𝑒𝑎𝑡 𝑓𝑜𝑟 𝑖 ≥ 0

𝑎(𝑘) = [𝑢(𝑖) − 𝑢(𝑖 − 1)] cos (
𝑘𝜋

2𝑀
) 𝑘 = 0,1, …… .𝑀 − 1

𝑏(𝑘) = (−1)𝑘[𝑢(𝑖 − 𝑀) − 𝑢(𝑖 − 𝑀 − 1)] cos (
𝑘𝜋

2𝑀
) 𝑘 = 0,1, … . .𝑀 − 1

𝜙(𝑘) = 𝛼(𝑘)[𝑎(𝑘) − 𝑏(𝑘)] 𝑘 = 0,1, … . .𝑀 − 1

�̅�𝑖 = �̅�𝑖−1𝑆 − �̅�𝑖−2 + [𝜙(0) 𝜙(1)……… . 𝜙(𝑀 − 1)]

𝜆𝑘(𝑖) = 𝛽𝜆𝑘(𝑖 − 1) + (1 − 𝛽)|�̅�𝑖(𝑘)|2 𝑘 = 0,1, ………𝑀 − 1

𝐷𝑖 = 𝑑𝑖𝑎𝑔{𝜆𝑘(𝑖)}

𝑒(𝑖) = 𝑑(𝑖) − �̅�𝑖�̅�𝑖−1

�̅�𝑖 = �̅�𝑖−1 + 𝜇𝐷𝑖
−1�̅�𝑖

∗𝑒(𝑖)… … … … (3.1.3)

3.2 Block Adaptive Filters

In transform domain adaptive filtering, the convergence issue of LMS is rectified because of

input data de-correlation by unitary transforms like DCT & DFT. When the issue is related to

computational cost, Block Adaptive Filters are preferred. Because Block Adaptive Filter utilize

Page | 17

Block LMS & also the unitary transforms like DCT & DFT. In Block LMS the data processing

is done block by block rather than sample by sample.

Consider a FIR channel of length M. suppose the channel is excited by a zero mean random

sequence.

𝒖𝑖 = [𝑢(𝑖) 𝑢(𝑖 − 1) 𝑢(𝑖 − 2) …………𝑢(𝑖 − 𝑀 + 1)]

𝒅(𝑖) = 𝒖𝑖𝑔 + 𝑣(𝑖)

𝐺(𝑧) = 𝑔(0) + 𝑔(1)𝑧−1 + 𝑔(2)𝑧−2 + ………𝑔(𝑀 − 1)𝑧−𝑀+1 = ∑ 𝑔(𝑘)𝑧−𝑘

𝑀−1

𝑘=0

�̂�(𝑖) = 𝑢𝑖𝑤𝑖−1

𝑒(𝑖) = 𝑑(𝑖) − �̂�(𝑖)

𝑤𝑖 = 𝑤𝑖−1 + 𝜇𝑢𝑖
∗𝑒(𝑖)… … … … (3.2.1)

The above set-up requires 𝑂(𝑀) number of operations per sample. But when M is too large in

size then the cost of this implementation is very large & prohibitive. In these kind of situations

adaptive implementation is preferred [18] – [20].

In this adaptive implementation by block adaptive method, the process is very similar to LMS.

The error {𝑒(𝑖)}& the estimate {𝑑(𝑖)} is calculated in appropriate manner. The input data is

converted to transformed regressor & processing is done in block-by-block manner rather than

sample-by-sample manner. The resultant computation cost is reduced by a factor which is

greater than one. Block adaptive filter has also better convergence than simple LMS because

the eigenvalue spread of covariance matrix of transformed input regressor is reduced as

compared to original input data.

Page | 18

Figure-3. 2 Mechanism of Transform Domain Filtering

3.2.1 Block Convolution
Suppose there is a long FIR filter. The long length of filter is responsible for high computational

cost. We need to convert this long length into some blocks of small length without doing

adaptation process [13] – [17]. So first of all block implementation process should be done.

Now consider a long FIR filter having impulse response 𝑔 & its transfer function 𝐺(𝑧), z-

transform of input and output as {𝑈(𝑧), 𝑌(𝑧)}. Input and output in time domain are{𝑢(𝑖), 𝑦(𝑖)}.

𝑌(𝑧) ≜ ∑ 𝑦(𝑖)
∞

𝑖=0
𝑧−𝑖

𝑈(𝑧) ≜ ∑ 𝑢(𝑖)
∞

𝑖=0
𝑧−𝑖

The relationship of input and output with filter in z-domain is-

𝑌(𝑧) = 𝐺(𝑧)𝑈(𝑧)

Page | 19

Figure-3. 3 general input/output relationship

A block is consist of several samples. Block processing means, processing of several samples

at the same time. Hence it is called block processing.

The input samples must be converted into blocks (suppose length of block is B), and we get

same length blocks at the output stage. The input and output in block vector as-

𝑢𝐵,𝑛 ≜ [

𝑢(𝑛𝐵 + 𝐵 − 1)
⋮

𝑢(𝑛𝐵 + 1)
𝑢(𝑛𝐵)

] 𝑦𝐵,𝑛 ≜ [

𝑦(𝑛𝐵 + 𝐵 − 1)
⋮

𝑦(𝑛𝐵 + 1)
𝑦(𝑛𝐵)

]

Where B is block size & n is block index (no of blocks)

For example – the block size B is 3, the relation of block vectors of input/output {𝑢𝐵,𝑛, 𝑦𝐵,𝑛}

with input/output sequence{𝑢(𝑖), 𝑦(𝑖)} as-

 𝑢(0) 𝑢(1) 𝑢(2) → 𝑢3,0 𝑦(0) 𝑦(1) 𝑦(2) → 𝑦3,0

 𝑢(3) 𝑢(4) 𝑢(5) → 𝑢3,1 𝑦(3) 𝑦(4) 𝑦(5) → 𝑦3,1

 𝑢(6) 𝑢(7) 𝑢(8) → 𝑢3,2 𝑦(6) 𝑦(7) 𝑦(8) → 𝑦3,2

 ⋮ ⋮

The input and output block vectors in z-domain can be represented as{𝑈𝐵(𝑧)𝑌𝐵(𝑧)}.

Figure-3. 4 Input/output relationship in block manner

The above relationship can be represented in mathematical form as-

𝑈𝐵(𝑧) ≜ ∑ 𝑢𝐵,𝑛𝑧−𝑛∞
𝑛=0 𝑌𝐵(𝑧) ≜ ∑ 𝑦𝐵,𝑛𝑧−𝑛∞

𝑛=0

Page | 20

The block processing with input and output is done above in both domain. Now we have to

deal with long length FIR filter𝐺(𝑧). The block size is B, hence we need to find B poly-phase

component of FIR filter. Suppose the length of FIR filter is M. So each poly-phase component

is of length M/B.

 𝑃0(𝑧) = 𝑔(0) + 𝑔(𝐵)𝑧−1 + 𝑔(2𝐵)𝑧−2 + ⋯

 𝑃1(𝑧) = 𝑔(1) + 𝑔(𝐵 + 1)𝑧−1 + 𝑔(2𝐵 + 1)𝑧−2 + ⋯

 𝑃3(𝑧) = 𝑔(2) + 𝑔(𝐵 + 2)𝑧−1 + 𝑔(2𝐵 + 2)𝑧−2 + ⋯

 ⋮

 𝑃𝐵−1(𝑧) = 𝑔(𝐵 − 1) + 𝑔(2𝐵 − 1)𝑧−1 + 𝑔(3𝐵 − 1)𝑧−2 + ⋯

Here it is observed that first B coefficients of FIR filter transfer function 𝐺(𝑧) becomes the

first coefficients of 𝑃𝑘(𝑧) [13] – [17]. The second B coefficients of 𝐺(𝑧) becomes the second

coefficients of 𝑃𝑘(𝑧) and so on.

For example- B=3 and M=12, there will be three poly-phase components as-

 𝑃0(𝑧) = 𝑔(0) + 𝑔(3)𝑧−1 + 𝑔(6)𝑧−2 + 𝑔(9)𝑧−3

 𝑃1(𝑧) = 𝑔(1) + 𝑔(4)𝑧−1 + 𝑔(7)𝑧−2 + 𝑔(10)𝑧−3

 𝑃2(𝑧) = 𝑔(2) + 𝑔(5)𝑧−1 + 𝑔(8)𝑧−2 + 𝑔(11)𝑧−3

We can also represent 𝐺′(𝑧) in terms of 𝑃𝑘(𝑧). For e.g. B=3

𝐺′(𝑧) = [

𝑃0(𝑧)

𝑧−1𝑃2(𝑧)

𝑧−1𝑃1(𝑧)

𝑃1(𝑧)
𝑃0(𝑧)

𝑧−1𝑃2(𝑧)

𝑃2(𝑧)
𝑃1(𝑧)
𝑃0(𝑧)

]… … … … (3.2.2)

Here 𝐺′(𝑧) is a pseudo circulant matrix. Generally when all element below the diagonal

elements of a circulant matrix is multiplied by 𝑧−1 is known as pseudo circulant matrix. The

input/output block vector can be related to filter in z-domain as-

𝑌𝐵(𝑧) = 𝐺′(𝑧)𝑈𝐵(𝑧)… … … … (3.2.3)

Page | 21

The implementation of 𝐺(𝑧) is still not efficient. We need to define 𝐺′(𝑧) further specifically

for practical point of view. 𝐺′(𝑧) Can be further factored as-

𝐺′(𝑧) = 𝑃′(𝑧)𝑄(𝑧)… … … … (3.2.4)

Here 𝑃′(𝑧) is 𝐵 × 2𝐵 − 1 matrix function which is a Toeplitz structure. Generally a circulant

matrix is called as Toeplitz when identical entries along the diagonals with first row is

circularly shifted to the right, one shift at a time in order to form other rows. For e.g. B=3

