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ABSTRACT 

      PID controllers have been widely used in process control industries because of its        

implementation and tuning advantages. It is mainly used because of its relatively simple 

structure and robust performance. It seems conceptually very easy to achieve multiple       

objectives such as short transients and high stability, but tedious in practice. The speed of the     

response of the system is inversely proportional to the time constant of the dominant pole of 

the plant. Thus, it is advisable to design such a plant which has pole very near to the origin. 

      Better responses can be found in different systems with different dynamics, like those 

with low order or higher order, monotonic or oscillatory responses and large dead time or 

small dead time. Tuning of PID controllers for FOPDT is very simple and common practice. 

Many methods have been found out which can generate the algorithm for FOPDT model, but 

FOPDT model is unable to generate peaks for monotonic processes.  

         This method is basically developed on a second-order modeling technique which is   

calculated by two methods. First part of the research work is based on the root locus method. 

In this method poles are allocated in such a way that model poles are cancelled out by       

controller zero. But, exact cancellation is not possible. Hence the controller cancels out the 

model pole which is nearest to its exact value. In this method, the higher order system is        

reduced into a second order system and then tuning of the PID controller is done by damping 

ratio and speed of the response. 

      Second part of the research work is based on the Bode plot method in which phase    

crossover frequency, gain crossover frequency and bandwidth frequency are used. These 

three frequencies continue the process further by using multiplication technique and the    

values of a, b, c and L can be found out, which form a SOPDT model. Tuning of PID control-

ler is somewhat similar to the first method, in which controller zeros cancel out model poles. 

In this method, Routh-Hurwitz criterion is also used to find the value of k for which system 

would be critically stable. It is a necessary condition for determining finite phase crossover 

frequency. 
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1 Introduction of PID Controller 

PID Controller is extensively employed in process control      industries. The PID controller 

tuning technique is adopted for determining the proportional,      integral and derivative con-

stants of the controllers which depend upon the dynamic response of the plants. PID control-

ler is introduced into the closed loop system by cascading it to the  forward path. According 

to the requirements, the controller is cascaded either into the forward path or in the feedback 

path.  

1.1 Overview 

The PID controller contains three different parameters and hence it is also called three term 

control system which can also be written as proportional, integral and derivative.  These 

terms are defined as variables of time as P defined as present Difference (error), I    defined 

as an integration of past differences (errors) and D is defined as prediction of future differ-

ences (errors). These three elements control all the processes in the process industries [1]. 

PID controller is the best controller in the absence of any information regarding the process. 

After tuning the PID controller, the controller can be used for different control action for any 

process requirement. The error can be defined by the process of the controller, but it does not 

the guarantee about the optimal control of the system.  

Many applications might require two some specific control action to get the appropriate    

system and that can be found by setting the other parameters to zero. If suppose 100%  accu-

racy is required, then the PI controller is sufficient to achieve the requirements. D parameter 

is responsible for the measurement noise so it is suitable to ignore it till any application re-

quires using it. When the speed of the system is a priority, then the PD controller is suitable 

and then an integral parameter is set to zero. So PID controller is used as per requirement of 

different processes. PID controller takes input as a difference between set point and feedback 

signals. 
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1.2 Basic Building block of Closed Loop System 

A control system that changes the output based on the error which is calculated as the differ-

ence between the set point and the feedback signal, is called as close loop system. The Fig. 

1.1 shown below is the basic diagram of the CLS.  

 

 

Fig. 1.1: Block diagram of close loop system 

Reference input: Externally produced input that is independent of feedback control system 

and produce a signal. 

Error Detector: It is a device which sums or compress the signal obtained from the feedback 

and the reference input. 

Control Element: It produces the desired output from the actuating signal. 

Disturbance: Unwanted signal that deviates the result of the system. 

Feedback Signal: Element which help in providing the controlled output to be feedback to 

the error detector for comparison with the reference input signal. 

Controller Output: It is the quantity that required to be controlled at the desired level. 

Derive the transfer function of feedback system from Fig. 1.2 which is defined as the ratio of 

output signal to the input signal put all other incoming signals to zero. 

 

 



 

Submitted by Sandeep Kumar [212EC3154] Page 4 
 

 

  

Fig.1.2: Close loop system 

 

X (s): Input signal 

Y (s): Output signal 

Z (s): Actuating signal 

H (s): Feedback path transfer system 

G (s): Forward path transfer function 

The T.F. of the system can be calculated as, 

(s) (s)

(s) 1 (s) H(s)

Y G

X G


                                                         (1.1) 

The error can be calculated as, 

E(s) 1

(s) 1 (s) H(s)X G


                                                           (1.2) 

1.3 Time Response specifications 

The performance of a controlled system is determined as a transient response of a unit step 

input because it is easy to get the response by using step value as an input which is shown in 

Fig.1.3. There are two types of response of a CLS. 

 

(1) Transient Response 
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The response of the system before equilibrium is called as the transient response of the sys-

tem. It is not applied for on/off system. 

 (2) Steady State Response 

When system attains equilibrium and no transient effect present, then that response is called 

as a steady state response. 

