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ABSTRACT 

 

Vision based navigation of robots has been an active field of research in the past decade. 

There are many challenges in making the vision system understand the environment in which 

it is placed. Such an environment can be either indoors or outdoors depending on the task at 

hand. Outdoor environments seldom have structure and require complex geometric models to 

model such environments. Little structure that exists within such an environment in the form 

of roads, lane markings…etc. help reduce the model complexity. On the other hand, indoor 

environments are relatively easier to model considering the inherent structure in building 

constructions, thus becoming mathematically tractable as compared to the outdoor 

environments. The real challenge in indoor navigation is the localization of the camera system, 

which involves the vision system estimating its location in the environment in which it is 

navigating. 

This thesis explores the possibility of using a constrained indoor environment model to 

simplify the mathematics and computation involved. Several methods were studied, but the 

approach involving planar objects to estimate the pose of the camera relative to a fixed planar 

element was found to be computationally efficient and simple. The camera localization was 

modelled as a 3D pose estimation problem with the camera pose relative to the planar structures 

of the environment as the pose estimates. 

The primary approach to navigating the robot is estimating the robots motion using the 

visual feed from the camera mounted atop the robot. The use of vanishing point is suggested 

because of the robustness even in the presence of occlusions. The vanishing point of the 

environment is the point at which all the 3D parallel lines viewed in perspective appear to 
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converge. This vanishing point gives us a coarse approximation of the 3D structure which is 

further improved upon using homography based techniques. 

The homography based approach to navigation involves tracking the planar structures 

over consecutive frames to indirectly estimate the motion of the camera. The approach taken 

involves tracking key-points over multiple frames as the camera moves through the 

environment. These tracks are then analysed and fit in the environment model to estimate the 

motion trajectory of the camera. The environment is modelled as a ‘Manhattan World’ which 

is a structure made completely of planar elements. This is a reasonably good assumption to 

make, thus involving minimal model complexity. Thus, the motion trajectory of the camera is 

estimated based on the video stream from the camera, thereby allowing for a feed back to 

control the motion of the camera. The algorithm was tested on an indoor navigation dataset and 

the results were analysed. 
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Chapter 1 

INTRODUCTION 

 

1.1 Autonomous Navigation  

    The exact definition of the term ‘Autonomous Vehicle’ is still an open ended question. One may 

safely call it as a mobile robot capable of cleverly navigating a given environment with little or no 

human interaction required whatsoever. In the context of the current thesis, a robot may defined 

as an intelligent machine capable of interpreting inputs and responding to them accordingly. The 

robots environment is termed as a complex world under certain constraints and assumptions made 

to ensure that the robot is capable of interacting with it-with minimal hindrance. As the complexity 

of the world increases so does the need for a complex intelligence algorithm, better sensors ... etc. 

Hence it always helps to make assumptions that are true in general when it comes to man-made 

environments. Assumptions such as the environment being relatively flat throughout-is fairly 

reasonable and can reduce the complexity of the environment considerably. [17] 

 

Fig 1.1 a) Stanley at the DARPA Desert Challenge b) CMU’s Navlab Autonomous Vehicle 

Platform 
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    The study of autonomous vehicles is a relatively new area of research and can be considered as 

a niche area of robotics that has now become possible only due to the latest technological 

advancements. The interest in robotics and autonomous navigation research was fuelled by the 

human need to control the world they live in. Their constant pursuit of making their lives simpler 

is also - though in part – responsible for the recent developments in the related fields of automation. 

The research in this field has reached a point where autonomous navigation has become possible. 

However, a number of issues are yet to be addressed before taking this technology to the 

mainstream market. 

    Navigation may be vaguely termed as the processing of finding a suitable and safe path between 

a start and a terminal point for the robot to traverse. [18]. Visual navigation with specific 

application to mobile robots has kindled countless contributions. This is mainly due to the rise in 

the possibilities for their application in autonomous mobile robot navigation. Traditionally, 

navigation solutions primarily based on vision are typically limited to the Autonomous Ground 

Vehicles (AGV). But their recent applications to UAV’s has also been observed through the 

publication of many research papers in this field. The use of vision based navigation on UAV’s is 

of high interest in application relating to remote surveillance, disaster mitigation, search and rescue 

missions and other similar situations where the observers high altitude vantage point can be 

thoroughly exploited. Since UAV’s navigate in the three dimensional space, they are not subjected 

Fig 1.2 a) Autonomous Underwater Vehicle b) Unmanned Air Vehicle 
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to the constraints that an AGV faces. However, the reduced size of the UAV limits its payload 

capabilities thereby greatly reducing the collection of sensors available for use. 

    In the case of navigation underwater, typical choices are inclined more towards imaging 

modalities that work best in fluid media such as water. The use of sound-based navigation is often 

sought over other sensor-based techniques owing to their effectiveness in these environments. 

Nevertheless, their advantages come coupled with their own set of limitation as discussed in [19]. 

Limitations involving the limited resolution and size of sound-based imaging systems has often 

been seen as a caveat in the development of Autonomous Underwater Navigation Systems 

(AUV’s). Presently, a number of AUV’s are in action serving important purposes such as 

installation and maintenance of deep sea communication lines, monitoring the marine eco-system 

… etc. 

    Irrespective of the type of vehicle, the navigation systems being used may be broadly classified 

into two classes – one with prior knowledge of the environment and the other without prior 

knowledge of the environment. The second class of navigation systems perceive and try to make 

sense of the environment as they navigate through it. Mapless navigation involves passive 

techniques that use visual cues obtained through optical flow, feature tracking … etc. There is no 

global model for the environment, the environment is perceived as the system navigates through 

it and makes note of the visual cues to localize itself within that environment. Map-Based 

Navigation systems are heavily reliant on user generated geometric models of the environment. 

 The restrictions put on by the definite geometric model of the environment greatly reduce the 

complexity of the navigation problem. However, these kind of assumption about regularity in the 

structure of the environment only seem to describe man-made environment and fail when the robot 

is in natural environments such as mountain or desert terrains. The third class of navigation which 
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is sub class of map based approach is the map building based navigation system. They are systems 

that take the help of sensors to define their own geometric models of the environment, hence using 

these for the purpose of navigation.   

 

1.2 Autonomous Navigation Challenges 

    There are several impediments that render the many approaches to autonomous navigation 

useless during real time applications. The common problem encountered during real-time 

navigation are those pertaining to anomalies in the environment that deviate them from the typical 

model of the environment. Obstacle in the environment disrupt the estimates of the robots location 

in case of passive navigation techniques such as optical flow or feature tracking. On the other hand, 

wheel odometry based navigation systems suffer from wheel - slip situations resulting in location 

estimates that are far from the robots true location.  The wheel slip situation often happens when 

the friction in the wheel ground interface in not enough to counter the torque from the wheels 

rotation. An erroneous measurement of wheel rotation is recorded via the wheel encoders resulting 

in a faulty robot location estimate. 

    In the context of vision based navigation often the problem of obstacles is encountered. The 

movement of persons in usually inevitable in the environment that the robot is navigating through. 

Errors in the sensor measurements such as that imaging sensor a.k.a the camera system due to 

digitization process. Also defects in the camera construction during manufacturing such as lens 

related aberrations and improper positioning of the image sensor also prove to be problematic 

during image acquisition step. These effects trickle down the motion estimation pipeline and 

eventually corrupt the localization output. On the other end, the vision based navigation systems 
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fall prey to unavailability of proper visual cues in the environment. Key features based tracking 

approach often suffer in environments with uniformly coloured surfaces that often lack in texture.  

    Presence of good amount of texture is essential in feature-tracking-based approaches to 

navigation. Presence of clutter in the navigating environment such as bushes and other foliage 

often confuse vision systems in the case of outdoor environments. Outdoor environments also pose 

the problem of lighting variation as the robot moves from one place to another .In addition to this 

the effect of shadows cannot be ignored as well. Proper localization of the robot within its 

environment is one of the major challenges in autonomous navigation. Several successful attempts 

were made to solve the problem of localization, the most significant one being the Simultaneous 

Localization and Mapping algorithm. Several other approaches to address the problem of 

localization in the context of robot navigation have been discussed in the later sections. 

 

1.3 Related Work 

The approach sought in the case of autonomous navigation is critically dependent on the type of 

environment. Indoor environments such as building corridors, warehouses, manufacturing plants 

… etc. fall under the indoor environment category rich in coherent structure. On the other hand 

out door environment such as road and desert like terrains put forth a different set of obstacles to 

overcome before one can achieve autonomous navigation. Since these are completely different 

problems, each had its own class of research being carried out in the context of indoor navigation.  

    Appearance based navigation schemes were first explored in [2] and later on much improvement 

was done as presented in [1] wherein the road region detection algorithms were employed to 

segment out the road like regions based on colour. SCARF, a colour based vision system capable 
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of identifying tough to recognize roads and intersections. It was successfully implemented on the 

NAVLAB navigation platform from CMU and tested successfully. SCARF is capable of detecting 

road regions with no clear demarcations of boundaries up to a decent level of accuracy. It was a 

pioneering system capable of detecting intersection without prior knowledge of the road 

intersections. The approach taken was through a Bayesian classifier to estimate the probability of 

the region being road-like. In [3] the approach taken differed from [4] as it used edge based shape 

models for road detection. The edge detected image of the scene was processed to sift the left and 

right road borders and then restrict the area which will eventually be parameterized into its mean 

and variance.  

 

1.3.1 Outdoor Navigation 

The outdoor navigation strategies involving AGV’s are mostly focussed on structured and ill 

structured terrains. Owing to the vast differences in the road conditions from one location to the 

other, haphazard movement of objects on the road like terrains and changes in illumination a robust 

navigation strategy is needed. One of the pioneering works in this area was done by Tsugawa et 

al. which used a stereo camera rig to detect obstacle encountered during navigation. The CMU’s 

NAVLAB platform [1, 2] for testing of autonomous navigation algorithms and the University of 

Maryland’s [20.]  made use of laser based approaches to obstacle detection for partially 

downtrodden roads. When it comes to vision based approaches to autonomous navigation in 

structured outdoor environments, it turned a problem of road following. Research in the field of 

Road Following based approach to navigation were explored in [3, 4]. One of the most successful 

work in the field of navigation on structures was done during the DARPA Desert challenge. The 
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work on self-supervised monocular road detection method [5] lead to the success of one of the first 

completely autonomous navigation systems ever to win at an international level. This approach 

used an approach that modelled the road colour to segment it and learn that model under varying 

lighting as well as road conditions.  

 

 

Fig 1.3 Road Segmentation in Desert terrain as in [5] with first row consisting of the raw and segmented 

images and the second road with the likelihood image of the pixel being a road. 