𝑃′(𝑧) = [

 𝑃0(𝑧) 𝑃1(𝑧) 𝑃2(𝑧) 0 0

 0 𝑃0(𝑧) 𝑃1(𝑧) 𝑃2(𝑧) 0

 0 0 𝑃0(𝑧) 𝑃1(𝑧) 𝑃2(𝑧)
]… … … … (3.2.5)

Where 𝑄(𝑧) is a (2𝐵 − 1) × 𝐵 matrix with two blocks (one upper block and other lower

block) upper block is identity block and lower block is unit delay block. For e.g. B=3

𝑄(𝑧) =

[

1 0 0
0 1 0
0 0 1

𝑧−1 0 0
0 𝑧−1 0

]

… … … … (3.2.6)

3.2.2 Block Convolution by Using DFT
Now the challenge is to use DFT in the block convolution scheme. When the work is done with

DFT, the sequences are required to be power of two. So it is more suitable to define further

{𝑃′(𝑧), 𝑄(𝑧)} as-

 𝑃′′(𝑧) = [

 𝑃0(𝑧) 𝑃1(𝑧) 𝑃2(𝑧) 0 0 0

 0 𝑃0(𝑧) 𝑃1(𝑧) 𝑃2(𝑧) 0 0

 0 0 𝑃0(𝑧) 𝑃1(𝑧) 𝑃2(𝑧) 0

]… … … … (3.2.7)

𝑄′′(𝑧) =

[

1 0 0
0 1 0
0 0 1

𝑧−1 0 0
0 𝑧−1 0
0 0 𝑧−1]

… … … … (3.2.8)

The new dimensions of {𝑃′′(𝑧), 𝑄′′(𝑧)} becomes 𝐵 × 2𝐵 and 2𝐵 × 𝐵 respectively by padding

a column of zeros to 𝑃′(𝑧) and row of zeros to 𝑄(𝑧).

Page | 22

Formulation of Transfer Function-By using the matrices {𝑃′′(𝑧), 𝑄′′(𝑧)} as defined above

an another matrix 𝐶(𝑧) we define as-

𝐶(𝑧) =

[

 𝑃0(𝑧) 𝑃1(𝑧) 𝑃2(𝑧) 0 0 0

 0 𝑃0(𝑧) 𝑃1(𝑧) 𝑃2(𝑧) 0 0

 0 0 𝑃0(𝑧) 𝑃1(𝑧) 𝑃2(𝑧) 0

 0 0 0 𝑃0(𝑧)𝑃1(𝑧) 𝑃2(𝑧)
𝑃2(𝑧) 0 0 0 𝑃0(𝑧) 𝑃1(𝑧)

 𝑃1(𝑧) 𝑃2(𝑧) 0 0 0 𝑃0(𝑧)]

… … … … (3.2.9)

Now 𝑃′′(𝑧) can be gain from the top three rows of 𝐶(𝑧) as-

𝑃′′(𝑧) = [𝐼𝐵 0𝐵×𝐵]𝐶(𝑧)… … … … (3.2.10)

Where 𝐼𝐵 denotes the identity matrix of dimension 𝐵 × 𝐵 and 0𝐵×𝐵 denotes the null matrix

of dimension × 𝐵 .

Let’s define the DFT matrix of dimension 2𝐵 × 2𝐵 as-

[𝐹]𝑘𝑚 ≜ 𝑒
−𝑗2𝜋𝑚𝑘

2𝐵 𝑘,𝑚 = 0,1, …2𝐵 − 1

A well-known result is that when any circulant matrix can be diagonalized by the DFT matrix

[13] – [17]. In similar fashion the circulant matrix 𝐶(𝑧) can be diagonalized as-

𝐶(𝑧) = 𝐹∗𝐿(𝑧)𝐹 … … … … (3.2.11)

Where 𝐶(𝑧) is a diagonal matrix function which is defined as-

𝐿(𝑧) =

[

𝐿0(𝑧)

𝐿1(𝑧)

 ⋱
𝐿2𝐵−1(𝑧)]

… … … … (3.2.12)

Where 𝐿𝑘(𝑧) represents the series of sub-band FIR filters with length of each filter is M/B. We

can say that the first row of 𝐶(𝑧) can be related to the diagonal entries of 𝐿(𝑧). For e.g. B=3,

the relation can be defined that-

Page | 23

[

𝑃0(𝑧)

𝑃1(𝑧)
𝑃2(𝑧)

0
0
0]

= 𝐹

[

𝐿0(𝑧)

𝐿1(𝑧)
𝐿2(𝑧)
𝐿3(𝑧)
𝐿4(𝑧)
𝐿5(𝑧)]

… … … … (3.2.13)

The above relation tells that poly-phased component can mapped into the diagonal component

𝐿(𝑧) and vice-versa.

Combining the equations and we get-

𝐺′′(𝑧) = [𝐼𝐵 0𝐵×𝐵]𝐶(𝑧)𝑄′′(𝑧)

𝐺′′(𝑧) = [𝐼𝐵 0𝐵×𝐵]𝐹∗𝐿(𝑧)𝐹𝑄′′(𝑧)

The above mathematical representation can represented by diagram as-

Figure-3. 5 Block convolution

In time domain formulation the first matrix dimension is 2𝐵 × 𝐵. Hence we need to rearrange

the input block vector to make 2𝐵 columns of input vector as-

𝑢2𝐵,𝑛 = [
𝑢𝐵,𝑛

𝑢𝐵,𝑛−1
]

For example: - at n=1

Page | 24

𝑢2𝐵,1 =

[

𝑢(5)

𝑢(4)
𝑢(3)
𝑢(2)
𝑢(1)
𝑢(0)]

The real effect of 𝑄′′(𝑧) is to convert serial to parallel data. In other way we can also represents

the serial to parallel conversion as follows. Let ↓ 𝐵 denotes the decimator of order B, we can

say that-

Where the relation between input and output is- 𝑧(𝑛) = 𝑢(𝑛𝐵), 𝑛 = 0,1,2……

Here n represents lower rate signal and i represents higher rate signal. The input block vector

of size 𝐵 can constructed by the above decimation implementation. After the block formation

we have to put two consecutive blocks in a column which results a block vector {𝑢𝐵,𝑛, 𝑢𝐵,𝑛−1}

.

Figure-3. 6 Formation of two consecutive input blocks

Figure: using 2𝐵 decimator formulation of block data vector 𝑐𝑜𝑙{𝑢𝐵,𝑛, 𝑢𝐵,𝑛−1}

↓ 𝑩 𝑢(𝑖) 𝑧(𝑛)

Page | 25

After dealing with matrix 𝑄′′(𝑧) the resulting block vector processed by DFT matrix and hence

resulting vector becomes 2𝐵 × 1 transformed vector as-

𝑢2𝐵,𝑛
′ ≜

[

𝑢0
′ (𝑛)

𝑢1
′ (𝑛)
⋮
⋮

𝑢2𝐵−1
′ (𝑛)]

= 𝐹 [
𝑢𝐵,𝑛

𝑢𝐵,𝑛−1
]

Now the entries 𝑢2𝐵,𝑛
′ are fed into the series of sub-band filters {𝐿𝑘(𝑧)} and the resulting

outputs are processed by the conjugated DFT matrix𝐹∗. In the final response top 𝐵 outputs are

kept and lower 𝐵 outputs are discarded.

As the decimation process is done at the input stage to form samples into blocks, in the same

fashion the response at output stage can be interpolated with the help of ↑ 𝐵 interpolater. The

interpolator convert the output data from parallel to serial fashion. The representation of

functioning of interpolator is shown below.

The mathematical representation of the above diagram is-

𝑦(𝑖) = {
𝑧 (

𝑖

𝐵
) 𝑖𝑓

𝑖

𝐵
 𝑖𝑠 𝑎𝑛 𝑖𝑛𝑡𝑒𝑟𝑔𝑒𝑟

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑧(𝑛) 𝑦(𝑖) ↑ 𝑩

Page | 26

Figure-3. 7 Block convolution full

Computational complexity-of block convolution has three steps as-

Step -1:- The first transformed vector contains-

𝐹 [
𝑢𝐵,𝑛

𝑢𝐵,𝑛−1
]

It requires total number of 𝐵 log2 2𝐵 complex multiplications.

Step-2:- Total number of 2B filters are present and each filter is having length M/B. Each filter

requires M/B number of inner products. So total no of complex multiplications are 2𝐵 ∗
𝑀

𝐵
=

2𝑀.

Step-3:- At last transform stag 2B outputs are generated. It requires total number of 𝐵 log2 2𝐵

complex multiplications.

For step 1-3, a total number of 2𝑀 + 2𝐵 log2 2𝐵 complex multiplications is required for each

block of input of size B.

The filter 𝐿𝑘(𝑧) is also calculated from 𝐺(𝑧) as-

Page | 27

[

𝐿0(𝑧)
𝐿1(𝑧)

⋮
𝐿2𝐵−1(𝑧)

] =
1

2𝐵
𝐹∗ [

𝑃0(𝑧)
⋮

𝑃𝐵−1(𝑧)
0𝐵×1

]

For e.g. B=3, M=12

[

𝑙00

𝑙10

𝑙20

𝑙30

𝑙40

𝑙50

𝑙01

𝑙11

𝑙21

𝑙31

𝑙41

𝑙51

𝑙02

𝑙12

𝑙22

𝑙32

𝑙42

𝑙52

𝑙03

𝑙13

𝑙23

𝑙33

𝑙43

𝑙53]

=
1

6
𝐹∗

[

𝑔(0)
𝑔(1)
𝑔(2)

0
0
0

𝑔(3)
𝑔(4)
𝑔(5)

0
0
0

𝑔(6)
𝑔(7)
𝑔(8)

0
0
0

𝑔(9)
𝑔(10)
𝑔(11)

0
0
0]

The computational cost required for above step is M/B DFT’s of size 2B each. The total cost

becomes 𝑀 log2(2𝐵) complex multiplications. But in adaptive filter implementation phase

𝐿𝑘(𝑧) is updated in every iteration. If the size of block is normalized, there will be
𝑀

𝐵
log2(2𝐵)

complex multiplication per input sample.