 

 

Fig.1.3: Under-damped response to unit step input 

 

% Overshoot  

It is the highest value of the response which can be calculated from unity.  

Peak Time 

It is defined as, how much time it will take to reach the 1
st
 peak of the overshoot. 
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Rise Time 

It is the time required for the response to reach from 10% to 90% for over-damped system or 

0% to 100% for the under-damped system of its final value.. 

Delay Time 

It is the time required for the response to reach half of its final value for the 1
st
 time. 

 

1.4 PID Controller parameters 

The primary work of a PID controller is to read a Set point and calculate the required output 

by calculating PID responses. The controller input is the error between the expected output 

and the final output. This difference is changed by the actuator of the controller to produce a 

signal to the plant, according to the following relationship 

1
(s) K (1 s)

dP

i

K
s




  

                                                   (1.3) 

 

1.4.1 P Controller  

The proportional gain can be calculated as the ratio of the output response to the error signal. 

Generally speed of the control system response increases with the increase of proportional 

constant. One problem may also arise in proportional controller, if the gain is very large, then 

the process will start to oscillate. If it again increases, then the system will tend towards in-

stability. 
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Fig.1.4: Basic diagram of the PID controller 

 

In P controller only proportional constant need to be observed, the other two values integral 

constant and derivative constant is set to zero. 

1.4.2 PI Controller  

Integral component adds the error term over time. PI controller adds the small error term and 

increase the value of the integral component. It will increase the integral constant till error 

will become zero. So ess is zero in case of PI controller. That will also increase the time con-

stant of the system so it will push the system towards instability. 

1.4.3 PID Controller 

The effect of each controller parameter KP, Ki and Kd on a CLS is summarized in the table 

1.1. 
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Table 1.1 Effect of controller parameters 

Close Loop 

Response 

Rise Time Overshoot Settling Time Steady State 

 Error 

Kp Decrement Increment Negligible 

Change 

Decrement 

Ki Decrement Increment Increment Zero 

Kd Small Change Decrement Decrement Not affected 

 

1.5 Motivation  

The motivation for tuning of PID controller is mainly due to its wide application in process 

industries. It is widely used in programmable logic controllers, SCADA, remote terminal 

unit, etc. Because of high requirement of best tuning procedures which tune the plant in such 

a way that could provide optimized solution, many tuning methods have been developed so 

far in which some methods give better response for speed of the system and some show good 

response for stability. Thus, maximum methods are application oriented.  FOPDT model is 

very popular because it is very easy to tune but for certain applications  FOPDT model does 

not fulfill our requirements, so it is required to design such a system that attains the require-

ment of the applications. In the FOPDT model, it is not possible to generate peaks for mono-

tonic system. So it is requred to design such a system that gives better stability and high 

speed of response. SOPDT model gives better response in both of the aspects, good stability 

and high speed of the response. In this research paper SOPDT model is proposed in which 

higher order system is reduced in a second order system.   
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1.6 Objectives 

I. Development of a technique which satisfies all the requirements of a model. The             

requirements are peak overshoot is less than 15%, settling time should be as minimum as 

possible and speed of the response should be very high. Speed of response is inversely     

proportional to the time constant. Hence the time constant should be as minimum as possible. 

II. Design of a second order model for both oscillatory and monotonic processes. 

 

1.7 Thesis Organisation 

The thesis is divided into 4 chapters.  

Chapter 2: Literature Review  

        This chapter gives the idea of the tuning of PID controllers for FOPDT model. Many 

methods like Ziegler Nichol method and Cohen Coon method show hit and trail methods are 

being used for tuning in the initial days. 

Chapter 3: Tuning of PID controller for the higher order system 

       This chapter is the heart of the total research work. It is divided into two methods for 

which we can tune the PID controller. In the first part of this chapter, tuning of the PID    

controller is based on the root locus method in which pole allocation strategy depends on 

whether the system is monotonic or oscillatory. In the second part of the chapter, tuning of 

the PID controller is based on Bode plot and Routh-Hurwitz method. We can find out the 

gain crossover frequency, phase crossover frequency and bandwidth frequency by using Bode 

plot. Routh criterion is used to get the value of k that to be critically stable and give finite 

gain crossover frequency and phase crossover frequency. 
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Chapter 4: Conclusion 

The complete conclusion of the thesis work is described in this part of the paper. This chapter 

also describes the future research areas that need to work for further experimantation. 
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Tuning of PID Controller by Gain-Phase Margin 

Tuning of PID Controller by D partition rule  
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2 LITERATURE REVIEW 

Since the last few decades, an extensive work has been done because of the growing popu-

larity into process control industries. In very early nineties Ziegler-Nichol [2] gave tuning          

procedure for PID controller. Thereafter a large number of methods have been developed to 

tune PID controller for getting good responses. The main principles of some of the popular 

tuning methods have been discussed below.  

 

 Tuning of the PI controller based on gain margin and phase margin method  

This method basically to attain specified  G.M. and P.M. of the system [3-4]. This 

method is divided into two parts. In the first part, model poles are cancelled out by 

controller zeros, but poor result we expected because exact cancellation is not   possi-

ble. In the second part, pole zero cancellation is not specified, so this method is more 

accurate than older one and got the excellent result. 

