
1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ethesis@nitr

https://core.ac.uk/display/53190153?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

3

4

5

 Abstract

Presently there is a colossal interest of programming items for which

numerous software are produced. Before launching software testing

must be done. Anyhow after tasteful completing the testing procedure

we can't ensure that a product item is mistake free and it is clear that not

all the lines in the source code are answerable for the error at a specific

point. We accordingly require not taking the entire source code in the

testing procedure and just concentrate on those areas that are the cause

of failure by then. So as to discover those high-chance territories we

need to develop a intermediate representation that specifies conditions of

a program exactly. From the graph we process the slices. Slice is an

independent piece of the system. Our program calculates the slices by

not using the original graph but by using the reduced graph.

6

TABLE OF CONTENTS

1.Introduction..8

 1.1 Motivation of project ..8

 1.2 Objective of our project ...9

 1.3 Organization of the project ..9

2 Basic Definitions ..10

 2.1 Program slicing ..10

 2.2 Types of program slicing ..11

 2.2.1 Forward Slicing ...11

 2.2.2 Backward slicing ...11

 2.2.3 Static slicing...11

 2.2.4 Dynamic slicing..11

 2.3 Intermediate Representation ...16

 2.3.1 Control Flow Graph ..16

 2.3.2 Data Dependence Graph..18

 2.3.3 Program dependence graph..19

 2.3.4 System dependence graph ...20

Chapter 3 ..23

 Related Work ...23

Chapter 4 ..26

Our Work...26

 4.1 Edge Reducing Algorithm ...26

 4.2 Horowitz 2-Phase algorithm...28

 4.3 Our Proposed Slicing Algorithm ...30

Chapter 5 ..32

 Implementation and results ..32

 5.1 Tools used ...32

 5.2 Screenshots of implementation...32

Chapter 6 ..39

Conclusion and future work ...39

7

 6.1 Conclusion ...39

 6.2 Future work...39

References...40

8

Chapter 1

1. Introduction

Now a day’s every work is done with the help of computer for which

software are developed. These product results are getting to be very

unpredictable and their quality have been essential limited by the

expense and time elements.

 Statistics shows that almost 55% of the software’s built in these days are

not useful because of their inability to meet the requirements. Hence

Software testing activity is very important for launching new software in

the market. Various methods are already developed for software testing

from which intermediate graph is one of convenient form. Slicing is an

important technique which is widely used in software testing. Some of

these applications are Program Understanding, Debugging, Testing,

Software maintenance, Parallelization, Program Specialization and

reuse. Slicing has a huge application in software testing. Various type of

slice technique exists.

1.1 Motivation of project

After effectively doing the product testing we can't ensure that our

product is completely error free and it is evident that not all the lines of

the source code are answerable for the error .so we have to test only

those areas where possibility of error to occur is very high. This can be

done by using program slicing.

9

1.2 Objective of our project

Our objective is first to reduce intermediate graph, then compute slice

using Horowitz Algorithm, then to compute slice using our proposed

Algorithm, Improve our proposed Algorithm and compare the slices

obtained from Horowitz and our algorithm.

1.3 Organization of the project

The organization of rest of project is as below:

In chapter 2 we represent the basic definitions related to our project

In chapter 3 we present some of the work related to this area.

In chapter 4 we explain the different algorithms proposed by us.

In chapter 5 we give an overview about Eclipse and implementation

result.

In chapter 6 we write conclusion and some of future work related to this

area.

10

Chapter 2

2 Basic Definitions

In this chapter we describe some of the basic definitions which will be

used in our project.

2.1 Program slicing
Program slice consist of a set of statements which affect the value of a

variable at a particular point of interest .That point of interest is called

slicing criterion.

A slicing criterion consists of a pair of statement and variable.

Example:-

Figure 2.1

The source code

1 BEGIN
2 READ(A,B)
3 SUM:=0;

5 SUM=A+B;
6 WRITE(SUM)

7 END.
Slice On Criterion (6,{sum}).

 BEGIN
 READ(A,B)
 SUM:=0;

 SUM=A+B;
 WRITE(SUM)

 END.
Slice on criterion <5,{A}>.

 BEGIN
 READ(A,B)
 END

11

2.2Types of program slicing

Different types of slicing that exists are as follows:

2.2.1 Forward Slicing

In this case the slice is computed by working forward from the given

point finding those statements that can be affected by changes to the

specified variables.

2.2.2 Backward slicing

In this case the slice is computed by working backward from the given

point finding those statements that can be affected by changes to the

specified variables.

2.2.3 Static slicing

A static slice is a slice which contains the statements which affect the

value of a variable at particular point for all possible input.