Finally the total cost associated with time domain block convolution is-

2𝑀

𝐵
+ (

𝑀

𝐵
+ 2) log2(2𝐵)

Finally the conclusion is that –

1> The direct convolution method requires 𝑂(𝑀) operations per sample.

2> Frequency domain implementation requires 𝑂(2𝑀/𝐵) operations per sample.

3> The reduction in computational complexity is decided by the block size B.

4> But the larger block size B also results to delay in signal path.

Comparison of computational complexity-

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑑𝑜𝑚𝑎𝑖𝑛 𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡

𝑑𝑖𝑟𝑒𝑐𝑡 𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡
=

2𝑀

𝐵
+(

𝑀

𝐵
+2) log2(2𝐵)

𝑀
 … …… (3.2.14)

Page | 28

3.2.3 DFT Unconstrained Block Adaptive filter:-
As discussed above the block adaptive implementation requires block-by-block processing

with transform domain implementation of data. Both of these combined technique give better

computational cost reduction as well as better convergence performance. Let’s make the

analysis step-by-step;-

Step 1> Convert the input repressor and noise signal in blocks and then make the two

consecutive input block vector into block column-wise

𝑢𝐵,𝑛 ≜ [

𝑢(𝑛𝐵 + 𝐵 − 1)
⋮

𝑢(𝑛𝐵 + 1)
𝑢(𝑛𝐵)

] 𝑣𝐵,𝑛 = [

𝑣(𝑛𝐵 + 𝐵 − 1)
⋮

𝑣(𝑛𝐵 + 1)
𝑣(𝑛𝐵)

]

𝑢2𝐵,𝑛 = [
𝑢𝐵,𝑛

𝑢𝐵,𝑛−1
]… … … … (3.2.15)

Step 2- Now make the input block vector into transformed regressor by the DFT matrix-

𝑢2𝐵,𝑛
′ = 𝐹 ∗ 𝑢2𝐵,𝑛 = 𝑐𝑜𝑙{𝑢𝑘

′ (𝑛), 𝑘 = 0,1, ……… ,2𝐵 − 1}… … … … (3.2.16)

Where 𝑢𝑘
′ (𝑛) is a transformed regress foe each sub-band filter and length of 𝑢𝑘

′ (𝑛) for each k

is M/B, which is represented as-

𝑢𝑘
′ (𝑛) = [𝑢𝑘

′ (𝑛)……… 𝑢𝑘
′ (𝑛 −

𝑀

𝐵
+ 1)] , 𝑘 = 0,1,2, ………2𝐵 − 1

Step 3- The FIR filter of length B is converted into 2B sub-band filters, each having length

M/B by the following relation (also explained above)-

[

𝐿0(𝑧)
𝐿1(𝑧)

⋮
𝐿2𝐵−1(𝑧)

] =
1

2𝐵
𝐹∗ [

𝑃0(𝑧)
⋮

𝑃𝐵−1(𝑧)
0𝐵×1

]… … … … (3.2.17)

Step 4- The desired output is calculated as structure of filter is depicted and converted into

block vector of size B.

𝑦𝑘
′ (𝑛) = 𝑢𝑘,𝑛

′ 𝐿𝑘, 𝑘 = 0,1, ……… ,2𝐵 − 1

𝑑𝐵,𝑛 = [𝐼𝐵 0𝐵×𝐵]𝐹∗𝑦𝑘
′ (𝑛) + 𝑣𝐵,𝑛

Step 5- The actual output is also calculated in same fashion as-

Page | 29

𝑦1𝑘
′ (𝑛) = 𝑢𝑘,𝑛

′ 𝑙𝑘,𝑛−1, 𝑘 = 0,1, ……… ,2𝐵 − 1

�̂�𝐵,𝑛 = [𝐼𝐵 0𝐵×𝐵]𝐹∗𝑦1𝑘
′ (𝑛)

Step 6- The error vector is difference of desired output vector and actual output vector-

𝑒𝐵,𝑛 = 𝑑𝐵,𝑛 − �̂�𝐵,𝑛

Step 7- This error vector is processed by DFT matrix and last B outputs are neglected as-

𝑒2𝐵,𝑛
′ = 𝐹 [

𝐼𝐵
0𝐵×𝐵

] 𝑒𝐵,𝑛 = 𝑐𝑜𝑙{𝑒𝑘
′ (𝑛), 𝑘 = 0,1, ………2𝐵 − 1}

Step 8- The weight of each sub-band filter is updated separately with normalized Block LMS

as-

𝑙𝑘,𝑛 = 𝑙𝑘,𝑛−1 +
𝜇

𝜆𝑘
𝑢𝑘,𝑛

′∗ 𝑒𝑘
′ (𝑛), 𝑘 = 0,1, ………2𝐵 − 1… … … … (3.2.18)

Where is calculated as- 𝜆𝑘(𝑛) = 𝛽𝜆𝑘(𝑛 − 1) + (1 − 𝛽)|𝑢𝑘
′ (𝑛)|2

Step 9-The actual output block vector and error block vector are interpolated with the help of

size B interpolator as-

�̂�𝐵,𝑛 = 𝑐𝑜𝑙{�̂�(𝑛𝐵 + 𝐵 − 1),……… , �̂�(𝑛𝐵 + 1), �̂�(𝑛𝐵)}

 𝑒𝐵,𝑛 = 𝑐𝑜𝑙{𝑒(𝑛𝐵 + 𝐵 − 1),……… , 𝑒(𝑛𝐵 + 1), 𝑒(𝑛𝐵)}

Step 10- Mean square error is calculated by the output of interpolator of error vector-

𝑚𝑠𝑒 = 𝑒(𝑖).∗ 𝑒(𝑖)

Page | 30

Figure-3. 8 Unconstrained DFT Block Adaptive Filter

Page | 31

3.2.4 DFT Constrained Filter Implementation
While computing for above DFT unconstrained scheme, we observe that the computation of

𝑙𝑘,𝑛 is not satisfying the constraint of eq-222. It seems that for each iteration in time domain

the following equation is not giving matrix whose last B rows are zero.

𝐹

[

𝑙0,𝑛
𝑇

𝑙1,𝑛
𝑇

⋮
𝑙2𝐵−1,𝑛
𝑇]

To make the arrangement constrained equation - (3.2.13) must be satisfied after every iteration

n, and it can be possible if multiply equation-(3.2.13) by [
𝐼𝐵

0𝐵×𝐵
] .

It means the arrangement seems to be like- [
×

0𝐵×𝐵
] = [

𝐼𝐵
0𝐵×𝐵

] 𝐹

[

𝑙0,𝑛
𝑇

𝑙1,𝑛
𝑇

⋮
𝑙2𝐵−1,𝑛
𝑇]

We can also express the above relation in poly-phase component form as-

[

𝑝0,𝑛
𝑇

𝑝1,𝑛
𝑇

⋮
𝑝𝐵−1,𝑛

𝑇

0𝐵×𝐵

]

= [
𝐼𝐵

0𝐵×𝐵
] 𝐹

[

𝑙0,𝑛
𝑇

𝑙1,𝑛
𝑇

⋮
𝑙2𝐵−1,𝑛
𝑇]

… … … … (3.2.19)

In similar fashion we can also calculate the reverse by applying the following relation as-

[

𝑙0,𝑛
𝑐𝑇

𝑙1,𝑛
𝑐𝑇

⋮
𝑙2𝐵−1,𝑛
𝑐𝑇]

=
1

2𝐵
𝐹∗

[

𝑝0,𝑛
𝑇

𝑝1,𝑛
𝑇

⋮
𝑝𝐵−1,𝑛

𝑇

0𝐵×𝐵

]

The new estimates 𝑙𝑘,𝑛
𝑐𝑇 are satisfying the product

Page | 32

𝐹

[

𝑙0,𝑛
𝑐𝑇

𝑙1,𝑛
𝑐𝑇

⋮
𝑙2𝐵−1,𝑛
𝑐𝑇]

Gives last B rows zeros in the resultant matrix.

The whole process of unconstrained DFT implementation is repeated in constrained DFT block

adaptive filter as above, but finally the sub-band weights are modified as-

[

𝑙0,𝑛
𝑐𝑇

𝑙1,𝑛
𝑐𝑇

⋮
𝑙2𝐵−1,𝑛
𝑐𝑇]

=
1

2𝐵
𝐹∗ [

𝐼𝐵
0𝐵×𝐵

] 𝐹

[

𝑙0,𝑛
𝑇

𝑙1,𝑛
𝑇

⋮
𝑙2𝐵−1,𝑛
𝑇]

… … … … (3.2.20)

 Other all parameter calculation is same.

Page | 33

Figure-3. 9 Constrained DFT Block Adaptive Filter

Page | 34

3.2.5 Overlap-Add DFT Block Adaptive Filter

As DFT block implementation discussed above, in similar way all the terms can be calculated

for overlap-Add Block Adaptive Filter.

