
Code Obfuscation

using

Code Splitting with Self-modifying Code

Shakya Sundar Das

Department of Computer Science and Engineering

National Institute of Technology Rourkela

Rourkela-769 008, Odisha, India

May 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ethesis@nitr

https://core.ac.uk/display/53190122?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Code Obfuscation

using

Code Splitting with Self-modifying Code

Thesis submitted in partial fulfillment of the requirements for the degree of

Master of Technology

in

Computer Science and Engineering
(Specialization: Software Engineering)

by

Shakya Sundar Das
(Roll No.- 212CS3370)

under the supervision of

Prof. S. K. Jena

Department of Computer Science and Engineering

National Institute of Technology Rourkela

Rourkela-769 008, Odisha, India

May 2014

Department of Computer Science and Engineering
National Institute of Technology Rourkela
Rourkela-769 008, Odisha, India.

Certificate

This is to certify that the work in the thesis entitled Code Obfuscation us-

ing Code Splitting with Self-modifying Code, by Shakya Sundar Das

(212cs3370), is a record of an original research work carried out by him un-

der my supervision and guidance in partial fulfillment of the requirements for the

award of the degree of Master of Technology with the specialization of Software

Engineering in the department of Computer Science and Engineering, National

Institute of Technology Rourkela. Neither this thesis nor any part of it has been

submitted for any degree or academic award elsewhere.

Place: NIT Rourkela (Prof. Sanjay Kumar Jena)
Date: May 30, 2014 Professor, CSE Department

NIT Rourkela, Odisha

Author’s Declaration

I hereby declare that all work contained in this report is my own work unless

otherwise acknowledged. Also, all of my work has not been submitted for any

academic degree. All sources of quoted information has been acknowledged by

means of appropriate reference.

Place: NIT Rourkela (Shakya Sundar Das)
Date: May 30, 2014 M.Tech, 212cs3370, CSE Department

NIT Rourkela, Odisha

Acknowledgment

Writing of thesis is a journey through gravel road, but you can make it with

the help of the people and resources you get in touch through out your journey. I

am thankful to all of them for their hands to frame this thesis.

First of all, I would like to express my unfeigned thanks to Prof. S. K. Jena

for his observations and guidance during my thesis work constantly encouraged me

to build the direction to the research and to move forward with in depth analysis.

Being a source of knowledge, his words make my road become straight and easier

to go. I am also grateful to all the professors of our department for their advice

and support.

I would also like to special thank to Asish Dalai Sir, PhD Scholar at NIT

Rourkela, and my maternal uncle Atanu Das, PSA at NIC-Kolkata, for their

help and support to clear my hurdles and understanding. And also thankful to

Vivek Balachandran of NTU Singapore, the author of the paper “Potent and

Stealthy Control Flow Obfuscation by Stack Based Self-Modifying Code”, for his

help to clear my doubts on mails.

I would like to thank all my friends and lab-mates for their cooperation and

pepping up, which can never be penned with words.

One of the most important acknowledgment is for the academic resources that

I have got from NIT Rourkela from the administrative and technical staff members

who have been kind enough to advise and help in their respective roles.

Despite being mentioned after everyone else, I would like to lovingly ded-

icate this thesis to my Mom & Dad for their love, patience, understanding

and to being my source of inspiration.

Shakya Sundar Das

Abstract

Code Obfuscation is a protection technique that transforms the software into

a semantically equivalent one which is strenuous to reverse engineer. As a part of

software protection and security, code obfuscation got commercial interest from

both vendors’ side to keep their proprietary as secret and customers’ side to have

a trusted software that don’t leek or destroy their personal information. Today

most of the software distributions contain complete source code in the form of

machine code, which are easy to decompile and increase the risk of malicious

reverse engineering.

The basic idea of the obfuscating technique that has been described in this

research work is to hide the proprietary code section through preventive design

obfuscation and insertion of self-modifying code at binary level. In this proposed

technique the combination, while complementing each other, provides protection

against all kind of reverse engineering.

Keywords: Software Protection, Reverse Engineering, Vendor, Decompile,

Control obfuscation, Code Splitting, Self-modifying code.

Contents

Certificate ii

Declaration iii

Acknowledgement iv

Abstract v

List of Figures viii

List of Tables ix

1 Introduction 2

1.1 Reverse engineering attacks . 3

1.2 Protection techniques for software intellectual properties 4

1.3 Objective . 6

1.4 Thesis Organization . 6

2 Theoretical Background of Code Obfuscation 8

2.1 Introduction . 8

2.2 Threat Model . 8

2.2.1 Software Distribution Model 9

2.2.2 Attacks against Software Intellectual Properties 9

2.2.3 Reverse Engineering . 11

2.3 Code Obfuscation . 13

2.3.1 Definition of Code Obfuscation 13

2.3.2 Classification of Code Obfuscation 14

2.3.3 Evaluation of Obfuscation Technique 15

2.4 Summary . 18

vi

3 Literature Review 20

3.1 Review of related work . 20

3.2 Motivation . 27

4 Proposed Technique & Implementation 29

4.1 Introduction . 29

4.2 Assumptions . 29

4.3 Proposed Technique . 30

4.3.1 Basics behind the proposed technique 30

4.3.2 Design of the proposed technique 33

4.4 Implementation . 34

5 Conclusion 44

5.1 Achievements . 44

5.2 Limitation & Future Scope . 45

Bibliography 46

List of Figures

1.1 Attacks by Reverse Engineering . 3

1.2 Protection of Intellectual Properties 5

2.1 Software Piracy Attack . 10

2.2 Module Reuse Attack . 10

2.3 Code Alteration Attack . 11

2.4 Process of Reverse Engineering . 11

2.5 Code Obfuscation . 13

2.6 Classification of obfuscating transformation 15

2.7 Metrics for quality measurement of the obfuscation technique . . . 16

2.8 Measure of resilience . 17

4.1 Shared Memory for Inter Process Communication 33

4.2 Design of proposed technique . 34

4.3 Design of Control flow between the Programs 35

4.4 Design of Control flow between the Programs 36

4.5 Design of binary level obfuscation 37

4.6 Screen shot : Crash testing . 39

4.7 Screen shot : Failure testing . 39

4.8 Screen shot : A try to debug INIT process 40

viii

List of Tables

2.1 Software complexity metrics to measure potency 16

4.1 Execution Time of the program : Sum of First One Million Natural

Number . 37

4.2 Memory Requirements for the Original Program 38

4.3 Memory Requirements for the Obfuscated Program 38

4.4 Measure of Potency . 41

4.5 Measure of Space-cost Factor (SIZE : byte) 41

4.6 Measure of Time-cost Factor (TIME : SECOND) 41

4.7 Measure of Time-cost Factor for Bubble sort 42

ix

Introduction

Reverse engineering attacks

Protection techniques for software intellectual properties

Objective

Thesis Organization

Chapter 1

Introduction

From the development of operating system to till now, software industry creates its

own space in research, science and business. Softwares become the most desirable

part of the digital world. Not only computers almost all the electronics devices

have softwares embedded within them or installed on them. To hold this digital

market software vendors started to put their proprietary code or algorithms as

a secret part of the softwares and distribute in the form of executables without

the source code. Alongside this evolution of the softwares make them complex to

other people to understand the executables. Even it is difficult for the developer

to maintain, to update and to patch new add-ons on client and customer side.

This creates the need of software analyzing tools like disassembler, de-compilation

[1] tools, reverse engineering [2] tools and many others. This analyzing tools

again create a new threat for software industries - the stealing of the intellectual

properties like code sections or algorithms.

Though these analyzing tools are the most essential part of software develop-

ment life cycle phases [3], specially for testing, maintenance and up-gradations,

these tools are also getting used for reverse engineering aiming at malicious inten-

tion of steeling or exploring the intellectual properties or vulnerabilities. These

kind of software analyzing tools are largely available [4–7] on websites with docu-

mentation.

2

1.1 Reverse engineering attacks Introduction

1.1 Reverse engineering attacks

The Reverse engineering [8] is the process of analyzing a target system to uniquely

identify the system’s modules and relationships between them and create a repre-

sentations of the target system in another form or at a higher level of abstraction.