2.2.4 Dynamic slicing

A dynamic slice is a slice which contains the statements which affect the

value of a variable at particular point for a particular input.

12

Figure 2.2

Forward slice w.r.t criterion (2,sum)

Figure 2.3

13

Backward slice w.r.t criterion (7,i)

 }

 }

 }
Figure 2.4

14

Source program 2

Figure 2.5

15

Static slicing w.r.t criterion (13,prod)

Figure 2.6

16

Dynamic slicing w.r.t criterion (13,sum,i=5 & n=9)

Figure 2.6

2.3 Intermediate Representation

2.3.1 Control Flow Graph

A Control Flow Graph is an intermediate representation. It has an entry

section called START and an exit section called STOP, where every

17

node refers to the statement of the program. There is a coordinated edge

from one node to other in the control flow graph. Edges in a CFG are of

two sorts. One is T edge different is F edge. An edge is known as a T

edge, if control flows along that edge when the predicate at the node is

evaluated to be genuine and An edge is known as a F edge, if control

flows along that edge when the predicate is to be false.

Example-

x=10;

count=5;

while(count>0){

if(x<20)

inc(x);

count=count-1;

}

Figure 2.7

Control flow graph for the Figure-2.7

18

Figure 2.8

2.3.2 Data Dependence Graph
Data dependency in a control flow graph exists from node 1 to 2 if the

following conditions are satisfied

[1]A variable say V is defined in Node 1

[2] Node 2 uses the variable V for computation

[3]Control can flow from 1 to 2

Example-

19

 Figure-2.9 Data dependence graph for the Figure 2.8

2.3.3 Program dependence graph

Ferrante et al. presented a new mechanism of program

representation called Program Dependence Graph (PDG).

PDG of an OOP is a directed graph in which

[1] nodes represent statements and predicates

[2] edges represent data/control dependence among the nodes

Example-

20

20/69 Subhrakanta

Figure 2.10 A sample program

Figure 2.11 Program Dependence Graph(PDG) for the example Figure 2.10

2.3.4 System dependence graph

PDG cannot handle programs with multiple procedures. Horwitz et al.

proposed an intermediate representation called as system dependence

graph (SDG). SDG is based on procedure dependence graphs. Slice is

21

computed as a graph reachability problem .Same as PDG except that it

includes vertices & edges for call statements, parameter passing &

transitive dependence due to calls

Example-

Figure 2.12

25/69

22

Figure 2.13 System Dependence Graph (SDG) for the example Figure 2.12

23

Chapter 3

Related Work
Many theories have been already proposed regarding computation of

slicing and intermediate representation of program. Program slicing was

proposed by Weiser in 1982.According to him A slicing criterion of a

program P is a tuple (i, V), where i is a statement in P and V is a subset

of the variables in P. Program slicing is a method for automatically

decomposing programs by analyzing their data flow and control flow[1]

.According to Horwitz consider the problem of inter-procedural slicing-

generating for which he introduce a new kind of graph called a system

dependence graph, which solve the problem of inter-procedural

dependency[5]. According to Ferrante he develops an intermediate

program representation, called the program dependence graph (PDG),

that makes explicit both the data and control dependency [4]. According

to Larsen and Harold SDG had no provision to incorporate the O-O

features like class, inheritance, polymorphism, etc. Larson and Harrold

were the first to consider these O-O features for slicing by extending the

SDG for OOPs. According to Chen et al. discussed different

dependencies possible in a Java program and proposed slicing of classes

based on Program Dependence Graph (PDG). In their method, the

program dependency graph consists of a set of independent PDGs. In

slicing of classes, the slicing criterion taken is <s, v, class>, where s is

24

the statement number, v is the variable and class is the name of the class

to be sliced. The slice is computed by traversing backward from s and

marking all the statements and data members used in the class based on

the PDG. According to Wang et al. proposed slicing of Java programs

by using compressed byte code traces. They represented the byte code

corresponding to an execution trace of a Java program. Then, through

backward traversal of the execution trace, they determined the control

and data dependencies on the slicing criterion. This approach requires

the trace table to be represented for each method. If a program will have

too many methods, then this approach will be disadvantageous to

compute slices. According to Harrold et al. have proposed traversal

algorithms to identify the dangerous edges for safe regression test

selection. The dangerous edge is designed to be an edge e such that for

each input i causing P to cover e, P(i) and P'(i) may behave differently

due to differences between P and P', where P and P' are the programs

under consideration and the modified program respectively. The

dangerous edge is identified by traversing the proposed Java Interclass

Graph (JIG). This method compared two nodes of P and P' in the JIG to

identify the execution path of a test case in P and P', so that it can be

known whether any edge is dangerous or not. According to Jeffrey and

Gupta, proposed a method for prioritizing the test cases for regression

testing based on the coverage of relevant slice of the output of a test

case. They assigned test case weights to the test cases to determine their

25

priority. They determined the test case weight by summing up the

number of statements present in the relevant slice and number of

statements exercised by the test case. According to Korel et al

prioritized the regression test suite by considering the state model of the

system. Whenever, the source code was modified, the corresponding

change in its state model was identified. These modified transitions

along with the runtime information were used to prioritize the test cases.