𝐺′(𝑧) = �̅�1(𝑧)�̅�1(𝑧)

For e.g. B=3

�̅�1(𝑧) =

[

0
𝑃2(𝑧)
𝑃1(𝑧)
𝑃0(𝑧)

0
0

0
0

𝑃2(𝑧)
𝑃1(𝑧)
𝑃0(𝑧)

0

0
0
0

𝑃2(𝑧)
𝑃1(𝑧)
𝑃0(𝑧)]

�̅�1(𝑧) = [
𝑧−1

0
0

0
𝑧−1

0

0
0

𝑧−1

1
0
0

0
1
0

0
0
1
]

�̅�1(𝑧) = 𝐶(𝑧) [
0𝐵×𝐵

𝐼𝐵
]

𝐺′(𝑧) = �̅�1(𝑧)𝐶(𝑧) [
0𝐵×𝐵

𝐼𝐵
] = �̅�1(𝑧)𝐹

∗𝐿(𝑧)𝐹 [
0𝐵×𝐵

𝐼𝐵
]

�̅�1(𝑧) = [0𝐵×𝐵 𝐼𝐵] + 𝑧−1[𝐼𝐵 0𝐵×𝐵]

𝐺′(𝑧) = [0𝐵×𝐵 𝐼𝐵]𝐹∗𝐿(𝑧)𝐹 [
0𝐵×𝐵

𝐼𝐵
] + 𝑧−1[𝐼𝐵 0𝐵×𝐵]𝐹∗𝐿(𝑧)𝐹 [

0𝐵×𝐵

𝐼𝐵
]… … … … (3.2.21)

The relation between the matrix 𝐹 [
0𝐵×𝐵

𝐼𝐵
] and 𝐹 [

𝐼𝐵
0𝐵×𝐵

] is given as-

𝐹 [
𝐼𝐵

0𝐵×𝐵
] = 𝐽𝐹 [

0𝐵×𝐵

𝐼𝐵
]

Where J is a matrix of size2𝐵 × 2𝐵 which is having ± alternatively.

Page | 35

𝐽 = 𝑑𝑖𝑎𝑔{1,−1,1, −1,…… ,1, −1}

Substituting the above relation in equation-

𝐺′(𝑧) = [0𝐵×𝐵 𝐼𝐵]𝐹∗𝐿(𝑧)(𝐼 + 𝑧−1)𝐹 [
0𝐵×𝐵

𝐼𝐵
]

The new transformed input regression can be expressed as-

𝑠𝑘
′ (𝑛) = 𝑢𝑘

′ (𝑛) + (−1)𝑘𝑢𝑘
′ (𝑛 − 1), 𝑘 = 0,1,2,………2𝐵 − 1… … … … (3.2.22)

Unconstrained Overlap-Add DFT Block Adaptive filter:-

Step 1- Convert the input repressor and noise signal in blocks and then make the two

consecutive input block vector into block column-wise

𝑢𝐵,𝑛 ≜ [

𝑢(𝑛𝐵 + 𝐵 − 1)
⋮

𝑢(𝑛𝐵 + 1)
𝑢(𝑛𝐵)

] 𝑣𝐵,𝑛 = [

𝑣(𝑛𝐵 + 𝐵 − 1)
⋮

𝑣(𝑛𝐵 + 1)
𝑣(𝑛𝐵)

]

𝑢2𝐵,𝑛 = [
0𝐵×1

𝑢𝐵,𝑛
]

Step 2- Now make the input block vector into transformed regressor by the DFT matrix-

𝑢2𝐵,𝑛
′ = 𝐹 ∗ 𝑢2𝐵,𝑛 = 𝑐𝑜𝑙{𝑢𝑘

′ (𝑛), 𝑘 = 0,1, ……… ,2𝐵 − 1}

The input regressor block vector is obtained as-

𝑠2𝐵,𝑛
′ = 𝑢2𝐵,𝑛

′ + 𝐽𝑢2𝐵,𝑛−1
′ = 𝑐𝑜𝑙{𝑠𝑘

′ (𝑛), 𝑘 = 0,1,2, ………2𝐵 − 1 }

Where 𝑠𝑘
′ (𝑛) is a transformed regressor for each sub-band filter and length of 𝑠𝑘

′ (𝑛) for each k

is M/B, which is represented as-

𝑠𝑘
′ (𝑛) = [𝑠𝑘

′ (𝑛)……… 𝑠𝑘
′ (𝑛 −

𝑀

𝐵
+ 1)] , 𝑘 = 0,1,2, ………2𝐵 − 1

Step 3- The FIR filter of length B is converted into 2B sub-band filters, each having length

M/B by the following relation (also explained above)-

[

𝐿0(𝑧)
𝐿1(𝑧)

⋮
𝐿2𝐵−1(𝑧)

] =
1

2𝐵
𝐹∗ [

𝑃0(𝑧)
⋮

𝑃𝐵−1(𝑧)
0𝐵×1

]

Page | 36

Step 4- The desired output is calculated as structure of filter is depicted and converted into

block vector of size B.

𝑦𝑘
′ (𝑛) = 𝑠𝑘,𝑛

′ 𝐿𝑘, 𝑘 = 0,1, ……… ,2𝐵 − 1

𝑑𝐵,𝑛 = [𝐼𝐵 0𝐵×𝐵]𝐹∗𝑦𝑘
′ (𝑛) + 𝑣𝐵,𝑛

Step 5- The actual output is also calculated in same fashion as-

𝑦1𝑘
′ (𝑛) = 𝑠𝑘,𝑛

′ 𝑙𝑘,𝑛−1, 𝑘 = 0,1, ……… ,2𝐵 − 1

�̂�𝐵,𝑛 = [𝐼𝐵 0𝐵×𝐵]𝐹∗𝑦1𝑘
′ (𝑛)

Step 6- The error vector is difference of desired output vector and actual output vector-

𝑒𝐵,𝑛 = 𝑑𝐵,𝑛 − �̂�𝐵,𝑛

Step 7- This error vector is processed by DFT matrix and last B outputs are neglected as-

𝑒2𝐵,𝑛
′ = 𝐹 [

𝐼𝐵
0𝐵×𝐵

] 𝑒𝐵,𝑛 = 𝑐𝑜𝑙{𝑒𝑘
′ (𝑛), 𝑘 = 0,1, ………2𝐵 − 1}

Step 8- The weight of each sub-band filter is updated separately with normalized Block LMS

as-

𝑙𝑘,𝑛 = 𝑙𝑘,𝑛−1 +
𝜇

𝜆𝑘
𝑠𝑘,𝑛

′∗ 𝑒𝑘
′ (𝑛), 𝑘 = 0,1, ………2𝐵 − 1… … … … (3.2.23)

Where is calculated as- 𝜆𝑘(𝑛) = 𝛽λ𝑘(𝑛 − 1) + (1 − 𝛽)|𝑠𝑘
′ (𝑛)|2

Step 9- The actual output block vector and error block vector are interpolated with the help of

size B interpolator as-

�̂�𝐵,𝑛 = 𝑐𝑜𝑙{�̂�(𝑛𝐵 + 𝐵 − 1),……… , �̂�(𝑛𝐵 + 1), �̂�(𝑛𝐵)}

 𝑒𝐵,𝑛 = 𝑐𝑜𝑙{𝑒(𝑛𝐵 + 𝐵 − 1),……… , 𝑒(𝑛𝐵 + 1), 𝑒(𝑛𝐵)}

Step 10- Mean square error is calculated by the output of interpolator of error vector-

𝑚𝑠𝑒 = 𝑒(𝑖).∗ 𝑒(𝑖)

Page | 37

Figure-3. 10 Unconstrained Overlap-Add DFT Block Adaptive Filter

Page | 38

Figure-3. 11 Constrained Overlap-Add DFT Block Adaptive Filter

Page | 39

3.2.6 DHT Based Block Adaptive Filter

A DHT matrix is defined as-

[𝐻]𝑚,𝑘 =
1

√𝐾
[cos (

2𝑚𝑘𝜋

𝐾
) − sin (

2𝑚𝑘𝜋

𝐾
)] , . 𝑚, 𝑘 = 0,1,2, ……𝐾 − 1

The Hartley matrix also satisfies both symmetric and orthogonal property as-

𝐻𝐻𝑇 = 𝐻2 = 𝐼

𝐴(𝑧) =

[

𝑎0(𝑧) 𝑎1(𝑧) 𝑎2(𝑧) 𝑎2(𝑧) 𝑎1(𝑧)

𝑎1(𝑧) 𝑎0(𝑧) 𝑎1(𝑧) 𝑎2(𝑧) 𝑎2(𝑧)

𝑎2(𝑧)
𝑎2(𝑧)
𝑎1(𝑧)

𝑎1(𝑧)
𝑎2(𝑧)
𝑎2(𝑧)

𝑎0(𝑧) 𝑎1(𝑧) 𝑎2(𝑧)
𝑎1(𝑧) 𝑎0(𝑧) 𝑎1(𝑧)
𝑎2(𝑧) 𝑎1(𝑧) 𝑎0(𝑧)]

… … … … (3.2.24)

𝑃(𝑧) = [𝐼𝐵 0𝐵×2𝐵]𝐴(𝑧) [
01×2𝐵−1

𝐼2𝐵−1

0𝐵×2𝐵−1

]… … … … (3.2.25)

.

