View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by ethesis@nitr

Computing Static Slices Using Reduced Graph

Thesis submitted in partial fulfillment of
the requirements for the degree
of
Bachelor of Technology
In
Computer Science and Engineering

By
Rajalaxmi Sahoo
Roll No: 110¢s0516

Under the Guidance of
Prof. D. P. Mohapatra
May, 2014

SN

ROURKELA

Department of Computer Science and Engineering

National Institute of Technology Rourkela
Rourkela, 769008

https://core.ac.uk/display/53190153?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Certificate

This 1s to cerfify that the project entitled “Hierarchical slicing”
submitted by Rajalaxmi Sahoo B.TECH student in the
Department of Computer Science and Engineering, National
Institute of Technology, Rourkela, India, in the partial
fulfillment for the award of the degree of Bachelor of
Technology. The thesis fulfills all requirements as per the
regulations of this Institute and in our opinion has reached the
standard needed for submission. Neither this thesis nor any part
of it has been submitted for any degree or academic award
elsewhere.

Prof. D. P. Mohapatra

Department of Computer Science and Engineering

National Institute of Technology Rourkela

Acknowledgement

On the submission of my Thesis report, I would like to extend
my sincere thanks to my supervisor Dr. D.P. Mohapatra, for his
constant motivation and support during my project work in the
last one year. I truly appreciate and value his esteemed guidance
and encouragement from the beginning to the end of this thesis.
He has been our source of inspiration throughout the thesis work
and without his invaluable advice and assistance it would not
have been possible for us to complete this thesis.

I would also like to thank Mr. Subhrakanta Panda for his help in
completing this thesis.

Rajalaxmi Sahoo

Declaration

I hereby declare that all the work contained in this report is my
own work unless otherwise acknowledged. Also, all of my work
has not been previously submitted for any academic degree. All
sources of quoted information have been acknowledged by

means of appropriate references.

Rajalaxmi Sahoo

NIT Rourkela

Abstract

Presently there is a colossal interest of programming items for which
numerous software are produced. Before launching software testing
must be done. Anyhow after tasteful completing the testing procedure
we can't ensure that a product item is mistake free and it is clear that not
all the lines in the source code are answerable for the error at a specific
point. We accordingly require not taking the entire source code in the
testing procedure and just concentrate on those areas that are the cause
of failure by then. So as to discover those high-chance territories we
need to develop a intermediate representation that specifies conditions of
a program exactly. From the graph we process the slices. Slice is an
independent piece of the system. Our program calculates the slices by

not using the original graph but by using the reduced graph.

TABLE OF CONTENTS

3 3 o T TW T o o T PNt 8
1.1 MOtIVALION OF PrOJECT......eeeiiiiieie e e e e e e e e et r e e e e e e e e e naaanrraneeas 8

1.2 0bJECtiVe Of OUI PrOJECE........uuuiiiiiiiiii eeeeeeaeans 9
1.30rganization of the ProJect...........coooviiiiiiii e 9

2 BESIC DETINITIONS ...ceeiiiieiiie ettt ettt ettt e ebb e e sbe e e e bt e e s sabe e e sabeeesabeeesnneeens 10
2.1 Program SHCING ...cceeeeeiiiciiiiieeee e ettt e e ettt e e e e e e e e e ettt r e e e e e e e e e seansraaeeeeaaeeessnnnenens 10

2.2 Types Of Program SHCING........coouiieriiieiiie et et e e e s e s e e 11

2.2. L FOrWArd SHICING ..eeeeei ittt et e e e e e s e s et a e e e e e e e e e s sanbrbaeeaeeaaeeaanns 11

2.2.2 BACKWAId SHCINGeeeiiiieiiie et 11

2.2.3 SEALIC SHICING......uvtiiieeiee e e e e st e e e e e e s s e bbb e e e e e e e e e s nnrrrneeaeeas 11

2.2.4 DYNAMIC SHCING....ceiutiieiiiieeiie ettt ettt e e e bt e s eane e e 11

2.3 Intermediate RePIESENTALION ..cceieeeeeerrrcnereeerrieieesrssrnneeeesssssessssssnneesessssssssssssannsesssssssssssanns 16