 

 Performances of gain margin and phase margins of popular tuning methods The 

performance of PID controllers for dead-time to time constant ratio between 0.1 to1 

has been discussed [5]. For load disturbance response different methods like Z-N 

method, Cohen coon method and ISE give a gain margin is approximately 1.5. These 

formulae are made for basically to cancel out a model pole to controller zero. 

 

 

 Tuning method of PID controllers for Desired Damping coefficient This method 

proposes the tuning of first order plus dead time model [6]. One assumption has been 

made in this paper, to fix the derivative time and integral time, so that close loop 

transfer function degenerated. For given damping coefficient, the proportional gain 

can be approximated to linear function and understand the tuning method of PID   

controller that can be demonstrated the desired damping coefficient.  
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 Tuning of PID controller by D partition rule In this paper, tuning of FOPDT model 

has been proposed with the principle aim of increasing the degree of stability [7]. The 

presence of the delay time for the closed loop transfer function, it gives an infinite 

number of closed loop poles. For this system one cannot apply Routh-Hurwitz criteri-

on. The D partition rule is developed to solve this problem. D partition boundaries an-

alytically characterize so that a necessary condition of the maximum degree of the 

stability has been derived. After drawing the boundary and increasing the stability of 

the problem is changed into a set of optimization problem. After that converting re-

sults can be found out by using existing methods. The method is based on shifting left 

side of the imaginary axis by some distance so that few of the zeros of characteristic 

equation touches it and then using D partition concept and find out analytical expres-

sions.  

The D partition theorem can be expressed as 

 

0 wP P P P      

 

0 0{( ; ; ) : ( ; ; ) f(0; ; ; ) k 0}P I D P I D P I D IP k k k G k k k k k k       

 

{( ; ; ) : 0}w P I D DP k k k k       

 

{( ; ; ) : f( jw; , , ) 0}w P I D P I DP k k k k k k      

 

 Tuning of PID controller using immune algorithm This paper dedicated to tuning 

of PID controller using immune algorithm as well as G.M. and P.M. [8]. After decid-

ing the G.M. and P.M. specifications, robust control is used to operate in the process. 

Using the exact value of immune algorithm the gain of the PID controller depending 

on the error between G.M. and P.M. The FNN based response is used to modify the 

result. As a result, G.M. and P.M. are written as 
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4 4
(1 1 )

4
m

i

L L
G

kL T



 
     

1
(1 )

2 4

p

m

p i

kk L

k k T

 



      

 Simplified Disturbance rejection tuning method for PID controllers The purpose 

of this paper is to show simplified disturbance rejection magnitude optimum (DRMO) 

tuning method [9]. These modifications shows fast and simple calculation for the PID 

controller and suitable for implementation. The disturbance rejection performance is 

the process for improving the low order system.  

 

 Performance Robustness Comparison of Two PID Tuning methods In this paper, 

two methods are compared by their performance and robustness [10]. These methods 

are 

 

(1) Desired Dynamic Equation method 

(2) Gain and phase method 

 

In the first method, two degrees of freedom are used in PID controller. There are two 

parameters, importing state observer parameter k and controller weight co-efficient l 

is used in this method. Final value of the controller can be written as 

 

2

0 1(x r) t (s x U)
k

t sx l
s kU

l

    
  

 

0 1
p

t t k
K

l


 , 0

i

kh
K

l
 , 1

d

h k
K

l


  

 

In the second method, G.M. and P.M. method is used to find out the values of the co-

efficient of PID controller. 
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By comparison, we find that desired dynamic equation method has better performance 

indices than gain and phase method. In the desired dynamic margin method, peak 

overshoot is approximately zero, so the speed of the response is very high as com-

pared to gain and phase method. 
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3 Tuning of PID Controller for Higher Order System 

 

      Tuning of PID Controller is conceptually easy, but tedious in practice. PID Controller is 

very popular in industries [11-12] because it is well known and result oriented [13-14]. A 

large number of studies have been done for the development of the tuning of the Controller. It 

is very common in the use of the FOPDT model because it is easy to tune and give better re-

sponse than others. Many methods have been developed such as Ziegler-Nichols method 

[15], Cohen-Coon method, Inter model control (IMC) method,  IAE-set point and IAE-load, 

ISE-set point and ISE-load, ITAE-set point and ITAE-load, which are basically very old and 

not much used in process industries. Now a day so many methods are developed which is ap-

plication based.  

 

3.1 Tuning of PID Controller using root locus technique 

         Many methods have been developed to find out PID controller parameters for SISO and 

multiple input multiple output (MIMO) systems [16-17]. In spite of the maximum of research 

works have been done in the literatures for auto tuning    [18-21], many PID controllers are 

poorly tuned in practice. Most important reasons are that maximum of the tuning methods are 

derived for any specific applications [22-25] and     therefore can be used only for the particu-

lar application. 