The learning nature of the algorithms implementation led to the success of the system which 

allowed it to quickly adapt to changing road situations. The approach used was Mixture-of-

Gaussian where in the road region was modelled as a collection of different Gaussians 

parameterized by their means and covariance’s in the RGB colour space. 

Probabilistic approaches to navigation in urban environments was studied in [6] where in 

combination of sensor data from multiple sources was used for localizing the car. This work is an 

improvement over its previous versions with the addition of learning based approaches to improve 

the accuracy of the maps built-over time. A probabilistic occupancy grid is proposed parameterized 

by the Gaussian mean and variance values. An offline SLAM is also suggested to improve upon 
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the map details on multiple passes through a particular route. With an accuracy of up to 10cm, this 

approach supersedes all of the previous work done in localization by a huge margin. 

 

Fig 1.4 Stanford’s Junior with a surmounted Velodyne HD-LIDAR 64-beam scanner is circled in red. 

This opened up a new domain of opportunities in autonomous navigation and enabled the 

possibility of autonomous navigation over long distance on urban roads with any worry about 

localization errors. 

 

1.3.2 Indoor Navigation 

The work in the field of indoor navigation dates back to 1979 carried out by Giralt et al. [20] which 

was followed by the work of Moravec in the early 1980’s [22,23].  Their work pointed out the 

ineluctable need to include some level of understanding of the environment that the computer sees. 

This required a rigorous modelling of the geometry of the environment in which the robot 

navigated. A very elaborate CAD models of the environment were used for the purpose of 



9 
 

navigating the mobile platform [24] in some of the very first vision systems the approach was 

based on occupancy map in which the projection of the object in 3D onto the 2D space. This was 

further improved upon using the VFF based approach in [25]. The main notion of map-based 

navigation is to provide the robot with some vague knowledge of the visual landmarks it may find 

as it navigates through the environment. Using these landmarks the robot would then be able to 

localize itself with respect to those landmarks. These approach are termed as absolute localization 

problems. On the other hand we have incremental localization problems in which the location of 

the robot is updated incrementally based on the relative motion of some key features within the 

environment. The FINALE system developed in [26] makes use of a geometric model and 

stochastic prediction which is being done in the Hough transform space. In absolute localization 

of robots in the indoor environment, a mapping between the observation and the prediction is to 

be done. Any ambiguity in the localization should be resolved using Markov localization based 

approaches [27] or Monte Carlo Localization [28]. The fundamental notion driving the localization 

Acquire Sensory 

Information 

Calculate Position 

Detect Landmarks 

Establish matches between 

observations and expectations 

Fig 1.5 Steps involved in vision based localization 
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problem is the ability of the vision systems to robustly recognize those features in the image that 

remain invariant as the robotic platform moves through a corridor. Triangulation based approach 

using image feature correspondences to localize the robot is also an extensively explored field. 

Challenges remain in localization owing to the inaccuracies in the feature location due to spatial 

quantization during the imaging process and uncertainties in the location of landmarks. Indoor 

navigation approaches in recent times make use of dynamic scene understanding was explored in 

[7] which used a hypothesis based indoor scene understanding for the purpose of navigation. Being 

an incremental process, it extends a hypothesis to children hypotheses, gradually homing on the 

true structure of the environment. It makes a relatively strong assumption about the environment 

considering it be a Manhattan world thus simplifying the navigation. Further improvements were 

done in this direction in [8] by using a Planar Semantic Model of the environment.  

 

1.4 Motivation 

The main theme of autonomous navigation is based around the localization process. Localizing 

the robot within its environment is a crucial task and has been extensively explored in many 

research papers. Vision based motion estimation or Odometry has been studied in [6] and many 

other papers. There is need for a highly accurate localization mechanism for error free navigation. 

The typical Visual Odometry Pipeline is presented in figure below as described in [9] gives us an 

idea of the various steps involved in the visual Odometry process. As it can be seen here, the 

motion estimation can be done in 3ways using 1) 2D-2D 2) 1) 3D-3D or 3) 3D-2D feature 

correspondences. But the complexity involved in 3D-2D and 3D-3D correspondences based 
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motion takes a toll on the processing speed. Also these techniques seldom take into consideration 

the regularity in the indoor structures. Hence to address these problems a robust and simple-yet-

efficient motion estimation technique is necessary. An attempt to device such a technique keeping 

in mind the limited computational resources on a robotic platform and the need for near real-time 

processing rate has been done and discussed in this thesis.  

 

1.5 Problem Statement 

In light of all the obstacles plaguing the visual navigation process a need for an accurate and meek 

motion estimation system is required. Hence the problem at hand is to estimate the camera motion 

as the robotic platform moves along the indoor environment path. To keep track of the heading of 

the robot is also equally essential. An incremental pose estimation approach is to be taken to 

gradually update the location of the robot with respect to its starting location. A vague model of 

Fig 1.6 A typical Visual Odometry Pipeline 
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the environment would help better navigate the robot which must also be formed. A Manhattan 

world assumption is made to keep the computation simple which might not be such a strong 

assumption as most indoor environments conform to it. Currently the environment is assumed to 

be free of obstacle to keep the mathematics simple. Later improvements might address this 

problem, but for now there are no stationary or non-stationary obstacles in the environment.  

 

1.6 Organization of Thesis 

This thesis consists of a total of five chapters organized as below— 

 Chapter 1. This chapter gives a brief introduction to the current status of autonomous 

navigation research and the in-outs of the approach taken up by various researchers. It also 

highlights the different scenarios in navigation such as indoor and outdoor challenges and 

how people have gone about to solve the problems associated with each of them.  

 Chapter 2. Will give introduction to the geometrical modelling of the 3D structure and the 

image formation process. Mathematical modelling of the imaging process as well as the 

pose estimation problem is essential, and is discussed in this chapter in detail. 

 Chapter 3. This chapter discusses the various key point features available for the purpose 

of tracking them over consecutive frames. The extraction of key point features from the 

image and the technique for tracking them over consecutive frames is also explained. An 

evaluation of the performance of various key point features in the context of motion 

estimation is discussed. 

 Chapter 4. Various steps in the estimation of the vanishing point from an image is discussed 

in detail in this chapter. The results for different frames are also present here. 
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 Chapter 5. The final step of camera motion estimation is a culmination of all the techniques 

discussed in the previous chapters. This chapter discusses the different models of the 

environment and describes the steps involved in the camera motion estimation. 

 Chapter 6. The results of the trajectory paths obtained by applying the algorithm on 

different image sequences is presented in this chapter. Evaluation and analysis of these 

results is also presented in this chapter. Conclusion and future improvements are also 

discussed within this chapter. 

 

1.7 Conclusion 

This chapter gave an introduction to the different approaches taken towards autonomous 

navigation. Different classes of navigation such as indoor and outdoor or maples and map-based 

algorithms are also discussed at the beginning of the chapter. The motivation behind the work done 

and importance of this work has been clearly justified in section 1.4. The challenges in autonomous 

navigation and how far research work over the years has been able to solve them is explored in 

section 1.3. The final problem statement based on the current research work and the un-attended 

problems that still exist, has been presented along with the assumptions made in the context of 

motion estimation for autonomous navigation. 
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Chapter 2 

VISUAL GEOMETRY MODELS  

 

    One of the primary steps in camera motion estimation is modeling the camera. The camera can 

be modeled either as a perspective camera or an omnidirectional camera. In our case the camera 

was modeled as a perspective camera. The perspective camera model assumes a pin-hole 

projection system wherein the image is formed by the intersection of light rays from the objects as 

they pass right through the center of a pin-hole camera. Rays from an object in the world pass 

through this hole to form an inverted image on the back face of the box or image plane. Our goal 

is to build a mathematical model of this process. The Estimated model parameters form the solution 

of the camera pose estimation problem. 

 

2.1 Camera Model 

 Pin-hole cameras in reality, consist of an enclosure with a tiny hole in the front called a 

pin-hole. Rays coming off an object in the real world cast an inverted image on the rear face of the 

box, also called the image plane. This image formation process needs to be modelled 

mathematically. Since it is not intuitive to work with an inverted image we consider a virtual image 

which is made by placing the image in front of the pin-hole. Though this is not physically possible, 

it does make the things more mathematically tractable. Figure 2.1 gives a clear illustration of the 

image formation with the virtual image on the image plane. The optical center of the camera is 

assumed to be the origin of the pin-hole camera.  

In real life, a pinhole camera consists of a closed chamber with a tiny hole (the pin-hole) 

in the front. Rays from an object in the world pass through this hole to form an inverted image on 
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the back face of the box or image plane. Our goal is to build a mathematical model of this process. 

It is slightly inconvenient that the image from the pinhole camera is upside-down. Hence, we 

instead consider the virtual image that would result from placing the image plane in front of the 

pin-hole.  

 

Fig 2.1 Pin-hole camera model terminology. The optical center (pin-hole) is placed at the origin of the 3D 

world coordinate system(𝒖, 𝒗,𝒘), and the image plane (where the virtual image is formed) is displaced along 

the w-axis. (Image taken from [36]) 

 

 

2.1.1 Intrinsic Parameters 

The intrinsic parameters of a camera are specific to that camera and help model mathematically 

the process of image formation. Figure 2.1 illustrates the pin-hole camera model and also puts 

forth some relevant terminology. Assuming that the optical center of the camera is the origin of 

the world coordinate system, we proceed to represent the world coordinate as 𝑋 =  [𝑢 𝑣 𝑤]𝑇. 

                                   𝜆 [
 𝑢
 𝑣
 1

 ] = 𝐾𝑋 = [
𝜙𝑢 0 𝛿𝑥

0 𝜙𝑣 𝛿𝑦

0 0 1

] [ 
𝑢
𝑣
𝑤

 ]                             2.1 
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Here, λ is a depth factor and 𝜙𝑢, 𝜙𝑣are the focal lengths and 𝛿𝑥 , 𝛿𝑦 the image coordinates of the 

projection center. Now, in reality, whenever the field of view increases beyond 45o 

 

Figure 2.2 Illustration of radial distortion during image formation [learning OpenCV] 

 

 

Figure 2.3 Tangential distortion due to improper placement of imaging sensor (image courtesy of Sebastian 

Thrun) 

 

The effect of radial distortion comes into effect which also needs to be modeled. The effect of 

radial lens distortion is modelled as a second-(or higher) order polynomial. The effect of radial 

distortion increases with the increase in the distance from the optical center. 
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𝑢𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝑢(1 + 𝑘1𝑟
2 + 𝑘2𝑟

4 + 𝑘3𝑟
6) 

𝑣𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝑣(1 + 𝑘1𝑟
2 + 𝑘2𝑟

4 + 𝑘3𝑟
6) 

 

               

2.2 

 

Similarly, the tangential distortion parameters may also be given in the context of camera model 

to accurately describe the image formation process as below- 

𝑢𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝑢 + (  2𝑝1𝑣 + 𝑝2(𝑟
2 + 2𝑢2) ) 

𝑣𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝑣 + (  2𝑝1𝑣 + 𝑝2(𝑟
2 + 2𝑢2) ) 

 

               

2.3 

 

Together the three radial distortion and the two tangential distortion parameters form a 5-element 

distortion vector which can now be used to counter the effect of defects in the camera. Both the 

calibration matrix K and the distortion vector can now be collectively termed as the camera’s 

intrinsic parameters which form the camera’s idiosyncrasy. Estimation of the cameras intrinsic 

parameters is called camera calibration and is discussed in the next section in detail. 