2.3.1 CoNtrol FIOW Graphccueeiiiieeiiieeeiee ettt ettt esaeee e 16

2.3.2 Data Dependence Graph...........uveeiiie it 18

2.3.3 Program dependence graph.........c..eooueeerieeeniee et 19

2.3.4 System dependenCe Grapheec i 20

(O g F=T o] 1= g T S TP U PP PPPUPPPTPRINt 23
REIATEA WOTK ...ttt sttt et e bttt e sae e e e b e e 23
(O 0 F=T o) 1= o T PP PO U PO PP O PPPOPPPTPRINt 26
OUP WOTK. ...ttt a et sb e et e s bt e bt et e e s bt e et e e sbeeesbeenbteenbeens 26
4.1 Edge Reducing AIGOTItNMcoiiiiee et et e e e s e e e 26

4.2 HOrowitz 2-Phase algorithm..........ceeeeiiiiiee e e 28

4.3 Our Proposed SHicing AIGOTItNMoooiiiiiee et e 30

(O 0 =T o) (-] g T PP TPRTPRRTPIN 32
IMPlementation AN FESUILSviiiee it s e e e e e e s eeeeas 32

5.1 TOOIS USBA ...ttt ettt e e e 32

5.2 Screenshots of IMPIeMENtatioN...........ccviiiiiiiiiie e 32

(O T 0] (-] o C O PUPUPRNt 39
ConClUSION AN TULUIE WOTK ...c..viiiiiiiieiie ettt s 39

8.1 CONCIUSION <. eeaeeaees

B.2 FFULUIE WOTK. ... eeieeeeeeee e ettt ettt e e e e e ettt e e e e et taaaa e eeseeeeeeasesa e eseeeseaansnaseseeesenens

References

Chapter 1

1. Introduction

Now a day’s every work is done with the help of computer for which
software are developed. These product results are getting to be very
unpredictable and their quality have been essential limited by the

expense and time elements.

Statistics shows that almost 55% of the software’s built in these days are
not useful because of their inability to meet the requirements. Hence
Software testing activity is very important for launching new software in
the market. Various methods are already developed for software testing
from which intermediate graph is one of convenient form. Slicing is an
important technique which is widely used in software testing. Some of
these applications are Program Understanding, Debugging, Testing,
Software maintenance, Parallelization, Program Specialization and
reuse. Slicing has a huge application in software testing. Various type of

slice technique exists.

1.1 Motivation of project
After effectively doing the product testing we can't ensure that our

product is completely error free and it is evident that not all the lines of
the source code are answerable for the error .so we have to test only
those areas where possibility of error to occur is very high. This can be

done by using program slicing.

1.2 Objective of our project

Our objective is first to reduce intermediate graph, then compute slice
using Horowitz Algorithm, then to compute slice using our proposed
Algorithm, Improve our proposed Algorithm and compare the slices

obtained from Horowitz and our algorithm.

1.3 Organization of the project

The organization of rest of project is as below:

In chapter 2 we represent the basic definitions related to our project
In chapter 3 we present some of the work related to this area.

In chapter 4 we explain the different algorithms proposed by us.

In chapter 5 we give an overview about Eclipse and implementation
result.

In chapter 6 we write conclusion and some of future work related to this

area.

Chapter 2

2 Basic Definitions

In this chapter we describe some of the basic definitions which will be

used in our project.

2.1 Program slicing

Program slice consist of a set of statements which affect the value of a

variable at a particular point of interest .That point of interest is called

slicing criterion.

A slicing criterion consists of a pair of statement and variable.

Example:-

Figure 2.1

The source code

1 BEGIN

2 READ(A,B)
3 SUM=0;

5 SUM=A+B;
6 WRITE(SUM)
7 END.

S

lice On Criterion (6,{sum}).

BEGIN
READ(A,B)
SUM=0;
SUM=A+B;
WRITE(SUM)
END.
Slice on criterion <5,{A}>.

BEGIN
READ(A,B)
END

10

2.2Types of program slicing

Different types of slicing that exists are as follows:

2.2.1 Forward Slicing
In this case the slice is computed by working forward from the given

point finding those statements that can be affected by changes to the

specified variables.