         Let us take a SOPDT system for getting the best response after tuning. In this method, 

first of all the higher order system is reduced in a second order system by using the model 

reduction technique. If we put s=jw, then the complex variable is divided into two parts after 

the angle condition is applied. In the FOPDT model for the monotonic system, we cannot 

generate peaks, but it is possible in case of the SOPDT modeling system.  After getting the 

SOPDT, we need to design controllers which cancel out model poles. Closed loop poles have 

been selected according to the delay to dead time ratio, damping ratio and dead time model 

[26]. Satisfactory responses have been obtained by using this simple procedure than others.  

 



  

Submitted by Sandeep Kumar [212EC3154] Page 18 
 

FOPDT have only real poles not imaginary poles. Hence, they are not able to generate peaks 

for oscillatory processes. Thus, we are using second order plus dead time for PID tuning. 

3.1.1 Higher Order reduction Method  

The transfer function (s)G  of a process is given in Eq. (3.1). The close loop controller is 

adopted as shown in Fig. 3.1.  

Consider the SOPDT model with following structure:       

0

2
( )

st
e

G s
as bs c




                                                              (3.1) 

Depending on the values of a, b, and c, the model can be characterized into real or complex 

poles. Hence it is easy to represent both non-oscillatory as well as oscillatory processes. 

 

Fig. 3.1: Single loop controller feedback system 

 

A PID controller can be written in the form of  

( ) I
P d

K
K s K K s

s
  

                                                        (3.2) 

The objective is to calculate PK , IK  and DK  in such way that it improve the response of the 

system.  

 

In Eq. (3.1) we can put s jw  , then divide into two parts that is real and imaginary part. We 

need four equations for finding out four unknowns. So by fitting the process gain G(s) at two 

nonzero frequency points it can be constructed into Eq. (3.2). Now we can pick the two      

different points cs jw  and bs jw  where ) π( cG jw    and ( ) ( 2)bG jw     such that 

( ) ( )c cG jw G jw  and ( ) ( )b bG jw G jw  It follows that    
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( ) ( ) ( )c c cG jw G jw G jw 
                                               (3.3)

 

( ) ( ) ( )b b bG jw G jw G jw 
                                               (3.4) 

After dividing into real and imaginary parts, it is shown below 

2 cos(w L)

(jw )

c
c

c

c aw
G

 
                                                          (3.5)  

sin(w L)

(jw )

c
c

c

bw
G


                                                                 (3.6) 

2 sin(w L)

(jw )

b
b

b

c aw
G

 
                                                           (3.7) 

cos(w L)

(jw )

b
b

b

bw
G


                                                                (3.8) 

After solving these equations we get the values of a, b and c that are given below: 

0 0

2 2

sin( ) cos( )1

( ) ( )

b c

c b b c

w t w t
a

w w G jw G jw

 
  

                                                   (3.9) 

0sin( )

( )

c

c c

w t
b

w G jw


                                                                      (3.10) 

2 20 0

2 2

sin( ) cos( )1

( ) ( )

b c
c b

c b b c

w t w t
c w w

w w G jw G jw

 
  

                                                (3.11) 

For getting the value of t0 it is required to make an assumption 

0

0

( )sin( )

cos( ) ( )

c cc

b b b

w G jww t

w t w G jw
  

                                                    (3.12)
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Approximate sine and cosine function by the second order polynomial and then put this   

equation into Eq. (3.12), we get 

2 2 2

0 00.34( ) (1.7 (0.11) ) 0c b c bw w t w w t    
     (3.13)                                         

After solving this equation, we can get the value of t0 which is delayed function of the quad-

ratic equation..  

 

3.1.2 Tuning Method 

For tuning of the controller, the range at which system is stable is first found out, by using 

Routh-Hurwitz criterion, 

 

1 ( ) ( ) 0G s H s                                                             (3.14) 

It is solved to give 

0

b
k

t


                                                                    (3.15)

 

From here, we get the range of k for which system would be stable. The speed of response of 

a process is inversely proportional to its equivalent time constant   . Equivalent time constant 

[27] can be found out as 

2

2

2

4 0
1 2

4 0
2

c
b ac

b ac

b
b ac

a




   

  


                                               (3.16) 

 

where a, b, c are model parameters that can be obtained from Eq. (3.9) to Eq. (3.11). The 

damping ratio can be defined as 
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2

0

2

4 0
2

1 4 0

b
b ac

ac

b ac




 

 
  

                                                              (3.17) 

The PID Controller can be rewrite in new form as 

2( )
( )

s s
K s k

s

   
                                                                     (3.18) 

 Where ( )DK k  , ( )PK k   and ( )IK k  .We choose the controller zeros which can-

cel out model poles i.e. a  , b   and c  . Then resultant OLTF is 

0

( ) ( )
st

ke
G s H s

s



                                                                      (3.19) 

In this method model pole have to be cancelled out by controller zero, but exact cancellation 

may not possible so approximate the zero to the nearest of model poles. For a process with a 

damping ratio less than one, un-cancelled dynamics may provide the heavy oscillations so it 

is not desirable to create one more oscillatory term in the system, but we can choose the real 

part of the close loop pole. For monotonic processes, un-cancelled dynamics do not create the 

process over oscillation so selection of close loop pile is advisable. Based on this theory, it is 

separated closed loop selection into four different parts. 

