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ABSTRACT 

The present work includes the study of dynamic characteristics on a flexible 

rotor shaft system. This arises due to the internal material damping of rotor bearing 

system, which produces a tangential force on a rotor and increasing with the rotor 

spin speed. Due to these dynamic characteristics of rotor is influence which 

destabilizes the rotor shaft system. Under this dynamic behaviour of rotor shaft 

system is studied to get the dynamic nature of rotor shaft system. This can be 

estimated in terms of Campbell diagram, modal damping factor, mode shape and 

directional frequency response function. These plots are obtained by using the matlab 

software by solving a eigenvalues problem.  

finite element approach plays a significant role in modelling continuum 

system after discretizing it into some finite number of element. More number of 

elements or enhancing the mesh size give better accuracy in results. But discretizing 

the system into infinite elements inherits the swelling size of system matrices. 

Substantial increment of the system matrices sometime causes very high 

mathematical complications and takes an unwanted computational time. Model 

reduction is techniques for reducing the degree of freedom from the full system 

model to produce a reduced model but its dynamic characteristics is maintain. System 

equivalent reduction process, Improved reduced system, Guyan reduction are used to 

reduce the large system of equation of motion to fewer degree of freedom. The full 

system model also includes internal and external damping and gyroscopic effect. 

Since it is not practical to measure all degree of freedom, so the model is reduced 

using model reduction techniques. The reduced model is used to plot Campbell 

diagram, unbalance response using matlab software and comparison is done with 

original system to show its effectiveness.  
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NOMENCLATURE 

 
TM  Translational mass matrix 

 
RM  Rotary inertia matrix 

[G] Gyroscopic  matrix 

 
BK  Bending stiffness matrix 

CK   
Skew symmetric circulatory matrix 

x  
Bending stress 

x  
Strain in x-direction 


 

Strain rate 

R Position vector of displaced centre 

rotation 

yyM  
Bending moment in y-direction 

zzM  
Bending moment in z-direction 

M  Global Mass matrix 

C  Global Damping matrix 

K  Global Stiffness matrix 

F Force vector 

Q Nodal displacement vector 

X State vector 

u and v Displaced position of cross-section 

E Young modulus 

,
nn

q x  Full degree of freedom 

T Transformation matrix 

1 2

 , q q  Co-ordinate of full and master degree of 

freedom 

1 2

 ,K K  Stiffness matrices at state1 and state2. 

 ,  ,
n n nCM K  Mass, stiffness and damping matrix with 

full degree of freedom 

m ,s Master and slave degrees of freedom 

mm Master- master degree of freedom 

ms Master-slave degree of freedom 

sm slave-master degree of freedom 

ss slave- slave degree of freedom 

mx  Co-ordinate of master degree of freedom 

sx  Co-ordinate of slave degree of freedom 

sT  Transformation matrix of Guyan 

reduction 

iT  Transformation matrix of IRS 

uT  Transformation matrix of Serep 

mX  Selected master degree of freedom in 

Eigen vector 

sX  Selected slave degree of freedom in 

Eigen vector 
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P Modal participation vector 

A Mode of interest 

 ,
y z

f f  Forces in y and z direction 

  Eigen values 

u ,v Right hand and left hand Eigen vector 

  , l Right hand and left hand Eigen vector 

ir  Kronecker delta 

r
  Modal force vector 

v
  Coefficient of viscous damping 

  Rotor spin speed 

,   ,
r r rCM K  Mass, stiffness and damping  matrix 
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Chapter 1 

INTRODUCTION 

1.1 Background and importance 

Rotor dynamics is a branch of system dynamics deals with mechanical devices in 

which at least one part is defined as rotor, which rotates with some angular 

momentum. Following the ISO definition a rotor is a body suspended through a set of 

cylindrical hinges or bearings that allows it to rotate freely about an axis fixed in 

space. It deals with behaviour of high speed rotary machines  which extending from 

very large systems like  steam power plant rotors for example, a turbo generator, to 

very minor systems like enigma machine, with a variety of rotors is used in 

centrifuge, steam turbine, motors etc. Genta [1]. The principal component of rotor-

dynamic system is the shaft or rotor with bearing and disk. The shaft or rotor is the 

rotating component of the system rotating at higher speed in order in order to 

maximize the power output. Rotors with bearing support to restrain their spin axis in 

one or other rigid way to a fixed position in space which are usually known as fixed 

rotor, whereas the rotor which is not constrain is defined as free rotor. The parts of 

machine which do not rotate are usually defined as stator. Rotors are the main causes 

of vibration in most of the rotating machineries. At higher speeds of rotor, vibrations 

caused by the mass unbalance results in some severe problems Rao [2]. So it is 

necessary to decrease or to minimize these vibrations for operational protection and 

stability. It can be ended by suitable assessment of dynamics of system. The dynamic 

behaviour of a mechanical system must be examined in its design phase so that you 

can determine whether it will present a satisfactory 

Performance or not in its condition of the planned operation. The natural frequencies, 

damping factors and vibration modes of these systems can be determined 

analytically, numerically or experimentally. 

The simplest model of rotor is used to study the dynamics behaviour of rotor consists 

of a point mass connected to a massless shaft.  It dynamics behaviour was carefully 

studied by Jeffcott [3], it is often referred to as Jeffcott rotor. 