2.2.2 Backward slicing
In this case the slice is computed by working backward from the given

point finding those statements that can be affected by changes to the
specified variables.

2.2.3 Static slicing

A static slice is a slice which contains the statements which affect the
value of a variable at particular point for all possible input.

2.2.4 Dynamic slicing

A dynamic slice is a slice which contains the statements which affect the

value of a variable at particular point for a particular input.

11

Figure 2.2

&

RN A0

11

Public class Demo

{
Static int addition(int x, int y)

{
Return (x+y)3
}
Public static void main(final String[] arg)
{

int count=1;
int sum= 03
while (count<11){
sum = addition(sum,count);
count=addition(count,1);
}
System out. printin(“sum="+sum);
Systemout. printin(“count="+count);

}

Forward slice w.r.t criterion (2,sum)

= |

Figure 2.3

Public class Demo

{

Static int addition(int x, int y)
{
return (x+y);

}
Public static void main(final String[] arg)

{
int sum=0;
while (count<11){
sum = addition(sum,count);

}

System.out. println(“sum="+sum);

}

12

Backward slice w.r.t criterion (7,i)

1 Public class Demo

{
2 Static int addition(int x, int y)
{
3 return (x+y);
}
4 Public static void main(final String[] arg)
{
5 int count=1;
6 while(count<11){
7 count=add(count,l);
}
}
}
Figure 2.4

13

Source program 2

Import java.util.*;

Public static void main(S tring args[])

class Demol

{

{
1
Z
3
4
5
6
7
8
9
10
11
12
13

}

Figure 2.5

int sum=0;

int num;

int count=1;

int product=1;

Scanners;

s=new Scanner(System.in);
num=s.nextInt();
While(count<=num)

sum=sun+-count;
product=product*count;
count=count+1;

System.out. println(“sum is :”+sum);
System.out. println(“product is :”+product);

14

Static slicing w.r.t criterion (13,prod)

Import java.util.®;

class Demol
{
Public static void main(String args|])
{
1 int num;
2 int count=1;
3 int product=1;
4 Scanners;
5 s=newScanner(System.in);
6 nums=s.nextInt();
7 While(count<=num)
{
8 product=product®count;
9 count=count+1;
}
10 System.out. printin(“product is :”+product);
}
}
Figure 2.6

15

Dynamic slicing w.r.t criterion (13,sum,i=5 & n=9)

Import java.util.*;

class Demol

{

Public static void main(String args[])

int sum=20;

int num,count;

int prod=10;

Scanners;

System.out. printin(“enter the input”);
s=new Scanner(System.in);
num=s.nextInt();

count=sc.nextInt();

if(count<=num)

L=l TN - N I SR S

10 sum=sun+product ;

11 System.out. printin(“sum is :”+sum);

}

Figure 2.6

2.3 Intermediate Representation

2.3.1 Control Flow Graph
A Control Flow Graph is an intermediate representation. It has an entry

section called START and an exit section called STOP, where every

16

node refers to the statement of the program. There is a coordinated edge
from one node to other in the control flow graph. Edges in a CFG are of
two sorts. One is T edge different is F edge. An edge is knownasa T
edge, if control flows along that edge when the predicate at the node is
evaluated to be genuine and An edge is known as a F edge, if control

flows along that edge when the predicate is to be false.

Example-

x=10;

count=5;
while(count>0){
if(x<20)

inc(x);
count=count-1;

¥
Figure 2.7

Control flow graph for the Figure-2.7

17

:
v
=

i
b
A
[
=

4)[count=count-1]7

STOP

:

Figure 2.8

2.3.2 Data Dependence Graph

Data dependency in a control flow graph exists from node 1 to 2 if the
following conditions are satisfied
[1]A variable say V is defined in Node 1

[2] Node 2 uses the variable V for computation

[3]Control can flow from 1 to 2
Example-

18

1 [starT
2 main
i .L N
E—— int a=10; |—]
r .L N
4 int b =20;
5 int c=2;
6 c=a+l;
Reaching definition(6)= {3} N
i Ny
Reaching definition(7)= {3.6} 7 b=a+c; [F—r
3 STOP