In software world the reverse engineering method has been widely used in code

reuse, software testing [9], to identify vulnerabilities [10], to analyze malicious

codes [11] and protocols [12]. But the hackers and crackers are using this reverse

engineering for their wicked purposes like code theft, code tampering, crack and

piracy as shown in Figure 1.1, which is a open challenge to software proprietary

informations protection. These kind of illegal activities cause the loss of money,

business, reputation and the trust factor of the vendors.

Figure 1.1: Attacks by Reverse Engineering

In the battle of software market every organizations have their proprietary

codes or algorithms built into the executables which are sold to the customer.

Which will be executed on untrusted computing environment where attacker have

complete access to the software and hardware. Therefore, in such kind of environ-

ment software protection [13] is a definite need but harder to handle. Several cases

of software law suits are filed, involving intellectual property theft using reverse

engineering, like Atari Games Corp. v. Nintendo of America Inc. [14] in 1992,

Sony Computer Entertainment Inc. v. Connectix Corp. [15] in 2000, in 2002 the

case of Blizzard Entertainment on bnetd, which is claimed as a software package

that was developed by reverse engineer the Blizzard Entertainment’s Battle.net,a

online multiplayer gaming service, poses almost equal workings [16].

3

1.2 Protection techniques for software intellectual properties Introduction

1.2 Protection techniques for software intellec-

tual properties

From these it is prominent that the protection of intellectual properties is a crit-

ical issue for the vendors while capturing customers with new technologies, with

new software is the aim of the every software vendors, but to protect their new

ideas they need copyright or patent. Even after if the ideas is copied somewhere

else then again there will be court cases. It will be then investigated by technical

experts. In order to perform such investigation several software tools, mathe-

matical models and theoretical frameworks like SMAT [17] [18], MOSS [19] [18],

AFC(Abstraction-Filtering-Comparison) [20] [18] and others are followed. In such

theoretical framework (eg. AFC) the expertise first have to create an abstrac-

tion [18] depends upon purpose of the code, program structure and architecture,

modules, source code & object code, then depending on these abstraction the

expertise again have to compare [18] data structure, algorithms, system calls, for-

mating, macros, bugs, execution paths, error, language to create a proper report.

But still the evidence collected by the technical experts is open to legal challenges

irrespective of the outcome which may produce delay in the process of litigation.

All of these are time consuming, we have to also take into the monetary factors

and above all the perfection of the thorough, authentic and convincing report of

the technical expert in interest of proper justice. Both patenting and filing case

on copy is not possible for small or medium size organizations or software vendors

for all of their intellectual properties. This introduce the other technique of soft-

ware protection like code obfuscation [21], software water marking [22], Tamper

Proofing [22], white box cryptography [23], software fingerprinting [22], software

diversification [24].

Some of the above named techniques are mainly to avoid reverse engineering

by making its execution difficult or force it to crash on analyze & tampering and

some of them creates special copyright key depending on execution path or provide

security keys to identify theft.

Software watermarking [22] involves embedding a unique identifier or signature

4

1.2 Protection techniques for software intellectual properties Introduction

within a piece of software. Watermarking does not prevent theft but instead

discourages the stealing of codes by providing a way to uniquely identify the

origin of the stolen software.

Watermark embedding : Program x Signature x Key → Watermarked program

Watermark extraction : Watermarked program x Key → Signature

Tamper proofing [22] are used to stop the execution of our software if it has

been altered by adding tamper-proofing code to the software that will detect any

change in code and cause the execution to a dead state or fail state.

Software Diversification [24] is a technique that generates different, but seman-

tically equivalent, assembly instruction from a code sequence.

Software fingerprinting [22] is more or less same as above where the software

vendors add a unique customer identification number for each distributed copy to

track copyright violation.

Figure 1.2: Protection of Intellectual Properties

All these methods are to protect the software piracy after reverse engineer-

ing. None of these methods can stop reverse engineering. Our research topic code

obfuscation [22] is the only technique that make the target software difficult for

reverse engineering and reduce human understandability of the code. As the ex-

ecutable is open to all we can not stop any body from using de-compiling tools

or de-assembler for reverse engineering. But through code obfuscation [21] we are

trying to make it difficult for the tools or humans to understand and to generate

higher level abstraction of the target software without hampering the output the

5

1.3 Objective Introduction

result, for which the software is developed.

Other possible way is server side execution [25], trusted native code(eg. code

authentication) [25], legal step on stealing.

1.3 Objective

The objective of this research work is to develop a technique that will prevent

the attackers from dynamic reverse engineering [26] forces them to static reverse

engineering [26] which they can’t execute to trace its execution path and to get

the actual high level code.

1.4 Thesis Organization

The rest of the thesis is organized as follows:

The basic informations to understand code obfuscation is given in Chapter-2,

as Theoretical Background. It contain the definition and classification of code

obfuscation and reverse engineering in software domain, the assumptions and the

environments those are assumed for code obfuscation and the evaluation process

of the obfuscation technique.

Chapter-3 will provide a overview of the related work and research done till now

on code obfuscation. Which will lighten you up with a little deep knowledge about

code obfuscation and help you to understand the needs, the drawbacks and various

way to protect a software by code obfuscation.

Chapter-4 will take you through our proposed technique of code obfuscation with

some basic theoretical knowledge about the technology used and the simulation

and results of our proposed work.

In Chapter-5 the overall work with strength and drawbacks is expressed in the

section Conclusion and the possible future work is described in the Future Scope

section.

6

Theoretical Background
of

Code Obfuscation

Introduction

Threat Model

Code Obfuscation

Summary

Chapter 2

Theoretical Background of Code
Obfuscation

2.1 Introduction

The main target of code obfuscation is to protect the sensitive information of

the software from getting disclosed to the outer world. As the softwares are dis-

tributed in executable form in today’s world, to get the sensitive informations

or information about proprietary or intellectual properties from the executable

reverse engineering is the only technique available in digital market. And code ob-

fuscation is also the only technique that can prevent reverse engineering to some

extent to analyze the target software.

2.2 Threat Model

After developing the software it is assumed that the executable will run on an

untrusted host machine where the attacker have the complete access over the host

machine, like the attacker have administrative access to the operating system, can

add or remove hardware parts from the host machine, have access to the executable

code of the software and to all kind of reverse engineering tool (e.g. disassembler,

debugger) to analyze the code. After analyzing they can reuse any module for

their program or can extract any proprietary algorithm or data structure and

reveal it publicly for the loss of the vendor or insert extra code to get customers’

information by violating the trust factor between vendor and customer.

8

2.2 Threat Model Theoretical Background of Code Obfuscation

2.2.1 Software Distribution Model

Here software distribution model means the various categories of user, who can

use the software. A simple software distribution model consist of four different

participants as follows:

A Software Vendor

They develop the softwares with new ideas and technologies to capture the

market and want to maximize their profits by selling their software products,

in present and in future.

B Legitimate User

These people are ready to pay to use the software which is not pirated and

not malicious for their work. These people are conscious about their private

information from getting damaged or disclosed. They need a trust factor

from the products they are using.

C Illegitimate User

These people have no technical knowledge but want to use the software with

the privileges of a legitimate user without proper compensation. They don’t

need the trust factor.

D Pirates or Attacker

These kinds of people with technical knowledge want to break all the security

measure taken to protect a software code and use that code for their own

software or to make pirated copy of that software for the illegitimate or

legitimate user with minimizing the risk of being caught.

2.2.2 Attacks against Software Intellectual Properties

In the paper “Watermarking, tamper-proofing, and obfuscation-tools for software

protection” [22], the authors defines various attacks against software intellectual

properties using reverse engineering as defined bellow.

9

2.2 Threat Model Theoretical Background of Code Obfuscation

� Software Piracy Attack

Attacker reverse engineers an application, which he has legally purchased

from Vendor, and make pirated or cracked copy removing the vendor’s sig-

nature and sells them to unsuspecting customer in low price. Which will

create loss for the vendor from both profit from selling and the trust factor

with the customers.