 

2.1.2 Extrinsic Parameters 

    We must also account for the fact that the camera is not always centered at the origin of the 

world coordinate system with the optical axis exactly aligned with the w-axis. A rather general 

approach would be to define an arbitrary world coordinate system that is mutual to other cameras 

also. We now express the world points w in this coordinate system before being passed to the 

projection model, using the coordinate transformation below – 
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[
𝑢′
𝑣′
𝑤′

] = [

𝑤11 𝑤12 𝑤12

𝑤21 𝑤22 𝑤23

𝑤22 𝑤32 𝑤33

 ] [
𝑢
𝑣
𝑤

] + [

𝜏𝑥

𝜏𝑦

𝜏𝑧

] 
               

2.4 

 

Or putting it all in the form of a matrix, we have – 

𝒘′ =  Ω𝐰 +  𝛕 

 

              2.5 

 

Where 𝒘′ is the transformed point,  Ω is a 3x3 rotation matrix, and 𝛕 is a 3x1 translation vector.  

The full pin-hole camera model can now be given by – 

[
𝑢′
𝑣′
𝑤′

] = [
𝜙

𝑢
0 𝛿𝑥 0

0 𝜙
𝑣

𝛿𝑦 0

0 0 1 0

] [

𝑤11 𝑤12 𝑤12 𝜏𝑥

𝑤21 𝑤22 𝑤23 𝜏𝑦

𝑤22 𝑤32 𝑤33 𝜏𝑧

0 0 0 1

 ] [

𝑢
𝑣
𝑤
1

] 

               

 

              2.6 

 

Or in a matrix form as, 

𝜆 𝒙̃ = [𝐾  𝟎] [
𝛀 𝛕
𝟎𝑇 1

] 𝒘̃ 
               

              2.7 

 

Here K is the calibration matrix while Ω, 𝛕 rotarion and translation matrices respectively. 𝒙̃ is the 

imaged point whereas 𝒘̃ 𝑤orld point. 

 

2.2 Camera Calibration 

    Camera calibration is a process of estimating the cameras intrinsic parameters, which is typically 

done only once for every camera. The OpenCV calibration routines were used for the purpose of 
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camera calibration in our case. Calibration using these routines involves imaging a chessboard 

pattern held at different orientations and estimating the corners of the pattern in each of the 

orientations. This set of corner location can be used to estimate intrinsic parameters by solving the 

equations describing the camera’s imaging process. The chessboard pattern, being regular, is made 

up of corners that are part of a regular grid. Each image has N corners, and with K such images we 

get N x K coordinates that form 2NK constraints that can be solved to obtain the intrinsic 

parameters. Under the hood, OpenCV uses Zhang’s [Zhang00] method for obtaining the focal 

length and the offset parameters. On the other hand, it uses Brown’s method [Brown71] to solve 

for the radial distortion parameters. Figure 2.4 clearly illustrates the process of camera calibration. 

    The process of camera calibration involves taking a chessboard pattern and taking pictures of it 

with the pattern placed at different orientations. From each of the images, the corners of the 

chessboard pattern are detected and the coordinates recorded for further solving. Chessboard 

pattern has the black and white blocks each of side 28mm. The pattern is made up of a 6 x 9 chess 

blocks giving a total of 40 corners in each image. The corners location are refined to sub-pixel 

accuracy for accurate estimation of the intrinsic parameters. The corners from 10 images were 

taken, arranged properly and given to the calibration rotations in OpenCV. Each of the image was 

of 640 x 480 in size and the calibration process resulted in the necessary intrinsic parameters like 

the camera matrix K and the distortion matrix d. given below is the camera calibration matrix K – 

𝑲 = [
𝟖. 𝟓𝟖 × 𝟏𝟎𝟐 𝟎 𝟑. 𝟎𝟖 × 𝟏𝟎𝟐

𝟎 𝟖. 𝟒𝟕 × 𝟏𝟎𝟐 𝟏. 𝟑𝟓 × 𝟏𝟎𝟐

𝟎 𝟎 𝟏

] 2.8 

The distortion vector obtained is – 



20 
 

𝒅 = [𝟗. 𝟖𝟗 × 𝟏𝟎−𝟐 −𝟓. 𝟖𝟑 −𝟖. 𝟑𝟐 × 𝟏𝟎−𝟑 −𝟔.𝟕𝟎𝟑 × 𝟏𝟎−𝟑 𝟐. 𝟔𝟐] 2.9 

The average re-projection error is obtained at about 2.681 

 

Figure 2.4 Images of a chessboard being held at various orientations (left) provide enough information to 

completely solve for the locations of those images in global coordinates (relative to the camera) and the 

camera intrinsics. 

 

2.3 Transformation Models 

    Estimation of camera pose involves calcuting the extrinsic matrix that relates the world 

cordinate system to the camera cordinate system. The tranformation that relates the world 

cordindates with the camera cordinates is of many forms based on the assumptions made about the 

environment and the degrees of freedom allowed. Mappings between the plane and the image can 

be described using a family of 2D geometric transformations.  
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Figure 2.5     a. Eucledian class              b.Similarity class          c.Affine class of transformations 

2.3.1 Euclidean Transformation Model 

We assume that a position on the plane can be described by a 3D position w = [u; v; 0]T, measured 

in real-world units such as millimeters. The 𝑤-coordinate, measured in real-world units such as 

millimeters. Applying the pinhole camera model to this situation gives- 

𝝀𝒙̃ = 𝑲[𝛀, 𝛕]𝒘̃ 2.10 

Where 𝒙̃ is the 2D observed image position represented as a homogeneous 3-vector and 𝒘̃ is the 

3D point in the world represented as a homogeneous 4 vector. This can be explicitly written as, 

𝝀 [
𝒙
𝒚
𝟏
] = [

𝝓𝒖 𝟎 𝜹𝒙 𝟎
𝟎 𝝓𝒗 𝜹𝒚 𝟎

𝟎 𝟎 𝟏 𝟎

] [

𝒘𝟏𝟏 𝒘𝟏𝟐 𝒘𝟏𝟐 𝝉𝒙

𝒘𝟐𝟏 𝒘𝟐𝟐 𝒘𝟐𝟑 𝝉𝒚

𝒘𝟐𝟐 𝒘𝟑𝟐 𝒘𝟑𝟑 𝝉𝒛

𝟎 𝟎 𝟎 𝑫

 ] [

𝒖
𝒗
𝟎
𝟏

] 

= [
𝝓𝒖 𝟎 𝜹𝒙

𝟎 𝝓𝒗 𝜹𝒚

𝟎 𝟎 𝟏

] [

𝒘𝟏𝟏 𝒘𝟏𝟐 𝝉𝒙

𝒘𝟐𝟏 𝒘𝟐𝟐 𝝉𝒚

𝟎 𝟎 𝑫
 ] [

𝒖
𝒗
𝟏
] 

 

 

 

2.10 
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Once this is obtained, we often normalize the coordinates by pre-multiplying with the calibration 

matrix K on both sides. This gives us the normalize coordinates – 

→ [
𝒙′
𝒚′

] = [
𝒘𝟏𝟏 𝒘𝟏𝟐

𝒘𝟐𝟏 𝒘𝟐𝟐
 ] [

𝒖
𝒗
] + [

𝝉𝒙

𝝉𝒚
] 

 

2.11 

In this case the parameters 𝑤11, 𝑤12, 𝑤21, 𝑤22 are all constrained to fininte set of values 

[
𝑤11 𝑤12

𝑤21 𝑤22
 ] = [

cos (𝜃) −sin (𝜃)
sin (𝜃) cos (𝜃)

 ] 

 

 

2.12 

Hence there are only three parameters- two translation parameters and a rotation θ 

2.3.2 Similarity Transformation Model 

  The similarity transformation is a Euclidean transformation with a scaling and has four 

parameters: the rotation, the scaling, and two translations. 

[ 
𝑥′

𝑦′] = [ 
𝜌𝑤11 𝜌𝑤12

𝜌𝑤21 𝜌𝑤22
 ] [

𝑢
𝑣
] + [ 

𝜏𝑥

𝜏𝑦
 ] 

 

             2.13 

The previous constraint on the parameters 𝑤11, 𝑤12, 𝑤21, 𝑤22  apply as usual. 

 

2.3.3 AFFINE TRANSFORMATION MODEL 

If we wish to describe the relationship between image points and points on a plane in general 

position the affine tranformation model is helpful. The affine tranformation is given by, 
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𝜆 [
𝑥′

𝑦′

1

] = [
𝜙11 𝜙12 𝜏𝑥

𝜙21 𝜙22 𝜏𝑦

0 0 1

 ] [
𝑢
𝑣
1
] 

 

             2.14 

Where 𝜙11, 𝜙12, 𝜙21, 𝜙22 are now all unconstrained, so can take arbitrary values. 

                           Or [
𝑥′

𝑦′] = [
𝜙11 𝜙12

𝜙21 𝜙22
 ] [

𝑢
𝑣
] + [

𝜏𝑥

𝜏𝑦
] 

 

             2.15 

2.3.4 PROJECTIVE TRANSFORMATION MODEL 

 

Figure 2.6 Projective class of tranformations 

The projective transformation model is used to explain that class of transformations happening 

when a pinhole camera views a plane from an arbitrary viewpoint. The relationship between a 

point 𝑤 =  [𝑢 𝑣 0] 𝑇on the plane and the position 𝑥 =  [𝑥 𝑦]𝑇to which it is projected- is 

𝜆 [
𝑥
𝑦
1
] = [

𝜙𝑢 0 𝛿𝑥

0 𝜙𝑣 𝛿𝑦

0 0 1

] [

𝑤11 𝑤12 𝑤12 𝜏𝑥

𝑤21 𝑤22 𝑤23 𝜏𝑦

𝑤22 𝑤32 𝑤33 𝜏𝑧

 ] [

𝑢
𝑣
0
1

]                      

=  [
𝜙𝑢 0 𝛿𝑥

0 𝜙𝑣 𝛿𝑦

0 0 1

] [

𝑤11 𝑤12 𝜏𝑥

𝑤21 𝑤22 𝜏𝑦

𝑤22 𝑤32 𝜏𝑧

 ] [
𝑢
𝑣
1
] 

 

              

 

 

             2.16 



24 
 

Combining the two 3 x 3 matrices by multiplying them together, the result is a transformation with 

the general form- 

𝜆 [
𝑥
𝑦
1
] = [

𝜙11 𝜙12 𝜙13

𝜙21 𝜙22 𝜙23

𝜙22 𝜙32 𝜙33

 ] [
𝑢
𝑣
1
] 

                                   

2.17 

Although there are nine entries in the matrix, the homography only contains eight degrees of 

freedom; the entries are defined upto a predefined scale. It is easy to see that a constant re-scaling 

of all nine values produces the same transformation. 