 

Case1: 0 0.7071   

In this case, both real and imaginary poles on the root locus can be chosen. For a pair of the 

required poles,           √       To be lying on the root locus of the process, it fol-

lows 

1

2

0

cos

1

n
n

n

w
t










                                                                 (3.20)

 

Now the value of k is assigned by magnitude condition 

0n nw t

nk w e



                                                           (3.21)
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After phase condition are applied, then put damping ratio = 0.707 

0

0.5
k

t


                                                                         (3.22)

 

Case II: 0 0.7071    and 00.15 1
t


   

In this case, we can select two real poles of the closed loop poles on the root locus.        

0( )1 t

k e 






                                                               (3.23)
 

 Case III:  0 1
t


   

In this case since delay to time constant is greater than 1 so the value of k is slightly greater 

than in case 1, which is given as 

0

0.6
k

t


                                                                    (3.24)

 

Case IV: 00.05 0.15
t


   

 In this case complex close loop pole presents so value of k is written as 

 0

0.4
k

t


                                                                      (3.25)

 

New PID controller parameters are calculated as  

P

I

D

K b

K k c

K a

   
   


   
      

                                                         (3.26) 

3.1.3 Result and Discussion 

We can demonstrate some examples that will show that how to use this method and in Table 

3.1 shows more simulation results.  
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Example 1: Let us consider the non-oscillatory system  

0.4

2 2

1
(s)

(s 2) (s 3)

sG e
 

 

Two points are 0.7886Bw   and 1.778cw  , frequency response at this point is 

(jw ) 0.02249BG  and (jw ) 0.01148cG   

The model of the process is           

 
^

0.7358

2

1
(s)

18.5 47.3 35.89

sG e
s s


 

  

PID parameters are calculated as 

24.386
K(s) 32.144 12.573s

s
  

 

The response is shown in Fig. 3.2. 

 

Fig. 3.2: Unit step response of the system 
2 2 0.4(s) (1 (s 2) (s 3) ) sG e    
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Percent overshoot is very less in this method that is desirable for any processes. Stability of 

the system is also very high because settling time of the model is very less which is shown in 

Table 3.1 

Quantitative Analysis 

Table 3.1 Response value for the step input 

PARAMETERS RESPONSE VALUES 

% Overshoot 14% 

Peak Time 3.2 sec 

Rise Time 2.3sec 

Peak Value 1.14 

Settling Time 5sec 

 

 

Example 2: Let us consider the oscillatory higher order system 

0.1

2 2

1
(s)

(s 3 2)(s 3)

sG e
s


  

 

Two points are 0.7521Bw   and 1.88cw  , frequency response at this point is 

(jw ) 0.0391BG  and (jw ) 0.01365cG   

The model of the process is           

^
0.4984

2

1
(s)

17.77 31.39 19.41

sG e
s s


   

PID parameters are calculated as  

19.479
K(s) 31.497 17.832s

s
     

The response is shown in Fig. 3.3. 
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Fig. 3.3: Unit step response of the system  

2 2 0.1(s) (1 (s 3 2) (s 3) ) sG s e     
 

Percent overshoot is very less in this method that is desirable for any processes. Stability of 

the system is also very high because settling time of the model is very less which is shown in 

Table 3.2 

Quantitative Analysis 

Table 3.2 Response to the step input 

PARAMETERS RESPONSE VALUES 

% Overshoot 16% 

Peak Time 2.3 sec 

Rise Time 1.7sec 

Peak Value 1.16 

Settling Time 4.1 sec 
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Example 3: Let us consider high oscillatory process 

0.3

2 3

1
(s)

(s 2s 3) (s 3)

sG e
  

 

PID parameters are calculated as  

21.984
(s) 17.2 13.93K s

s
    

The response of the system is shown in Fig. 3.4. 

 

 

Fig. 3.4: Unit step response of the system 
2 3 0.3(s) (1 (s 2 3) (s 3)) sG s e     

 

In this seventh order system, percent overshoot is very less because in a higher order system, 

it is very difficult to get a response which is distortion less as well high speed of the response. 

Stability is also a major concern in the higher order system, but in this process, we get better 

response in both of the parameters which are shown in Table 3.3. 
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Quantitative Analysis 

 

Table 3.3 Response to the step input  

PARAMETERS RESPONSE VALUES 

% Overshoot 9% 

Peak Time 7.8 sec 

Rise Time 6.1 sec 

Peak Value 1.09 

Settling Time 10 sec 

 

 

Example 4: Let us consider the oscillatory higher order system 

0.1

2

1
(s)

(s s 1)(s 2)

sG e
  

 

The model of the process is 

^
0.8375

2

1
(s)

5.643 4.953 4.495

sG e
s s


 

 

PID parameters are calculated as 

1.5028
( ) 1.5128 1.7130K s s

s
    

PID parameters of Ho method 

1.484
(s) 2.147 0.777K s

s
    

PID parameters of Ziegler’s method 

1.9346
( ) 3.2350 13593K s s

s
    

The step response of the systems is shown in Fig. 3.5 
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Fig. 3.5: Unit step response of the system 
2 0.1(s) (1 (s 1)(s 2)) sG s e     