Figure-2.9 Data dependence graph for the Figure 2.8

2.3.3 Program dependence graph
Ferrante et al. presented a new mechanism of program

representation called Program Dependence Graph (PDG).
PDG of an OOP is a directed graph in which

[1] nodes represent statements and predicates

[2] edges represent data/control dependence among the nodes

Example-

19

integer i, sum, x

read(x)

sum=0

i=1

while(i<=x)
sum=sum+1
i=i+1

endwhile

. write(sum)

8. write(i)

AU WNE

Figure 2.10 A sample program

Data Dep. Edge

Control Dep. Edge)

2 - P = “ \\\\\\ (.:\
Figure 2.11 Program Dependence Graph(PDG) for the example Figure 2.10

2.3.4 System dependence graph

PDG cannot handle programs with multiple procedures. Horwitz et al.
proposed an intermediate representation called as system dependence

graph (SDG). SDG is based on procedure dependence graphs. Slice is

20

computed as a graph reachability problem .Same as PDG except that it
includes vertices & edges for call statements, parameter passing &

transitive dependence due to calls

Example-

Figure 2.12

void main()
{
inti=1;
intsum =0;
while (i <11)
{
sum = add {sum, i);
i=add(, 1);
}
printf ("sum = %d\n”, sum);
printf {“i = %d\n”, i);
}
intadd (inta, intb)
{
return (a + b);

}

21

legend

control
data

Figure 2.13 System Dependence Graph (SDG) for the example Figure 2.12

22

Chapter 3
Related Work

Many theories have been already proposed regarding computation of
slicing and intermediate representation of program. Program slicing was
proposed by Weiser in 1982.According to him A slicing criterion of a
program P is a tuple (i, V), where i is a statement in P and V is a subset
of the variables in P. Program slicing is a method for automatically
decomposing programs by analyzing their data flow and control flow[1]
According to Horwitz consider the problem of inter-procedural slicing-
generating for which he introduce a new kind of graph called a system
dependence graph, which solve the problem of inter-procedural
dependency[5]. According to Ferrante he develops an intermediate
program representation, called the program dependence graph (PDG),
that makes explicit both the data and control dependency [4]. According
to Larsen and Harold SDG had no provision to incorporate the O-O
features like class, inheritance, polymorphism, etc. Larson and Harrold
were the first to consider these O-O features for slicing by extending the
SDG for OOPs. According to Chen et al. discussed different
dependencies possible in a Java program and proposed slicing of classes
based on Program Dependence Graph (PDG). In their method, the
program dependency graph consists of a set of independent PDGs. In

slicing of classes, the slicing criterion taken is <s, v, class>, where s is

23

the statement number, v is the variable and class is the name of the class
to be sliced. The slice is computed by traversing backward from s and
marking all the statements and data members used in the class based on
the PDG. According to Wang et al. proposed slicing of Java programs
by using compressed byte code traces. They represented the byte code
corresponding to an execution trace of a Java program. Then, through
backward traversal of the execution trace, they determined the control
and data dependencies on the slicing criterion. This approach requires
the trace table to be represented for each method. If a program will have
too many methods, then this approach will be disadvantageous to
compute slices. According to Harrold et al. have proposed traversal
algorithms to identify the dangerous edges for safe regression test
selection. The dangerous edge is designed to be an edge e such that for
each input i causing P to cover e, P(i) and P'(i) may behave differently
due to differences between P and P', where P and P' are the programs
under consideration and the modified program respectively. The
dangerous edge is identified by traversing the proposed Java Interclass
Graph (JIG). This method compared two nodes of P and P' in the JIG to
identify the execution path of a test case in P and P', so that it can be
known whether any edge is dangerous or not. According to Jeffrey and
Gupta, proposed a method for prioritizing the test cases for regression
testing based on the coverage of relevant slice of the output of a test

case. They assigned test case weights to the test cases to determine their

24

priority. They determined the test case weight by summing up the
number of statements present in the relevant slice and number of
statements exercised by the test case. According to Korel et al
prioritized the regression test suite by considering the state model of the
system. Whenever, the source code was modified, the corresponding
change in its state model was identified. These modified transitions
along with the runtime information were used to prioritize the test cases.
According to Tao et al. Tao et al. applied hierarchical slicing for
regression testing of object-oriented programs. In their approach, they
have proposed to maintain separate graphs for packages, classes,
methods and statements even if they were not affected by the change.
This approach requires more space for intermediate graph
representation. This is because with the increase in the program
complexity, there will be an increase in the number of packages, classes,
methods and statements which are required to be represented as separate

graphs.