 Unlike the viscoelastic structures (which do not spin) viscoelastic rotors are acted 

upon by rotating damping force generated by the internal material damping, which 

tends to disrupt the rotor shaft bearing system by generating a tangential force which 
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is proportional to the rotor spin speed. Thus a reliable model is required which 

consider constitutive relationship of a rotor material by taking into account the 

internal material damping for understanding a dynamic behaviour of viscoelastic 

rotor. Gunter‟s [4, 5] work on internal material damping. It‟s work give the idea of 

destabilize of rotor due to internal material damping (viscous) as the rotor spin speed 

increases. Dimentberg [6] work included both viscous and hysteretic internal 

damping, hysteretic internal damping destabilize the rotor at all speed. 

Modal analysis is based on the severe mathematical treatment to convert multidegree 

of freedom into single degree of freedom. Therefore understanding of modal 

behaviour of rotor modal analysis is necessary by which we came to know about the 

importance of directivity and mode shapes with the help of modal matrices like 

modal mass, modal stiffness and modal damping. 

Due to the higher demand of improving the performance of high speed rotating 

machinery the influence of rotor dynamics is increased. Increased power output 

through the use of high speed, more flexible rotor has been increased the need, at all 

stage of design. The acceptable performance of a turbo machine depends on the 

adequate design and operation of the rotor supporting a bearing. Turbo machine also 

include other mechanical element which provide stiffness and damping characteristic 

affect the dynamics of the rotor and shaft system. 

The rotor dynamics of turbo machine comprises of structural analysis of rotor (shaft 

and disks) and design of bearing that determine the best dynamic performance under 

given operating condition. Rotor dynamic instabilities have become common as the 

speed and power of high speed turbo machinery is increased. Sometime, these 

instabilities resulting in increasing vibration amplitude. So it is essential to minimize 

the vibration for the operational protection and stability. The purpose of modal 

analysis is to get an idea about the dynamic behaviour of the system. By the use of 

modal analysis we find out critical and stability limit speed from this we can limit 

this vibration or minimize it. 

Model reduction is necessary for the higher order system having large degree of 

freedom by this techniques we reduce the original system in to a reduce model by 

different techniques, with a reduce model we deal with a fewer degree of freedom as 

compared to the original system by preserving all its dynamic characteristics in a 

reduced model. 
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1.2 Various terminology related to this study 

1.2.1 Material damping 

Existence of damping in the linear system makes it viscoelastic. Viscoelasticity is a 

property of material that combines both elasticity and viscosity. These materials store 

the energy as well as dissipate it under dynamic deformation. Thus, the stress in such 

materials is not in phase with the strain. Due to these properties, it is extensively used 

in various high speed machinery applications for controlling the amplitude of 

resonance vibration in the system and adjusting wave attenuation and increasing 

mechanical life through reduction in mechanical fatigue Dutt and Nakra [19]. 

Some characteristics of viscoelastic materials are: 

[1] Creep. 

[2] Relaxation. 

[3] The actual stiffness depends on the amount of application of loading. 

[4] If repeated load is applied, hysteresis occurs. 

There are two type of internal damping hysteretic and viscous form of internal 

damping, only viscous internal damping is considered and used to drive the equation 

of motion. This type of damping produces a tangential force on rotor and destabilizes 

it as the rotor spin speed increases. Under this condition dynamic performance of 

rotor system is studied to get the dynamics characteristics.   

1.2.2 Internal Damping: 

Damping is due to the rotating and non-rotating parts of the structure. Damping 

associated with non-rotating parts, called as external damping,  has stabilizing effect 

on the system. And damping associated with rotating part result in instability in 

supercritical range. Due to rotation of rotors rotary damping arise, which increase as 

the spin speed is increased and act tangential to the rotor orbit. Due to this instability 

occur in the system. Therefore, a reliable model is required to represent the rotor 

internal material damping for exact estimate of stability limit of spin speed (SLS) of a 

rotor shaft system. 

1.2.3 Modal Damping Factor: 

By the modal analysis we find out the modal damping factor. It is the plot between 

Modal damping factor and rotor spin speed. It has the incremental value for backward 

whirl with respect to spin speed and has decrementing nature for forward whirl and 
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after certain spin speed becomes negative. Positive modal damping describe stability 

of the system as the vibrational energy is dissipates and negative modal damping 

indicates the instability as rotating energy support rotor spin on addition of energy. 

1.2.4 Resonant frequency: 

Resonance is simply the natural frequency of a component. All the structure has a 

resonance frequency. Resonance problem occur in two primary ways. Critical speed 

occurs when a component rotates at its own natural frequency. Structural resonance 

occurs when some forcing frequency comes close to the resonant frequency of a 

structure. Structural vibration problem, it‟s necessary to identify the resonant 

frequencies of a structure. Nowadays, modal analysis has become a common means 

of finding out modes of vibration of machines and structures. 

1.2.5 Frequency response function (FRF): 

It is a region in frequency domain where negative region is same as the positive 

region so the positive region is consider for the physical significance when we plot 

FRF. 