According to Tao et al. Tao et al. applied hierarchical slicing for

regression testing of object-oriented programs. In their approach, they

have proposed to maintain separate graphs for packages, classes,

methods and statements even if they were not affected by the change.

This approach requires more space for intermediate graph

representation. This is because with the increase in the program

complexity, there will be an increase in the number of packages, classes,

methods and statements which are required to be represented as separate

graphs.

26

Chapter 4

Our Work

4.1 Edge Reducing Algorithm

This algorithm is known as edge reducing algorithm. This is used to

remove redundant edge from a graph.

Edge Reducing Algorithm

Input- Intermediate Graph G (N, E), where N is the set of nodes, E is

the set of edges.

Output- A graph containing a reduced set of edges F

F: = E; // Initialize F.

for each (u,v) ε F do

 G := E - (u,v);

 S := u; // S is a temporary set.

 for each (x,y) ε G do

 If x c S then

 S := S U {y};

 End If

 End for

 If v c S then

 E := E - (u,v);

 End If

End for

F := E; // F is the set of redundant free edges.

27

Explanation

An edge (a,c) is said to be redundant if the vertex ‘c’ can be reached

via other vertices and hence can be removed.

 Ex:- from the graph a set A={ (a,b), (b,c), (a,c), (c,d)}

Here as (a,b) and (b,c) both are present , vertex ‘c’ can be

reached from vertex ‘a ’ via vertex ‘b’ . Hence (a , c) can be deducted

from the set A.

Example-

Figure 4.1

Input graph-

Adjacency matrix of the graph
[0 1 1 0 0]

[0 0 1 1 0]

[0 0 0 0 1]
[0 0 0 0 1]

[0 0 0 0 0]

 c
 e

 a b

 d

28

Reduced graph:
Figure 4.2

Adjacency matrix of the graph

[0 1 0 0 0]

[0 0 1 1 0]

[0 0 0 0 1]
[0 0 0 0 1]

[0 0 0 0 0]

4.2 Horowitz 2-Phase algorithm

This algorithm uses a slicing criterion which is generally represented

by <S, V>, where S is the statement and V may be a variable .The

static backward slice of a statement in a program is then calculated

using a two pass graph reachability algorithm proposed by Horwitz.

Steps

Input : A graph G(V,E)

 a b

 c

 d

 e

29

 Output: Slice

Steps

1.pass1:

 1.1.traverse the graph in backward direction through the edges

except parameter-out edges.

2.pass 2

 2.1.traverse the graph in backward direction except parameter-

in and call edges.

3.Find the slice by taking union of slice from pass 1 and pass 2.

Algorithm

declare

G: a system dependence graph

V:a set of vertices in G

Kinds: set of kinds of edges

v, w: vertices in G

worklist: a set of vertices in G

begin

 worklist := v

 while worklist != Ø do

 select and remove a vertex Y from worklist

 mark v

 for each unmarked vertex w such that there is an edge w->v

whose kind is not in Kinds do

 Insert w into workList

 od

od

end

30

4.3 Our Proposed Slicing Algorithm
This algorithm is used to compute the slice from a given input

intermediate graph. In this algorithm we have not taken any edge

restrictions so it can be applied to any program.

Steps for the Algorithm

Input: A graph G(V,E)

Output : slice

Steps

1.Pass1:

1.1.Traverse G in forward direction from the slicing criterion

2Pass2:

2.1.Traverse G in backward direction from each node in pass1

 Algorithm:
 Input: A graph

Output: Slice

1. current_node = desired_node (slicing criterion), mark it as

visited.

 2. insert current_node in Queue, Q.

3. traverse in forward direction through all dependency edges

 from current-node.

 4. for each node during traversal

 5. If not visited

6. Mark it visited.

7. Insert node in Q.

 8. End if

 9. Move next.

 10. while Q not empty

 11. current_node = dequeue (Q).

 12. add current_node to set U.

31

 13. traverse in backward direction through all dependency

 edges from current-node.

 14. for each node during traversal

 15. If not visited

 16. Mark it visited.

 17. Add node to U.

 18. End if

 19. Move next.

 20. End for

 21. End while

32

Chapter 5

Implementation and results

This chapter consists of the details of our implementation and the

results.