Figure 2.1: Software Piracy Attack

� Module Reuse Attack

Attacker reverse engineers an application, which he has legally purchased

from Vendor, in order to reuse one of the modules in his/her own program.

As described in Figure-2.2, the attacker, after reverse engineer, reuse the

code of Comp2 within his own software without developing by his own. This

will create problems for the vendor in business to capture the market.

Figure 2.2: Module Reuse Attack

� Code Alteration Attack

Attacker reverse engineers an application, after legally purchased from Ven-

dor, makes some changes to the code for own profit irrespective the loss of

10

2.2 Threat Model Theoretical Background of Code Obfuscation

vendors or customers and resell the products to the market. As described

in Figure-2.3, the attacker change the code as whenever a user execute the

play() methods of the software as well as the vendor the attacker is also

getting paid by the customer.

Figure 2.3: Code Alteration Attack

2.2.3 Reverse Engineering

Figure 2.4: Process of Reverse Engineering

As described previously the Reverse engineering [8] is the process of analyzing

a target system to uniquely identify the system’s modules and relationships be-

tween them and create a representations of the target system in another form or

at a higher level of abstraction. In the world of software reverse engineering allows

attackers to understand the internal behavior of the executables and extract pro-

prietary algorithms or code sections from it. In Figure-2.4 the reverse engineering

11

2.2 Threat Model Theoretical Background of Code Obfuscation

process is described.

The analysis of reverse engineering can be classified [26] as static reverse engi-

neering and dynamic reverse engineering.

� Static reverse engineering is a technique where the structure of software

executable is analyzed without actually executing it.

Here a attacker can use a disassembler to translate the executable machine

code into a visible, understandable assembly language code including all the

instructions those affects the control flow. From this by manually checking

each instruction attacker can generate the control flow graph from which

the high level abstraction of the software/code-section can be reconstructed

without executing it. It is a hard and tedious job but a possible way and

need expertise of this domain. Static reverse engineering can be carried out

by two ways. One is Linear sweep where attacker is just following each

instruction as encountered one after another but this is very tedious and

error prone technique. Other is Recursive Traversal where the attacker start

with the program entry point and stops at every control flow instruction and

determines possible predecessor and successor and then again continues on

every possible paths. But determining the possible successor of every control

instruction without executing is a very tough and error prone.

� Dynamic reverse engineering is a technique where the attacker execute

the software executable within a debugger [27] to inspect its internal struc-

tures as well as the various execution paths.

For encrypted code it is too hard to identify the key and tracking the code’s

transformation by static analysis. Then with the help of debuggers [27] [6] it

is possible to execute the code step by step to identify the key and to track

the code transformation.

12

2.3 Code Obfuscation Theoretical Background of Code Obfuscation

2.3 Code Obfuscation

Code obfuscation technique is to obscure the control, data, layout, design of the

software original implementation and give a semantically same but new imple-

mentation, as described in Figure-2.5, of the target software that make reverse

engineering much harder.

Figure 2.5: Code Obfuscation

2.3.1 Definition of Code Obfuscation

There is no common formal definition for code obfuscation. It is a transformation

method to convert one program into another, which prohibits the same charac-

teristics of the old program. It can also be treated as an encrypted code that is

decrypted prior to execute at runtime. Obfuscated code can be an executables that

contain encrypted sections, and a simple code section to decrypt the encrypted

code section.

According to the authors of the paper “A taxonomy of obfuscating transfor-

mations” [21], the definition of code obfuscation is as follows

Definition : Let T(P) be a transformed program of program P. Then T is the

Obfuscating Technique if T(P) poses the same observable characteristics as P and

T(P) must follows the following conditions:

� If program P does not terminate or has an erroneous termination, then T(P)

may or may not terminate.

13

2.3 Code Obfuscation Theoretical Background of Code Obfuscation

� Else as P terminates successfully, T(P) must terminate with the same out-

come as P.

According to the authors of the paper ”A security architecture for survivability

mechanisms” [28], if T is obfuscating technique that transform the program P into

the obfuscated binary B, then the reverse transformation from B to P will take

much greater effort and time(almost impossible),as T is a one way translator.

2.3.2 Classification of Code Obfuscation

Obfuscation comes in four flavors [21] based on obfuscation target - Layout obfus-

cation, Data obfuscation, Control obfuscation and Preventive transformation.

1 Layout Obfuscation : It refers to obscuring of the software layout by

deleting comments for instance, changing format of the source code, variables

renaming, and the removal debugging information through obscuring the

lexical structure of the program.

2 Data Obfuscation : This prevents the extraction of information from data.

Data obfuscation techniques are array splitting, variable splitting, changing

the scope and lifetime of data etc.

3 Control Obfuscation : This refer to the obscuring of the control flow of the

program. This kind of obfuscation technique mainly of dynamic obfuscation

type based on self modifying code.

4 Preventive Transformation : Depending on debuggers’ or disassemblers’

weaknesses, modify the program such that code itself will force the debugger

or disassembler to fail.

But this classification does not include all types of obfuscation techniques.

Another possible classification is Design Obfuscation [29] which deals with ob-

scuring the design related informations of the software. Like merging and splitting

of code sections or classes, type hiding, will help in obscuring the design intend of

the programs.

14

2.3 Code Obfuscation Theoretical Background of Code Obfuscation

Figure 2.6: Classification of obfuscating transformation

2.3.3 Evaluation of Obfuscation Technique

There are two ways to check the quality [25] of a obfuscation technique as software

engineering not only includes the technological and computational measures, it

also include the human factor for every development. The two quality evaluation

methods are defined bellow.

Analytical Method

Analytical method checks the quality of the obfuscating technique T() depend-

ing upon the parameters of both original/source program P and the obfuscated

program T(P). According to authors of the paper ”A taxonomy of obfuscating

transformation” [21], they are evaluating the quality depending upon three pa-

rameters - potency, resilience and cost.

� Potency : It can be described as - how much obscurity T() adds to P.

Let Pot(P) is the potency measurement of P and Pot(T(P)) is the potency

measurement of T(P) then

TransformationPotency, TPot = Pot(T (P))/Pot(P)− 1 (2.1)

15

2.3 Code Obfuscation Theoretical Background of Code Obfuscation

Figure 2.7: Metrics for quality measurement of the obfuscation technique

Potency for both P and T(P) can be measured by various software complex-

ity metrics defined in Table-2.1.

Table 2.1: Software complexity metrics to measure potency

Metric Name Description Citation
Program Length Pot(P) increase with the number of

operators and operands in P
Halstead [30]

Cyclomatic Complexity Pot(P) increase with the cyclomatic
complexity of P

McCabe [31]

Nested Complexity Pot(P) increase with the nesting lev-
els of the conditionals in P

Harision [32]

� Cost : It is measure by how much computational overhead T() adds to

T(P). It is the execution time penalty and space penalty that the obfuscation

technique incurs on T(P).

If executing T(P) requires exponentially more resources than P then

TransformationCost, TCost = Dear (2.2)

If executing T(P) requires O(np), p>1, more resources than P then

TransformationCost, TCost = Costly (2.3)

If executing T(P) requires O(n), more resources than P then

TransformationCost, TCost = Cheap (2.4)

16

2.3 Code Obfuscation Theoretical Background of Code Obfuscation

If executing T(P) requires O(1), more resources than P then

TransformationCost, TCost = Free (2.5)

� Resilience : It is measured by how difficult is T(P) to break for a de-

obfuscator means how well a T() holds up under attack from a automatic

deobfuscator. Resilience can be measured by summing the total of program-

mer’s effort and deobfuscator’s effort [21].

Programmer Effort (PEff) - The amount of time require by the

programmer to build the automatic deobfuscator to regenerate P from T(P).

Deobfuscator Effort (DeoEff) - The amount of execution time and

space required for the automated deobfuscator to deobfuscate the trans-

formed program.