1.2.6 Directional frequency response function (dFRF): 

The traditional modal analysis for stationary structure is also applied for rotating 

machines. But this analysis requires a theoretical concept. Due to the rotation, 

gyroscopic effect appears in the system which result in non- symmetric matrices in 

equation of motion and, as a affect the frequency response function does not obey the 

Maxwell‟s reciprocity theorem. In any FRF plot, the negative frequency region is 

identical of the positive frequency region. Therefore, it is necessary to deal with only 

one region of FRF merely a positive one which has some physical meaning. Thus the 

directivity of modes, backward and forward mode is not distinguishable in frequency 

domain. Therefore, a new complex modal testing is suggested by Lee [26], for modal 

parameter identification of rotary machines because by use of traditional method 

forward and backward mode is not identified. The new method uses the complex 

variable as an input and output source. But by use of complex modal testing separates 

forward and backward mode in frequency domain by plotting a directional frequency 

response function (dFRF) and no other testing is required. 
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1.3 Modal Analysis: 

Modal analysis is the study of the dynamic characteristics of structure under vibration 

excitation. Modal analysis of rotor-shaft systems has become very popular know a 

days because this shows both spatial and temporal behaviours of the system in 

dynamic condition. Modal analysis include rotating forces in the model to achieve a 

more accurate modal behaviour of rotor shaft system and also used to see  the 

influence of damping forces on the mode shape and frequency response function. 

Modal analysis involve both theoretical and experimental approaches He and Fu [20]. 

1.3.1 Modal Analysis approaches: 

The modes of a system can be obtained from two very different approaches. 

Theoretical modal Analysis 

Theoretical Modal analysis is also known as mathematical models means “discretize” 

a structure by breaking it up into different parts. This process can be done by using 

the finite element (FE) approach. The analytical program then solves for an 

eigenvalue problem to get the frequency, mode shape of each mode. The solutions of 

the eigenvalue problems provide the modal data for the system. 

Experimental modal Analysis: 

This type of modal analysis, extracts the modes of vibration directly from FRF‟s 

without having to make any assumption about the mass and stiffness distribution and 

without solving any eigenvalue problem. The stability and the response level of 

machines like aero-planes and steam turbine, cars are predicted by analytical model, 

must be validated experimentally. 

This type of modal analysis comprises three steps: Test planning, Frequency response 

measurement and Modal parameter identification. 

1. The first step involves the selection of structural support, type of excitation force 

and location of excitation force, data acquisition system to measure force. Structure is 

break up into different part. Accelerometer is connected at the selected nodes. 

2. The impact force is applied at that location where we want to obtain FRF matrix 

using the exciter and corresponding response are noted using the data acquisition 

system. After that FRF matrix is analyze to identify modal parameters of the tested 

structure. 
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1.3.2 Literature survey on Modal Analysis: 

Rotor shaft system is subjected to circulatory force and rotating force originates from 

several sources. Damping force of the shaft material, riveted joint in built up rotor, 

force generated by shrink fitted rotor assemblies and fluid film forces are crucial to 

be considering while dealing with rotor shaft bearing system. Tondl [21], as all these 

forces are tend to destabilizing the rotor shaft system above the spin speed limit. 

Therefore, the damping has been analysed by examine two types of model viz. 

viscous damping model and hysteretic damping model. Genta [1], has been reported 

modelling techniques for hysteretic form of material damping. Dutt [18] has reported 

equation of motion for a rotor-shaft system by considering linear viscoelastic model 

to represent the shaft material damping. After that effect of both form of damping 

model and the hysteretic damping model has been studied by many researchers on 

modal frequencies and modal damping Zorzi and Nelson [22], and Ku [23] 

considered the combined effect of internal viscous damping, hysteretic damping and 

shear deformation in the analysis. And result of forward and backward whirl speed 

are presented and compared it with previous papers. Better convergence of the result 

and high accuracy of the finite element model is presented with numerical example. 

Modal analysis is based upon severe mathematical treatment, the significance of the 

mode shapes and directivity of the modes. There are two methods for modal testing 

classical and complex modal testing. The classical method is widely used for modal 

parameter identification of structure of all kinds, except rotary machines, limited 

attempt [24, 25] have been prepared to develop the modal testing method for rotary 

machines. The complex method is proposed for modal parameter identification of 

rotating machines. This method uses the complex notation which is a dominant 

mathematical tool used in this analysis which not only allow perfect physical 

understanding of forward and backward modes, but also help to separate these modes 

in the frequency domain. The complex method is first developed by the Lee [ 26 ]. 

Kim and Kessler [27], proposed complex variables to describe planar motions, which 

is directly relates physical motions to mathematical expression, is fully utilized in the 

proposed procedure for complex variable based rotor analysis. In which the equation 

of motion is formulated for the free vibration solution of equation of motion is 

defined the directional natural modes because it not only describe the frequency and 

the shapes but also direction of free vibrations response. For the forced vibration 
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solution directional frequency response function is obtained which clearly allows the 

understanding of unique characteristics of rotor vibration. 

Mesquita [28], in any frequency response function plot the negative frequency region 

of FRF is same as the positive frequency region so it is necessary to treat only one 

region merely a positive one because it have some physical meaning. Thus the 

directivity of modes, backward or forward cannot be distinguished with the use of 

traditional modal analysis. The complex modal analysis is used to distinguish the 

directivity of modes in frequency domain. 

Chouksey [29], has reported the equation of motion with material damping in shaft is 

consider because both stationary and rotary damping forces in shaft system play an 

important roles in deciding the dynamic behaviour. Therefore, rotating damping 

forces originating due to material damping in shaft is consider and aims is to obtain a 

more complete model and a more accurate modal analysis is obtained for rotor shaft 

system. The effect of damping forces on the directional frequency response has been 

obtained. 

1.4 Model Reduction: 

Model reduction is a technique to reduce a large finite element system to one with 

fewer degrees of freedom while maintaining its vibrant features of the system. 

Methods such as Guyan reduction, Improved Reduced System approach and the 

System Equivalent Reduction Expansion process may be used for undamped and 

non-rotating structure. 