5.1 Tools used

We use the following tools in order to implement and code the programs

and finally to get the result.

1. Eclipse

Eclipse is a multi-language software development environment which is

used to write java programs.

5.2 Screenshots of implementation

Program Main procedure A(x,y) procedure Add(a,b) Procedure Increament(z)

Sum:=0; call Add(x,y); a=a+b; call Add(z,1)

i:=1; call increament(y) return return

While i<11 do return

 call A(sum ,i)

od

End(sum ,i)

Input program

33

Figure 5.1 Input graph(SDG of the input program)

Where Node 0,1,2…. represents

0:Enter Main

1:sum = 0

2:i=1

3:while i< 11

4:FinalUse(sum)

5:FinalUse(i)

6:call A

7:x_in=sum

34

8:y_in=i

9:sum=x_out

10:i=y_out

14:Enter A

11:x=x_in

12:y=y_in

13:call Add

15:call Inc

16:x_out=x

17:y_out=y

18:a_in:=x

19:b_in:=y

20: x=a_out

21: y=b_out

22:z_in=y

23:y=z_out

24:Enter Inc

25: z=z_in

26:call Add

27: z_out=z

28:a_in=z

29:b_in=1

30:z=a_out

31:Enter Add

32:a=a_in

33:b=b_in

34:a=a+b

35:a_out=a

36:b_out=b

35

Figure 5.2

Time taken to compute the slices by Horowitz 2-phase algorithm by

taking input as original graph

Figure 5.3

Time taken by RER Algorithm to reduce the graph

36

Figure 5.4

Time taken to compute the slices by Horowitz 2-phase algorithm by

taking input as reduced graph

Figure 5.5

Output of Horowitz Algorithm

37

Figure 5.6

Output of our proposed Algorithm

38

Table 5.1

Comparison between Horowitz and our proposed Algorithm

Figure 5.7

Comparison between Horowitz and our proposed Algorithm

Seriel Number Node number Number of slice from

Horowitz Algorithm

Number of slice from

our proposed Algorithm

1 23 27 23

2 2 2 22

3 5 29 10

4 30 28 18

5 7 35 17

6 20 34 19

7 10 28 21

8 32 33 17

9 3 28 10

39

Chapter 6

Conclusion and future work

6.1 Conclusion

We have Implemented RER Algorithm to reduce the graph and We have

proposed an algorithm to compute the slices. We have implemented

Horowitz 2-phase algorithm.

6.2 Future work

Our future work is to implement a new better slicing algorithm which

will be able to support oops concepts like polymorphism.

40

References

[1]M Weiser-Program Slicing- In Proceedings of the 5th International

Conference on Software, pages 439-449.San Diego, California, USA,

1981.

[2]A Krishnaswamy-Program Slicing: An Application of Object-

Oriented Program Dependence Graphs. Technical Report TR94-108,

Department of Computer Science, Clemson University, 1994.

[3]S Horowitz and T Reps-The use of Program Dependence Graphs in

Software Engineering-in Fourteenth International Conference on

Software Engineering, Melbourne, pages 392-411, 1992.

[4]J Ferrante, K J Ottenstein, and J D Warren- The Program Dependence

Graph and its Use in Optimization.ACM Transactions on Programming

Languages and System, 9(3):319-349, 1987.

[5] S Horowitz, T Reps, and D Binkley- Inter-procedural Slicing using

Dependence Graphs. ACM Transactions on

Programming Languages and Systems, 12(1):26-60, 1990.

[6] L Larsen and M J Harrold-Slicing Object-Oriented software-In

Proceedings of the 18th IEEE International Conference on Software

Engineering, pages 495-505, 1996.

[7]M J Harrold and et al-Regression Test Selection for Java Software- In

Proceeding of the ACM Conference on OO Programming, Systems,

Languages, and Applications (OOPSLA'01), pages 312-326, 2001.

[8] D Jeffrey and N Gupta- Test Case Prioritization using Relevant

Slices- In Proceedings of 30th Annual International Computer Software

and Applications Conference, pages 411-420, 2006.

41

[9] D P Mohapatra, R Mall, and R Kumar- An Edge Marking Technique

for Dynamic Slicing of Object-Oriented Programs- In 28th International

Computer Software and Applications Conference (COMPSAC 2004),

Design and Assessment of Trustworthy Software-Based Systems, pages

60-65, IEEE Computer Society, 2004.

[10] D P Mohapatra, R Mall, and R Kumar. An Overview of Slicing

Techniques for Object-Oriented Programs.

Informatica (Slovenia), 30(2):253-277, 2006.