 

2.4 Camera Pose Estimation Using Homography 

    In this section, a 3D pose estimation method based on projection matrix and homographies is 

explained. The method estimates the position of a world plane relative to the camera projection 

center for every image sequence using previous frame-to-frame homographies and the projective 

transformation at first, obtaining for each new image, the camera rotation matrix R and a 

translational vector t. The approach followed here is based on the work by Simon et. al. [29, 30]. 

    As explained in the previous section, as general pinhole camera model is considered along with 

a camera projection matrix that maps a world point 𝒘 to image point 𝒙𝒊. It is given by 

𝜆𝒙𝒊 = 𝑃𝑖𝒘 = 𝐾[Ω𝑖 , 𝛕𝑖]𝒘 = 𝐾 [𝒓𝟏
𝒊   𝒓𝟐

𝒊   𝒓𝟑
𝒊   𝛕𝒊]𝒘 2.18 

Where 𝒓𝟏
𝒊   𝒓𝟐

𝒊   𝒓𝟑
𝒊  are the columns of the rotation matrix Ω and K is the camera calibration matrix. 

As illustrated previously, the coordinates of the points on a plane have their z-coordinate zero. 

This results in the projection matrix  𝑃𝒊 simplifying into 𝐾 [𝒓𝟏
𝒊   𝒓𝟐

𝒊   𝛕𝒊] 
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𝑃𝒊 = 𝐾 [𝒓𝟏
𝒊   𝒓𝟐

𝒊  𝛕𝒊] = 𝑯𝒊 2.19 

 The thus deprived projection matrix has reduced number of parameters. It is a 3x3 projection 

matrix that transforms points on the world plane to the ith  image plane which is the planar 

homography defined up to scale. The camera pose is hidden in the 𝐻𝑖  matrix and can be 'estimated 

using the calibration matrix obtained.𝜆 can be calculated using the following equation, 

𝝀 =
𝟏

‖𝑲−𝟏𝒉𝟏‖
 

 [𝒓𝟏
𝒊   𝒓𝟐

𝒊   𝛕𝒊] = 𝝀𝑲−𝟏𝑯 𝒊 =  𝝀𝑲−𝟏[𝒉𝟏  𝒉𝟐  𝒉𝟑] 

 

 

 

2.19 

 

Fig 2.7 Projection model on a moving camera and frame-to-frame homography induced by a plane. 

 

Since the columns of a camera matrix are orthonormal, the third vector of the rotation matrix 𝒓𝟑 

can be determined by the cross product of 𝒓𝟏, 𝒓𝟐. Noisy observation, however, result in rotation 

matrices that aren’t orthonormal. Hence to obtain the best approximation Ω′ of rotation matrix Ω 
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we intend to approximate the matrix Ω to the orthonormal matrix Ω′ in the least square sense [31, 

32]. This problem may be confronted by forming the rotation matrix  Ω𝑖 = [𝒓𝟏
𝒊   𝒓𝟐

𝒊  𝒓𝟐
𝒊 ] and 

performing a Singular Value Decomposition (SVD) to from an optimal matrix Ω’ 

𝛀𝒊 = [𝒓𝟏
𝒊   𝒓𝟐

𝒊 ( 𝒓𝟐
𝒊 ×  𝒓𝟐

𝒊 )] = 𝐔 𝚺 𝐕𝑻 

𝚺  =  𝒅𝒊𝒂𝒈(𝝈𝟏, 𝝈𝟐, 𝝈𝟑) 

𝛀′ = 𝐔 𝐕𝐓 

 

 

2.20 

        

The final solution is the Ω′ and the 𝐭 which gives the camera’s pose relative to the planar object. 

These would prove to be helpful in further section where in the camera pose it to be estimated 

repeatedly to draw inference about the motion trajectory. 

2.5 Conclusion 

This chapter discussed the various 3D geometric models required to interpret the images. The 

camera calibration process and the image formation model were also discussed. Together the 

intrinsic and the extrinsic parameters of a camera help understand the complete image formation 

process. In the final section the camera pose estimation using homography is discussed. This also 

introduces the decomposition of the homography matrix and how it may be used to estimate the 

camera pose from point correspondences. 
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Chapter 3                   

KEY POINT DETECTION AND TRACKING 

 

Key points are of high importance in the field of vision based navigation due to their highly 

efficient localization properties. For any given image, making sense of its content from merely the 

pixel information is not simple. Hence the need for interest point descriptors that accurately 

describe the image. Such a description, when obtained, may be used to localize the objects in the 

image, or localize the imaging system with respect to the object. Either way the localization 

property of the key points or interest point is the corner stone vision based navigation schemes. It 

is very crucial for the interest point’s descriptions of the image to be robust under varying lighting 

conditions as well as rotation and scale. The important characteristic of the key point is its relative 

position in the original scene must not change from one image to the other. Different features have 

their own pros and cons. This chapter explores the different interest point detector analysing the 

ins and outs of each of them. Also the problem of tracking them accurately over consecutive frames 

is essential and the related Lucas-Kanade Optical flow technique is discussed in detail. 

 

3.1 Corner and Interest Point Detectors 

The approach of corner detection in machine vision is of immense importance as it gives the 

capability to infer about the image contents from a sparse set of data. The application of the corner 

detection techniques is often seen in the fields of motion estimation, pose estimation, tracking, 

structure from motion …etc. The corners are the local maxima in the image often found at the 
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juncture of two edges. It is also characterised by the two dominant gradient directions in the 

locality of the point. The Harris corner detection algorithm [15] uses autocorrelation as a measure 

to classify the point as a corner. Considering a 2D image data I and taking a patch at a location 

(𝑢, 𝑣) and shifting it by an amount of  (𝑥, 𝑦) we measure the squared differences between these 

two patches. 

𝑆(𝑥, 𝑦) =  ∑∑𝑤(𝑢, 𝑣)(𝐼(𝑥 + 𝑢, 𝑦 + 𝑣) −   𝐼(𝑢, 𝑣))
2

𝑣𝑢

 
             3.1 

Taking the Taylor series expansion of 𝐼(𝑢 + 𝑥, 𝑣 + 𝑦) we have – 

𝐼(𝑢 + 𝑥, 𝑣 + 𝑦) ≈ 𝐼(𝑢, 𝑣) + 𝐼𝑢(𝑢, 𝑣)𝑥 + 𝐼𝑣(𝑢, 𝑣)𝑦              3.2 

Where 𝐼𝑥, 𝐼𝑦 are the partial derivatives of I along the x and y directions. Substituting it back in the 

above equation we obtain – 

𝑆(𝑥, 𝑦)  ≈  ∑∑𝑤(𝑢, 𝑣)(𝐼𝑢(𝑢, 𝑣)𝑥 +  𝐼𝑣(𝑢, 𝑣)𝑦)2

𝑣𝑢

  
             3.3 

 Which may be written in the form of a matrix as given below – 

𝑆(𝑥, 𝑦)  ≈ (𝑢 𝑣) 𝐴 ( 
𝑢
𝑣
 ) , where 𝐴 = ∑ ∑ 𝑤(𝑢, 𝑣) [

𝐼𝑢
2 𝐼𝑢𝐼𝑣

𝐼𝑢𝐼𝑣 𝐼𝑣
2 ]𝑣𝑢  

 

            3.4 

Based on the above Harris matrix a location is classified as a corner on the basis of their Eigen 

values 𝜆1, 𝜆2 – 

1. If the both the eigen values are small then the location (𝑥, 𝑦) is not a corner. 

2. If 𝜆1 ≈ 0 and 𝜆2 has a significantly high value, then it may be categorized as an edge. 

3. If both the eigen values 𝜆1, 𝜆2 have a significantly high values, then it is a corner. 
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Figure below best illustrates the eigen values and the classification if regions accordingly. 

However, the algorithm suggested by Harris uses a different measure to sift the corner points 

from an image as the calculation of eigen values is computationally intensive.  The metric used 

for the purpose of detection of corner is 𝑀𝑐 and is given mathematically as – 

𝑀𝑐 = 𝜆1𝜆2 − 𝜅(𝜆1 + 𝜆2)
2 = det(𝑎) − 𝜅 𝑡𝑟𝑎𝑐𝑒2(𝐴)                 3.5 

Here 𝜅 is a control parameter for the sensitivity. The above equation is a computationally less 

expensive metric and may be used in real-time for the purpose of vision based motion 

estimation or for the purpose of pose estimation.  

 

Fig 3.1 Plot of one Eigen value against the other and the region classification according to the Eigen values 
 

 



30 
 

3.2. Optical Flow 

Optical flow in image is the dispersal of velocity, relative to the observer, over the points of an 

image. Optical flow carries immense amount of information regarding the structure in the scene 

being observed as well as the motion within the scene due to foreground objects. It is concretely 

defined in [14] as 

“Image flow is the velocity field in the image plane due to the motion of the observer, the motion 

of objects in the scene, or apparent motion which is a change in the image intensity between 

frames that mimics object or observer motion.” 

Optical flow gives the velocity of every pixel in the image or also a path of a defined patch in the 

image. Based on the kind of output from the Optical Flow (OF) algorithm that is needed, they are 

two popular algorithms for measurement of OF. The Horn-Schunck Optical flow estimation 

algorithm and the Lucas-Kanade Optical Flow algorithm. The Horn-Schunck OF method is a dense 

estimation method developed in 1981 [15]. This estimation method makes use of the brightness 

constancy and presents a set of equations that describe mathematically the brightness constancy. 

These equations were solved for by imposing a smoothness restriction on the velocities 𝑣𝑥 and 𝑣𝑦. 