O‟Callahan et. al [10] suggested a improved method which is known as the Improved 

Reduced System (IRS) method. In this method an additional term is added to the 

Guyan reduction transformation to take some effect of the inertia terms. But it 

depends on the Guyan reduced model.  

O‟Callahan et. al [15] suggested other model reduction techniques known as system 

equivalent reduction expansion process for undamped system depend on the arbitrary 

selection of mode of interest. 

Friswell et. al[12,13], used these reduction techniques for damped and rotating 

structures, compare these techniques for damped and undamped structures and 

discusses the errors introducing by using approaches based on the undamped model. 

Das and Dutt [18], uses an improved System Equivalent Reduction Expansion 

Process (SEREP) are used to reduce huge linear system of equation of motion. In this 
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equation of motion gyroscopic effect, internal material damping is included. This 

techniques is applied on the state space model. And nice plot of Campbell diagram, 

and unbalance response is plotted for reduced and original system show effectiveness 

of the reduced model. 

 

1.5 Objective of the thesis: 

Based on that work, the aim and scope proposed in this work are as follow: 

1. The equation of motion and finite element formulation of the viscoelastic rotor are 

derived. Euler Bernouli beam theory is used for Finite element formulation to 

discritize the rotor continuum. Two element voigt model is used to incorporate the 

internal damping of the rotor shaft. 

2. Effect of modal damping factor on rotor spin speed is analyzed. The mode shape 

are found using eigenvector. Further dFRF plot is obtained to explore the direction of 

whirl. 

3. By model reduction techniques the full system model is reduced to fewer degrees 

of freedom. A MATLAB code is generated for the model reduction techniques and 

after that Campbell diagram and unbalance response is plotted and compared with the 

original full system model. 

4. Comparison between Guyan Reduction, Improved Reduced System, and System 

Equivalent Reduction Expansion process is done. 

1.6 Outline of the present thesis: 

In present thesis chapter 2, equation of motion for damped rotor is written after 

discretizing it into beam finite element. Model reduction techniques are explained in 

detail like Guyan reduction, Improved reduced system and System equivalent 

reduction expansion system. A comparative study of that technique is done from 

Unbalance response and Campbell diagram with the help of Matlab software. 

In chapter 3, Modal analysis in rotor is done to get the idea of dynamic characteristics 

of rotor. An example is taken to identify various modal parameters like Modal 

damping factor, 3-D mode shape, frequency response function and directional 

frequency response function.  

In chapter 4, some salient conclusions and related future scopes for model reduction 

and modal analysis are given. 
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Chapter 2 

A reduced model for rotor shaft system 

In this chapter the mathematical modelling of viscoelastic rotor shaft is presented, 

where external damping from viscoelastic support is considered. The system matrix 

like mass matrix, stiffness matrix, gyroscopic matrix are obtain through finite 

element formulation. Euler Bernouli beam theory is used in this purpose. The finite 

element model is further used to develop reduced model. The transformation matrix 

for various reduced model is derived. Finally an example is taken for comparison of 

numerical results for different reduced model. 

2.1 Finite element formulation  

Finite element approach is used to model the rotor shaft system. First equation of 

motion is derived from the constitutive relation. The dynamic longitudinal stress and 

strain induced in the infinite area are x  and x respectively. The formulation of x  

and x  at an instant of time are given by Zorzi and Nelson  [22]. 

 ;vx E    
 

  
2

2

( , )
cos      

x

R x t
r t

x
 


   

                                       (2.1)
 

Figure 2.1 display the moved position of the shaft cross section (u and v )describe the 

displacement of the shaft centre along Y and Z direction and an element is consider 

of differential radial thickness  of dr  at a distance r (where r varies from 0 to or )  and 

subtend an angle of ( )d t  where   is the spin speed in rad/sec and t  lies from 0 to 

2 at any instant of time ' 't . Due to transverse vibration of the shaft is under two 

types of rotation at the same time, i.e., spin and whirl.   is the whirl speed. O is the 

shaft centre when it is at rest.  
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u

vR

z

 t

 t

y

r0

 d t

r

dr

 

                             Figure 2.1 Displaced position of the shaft cross- section
 

  
 

Following Zorzi and Nelson [22] the bending moments at any instant about the y and 

z-axes are given as: 

                                   

  

  
o

2 o

0 0

2

0 0

u cos ( )

v sin ( )

r

zz x

r

yy x

M r t rdrd t

M r t rdrd t









     

    
                          (2.2) 

Put equation 2.1 into equation 2.2 and following zorzi and Nelson[22], the governing 

differential equation for one shaft element is given as: 

           

       

T R v B

B v c

M M q K G q

K K q f





  

                                                        (2.3)
 

In the preceding equation  
 8 8

,TM


 
 8 8

,RM


 
 8 8

,G


 
 8 8BK


and  
 8 8CK


are the 

translational mass matrix, rotary inertia matrix, gyroscopic matrix, bending stiffness 

matrix and skew symmetric circulatory matrix, respectively. The expressions for these 

matrices are given below. The full matrices are given in the Appendix. 

where subscripts in the element describe the respective planes.  

The equation of motion for full system is obtained by assembled the elements matrix 

into global matrix and it is written in the form as: 

          qM q C q K f 
                                                                                   (2.4) 
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Where   ,M  C and  K are the global mass, damping and stiffness matrices, 

respectively and  f  is the external force applied. Their expressions are written as:
                  

 

     
T R

M M M  ;      
v B

C K G  ;      
B v c

K K K    

The disc mass is added to the global mass matrix at a respective node. The global 

damping matrix contains the gyroscopic effects of shaft and disc, and effects of 

rotating and non-rotating damping.
 