 

 

Quantitative Analysis 

Table 3.4 

Comparison between three methods 

PARAMETERS RESPONSE VALUES  

 Z-N method Ho Method Proposed 

% Overshoot 20% 11.7% 3.0% 

Peak Time 4.8sec 4.8sec 8.7sec 

Rise Time 2.3sec 2.6sec 2.7sec 

Peak Value 1.20 1.17 1.03 

Settling Time 18.1sec 10.2sec 7.2sec 
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3.1.4 Summary 

Tuning of PID controller by using the root locus method is for any dynamics; whether it is 

the high order or low order, high dead time or low dead time, the oscillatory or monotonic      

system. This method is also approximated on the basis of the Newton-Raphson method to 

bring the system very close to the exact value. The response of the system is highly improved 

in comparison to those older methods. The assigning of the pole is done by a root locus 

method to see whether pole lie on real part or imaginary part. 

  

3.2 Tuning of PID Controller by Bode Plot Technique 

             PID controllers are popularly used in process control industries. Reasons for its wide 

implementation are simple structure and simple formulation. Tuning of FOPDT model is widely 

used for many applications unless they are not sufficient to fulfill specifications. In such applica-

tions we need to use SOPDT model for tuning of PID controller. Because of popularity in the 

process industries, lots of methods have been developed to find out the parameters of the PID 

controller such as a Z-N method, IAE, ITAE and IMC method. All the methods are surveyed and 

modified by Ho and Ho’s method has been improved by Wang. In spite of enormous work done, 

but so many methods are poorly tuned. There are so many methods which are tuned well for a 

particular application, but fail for other applications. So, it is required to propose a model which 

is universally accepted and perform a task with high speed which is inversely proportional to the 

time constraint. 

In this paper, tuning of PID controller is divided into two parts. Firstly, the higher order system is 

reduced in a second order system and secondly, PID controller is tuned. In the higher order re-

duction method, three frequencies namely, gain crossover frequency; phase     crossover frequen-

cy and bandwidth frequency are required [27-29]. For a stable system, it is required to get a value 

that gives finite wgc and wpc. For finding the value of k, Routh-Hurwitz criterion is used. The 

value of k is multiplied to the numerator part of the process and then different frequencies are 

found out. The values of a, b, c and L can be calculated and they together form the SOPDT mod-

el. 
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3.2.1 Higher Order Reduction Method 

The transfer function      of a process is given in Eq. (3.28). The closed loop system is shown in 

Fig.3.6. A PID controller can be written as 

         
( ) I

P d

K
K s K K s

s
  

                                                                 (3.27) 

 The tuning objective is to find out   ,    and    in such way that it improves the system for all 

dynamics. 

  

Fig. 3.6: Basic feedback system with controller 

The second order model can be written as  

            

0

2
( )

st
e

G s
as bs c




                                                               (3.28) 

The reduction of higher order model in second order is done by the Bode plot method. Bode plot 

method is used in the sense that we can find out the values of wgc and wpc.  

Suppose the higher order model is written as, 

                   
1 2

1 2

(s)
..............

dt s

P n n n

n

k
G e

s a s a s a



 


   
                                    (3.29)                

  Now numerator of the model is multiplied by unknown value k. The value of k is determined by 

Routh-Hurwitz criterion for which model would be critically stable. The value of k should be 

integer and just less than the value of the critically stable system. 
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For finding out Routh-Hurwitz stability, the characteristic equation is as follows 

                      
1 (s)H(s) 0PG 

                                                            (3.30) 

For unity feedback system,  

                                                                          H(s) 1  

In Eq. (3.28) there are four unknowns which are a, b, c and t0. The Eq. (3.29) in frequency do-

main can be written as 

(jw)

1 2

1 2

*
(jw)

(jw) (jw) (jw) ..............

td

P n n n

n

k e
G

a a a



 


   
                                (3.31) 

The magnitude part and phase part for second order model can be written as  

              

2 2

2

1

(jw)
A B

G
 

                                                           (3.32)                                                       

0(jw) arctan( )
B

G t w
A

   
                                                    (3.33) 

where 2A c aw  and B bw . 

Eq. (3.32) is written as 

              

2 2

2

1

(jw)
A B

G
 

                                                                      (3.34) 

or 

   

 

2

4 2 0 2

2

2

1
2

(jw)

a

w w w b ac
G

c

 
 

  
 
                                                 (3.35) 

In Eq. (3.35) ,a  b and c are not known. These variables can be found out by using the frequency 

response which is given in Eq. (3.29). Three frequencies, bandwidth frequency
,
 gcw  and pcw  

are to be calculated from Eq. (3.31).  
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These frequencies are used to find out the unknowns. If we find the magnitude part of the origi-

nal system and phase part of the original system, then it is expected that the original model is 

same as the estimated model for any frequency. 