If P can not be constructed from T(P), means some information from P is

removed in T(P) at the time of obfuscation, then

TransformationResilience, TRes = OneWay (2.6)

Otherwise

TransformationResilience, TRes = Res(PEff + DeoEff) (2.7)

Figure 2.8: Measure of resilience

17

2.4 Summary Theoretical Background of Code Obfuscation

Empirical Method

The main target of code obfuscation is to protect the proprietary code sections

or algorithms from unauthorized analysis and in reverse engineering the last step

of analysis is totally depends on human effort [25] which can not be measured by

any metrics. For this we need to perform empirical research on a group of people

like programmers, hackers or crackers, students.

2.4 Summary

Throughout this chapter, what ever is discussed is just to create a basic under-

standing for this research work. For more details you can go through the papers

and websites refereed throughout the paper.

For some more interesting informations you can have a look to the website of

Prof. Christian Collberg [21] [22] [13] of University of Arizona, the website of ”The

International Obfuscated C Code Contest”, the website of University of Florida on

”Obfuscated C Code”, the website of Princeton University on ”Obfuscated code”

and so many hacking websites those are available on Internet. These are some

unnamed references of this paper.

18

Literature Review

Review of related work

Motivation

Chapter 3

Literature Review

There are number of techniques and their implementation have been evolved by

many researchers since past decade based on protection against static and dy-

namic reverse engineering. Each approach has different techniques and targets

depends on static or dynamic reverse engineering like control flow flattering [28],

obfuscation using signals [33] [34], dynamic code mutation [35] [36], binary level

obfuscation [29], protective transformation [37] [38] and others.

3.1 Review of related work

Protection of software based survivability mechanisms - 2001

In this paper [28] authors used control flow obfuscation by the use of control

flow flattering technique to confuse the disassembler about the execution sequence

of the program. Here the researchers first divided their program into basic blocks

depending upon the high level control structure. Then this control structure is

replaced with ”if-then-goto” statements. After this the construction is changed in

such a way that the target address of goto will be determined dynamically after

the execution of each block and will be stored in switch variable and a switch

statement, depending on the value of the switch variable, determines which block

to be executed next. In simple words each basic blocks will have the same pre-

decessor and successor block, where basic block will calculate the switch variable,

20

3.1 Review of related work Literature Review

then control will go to the successor block which will give the control back to the

predecessor block and then depending on the switch variable predecessor block

will determine which basic block will be executed next.

Though this is very good dynamic control flow obfuscation but with the in-

crease of program and input size the requirements for memory and executing time

will increase and above all modern debuggers can provide a rough diagram of the

control flow by executing each instruction at assembly level one at time.

Software protection through dynamic code mutation - 2006

The researchers of this paper [36] implement a dynamic code obfuscation tech-

nique that will remove some set of code which will be restored at run time. To

implement this idea they are using three extra code module - stub, edit script and

edit engine. First thing they are doing is the identification of basic blocks, then

they are removing a set of code from a basic block and put the restoring informa-

tions in a edit script. Afterwards they include a stub, which will have the address

of the corresponding edit script, at the beginning of that block and desperately

put some confusing erroneous code on place of removed set of code. At the time of

execution stub will be executed first and transfer the control to edit engine with

the address of corresponding edit script. Then according to edit script the edit

engine will restore the original set of code at position of the erroneous set of code.

This method is implemented in two ways by the researchers of this paper. One is

One-Pass Mutation where each functions or basic blocks will have their own edit

script. Other one is Cluster-Based Mutation where a group of similar functions

will have a single edit script.

The major disadvantage of this technique is the stub section is always be in

highlight, that will draw attention of the attacker. Other disadvantage is after

restoring, the original code is fully exposed to the debugger or attacker.

21

3.1 Review of related work Literature Review

Binary obfuscation using signals - 2007

Here [33] the researchers also give a new technique of control flow obfuscation

by hiding the control flow information of a program using signal, which are used

carry information between operating system and information. This research work

is based on the replacement of every control instruction at binary level (eg. JMP,

RET, CALL) with trap signals like SIGILL for illegal instruction, SIGSEGV for

segmentation violation and SIGFPE for floating point exception. It first identify

the the control instruction, then divides the code-before and code-after segment

of the control instruction. After this the control instruction is replaced with a

trap instruction and some bogus code is inserted between the trap instruction

and the code-after segment. Then the user defined signal handlers are installed

within the program with a special table that will contains the actual instruction

for corresponding generated signals. At runtime when the trap signal will executed

the control will go to the operating system’s corresponding signal handlers, then

the control will be transfered to user-defined signal handler for the corresponding

signal. Then the user-define signal handler will execute the corresponding code

and then transfer the control to the code-after segment.

The one disadvantage of this technique is the control instruction is available

within the user-defined signal handler. If the attacker can identify the signal han-

dler, he can identify the control instruction by analyzing the signal handler.

Mimimorphism: a new approach to binary code obfuscation - 2010

In this paper [39] the authors give a totally different kind of obfuscation tech-

nique based on mimic function that has three phases - a digesting phase for Huff-

man tree building, an encoding phase that use Huffman decoding technique and

a decoding phase that use Huffman encoding technique. Here the mimimorphism

technique use mimic function of higher order which differ in digesting phase from

regular mimic function by building a collection of Huffman trees for better mimicry

22

3.1 Review of related work Literature Review

and a mimimorphic engine,that include all the three phases, is added to the obfus-

cated program to restore the original code at run time. Here, in Digesting phase,

from the executable with help of an assembler for each assembly instruction with

all the parameters and the frequency of occurrence those parameters are stored

and all the instruction is also get stored with a unique id and with the frequency

of their occurrence, after this a Huffman tree for each instruction is created de-

pending on their parameters frequency. At encoding phase this technique use the

Huffman decoding operation based on the Huffman trees generated earlier in di-

gesting phase and output a completely different assembly code that will convert

into a binary with the help of an assembler. At execution time of the new binary

code the mimimorphic engine apples its decoding function on the binary, that

use the Huffman encoding operation, depending on the Huffman trees generated

earlier to restore the original program for execution.

Here the binary code that will be distributed cant be reverse engineer statically

but it includes the mimimorphic engine, the decoder with the Huffman trees with

unobfuscated status. This may reveal the original code with dynamic analysis

and also encoding and decoding the whole program is very time consuming when

program size will increase.

Mobile agent protection with self-modifying code - 2011

This paper [35] introduces a light weight but self-modifying code based tech-

nique at binary level. The proposed obfuscation technique of the this paper cam-

ouflaged the control instructions with normal instructions or with other control

instructions. This method defines each control instruction as a candidate block,

the code section before the candidate block is named as preceding block and the

code section afterwards is as succeeding block. At the time of obfuscation this

technique replace the control instruction (for example JMP instruction) at the

candidate block with normal instruction (for example MOV instruction) and add

a modifying block to its preceding block and add a restoring block to its succeeding

23

3.1 Review of related work Literature Review

block. The modifying block performs some AND-OR operations on the address of

the candidate block to restore the original instruction at run time. After execution

of the candidate block when control goes to the succeeding block, then restoring

block again perform some AND-OR operations the address of the candidate block

and restore the camouflaged instruction again in the candidate block at runtime.

The obfuscated code developed by this method will not be too much bigger

than the original one, as no extra code section is add, instead 2-4 simple binary

level code is added to the original binary one. This kind of obfuscation is very hard

to be found by static reverse engineering and make the analysis error prone. But

the original is exposed temporarily at the time of execution which can be detected

by dynamic reverse engineering with the help of any debugger [27] [6] and also the

modifying and restoring block can be identified by step-in execution(execute one

instruction at a time) within the debugger.

Branch obfuscation using code mobility and signal - 2012

This research work [34] provide a obfuscation technique where resilience [21]

is one-way means the original program can not be reconstructed from the obfus-

cated one. On the basis of the paper “Binary obfuscation using signals” [33] the

researchers of this paper build their work. They are also using the trap instruction

in place of the control instruction, that they want to be obfuscated. In the same

way of the base paper [33] they removed the control instruction and put a trap

instruction with bogus codes afterwards. When the trap instruction will execute

depending on the generated signal control will transfer to operating system, then

to the corresponding installed user-define signal handler. Here the signal handler

will communicate to a remote trusted server/machine by passing the value of the

actual condition variable to know the next code section that will going to be ex-

ecuted next. On receiving the value of the condition variable the server generate

the corresponding result and pass it to the signal handler, which will then pass the

control to the next executing block depending on value of the result. Here they

24

3.1 Review of related work Literature Review

are not providing the complete executable code to the customer. They are remov-

ing some information from the provided binary one and add server-side execution

of the removed information, code obfuscation technique is only used to hide the

actual control instruction form the attacker.