Equation (2.4) once again is added by an identity equation to get the states space 

equation. 

       Q A X B X
                                                                                                (2.5)

 

Where, 

  ,
0

C M

M

 
  
 

A

 
 

0

0

K

M

 
  

 
B

  

 
 

 
,

q

q

  
  
  

X  
 
 

0
Q

f

  
  
                                                                                                   

 

Free vibration Equation of motion (2.4) for an eigenvalue problem can be written as 

by assuming,    
t

u ye


  

         A X B X 0
                                                                                              (2.6)

 

  is a complex Eigen values which represent the imaginary part and the real part 

indicates the natural frequency. 

2.2 General Reduction Procedure 

Model reduction is usually used to reduce large analytical model to develop a more 

effective model for further analytical studies, which is done by discarding few 

coordinates. Generally total degree of freedom or number of coordinate is classified 

in two categories, i) master coordinate and ii) slave coordinate. Master coordinate is 

also known as active or measured or retained coordinate and slave coordinate is also 

known as deleted or discarded or omitted coordinate. There are few methods for 

selecting those coordinates. 
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a) Slave coordinates, whose inertia force are insignificant compared to the elastic 

force. Thus it should be selected where inertia is small and stiffness is high.  

b) Master coordinates, where inertia is high and stiffness are small. 

c) Diagonal term in the ratio of stiffness and mass matrices, 
jj

jj

K

M
 , for the 

th

j  

coordinates. If 
jj

jj

K

M
 is very small then there exist major inertia effects and associated 

coordinate is master coordinate. 

d)  If the diagonal term in the ratio 
jj

jj

K

M  

is large then the 
th

j
 
coordinates should be 

selected as a slave coordinate.  

e) Another method to choose master and slave is that all the translational degree of 

freedom is chosen as master co-ordinates and all rotational co-ordinates are chosen as 

slave coordinate. 

Mn, Kn,Cn are the full set of degrees of freedom and written in the form after the 

selection of master and slave co-ordinate. 

   

    

mm ms

n

sm ss

M M
M

M M

 
  
    

   

    

mm ms

n

sm ss

K K
K

K K

 
  
    

   

    

mm ms

n

sm ss

C C
C

C C

 
  
    

In general the relationship between the full set of analytical model and the reduced 

set of master degree of freedom as 

      
m

mn

s

T
x

q x
x

 
  
 
                                                                                              (2.7)                                                                               

 

Subscript 'n' represent the full set of analytical degree of freedom, 'm' represent the 

master degree of freedom and‟s‟ denotes the slave degree of freedom. „T‟ represents 
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transformation matrix between these two set of degree of freedom, which depends on 

the different reduction techniques used and will discuss in the following section. 

Therefore, the reduced mass, stiffness and damping matrices are obtained by pre- and 

post multiplying the transformation matrix „T‟ to the full set of degree of freedom 

matrices of (
nM ,

nK ,
nC ). 

   
T

r n
TTM M        

   
T

r n
TTK K        

   
T

r n
TTC C        

Where the size of the reduced matrices is ( r r ). 

2.2.1 Guyan Reduction 

In Guyan reduction [7], the stiffness and mass matrices, are divided into separate 

quantities which relates the master and slave degrees of freedom. Assuming that no 

force is applied to the slave degrees of freedom and the damping is not considered, 

then the equation of motion becomes from equation (2.4) 

      

       0

mm ms m mm ms m

sm ss sm sss s

fx xM M K K
M M x K K x

            
         

                                                            (2.8)

 

Neglect the inertia term 

  

  0

mm ms m

sm ss s

fxK K
K K x


       

     
                                                                                              (2.9)

 

 

0
sm ssm sx xK K 

                                                                                            (2.10) 

 

 
1

sm m

sms m

ss

ss

xK
x xKK

K

           
                                       

 

 

1m

mm ms smss

f
x

K K K K


     
     



   
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1

1

1

mm ms sm
m

n

s sm

mm ms sm

ss

ss

ss

f

K K K Kx
x

x fK K

K K K K







 
 
      
          

   
       

 
      
       



 
 



  

  

  
                                 

 

   1  = 

               

sn m m

smss

I

Tx x x
K K



 
 
  

  


  

                                                        (2.11) 

  is the transformation matrix for Guyan reduction.
sT    

2.2.2 Improved Reduced System 

O‟Callahan [10] improves the Guyan reduction method by developing a new 

technique known as the Improved Reduced System (IRS) method. It is an extension 

of the Guyan reduction in which some additional effect of slave degree of freedom 

and inertia term is considered which causes distortion in the Guyan reduction 

techniques. The development is based on the circumstance that the static mechanical 

model containing distributed forces can be reduced. 

For sinusoidal excitation, equation (2.8 is written as 

2 2

ss ss sm sms mx xK M K M    
   

                                                   (2.12) 

1
22

sm sms mss ssx xK M K M 


 
 

   
                      

By using the binomial theorem 

   2 41 1

ss sm ss ss sm sms m
Ox xK K M K K M 

 

     
 

            

Where,  4
O 

 
is an error of order 

4

 . The main aim is to improve the natural 

frequency from the reduced model is based on the Guyan reduction, to first order in 

2

 . 