Let us take, 

             
2 2 22

T

a b ac c                                                    (3.36) 

          

4 2 0(w) w w w                                                        (3.37) 

The three frequencies are presented in a matrix   

which is 

4 2 0

4 2 0

4 2 0

b b b

gc gc gc

pc pc pc

w w w

w w w

w w w

 
 

   
 
                                                     (3.38) 

and these gain parameters are presented in gain matrix N, 

2

2

2

1

(jw )

1

(jw )

1

(jw )

b

gc

pc

G

N
G

G

 
 
 
 
 

  
 
 
 
 
 

                                                                    (3.39) 

By using Eq. (3.36-3.39), it can be written as, 

     N                                                                        (3.40) 

Eq. (3.40) is written as 

                           1N                                                                     (3.41) 

Let  
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                                                                          (3.42) 

The coefficient ,a  b and c  can be solved from Eq. (3.41) 

 

,a   2 ,b ac   and c                                                       (3.43) 

The delay of the projected model is calculated from the bandwidth frequency bw  as 

              
dr

b

t
w




                                                                    (3.44) 

The modified T.F. is written as 

      

0

2
(s)

st
e

G
As Bs C




                                                                 (3.45) 

where, 

                                             A = k*a; B = k*b; C = k*c       

 
 

3.2.2 Tuning Method 

Speed of response is inversely proportional to the equivalent time constant 0   of the process. For 

monotonic processes, speed of response is given by location of dominant poles (pole that is near 

to the origin) and for oscillatory processes, speed of the response is shown by non-imaginary part 

of complex poles. 

                                  

2

2

2

4 0
1 2

4 0
2

C
B AC

B AC

B
B AC

A




   

  
                                                  (3.46) 
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where A , B and C  are model parameters. Damping ratio can be determined as 

             

2

0

2

4 0
2

1 4 0

B
B AC

AC

B AC




 

 
                                                         (3.47) 

The PID Controller rewrites in new form as 

2( )
( )

s s
K s K

s

   


                                                                (3.48) 

Resultant OLTF is 

                   

0

( ) ( )
st

ke
G s H s

s




                                                                 (3.49) 

      In this proposed method, controller poles are chosen such that it cancel the model poles. 

100% cancellation is not possible because controller is a second order system, but processes 

can be of greater order. It can be divided into two parts. In the first part, it is possible that      

un-cancelled dynamics produces severe oscillations for oscillatory processes, so there is a   

possibility of creating additional oscillatory dynamics is very less. In the Second part,            

un-cancelled dynamics do not create severe oscillation for non-oscillatory or monotonic      

processes.  Hence, some overshoot can be introduced by selecting complex close loop poles. 

Hence, Process can be divided into two parts: 

Case 1: 0 (1 2)  and  0.20 0.95L    

In this case as close loop poles are real poles, these lies on the negative real axis. In this system, 

it is easy to create complex conjugate poles that brought some oscillation in the system. So, the 

value of the K is calculated from the breakaway point in the root locus. 

 

                         

( )1 LK e 




                                                               (3.50) 
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PID controller is modified as 

         

                           

3*BP

I

D

K

K K C

K A

   
   


   
                                                                    (3.51) 

Case 2: 0 (1 2)  and  0.95 2.00L    

In this case, close loop poles are complex conjugate poles, which will lie on the imaginary axis. 

The value of K is written as 

                   

2.5

*
K

k L


                                                                (3.52) 

PID controller is modified as 

            

B

2*

P

I

D

K

K K C

K A

   
   


   
                                                                (3.53) 

Table 3.5: Simulation result for different plants 

Plant PID controller Overshoot 

(Percent) 

Settling  

Time 

(sec) 

Peak 

Time 

(sec) 

Delay  

Time 

(sec) 

0.5

2 2

1
(s)

(s 1) (s 2)

sG e
 

 
1.31

2.465 1.42s
s

   
8 11 7.7 3.4 

0.3

2

1
(s)

(s 1) (s 4)

sG e
 

 
1.121

0.584 0.61s
s

   
7.3 13 11 4 

0.3

2

1
(s)

(s 2s 3)(s 3)

sG e
  

 
5.58

3.72 1.65s
s

   
2 5 3.2 2.7 
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3.2.3 Results and Discussion 

The result is tabulated in Table 3.5 with different parameters as settling time, peak overshoot, 

peak time and delay time modified. 

Example 1: Let us consider the non-oscillatory higher order process 

0.5

2 2

1
(s)

(s 1) (s 2)

sG e
   

The value of k which is calculated by Routh criterion is 10. Gain crossover frequency, Phase 

crossover frequency and bandwidth frequency is 1.0000, 1.0633 and 0.5574 respectively which is 

calculated from the Bode plot shown in Fig. 3.7. 