𝐴(𝑧) = 𝐻𝐿(𝑧)𝐻 … … … … (3.2.26)

𝐿(𝑧) =

[

𝐿0(𝑧)

𝐿1(𝑧)

⋱
𝐿3𝐵−1(𝑧)]

… … … … (3.2.26)

[

0
𝑃0(𝑧)

⋮
𝑃𝐵−1(𝑧)
0𝐵−1×1

𝑃𝐵−1(𝑧)
⋮

𝑃0(𝑧)]

= 𝐻 [

𝐿0(𝑧)
𝐿0(𝑧)

⋮
𝐿3𝐵−1(𝑧)

]… … … … (3.2.27)

Page | 40

𝐺′(𝑧) = [𝐼𝐵 0𝐵×2𝐵]𝐴(𝑧) [
01×2𝐵−1

𝐼2𝐵−1

0𝐵×2𝐵−1

]𝑄(𝑧)

𝐺′(𝑧) = [𝐼𝐵 0𝐵×2𝐵]𝐻𝐿(𝑧)𝐻 [
01×2𝐵−1

𝐼2𝐵−1

0𝐵×2𝐵−1

]𝑄(𝑧)

𝐺′(𝑧) = [𝐼𝐵 0𝐵×2𝐵]𝐴(𝑧) [
01×2𝐵−1

𝐼2𝐵−1

0𝐵×2𝐵−1

0
0
0
]𝑄(𝑧)… … … … (3.2.28)

3.2.7 Unconstrained DHT Block Adaptive Filter Implementation

Step 1- Convert the input repressor and noise signal in blocks and then make the two

consecutive input block vector into block column-wise

𝑢𝐵,𝑛 ≜ [

𝑢(𝑛𝐵 + 𝐵 − 1)
⋮

𝑢(𝑛𝐵 + 1)
𝑢(𝑛𝐵)

] 𝑣𝐵,𝑛 = [

𝑣(𝑛𝐵 + 𝐵 − 1)
⋮

𝑣(𝑛𝐵 + 1)
𝑣(𝑛𝐵)

]

𝑢2𝐵,𝑛 = [
𝑢𝐵,𝑛

𝑢𝐵,𝑛−1
]

Step 2- Now make the input block vector into transformed regressor by the DHT matrix-

𝑢𝐾,𝑛
′ = 𝐻 [

01×2𝐵−1
𝐼2𝐵−1

0𝐵×2𝐵−1

0
0
0
] 𝑢2𝐵,𝑛 = 𝑐𝑜𝑙{𝑢𝑘

′ (𝑛), 𝑘 = 0,1, ……… ,𝐾 − 1}

Where 𝑢𝑘
′ (𝑛) is a transformed regressor for each sub-band filter and length of 𝑢𝑘

′ (𝑛) for each

k is M/B, which is represented as-

𝑢𝑘
′ (𝑛) = [𝑢𝑘

′ (𝑛)……… 𝑢𝑘
′ (𝑛 −

𝑀

𝐵
+ 1)] , 𝑘 = 0,1,2, ………𝐾 − 1

Step 3- The FIR filter of length B is converted into K sub-band filters, each having length M/B

by the following relation (also explained above)-

Page | 41

[

𝐿0(𝑧)
𝐿1(𝑧)

⋮
𝐿𝐾−1(𝑧)

] = 𝐻−1

[

0
𝑃0(𝑧)

⋮
𝑃𝐵−1(𝑧)
0𝐵−1×1

𝑃𝐵−1(𝑧)
⋮

𝑃0(𝑧)]

… … … … (3.2.29)

Step 4- The desired output is calculated as structure of filter is depicted and converted into

block vector of size B.

𝑦𝑘
′ (𝑛) = 𝑢𝑘,𝑛

′ 𝐿𝑘, 𝑘 = 0,1, ……… ,𝐾 − 1

𝑑𝐵,𝑛 = [𝐼𝐵 0𝐵×2𝐵]𝐻 ∗ 𝑐𝑜𝑙{𝑦0
′(𝑛), ……… 𝑦𝐾−1

′ (𝑛)} + 𝑣𝐵,𝑛

Step 5- The actual output is also calculated in same fashion as-

𝑦1𝑘
′ (𝑛) = 𝑢𝑘,𝑛

′ 𝑙𝑘,𝑛−1, 𝑘 = 0,1, ……… ,𝐾 − 1

�̂�𝐵,𝑛 = [𝐼𝐵 0𝐵×2𝐵]𝐻 ∗ 𝑐𝑜𝑙{𝑦10
′ (𝑛), ……… 𝑦1𝐾−1

′ (𝑛)}

Step 6- The error vector is difference of desired output vector and actual output vector-

𝑒𝐵,𝑛 = 𝑑𝐵,𝑛 − �̂�𝐵,𝑛

Step 7- This error vector is processed by DHT matrix and last B outputs are neglected as-

𝑒𝐾,𝑛
′ = 𝐻 [

𝐼𝐵
02𝐵×𝐵

] 𝑒𝐵,𝑛 = 𝑐𝑜𝑙{𝑒𝑘
′ (𝑛), 𝑘 = 0,1, ………𝐾 − 1}

Step 8- The weight of each sub-band filter is updated separately with normalized Block LMS

as-

𝑙𝑘,𝑛 = 𝑙𝑘,𝑛−1 +
𝜇

𝜆𝑘
𝑢𝑘,𝑛

′∗ 𝑒𝑘
′ (𝑛), 𝑘 = 0,1, ……… (𝐾 − 1)… . . …… (3.2.30)

Where is calculated as- 𝜆𝑘(𝑛) = 𝛽 ∗ 𝜆𝑘(𝑛 − 1) + (1 − 𝛽)|𝑢𝑘
′ (𝑛)|2

Step 9- The actual output block vector and error block vector are interpolated with the help of

size B interpolator as-

�̂�𝐵,𝑛 = 𝑐𝑜𝑙{�̂�(𝑛𝐵 + 𝐵 − 1),……… , �̂�(𝑛𝐵 + 1), �̂�(𝑛𝐵)}

 𝑒𝐵,𝑛 = 𝑐𝑜𝑙{𝑒(𝑛𝐵 + 𝐵 − 1),……… , 𝑒(𝑛𝐵 + 1), 𝑒(𝑛𝐵)}

Page | 42

Step 10- Mean square error is calculated by the output of interpolator of error vector-

𝑚𝑠𝑒 = 𝑒(𝑖).∗ 𝑒(𝑖)

Figure-3. 12 Unconstrained DHT Block Adaptive Filter

Page | 43

3.2.6 Constrained DHT Block Adaptive Filter Implementation

As discussed previous in case of DFT and DCT block adaptive filter implementation the

significant difference is observed between unconstrained and constrained filter

implementation. The same situation repeats here in case of DHT block adaptive filter

implementation.

The above unconstrained implementation is rectified at the final stage of sub-band filter weight

update process. The new update equation is-

[

𝑙0,𝑛
𝑐𝑇

𝑙1,𝑛
𝑐𝑇

⋮
𝑙𝐾−1
𝑐𝑇]

= 𝐻 [

0
0.5𝐼𝐵 0 0.5𝐼𝐵

#

0 0 0
0.5𝐼𝐵

0 0.5𝐼𝐵

]

[

𝑙0,𝑛
𝑇

𝑙1,𝑛
𝑇

⋮
𝑙𝐾−1
𝑇]

… … … … (3.2.31)

Where 𝐼𝐵
is anti-diagonal identity matrix.

Page | 44

Figure-3. 13 Constrained DHT Block Adaptive Filter

Page | 45

3.2.7 Block Adaptive Filter Based On DCT

The block adaptive filter which based on discrete cosine transform (DCT) is motivated here.

The DCT matrix of size 𝐾 × 𝐾 is defined as-

[𝐶]𝑘,𝑚 = 𝛼(𝑘) cos (
𝑘(2𝑚+1)𝜋

2𝐾
) , 𝑘,𝑚 = 0,1,2, ………𝐾 − 1

Where 𝛼(0) =
1

√𝐾
 & 𝛼(𝑘) = √

2

𝐾
 , 𝑘 ≠ 0. 𝑘 Denotes row index and 𝑚 denotes column

index. As previous discussion we know that 𝐾 × 𝐾 matrix [𝐶]𝑘,𝑚 diagonalizes circulant

matrix 𝐴(𝑧) which can be expressed as-

𝐴(𝑧) = 𝑇(𝑧) + 𝐻(𝑧) + 𝐵(𝑧)… … … … (3.2.32)

Where 𝑇(𝑧) is symmetric Toeplized matrix and 𝐻(𝑧) is Hankel matrix which is related to

𝑇(𝑧), 𝐵(𝑧) is border matrix which is also related to 𝑇(𝑧). For e.g. - K=4

𝑇(𝑧) = [

𝑡0(𝑧)
𝑡1(𝑧)
𝑡2(𝑧)
𝑡3(𝑧)

𝑡1(𝑧)
𝑡0(𝑧)
𝑡1(𝑧)
𝑡2(𝑧)

𝑡2(𝑧)
𝑡1(𝑧)
𝑡0(𝑧)
𝑡1(𝑧)

𝑡3(𝑧)
𝑡2(𝑧)
𝑡1(𝑧)
𝑡0(𝑧)

]… … … … (3.2.33)

𝐻(𝑧) = [

𝑡0(𝑧)
𝑡1(𝑧)
𝑡2(𝑧)
𝑡3(𝑧)

𝑡1(𝑧)

𝑡2(𝑧)
𝑡3(𝑧)

0

𝑡2(𝑧)
𝑡3(𝑧)

0
−𝑡3(𝑧)

𝑡3(𝑧)
0

−𝑡3(𝑧)
−𝑡2(𝑧)

]… … … … (3.2.34)

𝐵(𝑧) =

[

 −

𝑡0(𝑧)

√2
− 1

𝑡1(𝑧)

𝑡2(𝑧)

𝑡3(𝑧)

𝑡1(𝑧)
0
0
0

𝑡2(𝑧)
0
0
0

𝑡3(𝑧)
0
0
0

]

(√2 − 2)… … … … (3.2.35)

For B=2

𝑃(𝑧) = [
𝑃0(𝑧)

0

𝑃1(𝑧)
𝑃0(𝑧)

0
𝑃1(𝑧)

]… … … … (3.2.36)

Page | 46

𝑇(𝑧) =

[

0 𝑃0(𝑧) 𝑃0(𝑧) 0 0

𝑃0(𝑧) 0 𝑃0(𝑧) 𝑃0(𝑧) 0

𝑃0(𝑧) 𝑃0(𝑧) 0 𝑃0(𝑧) 𝑃0(𝑧)

0 𝑃0(𝑧) 𝑃0(𝑧) 0 𝑃0(𝑧)

0 0 𝑃0(𝑧) 𝑃0(𝑧) 0]

… … … … (3.2.37)

𝐴(𝑧) =

[

 0 √2𝑃0(𝑧) √2𝑃0(𝑧) 0 0

√2𝑃0(𝑧) 0 𝑃0(𝑧) 𝑃0(𝑧) 0

√2𝑃0(𝑧) 𝑃0(𝑧) 0 𝑃0(𝑧) 𝑃0(𝑧)

0 𝑃0(𝑧) 𝑃0(𝑧) 0 𝑃0(𝑧)

0 0 𝑃0(𝑧) 𝑃0(𝑧) 0]

… … … … (3.2.38)

The dimension of 𝐾 × 𝐾 matrix is defined ass-

𝐾 = {

7𝐵−4

2
 𝑖𝑓 𝐵 𝑖𝑠 𝑒𝑣𝑒𝑛

7𝐵−3

2
 𝑖𝑓 𝐵 𝑖𝑠 𝑜𝑑𝑑

 … … … … (3.2.39)

For any one block of size B, the first row of 𝑇(𝑧) is having the formation like-

[01×𝐵−1 𝑃0(𝑧)… 𝑃𝐵−1(𝑧) 01×𝛼]

Which is having (B-1) no. of zeros in starting and 𝛼 no. of zeros in ending.