2 2 1
  or   

R R R Rm m m mx x x xM K M K 


   

 1 1 1 1

ss sm ss sm ss ss sm R Rs mx xK K K M M K K M K
    

  
   

                   (2.13) 
 

1

ni s s R RSMT T T M K


                                                                              (2.14) 
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Where 
1

sms sst K K


 
      from Guyan Reduction 

s

s

I

T
t

   
 
  
  



  

1

0    0

0    
ss

S
K



       
 

       



                                                                             
 

 and 
R RM K  

are reduced mass and stiffness matrix taken from Guyan reduction. 

Reduced mass and stiffness matrices by Improved Reduction system are 

T

R n iiM T M T    
         

T

R n iiK T K T    
         

T

iR niC CT T    
                 

  
 is the transformation matrix for IRS.

iT  
                                                            

 

2.2.3 System equivalent reduction expansion process 

In Serep [15] reduction process there is a relationship between the master degree of 

freedom and the slave degree of freedom which can be written in general form as 

   m

n m

s

T
x

x x
x

  
    

  

 

                                                                                     (2.15)

 

The modal transformation can be written as: 

   m m

n

ss

p
x X

x
x X

    
  
     

 

                                                                                   (2.16)                          

 

The modal matrix is obtained from Eigen vector and is partitioned into the 'm' active 

and‟s‟ slave or deleted set of degrees of freedom. The relationship for the active or 

master set of degrees of freedom is. 

   
mm

px X                                                                                                     (2.17) 

   is the modal participation vector obtained from least square solution.p
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The inverse specification of above equation contains a generalized inverse then the 

number of unknowns is not equal to the number of equations to be solved. There are 

two probable Solution. 

1. When the number of equation „m‟ is greater than or „a‟ equal to the mode of 

interest. 

2. When the number of equation „m‟ is fewer than the number of solution variables 

„a‟ means mode of interest. 

Least Squares Solution – m a  (mode of interest). 

       
T T

mm
Pm mx XX X    

                                                       
 

              
11

T T

mm

T
pmm m m

T
m m x X XX X XX X



         
                                   

              
1

T g

m m

T
p mm m mx xXX X X



 

                                 (2.18)

 

   is also called pseudo-inverse
g

mX  . 

Average solution- when m a .  

              
1

T g

m m

T
p mm m mx xXX X X



  
 

                           (2.19)

 

       
g

n un m mmx x xX TX       
                                                            (2.20)

 

The Serep transformation matrix 
uT   is used for the reduction of full original 

system. Serep is heavily relies on a “well developed” finite element model from 

which an „n‟ dimensional Eigen solution of the problem are obtained for developing 

the mapping between the full set of n DOF and the reduced model of m DOF. The 

quality of the result obtained from most reduction techniques depend on the chosen 

of active degree of freedom, however it is not a concern when we use Serep 

techniques. In Serep techniques an arbitrary selection of active or master degree of 

freedom as well as an randomly selection of modes does not affect the natural 

frequencies which are conserved in the reduced system when using Serep technique. 
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2.2.3.1 Main point to be remember using System Equivalent 

reduction expansion process. 

1. When the number of mode of interest used is less then active degree of freedom in 

reduced system model  (m>a). The size of the reduced matrices are „m‟ by „m‟, then 

rank of the reduced system model is only ‟a‟. Hence, the reduced stiffness and mass 

matrices are rank deficient; therefore precaution must be taken for these reduced 

matrices like mass, stiffness and damping matrix. Due to this rank deficiency result. 

2. The Serep process produce an exact solution when active degree of freedom is 

equal to the mode of interest means (m=a). 

2.3 Numerical problem 
A rotor bearing system with three disk on the shaft and discretised into 13 beam 

element having same length and cross-sectional radius of shaft is 0.05m. It is 

supported with two orthotropic bearing. The shaft and disk material is steel and 

unbalance mass 200gm is situated on disk2.  

x

y

z

kyy dyy

BA

dyykyy

C

L

D E

1 3 6542 10987 11 12 13 14



 
Figure 2.2: Schematic Diagram of the Rotor 

Table 2.1: Material property and shaft data 

Material   Density   

(Kg/m^3)  
 

Young 

Modulus 

(GPa) 

Length Diameter Damping 

Coefficient 

(N-s/m) 

Mild steel 7800 200 1.3 0.1      0 

Table 2.2: Bearing data 

Bearing properties         Stiffness          Damping 

   Plane xx        5e7         5e2 

    Plane zz        7e7         7e2 
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Table 2.3: Disc data 

Disk        Disk 1       Disk 2          Disk 3 

Inner radius (m)         0.05       0.05         0.05 

Outer radius (m)         0.12       0.2         0.2  

Thickness (m)         0.05       0.05         0.06 

 

2.3.1 Mass unbalance response 

The mass unbalance of 200gm is situated at disk 2 at node 6. The response amplitude 

is plotted for three different reduced model viz. Guyan Reduction, System Equivalent 

Reduction Expansion Process, Improved Reduced System. Before comparing these 

techniques global matrices is divided into two parts master and slave coordinate and 

then applying different techniques to plot unbalance response and effectiveness of 

these techniques is noted by compared it with original plot. 