The model of the process is  

^
2.06

2

1
(s)

7.47 4.3 6.83

sG e
s s


   

 

Fig 3.7: Bode plot of the process 

2 2 0.5(s) (1 (s 1) (s 2) ) sG e    
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PID parameters are calculated as 

1.31
(s) 2.465 1.42K s

s
  

 

    Response is shown in Fig.3.8 

 

Fig. 3.8: Step response of the process 

2 2 0.5(s) (1 (s 1) (s 2) ) sG e    

 

Example 2: Let us consider the higher order non-oscillatory process 

0.3

2

1
(s)

(s 1) (s 4)

sG e
 

 

The value of k which is calculated by Routh-criterion is 10. Gain crossover frequency, Phase 

crossover frequency and bandwidth frequency is 1.7057, 1.8530 and 0.6288 respectively which 

is calculated from the Bode plot which is shown in Fig. 3.8 
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The model of the process is 

^
1.78

2

1
(s)

1.596 0.5054 2.907

sG e
s s


 

 

PID parameters are calculate as 

1.121
(s) 0.584 0.61K s

s
    

 

The step response is shown in Fig. 3.10 

 

Fig. 3.9: Bode plot of the system 
2 0.3(s) (1 (s 1) (s 4)) sG e    
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Fig. 3.10: Step response of the system 
2 0.3(s) (1 (s 1) (s 4)) sG e    

 

Example 3: Let us consider the oscillatory higher order process 

0.3

2

1
(s)

(s 2s 3)(s 3)

sG e
    

The value of k which is calculated by Routh-criterion is 14. Gain crossover frequency, Phase 

crossover frequency and bandwidth frequency is 1.9291, 2.1051 and 1.8092 respectively which 

is calculated from the bode plot as shown in Fig. 3.11. 

   The model of the process is  

 

^
0.424

2

1
(s)

1.541 8.844 13.26

sG e
s s


   

 PID parameters are calculated as 

5.58
(s) 3.72 1.65K s

s
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Fig. 3.11: Bode plot of the system 2 0.3(s) (1 (s 2s 3)(s 3)) sG e     

Response is shown in Fig. 3.12 

 

Fig. 3.12: Step response of the process 2 0.3(s) (1 (s 2s 3)(s 3)) sG e     
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 Quantitative Evaluation 

A percent overshoot of the proposed method is very less as compared to the other two methods, 

which shows the effectiveness of the proposed method. Settling time of the system is also very 

less that shows the high speed of the system and system reach the zero error at very less time. 

Table 3.6 shows the different parameters of the result. 

Table 3.6: Comparison of different parameters 

Parameters Response Value 

Z-N Method Ho Method Proposed Method 

% Overshoot 20 11.7 2.0 

Peak Time(sec) 4.5 3.1 3.2 

Rise Time(sec) 3.2 2.4 2.9 

Peak Value 1.2 1.17 1.02 

Settling Time(sec) 9.8 8.3 5.0 

Delay Time(sec) 2.7 2.2 2.5 

 

3.2.4 Summary  

Tuning of PID controller by using Bode plot is very easy in practice. For reducing higher order 

model in second order, Bode plot have been used. In Bode plot method three frequencies have 

been found out (3db frequency, gain crossover frequency, phase crossover frequency), by using 

these three frequency models can be reduced in second order. The tuning procedure is basically 

on the basis of root locus technique in which pole allocation strategy has been taken as process 

pole is real or imaginary. Tuning process divided into two parts that is depending on damping 

ratio and delay time to time constant ratio. 
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4 CONCLUSIONS 

 This chapter concludes the research work and give the suggestion for future work. 

4.1 Conclusion 

        In this research work, attention has been drawn towards the current trends of tuning of 

PID controllers for the higher order system. In modern process control industries, maximum 

attention is given to the development of such controllers which are most suitable for          

application based processes. The work started with the review of several methods of tuning of 

PID controllers for FOPDT. Most of the research work is done in FOPDT but the biggest 

problem of first FOPDT is that it is unable to generate peaks for monotonic systems. So it is 

required to generate such a system which can handle all such problems and that’s why the 

SOPDT modeling is used to find out the controller parameters. 

       In the first part of the research work, the higher order system is reduced in a second order 

system by using angle condition in which two angle conditions are divided into four parts so 

that four variables can be solved. Tuning process is based on root locus technique in which, if 

model poles are monotonic (all poles lie on the negative real axis) then un-cancelled          

dynamics do not produce the oscillations. Hence some oscillatory dynamics are added to 

speed up the response and if the poles of the model are oscillatory then un-cancelled          

dynamics produces oscillations so it is not advisable to add oscillatory dynamics. Real closed 

loop poles can be chosen in such a case. This method provides a satisfactory response in both 

the aspects; the speed of the response or stability of the system. 

In the second part of the research, model reduction method is based on Bode plot in which 

gain crossover frequency, phase crossover frequency and bandwidth frequency can be found 

out. Before using the Bode plot technique, we multiply numerator part of the process with k 

so that we can find out the value of k for which system is critically stable. The value of k is   

necessary because we need finite phase crossover frequency. After finding out the value of all 

the variables, it is required to multiply all the values with k so that it cancels out the influence  
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of k. The tuning procedure in this process is somewhat similar to the previous one and is    

divided into two parts which is based on the root locus method. 

.  

4.2 Suggestions for future Work 

In process control industries, it is essential to design such systems that fulfill most of the   

requirements. Lots of work has been done to improve the response of FOPDT model, but in 

case of higher order plus dead time model, few research papers are published and a lot of 

work is to be done and improvement in tuning of PID controller has a lot of scope in process 

control industries. In this research paper, the higher order system is reduced in second order 

by two methods and then tuning procedure is applied. One can also directly tune the system 

without reducing it into second order form. 
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