This in effect tries to minimize the perturbations in the flow, giving more preference to solutions 

that are smoother. The flow is devised in the form of a global energy function and the solution to 

which is obtained by minimizing this energy function. For a 2D image signal, the energy function 

is given by – 

𝐸 = ∬[(𝐼𝑥𝑢 + 𝐼𝑦𝑣 + 𝐼𝑡)
2
+ 𝛼2(‖∇𝑢‖2 + ‖∇𝑣‖2)] 𝑑𝑥 𝑑𝑦  

 

               3.6 
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Here 𝐼𝑥, 𝐼𝑦and 𝐼𝑡 are the partial derivatives of the 2D image along the 𝑥, 𝑦 and 𝑡 dimensions 

respectively. 𝑉⃗  = [ 𝑢(𝑥, 𝑦), 𝑣(𝑥, 𝑦) ]𝑇 gives the optical flow vector at a location 𝑥, 𝑦 in the image. 

The optical flow vector obtained using Horn-Schunck is a gradually varying function of 𝑥, 𝑦. The 

energy function E mentioned above may be minimized by solving the Euler-Lagrange equations –  

𝜕𝐿

𝜕𝑢
−

𝜕

𝜕𝑥

𝜕𝐿

𝜕𝑢𝑥
− 

𝜕

𝜕𝑦

𝜕𝐿

𝜕𝑢𝑦
= 0 

𝜕𝐿

𝜕𝑣
−

𝜕

𝜕𝑥

𝜕𝐿

𝜕𝑣𝑥
− 

𝜕

𝜕𝑦

𝜕𝐿

𝜕𝑣𝑦
= 0 

 

 

               

                        

                       3.7 

Here L is the integral energy equation mentioned in equation 3.6. When put in the above 

expression, it turns into the following form – 

𝐼𝑥(𝐼𝑥𝑢 + 𝐼𝑦𝑣 + 𝐼𝑡) − 𝛼2Δ𝑢 = 0                        3.8 

𝐼𝑦(𝐼𝑥𝑢 + 𝐼𝑦𝑣 + 𝐼𝑡) − 𝛼2Δ𝑣 = 0 , Δ =
𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑦2 
                       3.9 

The above system of equation may be evaluated into a simpler form as given below – 

(𝐼𝑥
2 + 𝛼2)𝑢 + 𝐼𝑥𝐼𝑦𝑣 =  𝛼2𝑢̅ − 𝐼𝑥𝐼𝑡                      3.10  

 

 

𝐼𝑥𝐼𝑦𝑢 + (𝐼𝑥
2 + 𝛼2)𝑣 =  𝛼2𝑣̅ − 𝐼𝑥𝐼𝑡                      3.11 

This is a linear equation in two variables 𝑢 and 𝑣 and may now be solved for each of the pixels 

that make up the image. This in reality may be formulated as an iterative process to account for 

the updating of pixels values as new frames arrive. The iterative formula for estimating the pixel 

wise motion of the pixels in a video sequence is given in equation 3.10. 
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𝑢𝑘+1 = 𝑢̅𝑘 −
𝐼𝑥(𝐼𝑥𝑢̅

𝑘 + 𝐼𝑦𝑣̅𝑘 + 𝐼𝑡)

𝛼2 + 𝐼𝑥
2 + 𝐼𝑦

2
 

𝑣𝑘+1 = 𝑣̅𝑘 −
𝐼𝑦(𝐼𝑥𝑢̅

𝑘 + 𝐼𝑦𝑣̅𝑘 + 𝐼𝑡)

𝛼2 + 𝐼𝑥
2 + 𝐼𝑦

2
 

                        

 

 

                3.12 

 

 

 

The Horn-Schunck method form motion estimation if computationally intensive. It is very 

sensitive to local tiny local variations in the video sequence. It nevertheless gives a very dense 

flow vectors which can be properly exploited.  

    However, there is not always a need for such dense motion estimation. The information 

regarding the motion of every pixel of the image in a video sequence is not necessary. Motion of 

objects in a video sequence may very well be characterised by inferring the movement of a finite 

set of point within the objects contour. Such a reduced set of information by tracking a sparse set 

of points is often enough to characterize the motion of points. Lucas-Kanade Optical flow 

algorithm address the problem of sparse tracking. 

 

3.2.1 Lucas-Kanade Tracker 

    As discussed previously, the Lucas-Kanade tracker or the KLT Tracker is a sparse tracking 

algorithm capable of tracking point features over multiple frames. This often used in the context 

of pose estimation, structure from motion, visual odometry, 3D reconstruction and for other related 

applications. It usually works well in the cases where the motion is relatively small. However, the 

feature tracking problem isn’t as straight forward as it may seem. The different challenges faced 

in the feature tracking problem includes – 

 Figuring out the best features that can be accurately tracked. 
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 Tracking these features efficiently across multiple frames. 

 Dealing with changes in the feature points due to illumination, rotation and scale variations. 

 Handling error accumulation due to small errors at each step. 

 Ability to handle occlusion of points during one frame or a couple of frames. 

    The problem statement of KLT tracker is now framed as – “Given two subsequent frames 

and the feature points in one frame, estimate the corresponding points’ translated location”. 

Some of the key assumptions made in the KLT tracker algorithm include ‘Brightness 

Constancy’ which imposes the condition that the point looks almost the same in every frame. 

In addition to this there is assumed to be minimal motion of the feature points over the 

consecutive frames. Also, spatial coherence is also assumed implying that points move very 

much like their neighbours. The brightness constancy constraint can be put forth 

mathematically as given below – 

𝐼(𝑥, 𝑦, 𝑡) = 𝐼(𝑥 + 𝑢, 𝑦 + 𝑣, 𝑡 + 1 )               3.13 

 

 

 

Now taking the Taylor series expansion of the above equation at the point (𝑥, 𝑦, 𝑡) we have— 

𝐼(𝑥 + 𝑢, 𝑦 + 𝑣, 𝑡 + 1) ≈ 𝐼(𝑥, 𝑦, 𝑡) + 𝐼𝑥𝑢 + 𝐼𝑦𝑣 + 𝐼𝑡  

𝐼(𝑥 + 𝑢, 𝑦 + 𝑣, 𝑡 + 1) − 𝐼(𝑥, 𝑦, 𝑡) = 𝐼𝑥𝑢 + 𝐼𝑦𝑣 + 𝐼𝑡  

Hence                 𝐼𝑥𝑢 + 𝐼𝑦𝑣 + 𝐼𝑡 ≈ 0 → ∇𝐼[𝑢 𝑣]𝑇 + 𝐼𝑡 = 0   

 

              3.14 
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We plan on recovering the image motion (𝑢, 𝑣) at each of the locations of the feature points. 

One equation is known and there are two variable to be evaluated for. Hence in order to get 

more equations that describe a pixels motion we need to use more locations. The spatial 

coherence constraint comes in handy in this situation. If we consider 5 × 5 neighbourhood 

around the feature location, it gives us with 25 such equation per location. Let 𝑖 be the index 

of the pixel in the neighbourhood with 𝑖 varying from 1 to 25 and 𝑝𝑖 the location of the 𝑖𝑡ℎ 

feature point. Then the set of equations for each of the location may be put in the matrix form 

as given below – 

[
 
 
 
𝐼𝑋(𝑝1) 𝐼𝑦(𝑝1)

𝐼𝑦(𝑝1) 𝐼𝑦(𝑝1)

⋮ ⋮
𝐼𝑦(𝑝25) 𝐼𝑦(𝑝25)]

 
 
 

[ 
𝑢
𝑣
 ] = − [

𝐼𝑡(𝑝1)
𝐼𝑡(𝑝2)

⋮
𝐼𝑡(𝑝25)

] 

→ 𝐴2×2 𝒅𝟐×𝟏 = 𝒃𝟐𝟓×𝟏 

 

               

 

 

              3.14 

 

 

 

This system of linear is over determined and not an exact solution. However, a least square solution 

is possible using the below mathematical manipulation – 

(𝐴𝑇𝐴 ) 𝒃 = 𝐴𝑻𝒃               3.15 

[
∑ 𝐼𝑥𝐼𝑥 ∑𝐼𝑥𝐼𝑦

∑𝐼𝑥𝐼𝑦 ∑𝐼𝑦𝐼𝑦

] [ 
𝑢
𝑣
 ] = − [

∑𝐼𝑥𝐼𝑡

∑𝐼𝑦𝐼𝑡

] 

               

               3.16 

The above summations are over the 𝑁 ×  𝑁 neighbourhood around the feature being tracked. This 

linear equation if solvable if 𝐴𝑇𝐴 is invertible and there are other set of conditions. 

 𝐴𝑇𝐴 𝑚𝑢𝑠𝑡 𝑏𝑒 𝑛𝑜𝑛 𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟 

 𝐴𝑇𝐴  𝑡ℎ𝑒 𝑒𝑖𝑔𝑒𝑛 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑡ℎ𝑖𝑠 𝑚𝑎𝑡𝑟𝑖𝑥 𝑚𝑢𝑠𝑡𝑛′𝑡 𝑏𝑒 𝑡𝑜𝑜  𝑠𝑚𝑎𝑙𝑙. 
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 𝐴𝑇𝐴 𝑠ℎ𝑜𝑢𝑙𝑑 𝑛𝑜𝑡 𝑏𝑒 𝑖𝑙𝑙 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑒𝑑 𝑖. 𝑒 
𝜆1

𝜆2
 𝑠ℎ𝑜𝑢𝑙𝑑𝑛′𝑡𝑏𝑒 𝑡𝑜𝑜 𝑙𝑎𝑟𝑔𝑒.   

These above conditions are very similar to the ones mentioned by the Harris corner detector. The 

Harris corner detector featured above is used as the feature point locations to initialize the tracking 

algorithm. The assumption that - the movements in the video sequence are not very large - is too 

restrictive as in reality the movement of pixels may happen at a faster rate. To address this problem 

we take an iterative approach of refinement of trajectories at different scales.  

    We first initialize the points to be tracked and iteratively find the location of these point features 

at various scales to refine the track estimate. We shift the window to the estimated location (𝑢, 𝑣) 

and reiterate to estimate the new location using the steps previously mentioned. We recalculate 𝐼𝑡 

and repeat the steps until the change is not significant. To handle the motion of corner features that 

is large, we can employ coarse to fine optical flow estimation. Corse to fine optimal estimation is 

done by creating an image pyramid. The number of pyramid levels to be used defines the level of 

accuracy of the tracks. 