This a hybrid method of code obfuscation and server-side execution. As some

code is removed from the provided binary, the original code can never be recon-

structed from the binary with the help of any kind of reverse engineering. But

the performance of this code totally depends upon the connectivity of between

the two machine. If the network bandwidth is too low or there is no connectivity

between the two machine, this implementation is totally worthless.

Potent and stealthy control flow obfuscation by stack based self-modifying

code - 2013

Here [29] the researchers developed a stronger new obfuscation technique based

on the paper “Mobile agent protection with self-modifying code” [35] described

earlier. On the previous paper they are just trying to hide the control instruction

but the address where the control will be transferred is still available after camou-

flaged. Here the researchers have shown a way to hide the address also as a local

data to that function, which will be stored on the stack section of data area. In

this research work the researchers take executable machine code and then generate

its corresponding assembly code. Then they select the control instruction to be

obfuscated. Lets take they are going to obfuscate a JMP instruction(an assembly

instruction for unconditional jump with a address parameter). So to store the

address in the stack they are just extending the size of stack that will always be

allocated at the starting point of the function. After this before obfuscating the

instruction they stored the jump address in the stack and then replaced the JMP

instruction with a normal instruction and add an extra instruction in the modify-

ing block after the de-obfuscation instructions to restore the address at run time

and an extra instruction to restoring block to remove the address at run time,

25

3.1 Review of related work Literature Review

before the re-obfuscation instructions.

This method provide a code obfuscation mechanism that is to hard to be an-

alyzed by static reverse engineering as both address and the instruction is not

visible until the function stores its stack onto the memory. This thing also make it

hard for dynamic reverse engineering. But in modern debuggers [5] [4] [6] [27] if we

execute the obfuscated binary with the step-in (execute one instruction at a time)

execution it will shows all possible values of every registers and stack pointer, local

and global variable values used at that moment.

An anti-reverse engineering guide - 2008 [ONLINE]

This is a article at ”Code Project” website [37] [38] by Josh jackson. In this

article he has provided various anti debugging technique based on facility we can

get from the operating system and and the status of a program’s environment

variables. Though most of them are only for windows operating system, it is very

helpful. Hare he has shown how to disable the interrupt signals to stop the step-

in execution of the debuggers. Some technique have been shown to detect the

presence of debugger by the code itself, depending on which code can crash itself

or give erroneous result or correct result.

unsigned long NtGlobalFlags = 0 ;

a sm v o l a t i l e (

”movl %%f s : 0 x30 , %%eax ; ”

”movl 0x68(%%eax) , %%eax ; ”

: ”=a” (NtGlobalFlags)) ;

This is one of that code which can check the presence of debugger by checking

program’s environmental variable like

� FLG HEAP ENABLE TAIL CHECK,

� FLG HEAP ENABLE FREE CHECK,

� FLG HEAP VALIDATE PARAMETERS.

26

3.2 Motivation Literature Review

If all of these are set means the program is executing within a debugger on windows

platform. These are some tricky undocumented facility of windows operating

systems are providing.

But the drawback is that when we execute on a cross platform environment(eg.

executing a windows application on linux with the help of wine application) this

kind of tricky code will not work, and debugger can easily debugged the target

program.

3.2 Motivation

These are the some of the related those have been studied on code obfuscation.

Till now the main trend of code obfuscation is to stop static reverse engineering.

In the case of static reverse engineering, I found the binary level obfuscation is

more tough to analyze, as assembly level code is hard to understand and also no

compiler optimization will be there if some dead code or some extended code is

there for obfuscation. But in modern debuggers, the step by step execution of

code can reveal the obfuscated instruction if code is throughly analyzed with all

registers and stack & heap values.

All of these methods either exposed to dynamic reverse engineering or static

reverse engineering and some of them are exposed to cross platform debugging. In

this research work, the motive is to implement a obfuscation technique that will

extend the security measures to all the mentioned debugging techniques.

27

Proposed Technique
&

Implementation

Introduction

Assumption

Proposed Technique

Implementation

Chapter 4

Proposed Technique &
Implementation

4.1 Introduction

The proposed method of this research work motivated by the level of obfuscation

against the dynamic reverse engineering. The idea of the proposed method de-

veloped here only to stop dynamic reverse engineering where to stop the static

reverse engineer the method stated in the paper “Mobile agent protection with

self-modifying code” [35] is implemented. The proposed method, depending on

the general workings of debugger, puts some conditions which will prohibit the de-

bugger [6] [27] from debugging dynamically and force him towards static reverse

engineering. Where the method implemented in the referred paper [35] will make

the static analyzing much tougher.

4.2 Assumptions

In the domain of software protection the assumption is simple and straight. Where

attacker can have only the executable(in binary) of the target program but can

have complete access to the host system’s hardware and operating system and only

using the reverse engineering technique with debuggers or disassembler. While the

developers have complete access to the program’s high level source code, to the

machine level code and also have proper mappings of obfuscated code positions of

the target program.

29

4.3 Proposed Technique Proposed Technique & Implementation

4.3 Proposed Technique

Code obfuscation using code splitting with self-modifying

code :

To stop dynamic reverse engineering it is taking into account the working principle

of debuggers [5] [6] [27]. Depending on this the proposed technique will split

the original code in two main separate program which will communicate through

shared memory and one more program for starting the client on server’s call.

Among this two main programs user can interact with only one program, the

server program, where the proprietary code section will be in the other program,

the client program. Our main technique prohibit the client program from getting

executed under the debugger, so our binary level obfuscated proprietary code can

not be debugged dynamically. The basic idea is: when a debugger try to execute a

program it will start the target program as its child program. But before starting

the target program it will start also many other program simultaneously to inspect

the target program.

� So the debugger can’t analyze every instruction on occurrence until the it

starts the target program as its child or thread.

� And it is also possible to check the parent process id of any program from

the program itself.

Depending on the design is done in such a way that the server program will

create the client program as a zombie process (in linux environment whose parent

process id is 1 means the INIT Process) to stop the execution of the client within

the debugger.

4.3.1 Basics behind the proposed technique

This section will give you little bit of highlights on the working principle [40] of

debuggers and shared memory for inter process communication [41] [42] and little

bit of x86 architecture [43] [44] to understand the binary level obfuscation defined

by the paper ”Mobile agent protection with self-modifying code” [35].

30

4.3 Proposed Technique Proposed Technique & Implementation

Debugger’s working principle

The target of a debugger is the complete analyze of the target program. For

complete analyze, debugger have to check all the content machine level instruction,

all variables and functions, all registers’ and stack values [40] [7].

A CPU view consist of a disassembler pane for complete assembly level view

of machine code(binary code), a register pane for register values, memory

dump pane to display the content of any memory location, flag pane to

display all the set flags.

B Memory view used for checking the variables, functions, types and their

corresponding virtual address with the memory layout of the complete pro-

gram, like different code section, data section, stack section of the program

in execution.

C Stack view shows the calling and return trace of all the functions and all

local variables accessed with the stack virtual address.

D Break Point view show the all breakpoints introduced by the developers

or the attackers.