25

Chapter 4

Our Work
4.1 Edge Reducing Algorithm

This algorithm is known as edge reducing algorithm. This is used to

remove redundant edge from a graph.

Edge Reducing Algorithm

Input- Intermediate Graph G (N, E), where N is the set of nodes, E is
the set of edges.

Output- A graph containing a reduced set of edges F
F. =E; // Initialize F.
for each (u,v) ¢ F do
G:=E-(uv);
S:=u;/l Sis atemporary set.
for each (x,y) € G do
If x c Sthen
S:=3SU{y}
End If
End for
If v ¢ Sthen
E=E-(uv);
End If
End for
F :=E; /I F is the set of redundant free edges.

26

Explanation

An edge (a,c)is said to be redundant if the vertex ‘c’ can be reached

via other vertices and hence can be removed.
Ex:- from the graph a set A={ (a,b), (b,c), (a,c), (c,d)}

Here as (a,b) and (b,c) both are present , vertex ‘c’ can be
reached from vertex ‘a’ via vertex ‘b’ . Hence (a,) can be deducted

from the set A.

Example-
Figure 4.1

Input graph-

Adjacency matrixof the graph
01100
00110
00001
00001]
00000

27

Reduced graph:

Figure 4.2

oy
L
(&

Adjacency matrix of the graph

01000
00110
00001
00001
00000

4.2 Horowitz 2-Phase algorithm

This algorithm uses a slicing criterion which is generally represented
by <S, V>, where S is the statement and V may be a variable .The
static backward slice of a statement in a program is then calculated
using a two pass graph reachability algorithm proposed by Horwitz.
Steps

Input : A graph G(V,E)

28

Output: Slice

Steps

1.passl:

1.1.traverse the graph in backward direction through the edges
except parameter-out edges.

2.pass 2

2.1.traverse the graph in backward direction except parameter -
in and call edges.
3.Find the slice by taking union of slice from pass 1 and pass 2.

Algorithm

declare
G: a system dependence graph
V:aset of verticesin G
Kinds: set of kinds of edges
v, W: vertices in G
worklist: a set of vertices in G
begin
worklist := v
while worklist = @ do
select and remove a vertex Y from worklist
mark v
for each unmarked vertex w such that there is an edge w->v
whose kind is not in Kinds do
Insert w into workL.ist
od
od
end

29

4.3 Our Proposed Slicing Algorithm

This algorithm is used to compute the slice from a given input
intermediate graph. In this algorithm we have not taken any edge

restrictions so it can be applied to any program.

Steps for the Algorithm

Input: A graph G(V,E)

Output : slice

Steps

1.Passl:

1.1.Traverse G in forward direction from the slicing criterion
2Pass2:

2.1.Traverse G in backward direction from each node in passl

Algorithm:
Input: A graph
Output: Slice
1. current_node = desired node (slicing criterion), mark it as
visited.
2. insert current_node in Queue, Q.
3. traverse in forward direction through all dependency edges
from current-node.
4. for each node during traversal
5. If not visited
6. Mark it visited.
1. Insert node in Q.
8. End if
Q. Move next.
10. while Q not empty
11. current_node = dequeue (Q).
12. add current_node to set U.

30

13.

14.
15.
16.
17.
18.
19.
20.

traverse in backward direction through all dependency
edges from current-node.
for each node during traversal
If not visited
Mark it visited.
Add node to U.
End if
Move next.
End for

21. End while

31

Chapter 5

Implementation and results
This chapter consists of the details of our implementation and the

results.

5.1 Tools used

We use the following tools in order to implement and code the programs
and finally to get the result.

1. Eclipse
Eclipse is a multi-language software development environment which is

used to write java programs.