 

Fig 3.2 Image Pyramids of current and previous frames constructed for coarse to fine refinements of the 

feature tracks. 
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3.3 Conclusion 

    This chapter discussed the importance of corner features in the setting of pose estimation for the 

purpose of autonomous navigation. The Harris corner features works well in our case and have 

been successfully used for the purpose of tracking. The definition of the concept of Optical Flow 

was put forth and the different optical flow estimation algorithms were discussed. The dense 

optical flow Horn-Schunck algorithm was discussed in detail. However the use of this algorithm 

is not suggested for the purpose of feature tracking. Instead the sparse point tracking algorithm by 

Lucas, Kanade and Tomasi, the KLT Tracker was often used in several of the research works in 

the field of visual odometry and pose estimation. This algorithm was discussed in detail and has 

been used together with the Harris corner features. The Harris corner features were first detected 

in a frame in the image and the KLT tracker algorithm was initialized with their locations. The 

algorithm then gave the possible location of that corner point in the next frame. 
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Chapter 4 

VANISHING POINT ESTIMATION 

 
4.1 Vanishing Point 

 

“In graphical perspective, a vanishing point is a point in the picture plane π that is the 

intersection of the projections of a set of parallel lines in space on to the picture plane” 

 

Vanishing points provide important information about the structure in the environment. 

The location of the vanishing point is key to the robots understanding of its pose relative to the 

environment. This sort of information is very useful in estimating the robot pose relative to the 

environments such as a corridor. Estimation of vanishing point is done via the corridor which are 

formed by the intersection of the wall and floor surfaces. The formation of vanishing points is 

based on the well-known principle where in the lines parallel to each other in 3D space appear to 

converge at a terminal point. 

 This happens in the case of a pin-hole projection model. Vanishing point detection has 

been an area of active interest from the research community in recent years. The typical process  

Fig 4.1 a) Illustration of the Vanishing Points in Images b) Indoor image with visible Vanishing Point 
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for vanishing point detection involves a pre-processing step to enhance the corridor lines. Then a 

standard edge detection algorithm like the ‘Canny Edge detection’ may be used for this purpose. 

It is then followed by Hough transform for the detection of straight lines amongst the edge image 

obtained through edge detection.  

 

Fig 4.2. Vanishing Point Estimation Block Diagram 

4.2 Corridor Line Detection 

 The corridor lines contain crucial information about the environment’s structure making it 

imperative for the algorithm to make the best use of such rich set of visual cues. So an attempt to 

estimate the vanishing point typically involves an initial set of steps to detect the corridor lines as 

accurately as possible. This includes enhancing the high frequency components-the edges-in the 

image. Which is followed by edge detection and line detection steps. In the pre-processing step, 

histogram equalization works well to improve upon images of ill lit corridors that were available 

in the dataset being used. It also performed an enhancement of the edges thereby solving two issues 

at a go. 
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4.2.1 Canny Edge Detection 

The canny edge detection algorithm has been effectively been used over the years in many 

computer vision application. The effectiveness of the algorithm lies in its ability to eliminate the 

non-edge pixels at multiple levels and then finding the weak and strong edges, which are in-turn 

connected accordingly to extract the truly edge like pixels. The approach involving hysteresis 

based thresholding helps in finding the true wedges with high level of accuracy. The canny edge 

detection algorithm is as follows – 

 

The thresholding parameters are to be chosen appropriately to meet the desired requirements 

.  

 
Fig 4.3. Sobel Operator Kernels 

Objective 

Take an input grayscale image and the threshold parameters and find the edge detected 

image. 

Algorithm 

1. Blur the image to remove Noise 

2. Finding the gradient images using Sobel operator 

3. Non-maxima suppression 

4. Hysteresis thresholding 

5. Edge tracking of the Hysteresis thresholded image. 

 

 
Algorithm 4.1 Algorithm for canny edge detection 
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Fig 4.4 Edge Detection: a) Original image of ill-lit corridor b) Pre-processed image  

        c) Edge detection using Canny algorithm 

 

    The pre-processing step was required in our case as the dataset images were of poorly lit 

corridors. So, to mitigate the effects of improper illumination, histogram equalization was used. 

Another approach to pre-processing of ill lit images is via normalizing the image colour which 

involves dividing the pixel values of the sum of R, G, B, values. To brighten up the images, 

converting the images into HSV colour space, multiplying V component by 2, and then convert it 

back to RGB will provide a lot more image contrast thus helpful during the features extraction 

stage. In our case, histogram equalization worked well enough and was hence used. The thus 

obtained canny edge detection output has been used to the Hough transform based line detection 

algorithm. 

 

4.2.2 Line Detection Using Hough Transform 

    Hough transform is a parametric transform transforming the edge pixel coordinates into from 

Cartesian space (𝑥, 𝑦) into polar space (𝑟, 𝜃) . The polar feature space helps in detecting the 
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collection of pixels that together form straight lines. The output from the canny edge detection 

algorithm is fed into the Hough transform module which sifts straight lines from the edge detected 

image. The Hough transform approach takes the Hough space voting to classify the pixels as 

belonging to the straight line of not. The Standard Hough Transform (SHT) maps each of these 

pixels to point in the Hough space to try and estimate the line segment. Each edge pixel represents 

a sinusoid in the Hough space which gives all the family of lines that may pass through this point. 

Now if a collection of points all belong to a single line, then in all the sinusoids they represent 

intersect each other. Hence from the number of intersections and the location of such intersections 

we are able to find the parameters of the straight line. However this method only gives the 

parameters of the straight line but is not able to localize its position in the image by providing their 

end points. TO address this problem a variant of probabilistic Hough transform called the 

Progressive Probabilistic Hough Transform [33] was used for this purpose as it required less 

amount of computation and was more flexible in the selection of the right lines in the image. 

 

Fig 4.5 left- the Image Cartesian space and right- the Hough space in 𝝆 and 𝜽 
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The above algorithm directly gives the straight lines in an image by their end points. This helps us 

better process the image and also control the parameters such as the minimum length of the line 

segment and also the maximum allowable distance between two line segments. The thus obtained 

line segments are processed to estimate the vanishing point from the image. 

 

4.3 RanSaC Based Vanishing Point Detection 

    Vanishing Point (VP) are were important features with a lot of information about the structure 

of environment. Detection of vanishing points in the image is a crucial step in the camera motion 

estimation process. To detect the vanishing point in the image several approaches were considered. 

The edge detected image has been processed for straight lines and the approach has been discussed 

in the previous section. The detected lines are available through their end-points and can be used 

Objective 

Given the edge image, to find the straight lines in that image subject to some constraints of 

minimum length. 

Algorithm 

1. Check the input image, if it is empty then finish. 

2. Update the accumulator with a single pixel randomly selected from the input image. 

3. Remove pixel from input image. 

4. Check if the highest peak in the accumulator that was modified by the new pixel is 

higher than threshold l. If not then Goto 1. 

5. Look along a corridor specified by the peak in the accumulator, and find the longest 

segment of pixels either continuous or exhibiting a gap not exceeding a given 

threshold. 

6. Remove the pixels in the segment from input image. 

7. Unvote from the accumulator all the pixels from the line that have previously voted. 

8. If the line segment is longer than the minimum length add it into the output list. 

9. Goto 1. 

Algorithm 4.2 Algorithm of the Progressive Probabilistic Hough Transform 
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to represent or process accordingly. [Vanishing point detection in corridors using Hough 

Transform] discussed the use of K-Means based clustering approach to VP detection. Most of the 

algorithms available, though based on the common approach of Hough transform, differ in the 

parameter space being used. Most common accumulator parameter spaces are the Gaussian Sphere 

and the Hough Spaces. [Vanishing point detection in corridors using Hough Transform] Discussed 

the use of Gaussian sphere based approach to VP detection introduced by Bernard et al which has 

the drawback of computational complexity due to the high quantity of lines being processed. The 

K-Means based approach to VP detection use the Standard Hough Transform to detect the straight 

lines in the image. It uses the starting and ending pixel locations of a line as the feature space in 

which clustering is performed. The K-Means clustering is done twice and at the end of the second 

step we obtain the VP of the image. 

    However, the approach doesn’t account for the presence of dominant outlying lines in the image 

which could potentially mess with the estimated location of the Vanishing Point. To address this 

problem, another approach is taken as suggested in [34] which uses RanSaC based approach to 

estimate the VP of the scene very effectively in the presence of outliers. This approach 

hypothesizes a VP coordinate by taking two lines randomly form the Hough Line Detection set. 

The Hough line detection algorithm described above gives us a set of line that have been detected 

in the image in the form of their end-point co-ordinates. Let us represent the set ℋ as the set of all 

lines detected through the Hough line detection defined as 

ℋ = {𝑙| 𝑙 = (𝑥1, 𝑦1, 𝑥2, 𝑦2) 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑒𝑛𝑑 𝑝𝑜𝑖𝑛𝑡𝑠 𝑜𝑓 𝑎 𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡 𝑙𝑖𝑛𝑒} 

       ℋℎ𝑜𝑟 = {𝑙| 𝑙 ∈  ℋ ∧  𝑠𝑙𝑜𝑝𝑒(𝑙)  ≈ 0} 

𝑎𝑛𝑑 ℋ𝑣𝑒𝑟𝑡 = {𝑙| 𝑙 ∈  ℋ ∧  𝑠𝑙𝑜𝑝𝑒(𝑙)  ≈ ∞} 

 

 

4.2 
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The horizontal and vertical lines are removed from H as they contribute little to the vanishing point 

detection and more as the outliers. Hence a new set ℋ is defined by the one containing lines that 

are neither horizontal nor vertical. From these set of lines two lines are randomly sampled and 

their intersection point is calculated. This forms the initial hypothesis for the VP to be found. The 

VP in now checked against other lines to see to what degree it conforms to the hypothesis. A 

distance measure is required to quantify the degree of agreement of the remaining lines with the 

hypothesis. The distance measure used here is the one mentioned in [34]. It is defined as the angle 

between the line joining hypothesized VP and the centre of each of the remaining set of lines under 

consideration and that line itself. The distance  𝑑(𝑣, 𝑙𝑖) is described below – 

 

Fig 4.6. Distance metric between vanishing point and line segment 

Now a random selection of two line segments 𝑙𝑖 and 𝑙𝑗 is done and the solution to these two lines 

will give their point of intersection 𝑣 which becomes the initial hypothesis for VP. This is checked 

against the set remaining lines obtained by removing the ones used for formulating the hypothesis. 

An angle threshold 𝜃𝑡ℎ is taken to consider a line as an inlying VP supporting line or an outlier. 

The inlier count is incremented for each hypothesis obtained by selection of two lines at random 

and finding their point of intersection. This is repeated for definite number of times and at each 
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step the hypothesis with the highest inliers so far is stored along with the corresponding inliers. At 

the end of all the iterations the hypothesis with the most inliers bubbles to the top along with its 

inliers. All the inlier lines are taken and the resulting VP is found via refinement using the SVD 

based approach. All the inliers when put together in the form of a linear equation can be solved to 

get the vanishing point. 