After setting up all these environment debugger, with the help of the operating

system, either spawn the target program or debuggee with full control on the de-

buggee or attach itself with the debuggee for getting all the status information

when ever the debuggee stops its execution depending on breakpoints or on error

or on successful execution. On the first method the step by step execution of every

instruction is possible but not possible with the second method.

x86 Architecture

x86 is a backward compatible instruction set architecture family based on Intel

8086 CISC (Complex Instruction Set Computing) processors with 8 general pur-

pose registers and 6 segment registers of 16 bit or 32 bit or 64 bit.

x86 General Purpose Register (as 32 bit register symbol)

31

4.3 Proposed Technique Proposed Technique & Implementation

1 Accumulator(EAX), used for arithmetic operation.

2 Base register(EBX), used as a pointer to a data.

3 Counter register(ECX), used in shift/rotate instruction and loop statements.

4 Data register(EDX), used in arithmetic and I/O operation.

5 Stack Pointer(ESP), used as the TOP of stack memory.

6 Stack Base Pointer(EBP), used as a pointer to the base of stack memory.

7 Source Index Register(ESI), a pointer to a source in stream operation.

8 : Destination Index register(EDI), a pointer to a destination in stream op-

eration.

x86 Segment Register

1 Stack Segment (SS) : used as a pointer to stack

2 Code Segment (CS) : used as a pointer to the start of text/code section

3 Data Segment (DS) : used as a pointer to data section in memory

4 Extra Segment (ES) : used as a pointer to extra data

5 F Segment (ES) : used as a pointer to more extra data

6 G Segment (GS) : used as a pointer to still more extra data

Shared Memory for Inter Process Communication

In shared memory inter process communication model where one process creates

a common memory location, which other processes can access by attaching them-

selves with the shared location as shown in Figure-4.1. Here we use share memory

as we divide one program in two co-operating process and once shared memory is

created the communication between two process is fast even for huge size of data.

32

4.3 Proposed Technique Proposed Technique & Implementation

Figure 4.1: Shared Memory for Inter Process Communication

4.3.2 Design of the proposed technique

This proposed technique is based on design [29] and preventive [21] obfuscation

techniques by dividing the target program in three part.

� Server : Holds the code for user interaction.

� Client-Start-up : Start the client on server call.

� Client : Holds the proprietary code section.

This division will be done manually, it depends upon the developer. After this

division it will make the server to create a share memory that client can access.

After the creation of share memory server will start a client-start-up program,

which will terminate after starting the client. This technique make the client to

execute as a zombie process(whose parent is the INIT process). Then the client

will check whether its running with parent process id as 1 nor not. If it is a zombie

process then only the client will attach itself to the share memory location, after

successful attaching it will collect data from share memory, calculate result, write

result back to share memory and will terminate successfully. After collecting the

result from share memory, server will execute the rest code section. A generalized

diagram is described the Figure-4.2 for the overall understanding of the design.

33

4.4 Implementation Proposed Technique & Implementation

This obfuscation technique useful to restrict the debugger from dynamic analysis

of the obfuscated executable.

Figure 4.2: Design of proposed technique

4.4 Implementation

Implementation environment

In this research work the implementation of the proposed technique is based on

Linux environment. The Linux environment is developed by setting up a virtual

machine hosted by VMware Workstation on Windows platform.

� Operating System: Debian GNU / Linux Kali Linux 1.0

� System Confuguration:

– Processor Model : Intel(R) Core(TM) i7 - 3632QM

– CPU GHz : 2.20 GHz

– Cache Size : 6144 KB

– Core : 2 (on VMware)

– Memory : 2 GB (on VMware)

– HDD : 30 GB (on VMware)

� Compiler: gcc version 4.7.2

34

4.4 Implementation Proposed Technique & Implementation

� Debugger: EDB Debugger(Evan’s Debugger)

� Programming Language: ANSI C

A detailed design with a small example

For better understanding a very simple program is taken here, that will dis-

play the sum of first one million natural numbers (1 to 1000000) with help of

a “sum˙million()” function which implements the logic using a simple for loop in

C language and our target is to hide the implementation of “sum˙million()” func-

tion. To do so, first thing is the design level preventive obfuscation technique,

that are proposed to stop dynamic reverse engineering and the next is machine

level or binary level self modifying code [35] implementation to make it harder for

static reverse engineering.

In design level obfuscation it will create total three different program - first one

is the server program to interact with the user and to create the shared memory,

second the middle element is the client-start-up program, which will be called

by the server to start the client as zombie process (means the server will start

the execution of this program and after starting the execution of the client it will

terminate itself) and third one is the client program which will hold and execute the

“sum˙million()” function. Figure-4.4 and Figure-4.3 describe the whole function

visually with comparison between the obfuscated code normal code.

Figure 4.3: Design of Control flow between the Programs

35

4.4 Implementation Proposed Technique & Implementation

According to McCabe’s Cyclomatic Complexity formula [31], the complexity

measure for this two program is being calculated . For the normal program the

value is 4 where as for the obfuscated one the value is 7 implies that the obfuscated

one is more tough to test, to analyze, to maintain and to understand.

So the measure of potency, according to Equation-2.1 defined in Chapter-2,

for normal program is Pot(P)=3 and for obfuscated program is Pot(T(P))=7.

So Transformation Potency(TPot) is 2.33 (greater than Zero) implies that the

obfuscated one is harder to understand.

Figure 4.4: Design of Control flow between the Programs

36

4.4 Implementation Proposed Technique & Implementation

And it also includes the inter process communication. This implies that the

measure of resilience of the obfuscated program is “Full” according to the Figure-

2.8 described in Chapter-2.

After the design level obfuscation the proposed technique will modify the bi-

nary code of the client program, in the way it is stated in the paper [35], to make

it harder for static reverse engineering. Here in the implementation, only the pre-

ventive code section (checking of parent id) and the for loop to calculate the sum

of the client program is obfuscated. On these sections only the jump instructions

is modified into move instructions, which will be changed to the original jump

code at runtime and after the execution of the jump instruction that will again

changed to the move instruction on the go as described in the Figure-4.5 bellow.

Figure 4.5: Design of binary level obfuscation

Table 4.1: Execution Time of the program : Sum of First One Million Natural
Number

Original Program Obfuscated Program
real 0 m 0.011 s 0 m 0.021 s
user 0 m 0.008 s 0 m 0.012 s
sys 0 m 0.000 s 0 m 0.004 s

The result of Table-4.1 is obtained by running both the program with the

“time” command in Linux. From this table we can calculate the time-cost factor

37

4.4 Implementation Proposed Technique & Implementation

by considering only the “user” and “sys” time, as real time is depends on all other

programs those are running at that time.

� Original Program (P) : user + sys = 0 m 0.008 s

� Obfuscated Program (T(P)) : user + sys = 0 m 0.016 s

� Time-cost factor is { time(T(P))/time(P) } = 2

From this factor it can be concluded that depending on the size of input this

result is not so high. As both the program has same complexity level O(n) for

original program and O(n+c) for the obfuscated one, which is equivalent to O(n),

concludes the Time-cost factor as “Cheap” according to the Equation-2.4 defined

in Chapter-2 as stated in the paper [21].

The informations about memory requirements of the executables are also collected

by running them with the “size” command in Linux, shown in Table-4.2 and Table-

4.3. According to the Table-4.3 total space require for the obfuscated program

Table 4.2: Memory Requirements for the Original Program

text data bss total
size (in byte) 1281 292 04 1577

Table 4.3: Memory Requirements for the Obfuscated Program

text data bss total
size of Server (in byte) 1845 316 20 2181

size of Client-Start-Up (in byte) 1588 308 04 1900
size of Client (in byte) 1981 320 04 2305

is the summation of space requirement for the three programs which is equal to

6386 bytes. So the Space-cost factor { space(T(P))/space(P) } is equal to

4.049, which is much higher. According to space-cost our proposed method can

be concluded as “Costly”. But today’s world space requirement will not create a

big problem.

38

4.4 Implementation Proposed Technique & Implementation

Testing of Preventive Transformation

Testing of the preventive transformation is done with the program “Sum of first

One Million Natural Number” and EDB Debugger(Evan’s Debugger) [27] on Linux

platform. As client program can only run as zombie process, whose parent can be

the INIT process only, so

� If debugger execute its as its child, client will crash.

Figure 4.6: Screen shot : Crash testing

� Suppose the debugger attach itself with the client by calling the debugger

loaded client version from the client-start-up program. But then after the

Figure 4.7: Screen shot : Failure testing

the termination of client-start-up, debugger will lost its control over the

environment variables it needed from the operating system to start and

to debug a program, as debugger itself is a zombie process now. Here the

program is terminated forcefully which is cleared from time shown in Figure-

4.7.