Where 𝛼 is defined as-

𝛼 = {

3𝐵−2

2
 𝑖𝑓 𝐵 𝑖𝑠 𝑒𝑣𝑒𝑛

3𝐵−1

2
 𝑖𝑓 𝐵 𝑖𝑠 𝑜𝑑𝑑

 … … … … (3.2.40)

Then 𝑃(𝑧) is derived from 𝐴(𝑧) as-

𝑃(𝑧) = [0𝐵×𝛾 𝐼𝐵 0𝐵×2𝐵−2]𝐴(𝑧) [
0𝛼×(2𝐵−1)

𝐼2𝐵−1
]… … … … (3.2.41)

Where 𝛾 is defined as-

𝛾 = {

𝐵

2
 𝑖𝑓 𝐵 𝑖𝑠 𝑒𝑣𝑒𝑛

𝐵 + 1

2
 𝑖𝑓 𝐵 𝑖𝑠 𝑜𝑑𝑑

… … … … (3.2.42)

Page | 47

The matrix 𝐴(𝑧) can be diagonalized by 𝐶 as-

𝐴(𝑧) = 𝐶𝐿(𝑧)𝐶𝑇 … … … … (3.2.43)

Where 𝐿(𝑧) = 𝑑𝑖𝑎𝑔{𝐿𝑘(𝑧)} has K entries. The relation is given as-

√2𝐾

[

0(𝐵−1)×1

𝑃0(𝑧)
⋮

𝑃𝐵−1(𝑧)
0𝛼×1]

= 𝐶 [

𝐿0(𝑧)
𝐿1(𝑧)

⋮
𝐿𝐾−1(𝑧)

]… … … … (3.2.44)

Now the final decomposition is –

𝐺′(𝑧) = [0𝐵×𝛾 𝐼𝐵 0𝐵×2𝐵−2]𝐴(𝑧) [
0𝛼×(2𝐵−1)

𝐼2𝐵−1
] 𝑄(𝑧)

𝐺′(𝑧) = [0𝐵×𝛾 𝐼𝐵 0𝐵×2𝐵−2]𝐶𝐿(𝑧)𝐶𝑇 [
0𝛼×(2𝐵−1)

𝐼2𝐵−1
] 𝑄(𝑧)

𝐺′(𝑧) = [0𝐵×𝛾 𝐼𝐵 0𝐵×2𝐵−2]𝐶𝐿(𝑧)𝐶𝑇 [
0𝛼×(2𝐵−1)

𝐼2𝐵−1

0
0
]𝑄(𝑧)… … … … (3.2.45)

3.2.8 Unconstrained DCT Block Adaptive Filter Implementation

 As discussed above the block adaptive implementation requires block-by-block processing

with transform domain implementation of data. Both of these combined technique give better

computational cost reduction as well as better convergence performance. Let’s make the

analysis step-by-step;-

Step 1- Convert the input repressor and noise signal in blocks and then make the two

consecutive input block vector into block column-wise

𝑢𝐵,𝑛 ≜ [

𝑢(𝑛𝐵 + 𝐵 − 1)
⋮

𝑢(𝑛𝐵 + 1)
𝑢(𝑛𝐵)

] 𝑣𝐵,𝑛 = [

𝑣(𝑛𝐵 + 𝐵 − 1)
⋮

𝑣(𝑛𝐵 + 1)
𝑣(𝑛𝐵)

]

𝑢2𝐵,𝑛 = [
𝑢𝐵,𝑛

𝑢𝐵,𝑛−1
]

Step 2- Now make the input block vector into transformed regressor by the DCT matrix-

𝑢𝐾,𝑛
′ = 𝐶𝑇 [

0𝛼×(2𝐵−1)

𝐼2𝐵−1

0
0
] 𝑢2𝐵,𝑛 = 𝑐𝑜𝑙{𝑢𝑘

′ (𝑛), 𝑘 = 0,1, ……… ,𝐾 − 1}

Page | 48

Where 𝑢𝑘
′ (𝑛) is a transformed regressor for each sub-band filter and length of 𝑢𝑘

′ (𝑛) for each

k is M/B, which is represented as-

𝑢𝑘
′ (𝑛) = [𝑢𝑘

′ (𝑛)……… 𝑢𝑘
′ (𝑛 −

𝑀

𝐵
+ 1)] , 𝑘 = 0,1,2, ………𝐾 − 1

Step 3- The FIR filter of length B is converted into K sub-band filters, each having length M/B

by the following relation (also explained above)-

[

𝐿0(𝑧)
𝐿1(𝑧)

⋮
𝐿𝐾−1(𝑧)

] = √2𝐾𝐶−1

[

0(𝐵−1)×1

𝑃0(𝑧)
⋮

𝑃𝐵−1(𝑧)
0𝛼×1]

Step 4- The desired output is calculated as structure of filter is depicted and converted into

block vector of size B.

𝑦𝑘
′ (𝑛) = 𝑢𝑘,𝑛

′ 𝐿𝑘, 𝑘 = 0,1, ……… ,𝐾 − 1

𝑑𝐵,𝑛 = [0𝐵×𝛾 𝐼𝐵 0]𝐶 ∗ 𝑐𝑜𝑙{𝑦0
′(𝑛),……𝑦𝐾−1

′ (𝑛)} + 𝑣𝐵,𝑛

Step 5- The actual output is also calculated in same fashion as-

𝑦1𝑘
′ (𝑛) = 𝑢𝑘,𝑛

′ 𝑙𝑘,𝑛−1, 𝑘 = 0,1, ……… ,2𝐵 − 1

�̂�𝐵,𝑛 = [0𝐵×𝛾 𝐼𝐵 0]𝐶 ∗ 𝑐𝑜𝑙{𝑦0
′(𝑛),……𝑦1𝐾−1

′ (𝑛)}

Step 6- The error vector is difference of desired output vector and actual output vector-

𝑒𝐵,𝑛 = 𝑑𝐵,𝑛 − �̂�𝐵,𝑛

Step 7- This error vector is processed by DFT matrix and last B outputs are neglected as-

𝑒2𝐵,𝑛
′ = 𝐹 [

𝐼𝐵
0𝐵×𝐵

] 𝑒𝐵,𝑛 = 𝑐𝑜𝑙{𝑒𝑘
′ (𝑛), 𝑘 = 0,1, ………𝐾 − 1}

Step 8- The weight of each sub-band filter is updated separately with normalized Block LMS

as-

𝑙𝑘,𝑛 = 𝑙𝑘,𝑛−1 +
𝜇

𝜆𝑘
𝑢𝑘,𝑛

′∗ 𝑒𝑘
′ (𝑛), 𝑘 = 0,1, … (𝐾 − 1) … … … … (3.2.46)

Where is calculated as- 𝜆𝑘(𝑛) = 𝛽𝜆𝑘(𝑛 − 1) + (1 − 𝛽)|𝑢𝑘
′ (𝑛)|2

Page | 49

Step 9- The actual output block vector and error block vector are interpolated with the help of

size B interpolator as-

�̂�𝐵,𝑛 = 𝑐𝑜𝑙{�̂�(𝑛𝐵 + 𝐵 − 1),……… , �̂�(𝑛𝐵 + 1), �̂�(𝑛𝐵)}

 𝑒𝐵,𝑛 = 𝑐𝑜𝑙{𝑒(𝑛𝐵 + 𝐵 − 1),……… , 𝑒(𝑛𝐵 + 1), 𝑒(𝑛𝐵)}

Step 10- Mean square error is calculated by the output of interpolator of error vector-

𝑚𝑠𝑒 = 𝑒(𝑖).∗ 𝑒(𝑖)

Figure-3. 14 Unconstrained DCT Block Adaptive Filter

Page | 50

3.2.9 Constrained DCT Block Adaptive Filter Implementation
As discussed previous in case of DFT block adaptive filter implementation the significant

difference is observed between unconstrained and constrained filter implementation. The same

situation repeats here in case of DCT block adaptive filter implementation.

The above unconstrained implementation is rectified at the final stage of sub-band filter weight

update process. The new update equation is-

[

𝑙0,𝑛
𝑐𝑇

𝑙1,𝑛
𝑐𝑇

⋮
𝑙𝐾−1
𝑐𝑇]

= 𝐶𝑇 [

0𝐵×(𝐵−1)

𝐼𝐵
0𝐵×𝛼

] 𝐶

[

𝑙0,𝑛
𝑇

𝑙1,𝑛
𝑇

⋮
𝑙𝐾−1
𝑇]

… … … … (3.2.47)

Page | 51

Figure-3. 15 Constrained DCT Block Adaptive Filter

3.2.10 Computational complexity of overall block adaptive filter

The computational complexity of all block adaptive filter can be calculated very easily. We are

computing here computational cost for constrained DFT block adaptive filter. The entire process

of cost evaluation is divided into four stages.