 [𝒍𝟏 … 𝒍𝒏]𝑻𝒗 = 𝒃 

 

4.2 

        → 𝑳𝑻𝒗 = 𝒃 

 

4.3 

Where each 𝒍𝒊 corresponds to the line that has been detected in the corridor image given in terms 

of 𝒍𝒊 = [𝑎 𝑏 1]𝑇.  Equation 4.3 may not have a unique solution. However, it may be solved for in 

the least square sense using the SVD based approach. Such an approach is required owing to the 

noisy observation of the vanishing lines. This results in the lines not having a unique point of 

intersection. The matrix L depicted in equation 4.3 is singular because the equation doesn’t have 

a solution. This may be attributed to the noisy observations of the vanishing lines. Hence, the 

solution to this may only be obtained in the least square sense. The least square solution may be 

obtained using the SVD decomposition of the matrix L to find the pseudo inverse of the matrix. 

The pseudo inverse of the matrix may be obtained from its SVD decomposition as given below. 

The singular value decomposition of is given by – 

 

    𝐿𝑇 = 𝑈 Σ 𝑉𝑇 

 

4.4 

 𝑝𝑠𝑒𝑢𝑑𝑜 𝑖𝑛𝑣𝑒𝑟𝑠𝑒   (𝐿𝑇)+ = 𝑉 Σ+ 𝑈𝑇 4.5 
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This gives the solution to the vanishing point which is the intersection of the lines in the least 

square sense. The thus obtained vanishing point is used in the process of segmentation of the 

corridor image which would be discussed in later sections. 

 

 

4.4 Conclusion 

The vanishing point locations prove to be rich source of information, especially in the context of 

indoor navigation. Many approaches were considered for the purpose of VP estimation. This 

included the use of Gaussian Sphere based approach and also K-Means based clustering approach 

[35] to VP estimation. However, these approaches don’t work well in the presence of outliers. 

Hence the approach suggested in [34] was used to make the best estimation of the Vanishing Point 

in the image. Since the approach involved RanSaC, which works well in the presence of outliers, 

it worked well, optimally extracting the Vanishing Point in the corridor image.  

Fig 4.7 Vanishing Point detected with the inlier line segments 



47 
 

Chapter 5 

CAMERA MOTION ESTIMATION 

 

The final step is estimating the camera motion from the information obtained by tracking the key-

points over several frames and fitting the feature correspondence locations into the appropriate 

environment models. As mentioned prior, Manhattan world assumption is taken the context of 

indoor navigation— 

“A Manhattan world scene is a term used in computer vision that describes a real world scene 

based on the Cartesian coordinate system. The scene is defined by four types of lines: random 

lines or lines parallel with one of the X, Y or Z axes.” 

Under this assumption the world is defined by rectangular planar structures, forming a grid like 

arrangement.  An environment modelled as a Manhattan world is easier to handle during the 

motion estimation process. The motion estimation is now done by finding the key points in the 

image frames grabbed by the camera mounted atop the robot and analysing their locations and 

comparing those to the model of the environment. The next section discusses finding feature 

correspondences and estimating the homography matrix relating these two key-point locations. 

 

5.1 Homography Estimation 

The homography matrix relates the coordinate location of key point on one plane to those on 

another plane. This homography matrix is evaluated using the Direct Linear Transform based 

approach as suggested in [11]. The homography matrix estimation needs only four point- 
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correspondences,  xi ⟷ xi
′.  The homography matrix relates the 2D coordinates in one plane to 

those in the other and is given by the following equation— 

𝐱i
′ = H 𝐱𝐢 

5.1 

Where 𝐱𝐢 and 𝐱𝐢
′  are the points in plane 𝑃𝑖 and 𝑃𝑖−1 respectively and the homography matrix 𝐻 

relates the 2D locations given in homogenous coordinates. The homogenous coordinates are given 

by xi
′  =  (𝑥𝑖

′, 𝑦𝑖
′, 𝑧𝑖

′). The above expression in xi
′, H and xi may be written in a different form as a 

cross product given by— 

𝐱𝐢
′ × H 𝐱𝐢 = 𝟎 

 

5.2 

H𝐱𝐢 = (

𝐡1T𝐱𝐢

𝐡2T𝐱𝐢

𝐡3T𝐱𝐢

) 

 

 

5.3 

Where ℎ𝑘𝑇 is the kth
  row of the H matrix. The cross product may now be given as, 

𝐱𝐢
′ × H𝐱𝐢 = (

𝑦𝑖
′𝐡𝟑𝐓𝐱𝐢 − 𝑤𝑖

′𝐡𝟐𝐓𝐱𝐢

𝑤𝑖
′𝐡𝟏𝐓𝐱𝐢 − 𝑥𝑖

′𝐡𝟑𝐓𝐱𝐢

𝑥𝑖
′𝐡𝟐𝐓𝐱𝐢 − 𝑦𝑖

′𝐡𝟏𝐓𝐱𝐢

) 

 

 

5.4 

The above equation may be rewritten to resemble a linear equation in 9 variables of the 

homography matrix as given below— 

[

𝟎𝑇 −𝑤𝑖
′𝐱i

T 𝑦𝑖
′𝐱𝒊

𝑻

𝑤𝑖
′𝐱𝐢

𝐓 𝟎𝑇 −𝑥𝑖
′ 𝐱𝒊

𝑻

−𝑦𝑖
′𝐱𝑖

𝑇 𝑥𝑖
′𝐱𝑖

𝑇 𝟎𝑇

] (
 𝐡𝟏

 𝐡𝟐

 𝐡𝟑

) = 𝟎 

 

 

5.5 
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As said above, it may be written in the form of a linear equation in 9 variables, all of which are the 

elements of the homography matrix H. 

𝐴𝒊𝐡 = 0, ℎ𝑒𝑟𝑒 𝐡 = [
𝒉𝟏

𝒉𝟐

𝒉𝟑

] a 9 × 1 𝑣𝑒𝑐𝑡𝑜𝑟 𝑎𝑛𝑑 𝐴𝑖  𝑖𝑠 𝑎 3 × 9 𝑚𝑎𝑡𝑟𝑖𝑥 

 

 

5.6 

And H =  [

ℎ1 ℎ2 ℎ3

ℎ4 ℎ5 ℎ6

ℎ7 ℎ8 ℎ9

]  
 

5.7 

 

We thus obtain a linear equation in 9 variable all of which are elements of the homography matrix. 

For defining the homography matrix up to scale one may choose to set the 𝑤𝑖
′ parameter to ‘1’. 

Each point correspondence in the image results in a pair of two equations in two variables that 

belong to the homography matrix. So, for a set of four point correspondences obtained via tracking 

the key points over multiple frames we obtain 8 such equations. The linear equation in elements 

of h i.e. A𝐡 =  𝟎 is to be solved to obtain non-trivial solutions of h as the trivial solution of h is 

of no relevance to us. Here A is obtained from the rows of  𝐴𝑖 for each point correspondence 𝑥𝑖 ↔

𝑥𝑖
′ obtained through the tracking of the points over consecutive frames. The system of linear 

equations thus obtained has a trivial solution but is now ignored as it is irrelevant to our use case. 

The non-trivial solution is obtained and is defined only up to scale. The scale may defined in such 

a way that the norm ∥ h ∥ = 1.  

    Often the four point correspondences obtained are a set of noisy observation often corrupted by 

many factors such as image space quantization, error in the tracking process, lens distortions…etc. 

These noisy observations might hamper one from making a refined estimate of the homography 

matrix H. Nevertheless, one may attempt to make a best approximation of the H matrix by 
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increasing the number of observation which in our case are the point correspondences. Since each 

point correspondence give a pair of equations, N such point correspondences would give us 2N 

such equations and can be arrange into system of linear equation and can be solved accordingly. 

Since such a system is over determined, the approach that is to be taken is slightly different from  

the typical steps used to solve a system of linear equations. In the case of an over determined 

system, there is a very little chance of all the equations agreeing upon a single solution. Hence, we 

instead attempt to estimate an approximate solution h which is optimal in terms of a cost function. 

To avoid the trivial solution, a condition on the h vector is levied requiring it be of unit norm. The 

Objective 

Given  𝑛 ≥ 4 2D point correspondences {𝑥𝑖 ↔ 𝑥𝑖
′ }, to determine the homography matrix H 

that relates the point correspondences as xi = H xi
′. 

Algorithm 

1. Every point correspondence 𝑥𝑖 ↔ 𝑥𝑖
′ gives two equations which are to be obtained from 

equation 5.5. 

2. Each of the pair of equations from every pint correspondence must be put together to 

form a 2𝑛 ×  9 matrix A forming a linear equation A𝐡 =  𝟎. 

3. The solution for the over determined system may be obtained through the Singular 

Value Decomposition based approach. The matrix A is decomposed as A =

 UDVT where D is a diagonal matrix of singular values. The solution to 𝐡 is obtained 

by arranging the singular values in descending order and taking the column of V that 

corresponds to that lowest singular value. 

4. The thus obtained approximate solution for 𝐡 must be rearranged into the matrix H 

according to equation 5.7. 

 Algorithm 5.1. Direct Linear Transformation for the estimation of homography matrix H 
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solution to this over determined system is obtained using the Singular Value Decomposition (SVD) 

based approach. This algorithm has been termed in the literature as Direct Linear Transformation 

(DLT). It is clearly illustrated in Algorithm 5.1. 

5.1.1 RanSaC based Homography estimation 

    Often the tracks estimated through the optical flow based tracking contain spurious tracks that 

don’t conform to the plane to plane homography during the robot motion. Due to this there are lot 

of outliers in the tracks that often corrupt the estimate of the homography matrix. The estimate of 

Objective 

Given 𝑛 ≥ 4 2D point correspondences {𝑥𝑖 ↔ 𝑥𝑖
′ } inclusive of outliers, to determine the inlier 

point correspondences that help estimate the homography matrix H relating the point 

correspondences as xi = H xi
′. 

Algorithm 

1. Select four point correspondences at random from that set of 𝑛 point 

correspondences 𝑥𝑖 ↔ 𝑥𝑖
′. 

2. Computer the homography matrix H using these 4 point correspondences using the DLT 

algorithm mentioned above. 

3. Compute the metric values to see if the equation ∥ 𝐱𝐢
′ − H𝐱𝐢 ∥ <  𝜀 is satisfied, for each 

of the remaining point correspondences. The ones that satisfy are the inliers. 

4. Repeat the above steps for a finite number of times and keep the largest set of inliers at 

the end. 

5. Refine the homography matrix estimated to obtain a least-squares solution from the 

inliers.  