39

4.4 Implementation Proposed Technique & Implementation

� If attacker change the client-start-up program such that it will not terminate

after starting the client, then also client will crash as parent process is not

the INIT process. As shown in the first Screen shot Figure-4.6.

� The debugger can not also debug the INIT process as debugger itself is the

child of the INIT process.

Figure 4.8: Screen shot : A try to debug INIT process

� The only way to execute the client is to remove the code for which the

client get crashed if its parent is not the INIT process. For this debugger

have statically analyze the code but the binary level obfuscation by the self-

modifying code section make it much harder for the attacker.

Testing of efficiency of our technique on some sorting programs

Here some testings are also done with common sorting programs - Bubble sort,

Insertion sort, Heap sort and Quick sort. All the programs have been tested with

a array of 100000 unsorted integers generated with the “rand()” of C library, with

the default seed value as ONE, for both the original and obfuscated program. Here

the first thing for any program is to initialize the array with the “rand()”, then

sorting of that array.

For obfuscation first implementation is the code splitting part for design level

preventive obfuscation against dynamic analysis, then the modification of the bi-

nary code to make it harder for the static reverse engineering.

40

4.4 Implementation Proposed Technique & Implementation

As this technique is based on inter process communication, according to the

paper [21] the measure of resilience is “FULL”. For detail description please

go back to the Figure-2.8 described in Chapter-2. Potency of each program is

measured with the McCabe’s Cyclomatic Complexity, shown in Table-4.4.

Table 4.4: Measure of Potency

Program Potency of Original Program, Pot(P) Potency of Obfuscated Code, Pot(T(P)) Transformation Potency, TPot
Bubble sort 7 15 1.143

Insertion sort 7 15 1.143
Heap sort 13 22 0.692
Quick sort 9 16 0.778

The measure of Cost in terms of memory space requirements and execution time.

Table-4.5 shows the space-cost factor and Table-4.6 shows the time-cost factor.

Table 4.5: Measure of Space-cost Factor (SIZE : byte)

Original Size Obfuscated Size Total Size Space-Cost Factor
Bubble Server 2594
Client-start-up 1844Bubble sort 1926
Bubble Client 2717

6155 3.196

Insertion Server 2594
Client-start-up 1848Insertion sort 1896
Insertion Client 2695

7137 3.764

Heap Server 2858
Client-start-up 1844Heap sort 2356

Heap Client 2876
7578 3.216

Quick Server 2594
Client-start-up 1844Quick sort 2224
Quick Client 2979

7417 3.335

Table 4.6: Measure of Time-cost Factor (TIME : SECOND)

Program
Original program Obfuscated Program

Time-cost factor
real user sys real user sys

Bubble sort 105.894 101.240 0.032 113.533 104.008 0.056 1.028
Insertion sort 20.337 15.772 0.020 22.419 17.616 0.040 1.118

Heap sort 4.973 0.148 0.040 5.024 0.161 0.064 1.197
Quick sort 4.780 0.100 0.056 4.974 0.128 0.080 1.333

Here for Table-4.6, running each program for 8 times, with the Linux “time”

command, the average time for each section has been taken excluding the highest

value and the lowest value. For the measurement of time-cost factor, only “user”

41

4.4 Implementation Proposed Technique & Implementation

and “sys” times are taken into account as “real” time is influenced with all other

programs, those are running at that time. If Time(P) is the total of “user” and

“sys” time of the original program and Time(T(P)) is the total of “user” and “sys”

time of the obfuscated program, then Time-cost factor = {Time(T(P))/Time(P)}.

For checking the change of time with input data size, the size of the array has been

varied from 10 to 100000 for the bubble sort program. As the sort time taken by

bubble sort is much higher than all other program for both original code and

obfuscated code. So the change in time will more prominent for bubble sort.

Table 4.7: Measure of Time-cost Factor for Bubble sort

Array size
Original (in Sec) Obfuscated (in Sec)

Time cost Factor
real user sys real user sys

10 0.003 0.000 0.000 0.008 0.000 0.004 -
100 0.003 0.000 0.000 0.008 0.000 0.004 -
1000 0.018 0.008 0.000 0.024 0.012 0.004 2
10000 1.475 1.048 0.000 1.492 1.060 0.012 1.023
100000 105.894 101.240 0.032 113.533 104.008 0.056 1.028

For this table also only only “user” and “sys” time are considered as real has

influence of other running program in the system on that time.

42

Conclusion

Achievements

Limitations & Future Scope

Chapter 5

Conclusion

5.1 Achievements

Above all descriptions, results make you feel that code obfuscation is reducing the

performance of your program or software. Yes it is. But if you need protection

and security against piracy, code theft and other attacks you have to introduce

some security measures, you have to except the trade off between the performance

and level of security. This research technique uses a combination of code split-

ting and binary level obfuscation. Where code splitting is threatened by static

reverse engineering and binary level obfuscation is threatened by dynamic reverse

engineering. While the strength of them is just opposite, so the combination of

them in the proposed technique provides a lot more security level by making all

types of reverse engineering much harder for attacker and debugging tools while

performance is reduced by 15% on an average for these small programs. For large

programs(time consuming) it will not matter too much performance loss. As we

can see for bubble sort performance reduction is just 2.8% while reduction of 33.3%

for quick sort.

According to the proposal it can be concluded that the combination of code

splitting and insertion of self-modifying code, while complementing each other

against all kind of reverse engineering, provides a much stronger but lighter (in

terms of performance reduction in execution) obfuscation techniques available to-

day.

44

5.2 Limitation & Future Scope Conclusion

5.2 Limitation & Future Scope

After more than one decade of research on code obfuscation by all the researchers

through out the world, none of the proposed technique is fully compatible with

parallel processing where code or data are being shared between multiple threads.

This proposed research technique is not also to much suitable for parallel pro-

cessing. It can support parallel processing until only the client code section is

written in parallel otherwise reduction in performance will be huge as for, every

thread have to create their own shared memory section and it also need much

more effort from the programmers for synchronizing each thread for accessing the

shared memory data. One possible way, according to me, is that implementation

of software transactional memory (STM) at binary level with the self-modifying

code, which is much harder to implement, need in depth knowledge of assembly

language and above all it will be hardware specific till now as lots of processor

does not support STM.

———- END ———-

45

Bibliography

[1] C. Cifuentes, Reverse compilation techniques. PhD thesis, Queensland Uni-

versity of Technology, 1994.

[2] H. J. Van Zuylen, The REDO compendium: reverse engineering for software

maintenance. John Wiley & Sons, Inc., 1993.

[3] R. S. Pressman, Software Engineering - A Practitionaer’s Approach.

McGraw-Hill Higher Education, 2009.

[4] “Idapro debugger : Data rescue [Online].” http://www.datarescue.com/.

Last Accessed: 03-08-2013.

[5] “Immunity debugger [Online].” https://www.immunityinc.com/

products-immdbg.shtml. Last Accessed: 23-08-2013.

[6] “Olly debugger [Online].” http://www.ollydbg.de/. Last Accessed: 12-09-

2013.

[7] “The legend of random - programming and reverse engineering [Online].”

http://thelegendofrandom.com/blog/tools. Last Accessed: 15-09-2013.

[8] E. J. Chikofsky, J. H. Cross, et al., “Reverse engineering and design recovery:

A taxonomy,” Software, IEEE, vol. 7, no. 1, pp. 13–17, 1990.

[9] G. Lee, J. Morris, K. Parker, G. A. Bundell, and P. Lam, “Using symbolic

execution to guide test generation,” Software Testing, Verification and Reli-

ability, vol. 15, no. 1, pp. 41–61, 2005.

46

http://www.datarescue.com/
https://www.immunityinc.com/products-immdbg.shtml
https://www.immunityinc.com/products-immdbg.shtml
http://www.ollydbg.de/
http://thelegendofrandom.com/blog/tools

BIBLIOGRAPHY BIBLIOGRAPHY

[10] D. Molnar, X. C. Li, and D. A. Wagner, “Dynamic test generation to find

integer bugs in x86 binary linux programs,” in Proceedings of the 18th con-

ference on USENIX security symposium, pp. 67–82, USENIX Association,

2009.