Page | 52

1. Decomposition of sub-bands of input and error signal

The block size is B for input and error signal {𝑢(𝑖), 𝑒(𝑖)} and their transformed vectors

{𝑢2𝐵,𝑛
′ , 𝑒2𝐵,𝑛

′ } respectively. For each block of B input samples, DFT of size 2B is needed.

We know that cost of A size DFT is
𝐴

2
log2 𝐴 complex operations.

1

𝐵
2(𝐵 log2(𝐵)) = 2 log2 2𝐵 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑠𝑎𝑚𝑝𝑙𝑒

2. Updating process of sub-band filters

There are 2B sub-band filters each having length 𝑀/𝐵 by using N-LMS with power

normalization. The update is for one input block size B. P-long N-LMS filter needed about

2P complex operations. So-

1

𝐵
2𝐵

2𝑀

𝐵
=

4𝑀

𝐵
 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑠𝑎𝑚𝑝𝑙𝑒

3. Enforcement of constraints

 The step in which sub-band filter weights 𝐿𝑘(𝑧) are processed with DFT matrix, total 2B

sub-band filters with each of size M/B. the complexity is very similar to part one but here

we need to compute for M/B transforms.

1

𝐵
∗

𝑀

𝐵
(𝐵 log2(𝐵)) = 𝑀 log2 2𝐵 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑠𝑎𝑚𝑝𝑙𝑒

4. Inverse transformation

The mapping of signal from 𝑦𝑘
′ (𝑛) into 𝑦𝑘(𝑛) needed one DFT of size 2B.

𝐵 log2(2𝐵) 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑠𝑎𝑚𝑝𝑙𝑒 … … … … (3.2.48)

Finally we can say that

4𝑀

𝐵
+ (

𝑀

𝐵
+ 3) log2(2𝐵) 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑠𝑎𝑚𝑝𝑙𝑒

 The over-all conclusion is that the computational cost is 𝑂(𝑀/𝐵) operations per sample where

as in simple FIR filter it is 𝑂(𝑀) operations per samples.

Page | 53

CHAPTER 4

FREQUENCY DOMAIN FILTERING BY UNITARY TRANSFORMS

IN DIFFUSION & INCREMENTAL STRATEGIES OVER

DISTRIBUTED NETWORKS

By the help of unitary transforms like DCT & DFT we can improve the convergence performance

of an adaptive filter. The unitary transforms DFT & DCT have orthogonal properties, which are

helpful in input data de-correlation. Hence the eigen value spread of covariance matrix of input

data is less and we can easily get better convergence performance. Two basic steps must be

followed in this implementation-

1> The input regressor must be processed by transform matrix at each node.

2> Power normalization of transformed input regressor at each node.

Let’s s denotes the no. of nodes (𝑠 = 1,2, ……𝑁). N denotes total no. of nodes.

The weight updating equation of Adaptive Filter is-

𝑊𝑠,𝑖 = 𝑊𝑠,𝑖−1 + 𝜇𝑢𝑠,𝑖
′ (𝑑𝑠(𝑖) − 𝑢𝑠,𝑖𝑊𝑠,𝑖−1), 𝑠 = 1,2, ……𝑁

The length of filter is considered as 𝑀. So the size unitary transform matrix is 𝑀 × 𝑀.

The DFT matrix is defined as-

[𝐹]𝑘𝑚 =
1

√𝑀
𝑒−

𝑗2𝜋𝑚𝑘
𝑀 , 𝑘,𝑚 = 0,1,2, ………𝑀 − 1

Similarly the DCT matrix is defined as-

[𝐶]𝑘𝑚 = 𝛼(𝑘) cos (
𝑘(2𝑚 + 1)𝜋

2𝑀
) , 𝑘, 𝑚 = 0,1,2, ………𝑀 − 1

Where

𝛼(0) =
1

√𝑀
 𝑎𝑛𝑑 𝛼(𝑘) =

2

√𝑀
 𝑓𝑜𝑟 𝑘 ≠ 0

The transformed regressor is –

�̅�𝑠,𝑖 = 𝑢𝑠,𝑖𝑇

Which give the transformed regressor in DFT & DCT as-

𝑭 𝑪

𝒖𝒔,𝒊

𝒖𝒔,𝒊

�̅�𝒔,𝒊 �̅�𝒔,𝒊

Page | 54

Now the weight matrix of filter is also processed by unitary transform matrix as-

�̅�𝑠,𝑖 = 𝑇∗𝑊𝑠,𝑖, 𝑠 = 1,2, ……𝑁

Now the weight updating equation can be written as-

�̅�𝑠,𝑖 = �̅�𝑠,𝑖−1 + 𝜇�̅�𝑠,𝑖
∗ (𝑑𝑠(𝑖) − �̅�𝑠,𝑖𝑊𝑠,𝑖−1), �̅�𝑠,−1 = 0, 𝑠 = 1,…𝑁 … (4.1)

Now in order to proceed for power normalization process, means the input regressor is divide

by input power at each node to normalize.

Let’s define a new term –

𝜆𝑠,𝑘(𝑖) = 𝛽𝜆𝑠,𝑘(𝑖 − 1) + (1 − 𝛽)|�̅�𝑠,𝑖(𝑘)|
2
 , 𝑘 = 0,1,2,…𝑀 − 1, 𝑠 = 1,2, …𝑁 … (4.2)

Where 0 ≪ 𝛽 < 1.generally 𝛽 is very close to one �̅�𝑖(𝑘) denotes the k-th entry of regressor �̅�𝑖

With the help of this power normalization factor, a diagonal matrix D is defined as –

𝐷𝑠,𝑖 = 𝑑𝑖𝑎𝑔{𝜆𝑠,𝑘(𝑖)}…… (4.3)

Finally including all required concept, the weight updating equation becomes-

�̅�𝑠,𝑖 = �̅�𝑠,𝑖−1 + 𝜇𝐷𝑠,𝑖
−1�̅�𝑠,𝑖

∗ 𝑒𝑠(𝑖)…… (4.4)

Page | 55

Figure 4. 1 Working of nodes in Incremental strategy by Transform Domain Filtering

Page | 56

Figure 4. 2 Working of nodes in Diffusion strategy by Transform Domain Filtering

Page | 57

4.1 Block adaptive filtering in diffusion strategy over distributed

network

A distributed network containing many nodes and nodes are connected to each other by diffusion

co-operative scheme. The purpose of each node is to estimate desire parameter of interest by

exchanging information with pre-defined neighbouring nodes. Each node is considered as an

adaptive filter. As many of block adaptive filters are discussed above, the important thing is that,

each filter is further divided into many sub filters. The number of sub-filter of a particular

adaptive filter is depends on the size of block B.

We can consider a particular node as a group of sub-node. Suppose a node is exchanging data

with other node, it means all the sub-nodes of that particular node are exchanging information

with all sub-nodes of other node. Each sub-node can exchanging the information with other sub-

node at equal position. Foe e.g. node A and B are sharing information to each other, then first

sub-node of node A can exchange information with first sub-node of node B. For e.g. 4 nodes

are in a network and connected to each other and each node is having 4 sub nodes as shown-

Figure 4. 3 Nodes with four sub nodes

Page | 58

Figure 4. 4 The connectivity between sub-nodes of each node

4.2 DFT block adaptive filtering Processing in diffusion co-operative

scheme

1> Block Adaptive filter based on DFT :-

Each node is considered here as a block adaptive filter, which is consisting of many sub-nodes.

The sub-nodes are represented by k. total no of modes are N and node is represented by s.

Step 1- Convert the input repressor and noise signal of each node in blocks and then make the

two consecutive input block vector into block column-wise

Page | 59

𝑢𝑠,𝐵,𝑛 ≜ [

𝑢𝑠(𝑛𝐵+𝐵−1)

⋮
𝑢𝑠(𝑛𝐵+1)

𝑢𝑠(𝑛𝐵)

] 𝑣𝑠,𝐵,𝑛 = [

𝑣𝑠(𝑛𝐵+𝐵−1)

⋮
𝑣𝑠(𝑛𝐵+1)

𝑣𝑠(𝑛𝐵)

]

𝑢𝑠,2𝐵,𝑛 = [
𝑢𝑠,𝐵,𝑛

𝑢𝑠,𝐵,𝑛−1
]

Step 2- Now make the input block vector into transformed regressor at each node s by the DFT

matrix-

𝑢𝑠,2𝐵,𝑛
′ = 𝐹 ∗ 𝑢𝑠,2𝐵,𝑛 = 𝑐𝑜𝑙{𝑢𝑠,𝑘

′ (𝑛), 𝑠 = 1,2, …𝑁, 𝑘 = 0,1,2𝐵 − 1}

Where 𝑢𝑠,𝑘
′ (𝑛)a transformed regressor is for each node s and each sub-band filter k and length

of 𝑢𝑠,𝑘
′ (𝑛) is M/B for each k, which is represented as-

𝑢𝑠,𝑘
′ (𝑛) = [𝑢𝑘

′ (𝑛)……… 𝑢𝑠,𝑘
′ (𝑛 −

𝑀

𝐵
+ 1)] , 𝑠 = 1,2, …𝑁, 𝑘 = 0,1, … 2𝐵 − 1

Step 3- The FIR filter of length M is converted into 2B sub-band filters, each having length

M/B by the following relation (also explained above)-

[

𝐿𝑠,0(𝑧)

𝐿𝑠,1(𝑧)
⋮

𝐿𝑠,2𝐵−1(𝑧)

] =
1

2𝐵
𝐹∗ [

𝑃𝑠,0(𝑧)

⋮
𝑃𝑠,𝐵−1(𝑧)

0𝐵×1

]…… (4.5)

Step 4- The desired output is calculated as structure of filter is depicted and converted into

block vector of size B.