2.3.1.1 Comparison between Full system, IRS and Guyan Reduction 

The full system have 56 degree of freedom by applying reduction process system is 

reduced to 24 degree of freedom. And unbalance response is plotted from Guyan 

reduction and Improved reduced system techniques and compare it with original 

system with 56 degree of freedom. We noted from the figure 2.3 Guyan reduction, 

IRS and full system plot of unbalance response show the effectiveness of three 

techniques. It is seen from figure 2.3 the Guyan reduction is very close to the original 

system but its highest peak is not coinciding with the original system. Same nature is 

observed for IRS also when compared with the full system. In IRS techniques some 

inertia term is included to get the effect of mass. 
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Figure 2.3: Comparison of unbalance response between full system, IRS and Guyan 

Reduction 

 

 

2.3.1.2 Comparison between Full system, Serep and Guyan 

Reduction  

In figure 2.4 Serep process shows effectiveness than the Guyan reduction because we 

see from the plot highest peak is same as the original one and after that it is same as 

the Guyan reduction. In Serep process we reduce the state space equation with the 

help of eigenvectors, and arbitrary selection of master co-ordinate and arbitrary 

selection of mode of interest does not affect its accuracy when compared with the 

original system. So, from the comparison between three techniques we see that Serep 

is close to the actual or original full system model 
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Figure 2.4: Comparison of unbalance response between full system, SEREP and 

Guyan Reduction 

2.3.2 Campbell Diagram 

Campbell diagram is plot between imaginary part of eigenvalues or whirl line (WL) 

vs. spin speed. The Campbell diagram is used to find out the critical speed (Ωcr). A 

line having inclination of 45 ° is known as synchronous whirl line (SWL). 

Intersection between SWL and WL indicates the critical speed. The Campbell 

diagram for full system drawn in figure 2.5 with 6 natural frequencies is considered. 

It shows the forward and backward whirl. The full system having 56 degree of 

freedom is reduced to 24 degree of freedom by applying different techniques like 

Guyan, IRS, and Serep reduction. The Campbell diagram is plotted from the reduced 

model and compares it with the full system. Table 2.4 shows the comparison of 

eigenvalues for various techniques. 
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Figure 2.5: Campbell diagram with full system 

Table 2.4: Comparison of eigenvalues between full systems, Guyan, IRS, Serep 

reduction techniques 

Mode Full system Guyan 

reduction 

         IRS      Serep 

1       55     53.9      53.7     53.8 

2       68     69.6      69.5      69.5 

3      157     151.6     150.3     150.3 

4      197     205.1     204.5     204.5 

5      238     235.4     225.9     225.9 

6      415     435.8     424.8     424.7 

7      456     459.6     454.5     454.5 

8      616     682.4     598.0     597.8 

9     738     801.6     797.0     796.7 

10    1130     1196.8    1067.4     1067.2 

11    1144    1223.4    1188.5     1187.8 

12    1494   1602.2    1454.2     1453.9 

 

From the figure 2.6(a) and figure 2.6(b) we see that the Campbell diagram for 

reduced system is close to the full system. The natural frequencies obtained from full 

system are close enough as compared with Guyan reduction for lower modes. IRS 



22 
 

and Serep techniques have same values of natural frequencies for lower modes as 

well as for higher modes also and close to the full system model. But Guyan gives 

better result than IRS and SEREP in lower mode. 

  

Figure 2.6(a): Campbell diagram for Full 

system and Guyan reduction model 

Figure 2.6(b): Campbell diagram for 

Full system and Serep model 
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Chapter 3 

Modal Analysis 

 In this chapter modal analysis of rotor is done because it is an important 

mathematical tool to get the idea of dynamic behavior and modal identification 

parameter of the system for example the mode shape, modal damping factor and 

Campbell diagram, frequency response function, directional frequency response 

function. 

3.1 Modal Analysis in Rotor 

The equation of motion of rotor from equation (2.4) with internal material damping is 

considered and once again equation is written as following Mesquita [28]. 

 
 

 
 

 

 
 

 

 

 
 

y

z

y y y f
M C K

z z z f

             
         

              
                                                          (3.1)

 

The equation of motion can be written in state space form are 

       Q A X B X
                                                                                                (3.2) 

 
Where, 
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  
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0
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 
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  
  
  

 
 

 
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q

z

 
 
 
  


                                                               

The matrices [A] and [B] are real, non symmetrical, and indefinite in general, causing 

a non-self-adjoint eigenvalue problem. The eigenvalue problems related with 

equation (3.2) are 

               0 and 0 
T T

A B A B l     
                                           (3.3)

 

Eigenvalues of the above problem are the same. The eigenvalues and eigenvector 

appear in complex conjugate pairs. The eigenvectors of the Eigen problems (3.2) are 

the vectors known as right and left eigenvectors, and given as 
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The vectors {u} and {v} are the eigenvectors of the Eigen problems. The right and 

left eigenvectors may be biorthonormalised as 
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 To uncouple the equation (3.2), the following coordinate transformation is done 
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Substituting the response in (3.7) into equation (3.6) leads to  
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Then 
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 Thus we can define the frequency response function matrix as 
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                                                                               (3.11) 

Therefore, Directional Frequency Response Function or Complex Frequency 

Response Function (dFRF) by Lee [26]  
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From above equation we can conclude as: 

ˆ ˆ ˆ ˆ
( ) ( );   ( ) ( )

pg pg pg pg
i i i iH H H H                                                                        

 

3.2 Numerical Problem 
A rotor shaft system with flexible supports at its ends and having one offset circular 

disc, as shown in figure 3.1. In all the considerations, bearing anisotropy and cross 

coupled stiffness is not considered. 
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Figure 3.1 Schematic diagram of rotor 

 

Table 3.1: Material properties and shaft parameters 

Material   Density   

(Kg/m^3)  
 

Young 

Modulus 

(GPa) 

Length Diameter Damping 

Coefficient 

(N-s/m) 

Mild steel 7800 200 1.4 0.1 0.0002 

Table 3.2:  Disc Parameter 

Disc Diameter (m) Thickness (m) 

1 0.40 0.05 

   

Table 3.3: Bearing data 

Bearing properties         Stiffness          Damping 

   Plane yy        1.75e7         7e2 

    Plane zz        1.75e7         7e2 

               

1.75 7 / ,  700 sec/ ,  0.0002
yy zz yy zz v

K K e N m C C N m      
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3.2.1 Campbell Diagram 
The Campbell diagram for damped system is plotted in figure 3.2 with four natural 

frequencies which give first forward and first backward for first mode and also for 

second mode. At first forward and first backward at 8949rpm and 9729rpm at which 

the system is at resonant. 