[11] A. Moser, C. Kruegel, and E. Kirda, “Exploring multiple execution paths for

malware analysis,” in Security and Privacy, 2007. SP’07. IEEE Symposium

on, pp. 231–245, IEEE, 2007.

[12] J. Newsome, D. Brumley, J. Franklin, and D. Song, “Replayer: Automatic

protocol replay by binary analysis,” in Proceedings of the 13th ACM confer-

ence on Computer and communications security, pp. 311–321, ACM, 2006.

[13] P. Falcarin, C. Collberg, M. Atallah, and M. Jakubowski, “Guest editors’

introduction: Software protection,” Software, IEEE, vol. 28, no. 2, pp. 24–

27, 2011.

[14] “Atari games corp. v. nintendo of america inc. - u.s. court of appeals, federal

circuit.” http://digital-law-online.info/cases/24PQ2D1015.htm. Last

Accessed: 22-06-2013.

[15] “Sony computer entertainment inc. v. connectix corp. - u.s. court

of appeals, ninth circuit.” http://digital-law-online.info/cases/

53PQ2D1705.htm. Last Accessed: 22-06-2013.

[16] “bnetd.” http://en.wikipedia.org/wiki/Bnetd. Last Accessed: 03-07-

2013.

[17] T. Yamamoto, M. Matsushita, T. Kamiya, and K. Inoue, “Measuring sim-

ilarity of large software systems based on source code correspondence,” in

Product Focused Software Process Improvement, pp. 530–544, Springer, 2005.

[18] S. S. Baboo and P. V. Bhattathiripad, “Software piracy forensics: The need

for further developing afc,” in Digital Forensics and Cyber Crime, pp. 19–26,

Springer, 2011.

47

http://digital-law-online.info/cases/24PQ2D1015.htm
http://digital-law-online.info/cases/53PQ2D1705.htm
http://digital-law-online.info/cases/53PQ2D1705.htm
http://en.wikipedia.org/wiki/Bnetd

BIBLIOGRAPHY BIBLIOGRAPHY

[19] T. Lancaster and F. Culwin, “A comparison of source code plagiarism de-

tection engines,” Computer Science Education, vol. 14, no. 2, pp. 101–112,

2004.

[20] J. M. Walker Jr, “Protectable nuggets: Drawing the line between idea and

expression in computer program copyright protection,” J. Copyright Soc’y

USA, vol. 44, p. 79, 1996.

[21] C. Collberg, C. Thomborson, and D. Low, “A taxonomy of obfuscating trans-

formations,” tech. rep., Department of Computer Science, The University of

Auckland, New Zealand, 1997.

[22] C. S. Collberg and C. Thomborson, “Watermarking, tamper-proofing, and

obfuscation-tools for software protection,” Software Engineering, IEEE

Transactions on, vol. 28, no. 8, pp. 735–746, 2002.

[23] S. Chow, P. Eisen, H. Johnson, and P. C. Van Oorschot, “White-box cryp-

tography and an aes implementation,” in Selected Areas in Cryptography,

pp. 250–270, Springer, 2003.

[24] B. Anckaert, B. De Sutter, and K. De Bosschere, “Software piracy prevention

through diversity,” in Proceedings of the 4th ACM workshop on Digital rights

management, pp. 63–71, ACM, 2004.

[25] G. Wroblewski, General Method of Program Code Obfuscation (draft). PhD

thesis, Citeseer, 2002.

[26] S. Schrittwieser and S. Katzenbeisser, “Code obfuscation against static and

dynamic reverse engineering,” in Information Hiding, pp. 270–284, Springer,

2011.

[27] E. Teran, “Edb debugger : Codef00 [Online].” http://www.codef00.com/

projects#debugger. Last Accessed: 27-03-2014.

[28] C. Wang, A security architecture for survivability mechanisms. PhD thesis,

University of Virginia, 2001.

48

http://www.codef00.com/projects#debugger
http://www.codef00.com/projects#debugger

BIBLIOGRAPHY BIBLIOGRAPHY

[29] V. Balachandran and S. Emmanuel, “Potent and stealthy control flow ob-

fuscation by stack based self-modifying code,” Information Forensics and

Security, IEEE Transactions on, vol. 8, no. 4, pp. 669–681, 2013.

[30] M. H. Halstead, Elements of Software Science (Operating and programming

systems series). Elsevier Science Inc., 1977.

[31] T. J. McCabe, “A complexity measure,” Software Engineering, IEEE Trans-

actions on, no. 4, pp. 308–320, 1976.

[32] W. A. Harrison and K. I. Magel, “A complexity measure based on nesting

level,” ACM Sigplan Notices, vol. 16, no. 3, pp. 63–74, 1981.

[33] I. V. Popov, S. K. Debray, and G. R. Andrews, “Binary obfuscation using

signals,” in USENIX Security Symposium, pp. 275–290, 2007.

[34] Z. Wang, C. Jia, M. Liu, and X. Yu, “Branch obfuscation using code mobility

and signal,” in Computer Software and Applications Conference Workshops

(COMPSACW), 2012 IEEE 36th Annual, pp. 553–558, IEEE, 2012.

[35] L. Shan and S. Emmanuel, “Mobile agent protection with self-modifying

code,” Journal of Signal Processing Systems, vol. 65, no. 1, pp. 105–116,

2011.

[36] M. Madou, B. Anckaert, P. Moseley, S. Debray, B. De Sutter, and K. De Boss-

chere, “Software protection through dynamic code mutation,” in Information

Security Applications, pp. 194–206, Springer, 2006.

[37] J. Jackson, “Introduction into windows anti-debugging

[ONLINE], month = sep, year = 2008, url =

http://www.codeproject.com/Articles/29469/Introduction-Into-Windows-

Anti-Debugging.”

[38] J. Jackson, “An anti-reverse engineering guide [ONLINE], month = nov,

year = 2008, url = http://www.codeproject.com/Articles/30815/An-Anti-

Reverse-Engineering-Guide.”

49

BIBLIOGRAPHY BIBLIOGRAPHY

[39] Z. Wu, S. Gianvecchio, M. Xie, and H. Wang, “Mimimorphism: a new ap-

proach to binary code obfuscation,” in Proceedings of the 17th ACM confer-

ence on Computer and communications security, pp. 536–546, ACM, 2010.

[40] J. B. Rosenberg, How Debuggers Work - Algorithms, Data Structure and

Architecture. John Wiley & Sons, INC., 1996.

[41] D. Marshall, “Ipc:shared memory [ONLINE], month = may, year = 1999, url

= http:http://www.cs.cf.ac.uk/Dave/C/node27.html.”

[42] G. Silberschatz, Galvin, Operating System Concepts. Wiley India Pvt Ltd,

2009.

[43] “Intel 64 and ia-32 architectures software developer manu-

als.” http://www.intel.com/content/www/us/en/processors/

architectures-software-developer-manuals.html?iid=tech_vt_

tech+64-32_manuals. Last Accessed: 24-01-2014.

[44] “x86 [wikipedia].” http://en.wikipedia.org/wiki/X86. Last Accessed: 27-

03-2014.

50

http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html?iid=tech_vt_tech+64-32_manuals
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html?iid=tech_vt_tech+64-32_manuals
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html?iid=tech_vt_tech+64-32_manuals
http://en.wikipedia.org/wiki/X86

	Certificate
	Declaration
	Acknowledgement
	Abstract
	List of Figures
	List of Tables
	Introduction
	Reverse engineering attacks
	Protection techniques for software intellectual properties
	Objective
	Thesis Organization

	Theoretical Background of Code Obfuscation
	Introduction
	Threat Model
	Software Distribution Model
	Attacks against Software Intellectual Properties
	Reverse Engineering

	Code Obfuscation
	Definition of Code Obfuscation
	Classification of Code Obfuscation
	Evaluation of Obfuscation Technique

	Summary

	Literature Review
	Review of related work
	Motivation

	Proposed Technique & Implementation
	Introduction
	Assumptions
	Proposed Technique
	Basics behind the proposed technique
	Design of the proposed technique

	Implementation

	Conclusion
	Achievements
	Limitation & Future Scope

	Bibliography