5.2 Screenshots of implementation

Program Main procedure A(x,y) procedure Add(a,b) Procedure Increament(z)
Sum:=0; call Add(x,y); a=a+b; call Add(z,1)
i:=1; call increament(y) return return

While i<11 do return
call A(sum,i)

od

End(sum ,i)

Input program

32

Figure 5.1 Input graph(SDG of the input program)
Where Node 0,1,2.... represents

0:Enter Main
l:isum=0

2:i=1
3:whilei<11
4:FinalUse(sum)
5:FinalUse(i)
6:call A
7:x_in=sum

33

8:y_in=i
9:sum=x_out
10:i=y_out
14:Enter A
11:x=x_in
12:y=y in
13:call Add
15:call Inc
16:x_out=x
17:y_out=y
18:a_in:=x
19:b_in:=y
20: x=a_out
21:y=b_out
22:z_in=y
23:y=z_out
24:Enter Inc
25:z=z_in
26:call Add
27:z_out=z
28:a_in=z
29:b_in=1
30:z=a_out
31:Enter Add
32:a=a_in
33:b=b_in
34:a=a+b
35:a_out=a
36:b_out=b

34

[EB Java - dfs algo/src/DFSApp.java - MyEclipse Enterprise Workbench | D

File Edit Source Refactor Navigate Search Project Run MyEclipse Window Help

w8 | G- A-B- ABEH-@itd R B H-0-%6-A- BEHEG SSD P & [m & (e

Pl Bl vto v i MyEclipse Ja..

= Console &3 | =B~ -=9
<terminated> DFSApp [Java] C:\Users\dell\AppDatatLoc: AC y\com.sun javajdk win32.486_1.6.0.013\bin\javaw.exe (Now 10, 2013 5:14:42 PM)

slice in phasel §30215 =
slice in phase2

6302159874

3021

021

210

102

5102639874

the total slice computed in phase 1 and phase? is 6302153874

Time in nanc seconds
1153643ns

" SEREN AN AL I IEAEN
Figure 5.2
Time taken to compute the slices by Horowitz 2-phase algorithm by

o) s14PM | |
L 1/10/2013

taking input as original graph

[EB Java - rer alge/sre/Rerljava - MyEclipse Enterprise Workbench = |
File Edit Source Refactor Navigate Search Project Run MyEclipse Window Help

[82 | B~ @& H-8- L£H-@ &8 - E- B0 BEFG SIS P &l [5 [E0ava)

B~ 5l - % o - o - B MyEclipse Ja...

= Console &2
<terminated> Rerl [Java Application] C\Users\dell\AppData\Local\Genuitec\Common\binan/\com.sun.java.jdkwin32.x86_1.6.0.013\bin\javaw.exe (Nov 10, 2013 5:04:45 PM)
TuU U Ug oo

£ T I
00000 1110 =
0000010000
0000000010
0O0©000000O01
o000 01000 B
Resultant Matrix
] 1] L]] L] -]] Q]
o o 1 o 1 o o o a o
1 o o 1 o o o o L o
] o] o o o 1 o a]
o o o o o o o 1 a o L |
o o o o o o o 1 a o
] o] o o 1 o o a]
o o o o o o o o 1 o
] o] o] o o o Q 1
o o o o o o 1 o a o
Time in nano seconds 5083%ns

Bl 2 el¢]
Figure 5.3

=)

Time taken by RER Algorithm to reduce the graph

35

15§ Java - dfs algo/sie/DFSApp java - MyEclipse Enterprise Workbench ==
Fle Edit Source Refactor Navigate Search Project Run MyEclipse Window Help

O-EHE & B~ @ F-8- S£E8-9 £ F@- B $-0-9%-Q- EHFG- ®@FS-B P AE[i [§aw)
I+ 5l vt G v~ i MyEclipse Ja...
LI S E A

<terminated> DFSApp [Java Application] C:\Users\dellAppDatatLocahGenuitec\Commonibinany\com.sun.java.jdk.win32.x86_1.6.0.013\bin\javaw.exe (Mov 10, 2013 5:20:28 PM)
slice in phasel 63210 -
slice in phase2
632109874
3210
021
210
102
5632109874
the total slice computed in phase 1 and phase2? is 6302159874
Time in nano seconds
1050988ns