 

 
Figure 3.2: Campbell diagram

                                  
 

 

3.2.2 Modal Damping factor 

The modal damping factor of two consecutive modes is plotted for undamped and 

damped system in figure 3.3(a) and 3.3(b) respectively. In 3.3(a) it is a straight line 

because no internal or external damping is considered. In figure 3.3(b), backward 

whirl has incremental nature with spin speed and decremental nature for forward 

whirl. The positive modal damping factor indicates stability and negative modal 

damping factor indicates instability because vibrational energy is dissipates and 

rotational energy support rotor whirl due to the addition of energy. Thus the system 

may become unstable due to forward whirl. 
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Figure 3.3(a):  Modal damping factor 

Vs. rotor spin speed (without support 

damping) 

 

Figure 3.3(b):  Modal damping factor Vs. 

rotor spin speed (with support damping) 

 

 

3.2.3 Three dimensional mode shape for simply supported rotor 

system 

Mode shape is plotted for simply supported rotor in which eigenvector is used to plot 

these modes. The two consecutive modes for forward and backward whirl are 

presented here. The clockwise rotation is considered as backward whirl and counter 

clockwise is reflected as forward whirl. The stating of the locus is marked with star 

and the locus is left incomplete at the end to measure the direction of whirl. The 

mode shape for damped rotor is unsymmetric due to the addition of skew symmetric 

matrix in the equation of motion.  

 
 



28 
 

 
 

Figure 3.4(a): First Backward whirl Figure 3.4(b): First Forward whirl 

 

 

Figure 3.4(c): Second Backward whirl Figure 3.4(d): Second Forward whirl 

 

3.2.4 Frequency response function (FRF) and Directional Frequency 

response function (dFRF). 

From the figure 3.5(a) and 3.5(b), Hyy and Hyz we see that there are four modes but 

no information of directivity of Frequency means forward and backward modes in 

frequency response function (FRF). In figure 3.6, Hpg we see directly from the plot 

backward modes, 152Hz and 55.2Hz, appears in the negative frequency zone and 

forward modes, 55.6Hz and 157.6Hz, appears in the positive frequency zone. So, we 

clearly noted that directional frequency response function (dFRF) has the capability 

to separates backward and forward modes, which is mixed in FRF plot. 
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Figure3.5(a):  Frequency Response 

Function (Hyy) 

Figure3.5(b):  Frequency Response 

Function (Hyz) 

 

 

Figure 3.6:  Directional Frequency Response Function (Hpg) 

 

From the plot we see clearly that forward and backward are separated in their 

frequency zone in figure 3.7. The backward modes are 154.4Hz and 55.2Hz appear in 

the negative frequency zone and forward modes are 55.6Hz and 158.4Hz appear in 

the positive frequency zone at node 6 with internal material damping is considered in 

figure 3.8 backward modes, 144.8Hz and 55.2Hz appear in the negative frequency 

zone and forward modes are 56.0Hz and 162.8Hz appear in the positive frequency 

zone at node 4 with no internal material damping. 



30 
 

 

dFRF with internal and external 

damping at node 6 

dFRF with support damping at node 4 

  

Figure 3.7: Directional frequency 

response function (Hpg) at node 6  

Figure 3.8: Directional frequency response 

function (Hpg) at node 4 
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Chapter 4 

Conclusions and Future scope 

4.1 Conclusions 

This work includes the model reduction and modal analysis of a rotor system with 

simply supported at its end by considering the external damping and internal material 

damping. For this Finite element formulation for the rotor shaft system is first 

obtained. From that following conclusion can be made. 

1. From the reduced system the nature of unbalance response is close agreement 

as compared to the full system. 

2. The reduction techniques like Guyan reduction produce the natural 

frequencies close to the natural frequencies of the full system for lower 

modes. At higher modes IRS and Serep produces the natural frequencies close 

to the natural frequencies of the full system. 

3. The reduction process like Serep is effective in reproducing that natural 

frequencies of the full system whose mode is include in transformation 

matrix. 

4. From dFRF we separate forward and backward modes in a frequency zone 

which is mixed in FRF plot. 

5.  From the mode shape we can easily visualized the forward and backward 

modes. 

6. From the modal damping factor we can conclude that the positive modal    

damping factor indicates the stable zone and negative modal damping factor 

indicate the unstable zone. 
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4.2 Future Scope 

           Following are the point for the future research in this area is 

1. No one model reduction techniques is fully exact to the full system model so 

search is continue for suitable second order model as well as for higher order 

model. 

2. Modal analysis for higher order model of viscoelastic rotor and also the work 

is extended to nonlinear problem. 

3. The modal analysis is also done for unsymmetric rotor for symmetric rotor it 

is straight forward but unsymmetric rotor required complex modal analysis of 

rotor shaft system. 
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4.4 Appendix  
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