𝑦𝑠,𝑘
′ (𝑛) = 𝑢𝑠,𝑘,𝑛

′ 𝐿𝑠,𝑘, 𝑘 = 0,1, ……… ,2𝐵 − 1…… (4.6)

𝑑𝑠,𝐵,𝑛 = [𝐼𝐵 0𝐵×𝐵]𝐹∗𝑦𝑠,𝑘
′ (𝑛) + 𝑣𝑠,𝐵,𝑛 …… (4.7)

Step 5- The actual output is also calculated in same fashion as-

𝑦1𝑠,𝑘
′ (𝑛) = 𝑢𝑠,𝑘,𝑛

′ 𝑙𝑠,𝑘,𝑛−1, 𝑘 = 0,1, ……… ,2𝐵 − 1

�̂�𝑠,𝐵,𝑛 = [𝐼𝐵 0𝐵×𝐵]𝐹∗𝑦1𝑠,𝑘
′ (𝑛)…… (4.8)

Step 6- The error vector is difference of desired output vector and actual output vector-

𝑒𝑠,𝐵,𝑛 = 𝑑𝑠,𝐵,𝑛 − �̂�𝑠,𝐵,𝑛

Step 7- This error vector is processed by DFT matrix and last B outputs are neglected as-

Page | 60

𝑒𝑠,2𝐵,𝑛
′ = 𝐹 [

𝐼𝐵
0𝐵×𝐵

] 𝑒𝑠,𝐵,𝑛 = 𝑐𝑜𝑙{𝑒𝑠,𝑘
′ (𝑛), 𝑘 = 0,1, ………2𝐵 − 1}

Step 8- The weight of each sub-band filter is updated separately with normalized Block LMS

as-

𝑙𝑠,𝑘,𝑛 = 𝑙𝑠,𝑘,𝑛−1 +
𝜇

𝜆𝑘
𝑢𝑠,𝑘,𝑛

′∗ 𝑒𝑠,𝑘
′ (𝑛), 𝑘 = 0,1, … 2𝐵 − 1 & 𝑠 = 1,2, …𝑁 …… (4.9)

Where 𝜆𝑠,𝑘 is calculated as-

 𝜆𝑠,𝑘(𝑛) = 𝛽𝜆𝑠,𝑘(𝑛 − 1) + (1 − 𝛽)|𝑢𝑠,𝑘
′ (𝑛)|

2
 , 𝑠 = 1,2, …𝑁 … … (4.10)

Step 9- The actual output block vector and error block vector are interpolated with the help of

size B interpolator as-

�̂�𝑠,𝐵,𝑛 = 𝑐𝑜𝑙{�̂�𝑠(𝑛𝐵 + 𝐵 − 1),……… , �̂�𝑠(𝑛𝐵 + 1), �̂�𝑠(𝑛𝐵)}

 𝑒𝑠,𝐵,𝑛 = 𝑐𝑜𝑙{𝑒𝑠(𝑛𝐵 + 𝐵 − 1),……… , 𝑒𝑠(𝑛𝐵 + 1), 𝑒𝑠(𝑛𝐵)}

Page | 61

CHAPTER 5

RESULTS

Figure-5. 1 Comparison of LMS, DFT-LMS & DCT-LMS

𝜇 = 0.07

𝑀 = 5

𝛽 = 0.9

Page | 62

Figure-5. 2 Diffusion convergence performance

Figure-5. 3 Incremental convergence performance

𝜇 = 0.07

𝜇 = 0.07

𝑀 = 5

𝑁 = 7

𝛽 = 0.9

𝑁 = 7

𝛽 = 0.9

𝑀 = 5

Page | 63

Figure-5. 4 Overlap-Add DFT Block Adaptive Filter

Figure-5. 5 DFT Block Adaptive Filter

𝜇 = 0.01

𝜇 = 0.001

𝛽 = 0.9

𝑀 = 64

𝐵 = 4

𝛽 = 0.9

𝑀 = 64

𝐵 = 4

Page | 64

Figure-5. 6 DCT Block Adaptive Filter

Figure-5. 7 DFT Block Adaptive Filter in Diffusion Strategy

𝜇 = 0.07

𝜇 = 0.001

𝛽 = 0.9

𝑀 = 64

𝐵 = 4

𝛽 = 0.9

𝑀 = 64

𝐵 = 4

𝑁 = 20

Page | 65

Figure-5. 8 Overlap-Add DFT Block Adaptive Filter in Diffusion Strategy

Figure-5. 9 DHT Block Adaptive Filter

𝜇 = 0.001

𝛽 = 0.9

𝑀 = 64

𝐵 = 4

𝑁 = 20

Page | 66

Figure 1 DHT Block Adaptive Filter

CHAPTER 6

CONCLUSION & FUTURE WORK

By using unitary transforms DCT & DFT; the convergence performance is improved in both

diffusion and incremental co-operation schemes. The DCT gives better results than DFT in

convergence performance. The simulation results are shown above.

Similarly block adaptive filter of many types like DFT, DCT, DHT and Overlap-Add DFT are

employed successfully in both constrained and unconstrained form. Constrained form of these

filters gives better results. Mainly block filter are used to reduce the computational cost. Here

we found that the cost is reduced to 𝑂(𝑀/𝐵) operations per sample which is 𝑂(𝑀) operations

per sample in simple filter. DFT and Overlap-Add block adaptive filters are giving better results

and other two are more sensitive to noise. So DFT and Overlap-Add block adaptive filters are

successfully employed in diffusion co-operation scheme and simulation results are shown

above.

For future work point of view, we will study other transforms like KLT, DWT etc. and try to

apply these transforms in block adaptive filters. The existing block adaptive filter expression

should be look beyond the straight forward algebra to modify the existing filters.

Similarly in diffusion we will focus on other parameter to exchange with other nodes like input

data, power of input in order to increase the efficiency of the distributed networks.

Page | 67

REFERENCE

[1] Kalouptsidis, Nicholas, and Sergios Theodoridis. Adaptive system identification and

signal processing algorithms. Prentice-Hall, Inc., 1993.

[2] Sakai, Hideaki, Jun-Mei Yang, and Tetsuo Oka. "Exact convergence analysis of

adaptive filter algorithms without the persistently exciting condition." Signal

Processing, IEEE Transactions on 55.5 (2007): 2077-2083.

[3] Lopes, Cassio G., and Ali H. Sayed. "Incremental adaptive strategies over

distributed networks." Signal Processing, IEEE Transactions on 55.8 (2007): 4064-

4077.

[4] Sayed, Ali H., and Cassio G. Lopes. "Adaptive processing over distributed

networks." IEICE Transactions on Fundamentals of Electronics, Communications

and Computer Sciences 90.8 (2007): 1504-1510.

[5] Beaufays, Francoise. "Transform-domain adaptive filters: an analytical

approach." Signal Processing, IEEE Transactions on 43.2 (1995): 422-431.

[6] Estrin, Deborah, et al. "Instrumenting the world with wireless sensor

networks."Acoustics, Speech, and Signal Processing, 2001.

Proceedings.(ICASSP'01). 2001 IEEE International Conference on. Vol. 4. IEEE,

2001.

[7] Rossi, Lorenzo A., Bhaskar Krishnamachari, and C-CJ Kuo. "Distributed parameter

estimation for monitoring diffusion phenomena using physical models." Sensor and

Ad Hoc Communications and Networks, 2004. IEEE SECON 2004. 2004 First

Annual IEEE Communications Society Conference on. IEEE, 2004.

[8] Li, Dan, et al. "Detection, classification, and tracking of targets." Signal Processing

Magazine, IEEE 19.2 (2002): 17-29.

[9] Akyildiz, Ian F., et al. "A survey on sensor networks." Communications magazine,

IEEE 40.8 (2002): 102-114.

[10] Lopes, CassioG, and AliH Sayed. "Diffusion least-mean squares over adaptive

networks." Proc. ICASSP. Vol. 3. 2007.

[11] Sayed, Ali H., and Cassio G. Lopes. "Distributed recursive least-squares strategies

over adaptive networks." Signals, Systems and Computers, 2006. ACSSC'06.

Fortieth Asilomar Conference on. IEEE, 2006.

[12] Spanos, Demetri P., Reza Olfati-Saber, and Richard M. Murray. "Distributed sensor

fusion using dynamic consensus." IFAC World Congress. 2005.

[13] Sayed, Ali H. Fundamentals of adaptive filtering. John Wiley & Sons, 2003.

[14] Shynk, John J. "Frequency-domain and multirate adaptive filtering." IEEE Signal

Processing Magazine 9.1 (1992): 14-37.

[15] Moulines, Eric, O. Ait Amrane, and Yves Grenier. "The generalized multidelay

adaptive filter: structure and convergence analysis." Signal Processing, IEEE

Transactions on 43.1 (1995): 14-28.

[16] Tsitsiklis, John N., and Michael Athans. "Convergence and asymptotic agreement in

distributed decision problems." Automatic Control, IEEE Transactions on 29.1

(1984): 42-50.

[17] Olfati-Saber, Reza, and Richard M. Murray. "Consensus problems in networks of

agents with switching topology and time-delays." Automatic Control, IEEE

Transactions on 49.9 (2004): 1520-1533.

Page | 68

[18] Li, Dan, et al. "Detection, classification, and tracking of targets." Signal Processing

Magazine, IEEE 19.2 (2002): 17-29.

[19] Lopes, Cassio G., and Ali H. Sayed. "Distributed adaptive incremental strategies:

formulation and performance analysis." Acoustics, Speech and Signal Processing,

2006. ICASSP 2006 Proceedings. 2006 IEEE International Conference on. Vol. 3.

IEEE, 2006.

[20] Xiao, Lin, Stephen Boyd, and Sanjay Lall. "A scheme for robust distributed sensor

fusion based on average consensus." Information Processing in Sensor Networks,

2005. IPSN 2005. Fourth International Symposium on. IEEE, 2005.