< G
g 5[e k(B

Bl.clef€
Figure 5.4
Time taken to compute the slices by Horowitz 2-phase algorithm by

taking input as reduced graph

e

3 “ 2 l - a2 lf},zf,,‘;'fl;:

| Horoviitz ALGORITHM =B B |
Node Affected Nodes No. of Affected Node
23 2315146302108 .22 21 13 1912 36,31, 33 27 24 30 26, 27
25203534 32
2 2,0 2
5 50,210,6381714,231522 21131912 363133 27 24, 29
30,26,28,25,29,35 34 32
kLl 302624 15,146,302 108,28 2522 21 13,1912 2817 23, 28
363133273534 32
7 7,106,3210891714,23 1522 21,1319,12 36,31,33 27, B
24 30,2628 25,29 35 34 32 16 20,18 11
20 20131463021081811718191217231522213631, |34
332724 30,26 28 25 29,35 34 32
10 106,3028171423 152221131912 36,3133 27 24 3026, |28
28252935 34,32
2 3218117106321089,14 13282522 1521191224 26 31, |33
1723,36.33,27 30,29 35 34
E] 30,210,68171423 1522 21131912 36,31 33 27 24 30,26 28 |28
25,2935 34 32

Figure 5.5
Output of Horowitz Algorithm

36

ol

4 O Fopred AT

AZDABURAN AL

e

AR RSN

ALK L

6

TR

-

LAAERSR AR

—

AL

=

DHNLRITH)

i:igure 5.6

Output of our proposed Algorithm

37

3 5
4 30
5 7
6 20
7 10
8 32
9 3
Table 5.1

Comparison between Horowitz and our proposed Algorithm

B Figure 1

29

28

35

34

28

33

28

22

10

18

17

19

21

17

10

o

File Edit View Inset Tools Desktop Window Help

DEES AR ODEL- S 0D

35

30

20

Number of affected Nodes

|
Figure 5.7

Comparison between Horowitz and our proposed Algorithm

38

Chapter 6
Conclusion and future work

6.1 Conclusion
We have Implemented RER Algorithm to reduce the graph and We have

proposed an algorithm to compute the slices. We have implemented

Horowitz 2-phase algorithm.
6.2 Future work

Our future work is to implement a new better slicing algorithm which
will be able to support oops concepts like polymorphism.

39

References

[1]M Weiser-Program Slicing- In Proceedings of the 5th International
Conference on Software, pages 439-449.San Diego, California, USA,
1981.

[2]A Krishnaswamy-Program Slicing: An Application of Object-
Oriented Program Dependence Graphs. Technical Report TR94-108,
Department of Computer Science, Clemson University, 1994,

[3]S Horowitz and T Reps-The use of Program Dependence Graphs in
Software Engineering-in Fourteenth International Conference on
Software Engineering, Melbourne, pages 392-411, 1992.

[4]J Ferrante, K J Ottenstein, and J D Warren- The Program Dependence
Graph and its Use in Optimization.ACM Transactions on Programming
Languages and System, 9(3):319-349, 1987.

[5] S Horowitz, T Reps, and D Binkley- Inter-procedural Slicing using
Dependence Graphs. ACM Transactions on
Programming Languages and Systems, 12(1):26-60, 1990.

[6] L Larsen and M J Harrold-Slicing Object-Oriented software-In
Proceedings of the 18th IEEE International Conference on Software
Engineering, pages 495-505, 1996.

[7]M J Harrold and et al-Regression Test Selection for Java Software- In
Proceeding of the ACM Conference on OO Programming, Systems,
Languages, and Applications (OOPSLA'01), pages 312-326, 2001.

[8] D Jeffrey and N Gupta- Test Case Prioritization using Relevant

Slices- In Proceedings of 30th Annual International Computer Software
and Applications Conference, pages 411-420, 2006.

40

[9] D P Mohapatra, R Mall, and R Kumar- An Edge Marking Technique
for Dynamic Slicing of Object-Oriented Programs- In 28th International
Computer Software and Applications Conference (COMPSAC 2004),
Design and Assessment of Trustworthy Software-Based Systems, pages
60-65, IEEE Computer Society, 2004.

[10] D P Mohapatra, R Mall, and R Kumar. An Overview of Slicing

Techniques for Object-Oriented Programs.
Informatica (Slovenia), 30(2):253-277, 2006.

41