Algorithm 5.2. RanSaC based estimation of Homography 
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outliers and the removal is often seen as a model fitting problem. This problem can be solved 

efficiently through the use of Random Sample Consensus algorithm (RanSaC). The RanSaC 

algorithm is capable of sifting inliers from a data corrupted by outliers. This done by randomly 

selecting a subset of data pints, just enough to form a model hypothesis. The remaining data points 

are checked to see to how well they fit into this model. This process is repeated with a new set of 

random data points selected to form a new hypothesis. The inlier subset with the highest cardinality 

is saved as the inlier set after all the iterations. The RanSaC algorithm may now be used in the 

context of Homography matrix estimation and is given in Algorithm 5.2. 

 

5.2 Decomposition of Homography matrix 

The homography matrix obtained above relates the coordinates on one plane to those on the other. 

This relation is obtained is given by the below equation 5.1. The homography matrix may be 

decomposed into its constituent elements as given in [12] as – 

H = R +
1

d
𝐭T𝐧 

             5.8 

Where the rotation matrix R gives the rotation of the plane with respect to the origin, the vector 

𝐭 gives the translation between the two planes related by H. The normal to the plane is given by 

the vector 𝐧. Element d is the distance of the plane from the centre of coordinate system it has 

been set to one for mathematical tractability. Rotation matrix R is a  ℝ3×3 matrix with R ⊂ SO(3). 

Determinant of R is unity and is one of the constraints levied on R. The rotation matrix when 

applied to a position vector rotates it in 3D space.  
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This rotation transformation by the R matrix may be decomposed into its constituent elements as 

– 

R =  RxRyRz                5.9 

 Where each of these corresponds to a transformation vector for rotation around the x, y and z 

axes respectively. They are specified as given below – 

Rx(𝜃) =  [
1 0 0
0 cos 𝜃 − sin 𝜃
0 sin 𝜃     cos 𝜃

] 

Ry(𝜃) =  [
cos 𝜃 0 sin 𝜃

0 1 0
−sin 𝜃 0     cos 𝜃

] 

Rz(𝜃) =  [
 cos 𝜃 −sin 𝜃 0
sin 𝜃 cos 𝜃 0

0 0 1
] 

 

            

 

 

 

 

             5.10 

Each of the above specifies a transformation matrix as a function of 𝜃, that is capable of rotating 

the position vector by a specified angle about the specified axis. The illustration of the 

homography matrix components for homography is given below is given below. 

Fig 5.1 Illustration of the rotation angle and the plane normal of homography 
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As it can be seen above the plane normal 𝐧 is a vector giving the direction cosines of the normal 

to the plane under consideration. The rotation matrix is defined by the value of the angle of rotation 

about the corresponding axis. Here 𝜃𝑦 gives the angle of rotation about the Y-axis and the rotation 

is given in terms of the transformation matrix as presented in equation 5.10.  

 

Fig 5.2 a) Reference frame rotated by 
𝝅

𝟐
 about the x-axis b) Rotated by 

𝝅

𝟐
 about the y-axis 

The figure given in Fig 5.2 illustrates the rotation of the reference frame about the x and y axes by 

𝜋

2
 radians. The rotation part of the homography decomposition gives the relative rotation of the 

second plane with respect to the first plane. The translation gives the translation between the 

coordinate systems of the second plane and the first plane.  The rotation matrix need a reference 

Fig 5.3 The six normals of a cube 
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initial orientation of the plane with respect to which it is applied. This is defined by the plane 

normal 𝐧 that gives the direction cosines of the plane normal. 

    Different planar surfaces that make up the environment have different normal. We are interested 

in those planes that make up the floor and the walls. The floor and the walls are modelled in this 

manner and the feature tracks are fir into the appropriate models to yield the motion estimates of 

the camera as it moves through the corridor. 

 

5.3 Planar Model of the Environment 

The environment has been modelled as one made up on planar segments, which is typical for a 

Manhattan world assumption. Such an assumption as suggested in [r10] is not a strong one owing 

to the usual regularity in indoor structures such as corridors, hallways…etc. The planar 

segmentation done using the estimated vanishing point is used to for an approximate hypothesis 

of the planes that make up the environment. The Floor and wall planes are key her and their 

mathematical modelling is of utmost importance. The mathematical models of the floor and wall 

planes are illustrated in the next sections.  

 

5.3.1 Floor Plane model 

The floor is a characterised by the plane normal of 𝐧 =  [0 1 0]T, which implies it’s a plane whose 

normal is along the Y –axis figure 5.4 illustrates the different elements of the homography matrix 

– 
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The translation vector and the rotation matrix along with the plane normal form the homography 

matrix H. The homography matrix is decomposed as given below in equation 5.7. The plane 

normal in case of the floor plane is given by 𝐧 = [0 1 0]𝑇 which hence transforms the above 

equation into the following form – 

                   𝐻𝒊 = 𝑅𝑖 + [𝑡𝑥
𝑖 ,  𝑡𝑦

𝑖 , 𝑡𝑧
𝑖 ]

𝑇
[0, 1, 0]              5.11 

Here Hi is the 𝑖𝑡ℎ  plane to plane homography estimated via tracking the key points between the 𝑖𝑡ℎ  

frame and the (𝑖 − 1)𝑡ℎ. The thus obtained point correspondences are used for the purpose of 

estimating the homography matrix using the RanSaC based approach to remove the outliers. This 

is followed by the inlier estimation and refinement to obtain the best approximation homography 

by solving the over determined system of equations in the least square sense. The above mentioned 

matrix Hi is obtained via the previously mentioned steps. The decomposition of this matrix into its 

constituent elements as defined by equation 5.7 involves an indirect approach. The above equation 

when expanded transforms into the following form – 

𝐇𝒊 = [

cos(𝜃𝑦
𝑖 ) tx

i sin(𝜃𝑦
𝑖 )

0 ty
i + 1 0

−sin(𝜃𝑦
𝑖 ) tz

i cos(θy
i )

] 

             

           5.12 

Y 

Z 

X 

𝒏

= [𝟎 𝟏 𝟎]

Floor 

𝑹𝒚(𝜽) 

Fig 5.4 Floor plane model with its normal and the axis of rotation 
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Here the vector 𝐭 =  [tx
i   ty

i   tz
i ]

T
 gives the translation undergone by the plane from one frame to 

the other. This indirectly gives the cameras motion trajectory. This model is compared with the 

homography matrix as illustrated in [13]. The comparison is not straight forward as the 

homography matrix is obtained is defined at some arbitrary scale. 

    To counter the effects of the arbitrary scale, the constraints imposed on the terms by the basic 

equation of trigonometry that tells the sum of squares of cosine and sine of an angle need to be 

one-needs to be applied here too. Hence to ensure this the obtained homography matrix estimate 

at the 𝑖𝑡ℎ  step is normalized by diving the elements of the matrix by a constant (h11 + h12)
1

2. Once 

done the translation matrix may be directly obtained from their corresponding places in the new 

normalized homography matrix 𝐇𝐢. The elements [ℎ12  ℎ22 − 1   ℎ32] together form the translation 

vector of the homography matrix. The rotation matrix R is defined only by one of the three Euler 

angles 𝜃𝑦 as the robots angular pose variation along the remaining two axes has been assumed to 

be invalid. This is because of the Manhattan World assumption made in regard to the environment 

that restricts the floor plane to a flat and even surface. Assumption is made about the knowledge 

of the vertical direction thus making the pitch and roll angles 𝜃𝑥 and 𝜃𝑧  thus the images are pre 

rotated prior to the processing stage. 

    The rotation matrix 𝑅𝑦
𝑖  is obtained using the appropriate equation from equation 5.8 and the 

necessary 𝜃 value of the angular rotation may be obtained using the values h11 or h13. Once 

obtained, the rotation matrix gives the instantaneous rotation of the plane as the plane underwent 

motion due to the robot’s movement. This has to be appended to the initial pose of the robot to 

estimate the instantaneous absolute pose of the robot.  The robot pose at i =  0 is to be known 
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beforehand. The total rotation or translation is estimated with respect to the initial pose of the 

robot. 

 

5.3.2 Wall Plane Model 

The wall planes that form the environment need to be modelled differently because of the fact that 

the normal to the plane are no more constant and vary as the robots pose changes. However, the 

plane normal might be put under some constraints as we have knowledge about the vertical 

direction. The plane normal 𝐧 of the wall plane is of the form 𝐧𝐢 = [𝑛𝑥
𝑖   0  𝑛𝑧

𝑖 ]
𝑻
 which is the 

instantaneous direction of the plane normal. The wall plane model is compared against the 

homography matrix obtained by tracking feature points on the wall plane. This approach is very 

similar to the one mentioned above except that the wall planes are modelled and the homography 

matrix obtained by tracking the features along the wall plane is compared against this model. The 

homography matrix is obtained by and in its decomposed form is a s given below, with the distance 

d set to unity– 

           𝐻𝑖 = 𝑅𝑖+[𝑡𝑥
𝑖 ,  𝑡𝑦

𝑖 , 𝑡𝑧
𝑖 ]

𝑇
[𝑛𝑥

𝑖 , 0,  𝑛𝑧
𝑖 ]                      5.13 

 

The figure 5.5 better illustrates the plane normal and the rotation in the camera coordinate 

system. The equation 5.11 when expanded turns into the following form given – 

𝑯𝒊 = [

cos(𝜃𝑦
𝑖 ) + 𝑛𝑥

𝑖 𝑡𝑥
𝑖 0 sin(𝜃𝑦

𝑖 ) + 𝑛𝑧
𝑖 𝑡𝑥

𝑖

𝑛𝑥
𝑖 𝑡𝑦

𝑖 1 𝑛𝑧
𝑖 𝑡𝑦

𝑖

𝑛𝑥
𝑖 𝑡𝑧

𝑖 − sin(𝜃𝑦
𝑖 ) 0 cos(𝜃𝑦

𝑖 ) + 𝑛𝑧
𝑖 𝑡𝑧

𝑖

] 

      

         5.14 



59 
 

Proper normalizing of the homography matrix is essential in this case. This is done by dividing the 

elements of the homography matrix by h22.The translation vector is obtained individually first by  

 

Fig 5.5. Normal of camera image plane making angle 𝜽𝒏 with the Z-axis 

estimating using 𝑡𝑦 = ±(h21
2 + h23

2 )
1

2 . Here 𝑛𝑥 and 𝑛𝑧 are given by sin (𝜃𝑛) and 𝑐𝑜𝑠( 𝜃𝑛) 

respectively. The two solutions may be used to estimate 𝑛𝑥 , 𝑛𝑧  as – 

𝑛𝑥
𝑖 =

h21
i

𝑡𝑦
𝑖

  , 𝑛𝑧 =
h23

i

𝑡𝑦
𝑖

         5.15 

This results in a pair of normals one each for each sign of the 𝑡𝑦 solution. The solution to 𝜃𝑦is 

obtained by solving for the equations ℎ31 and ℎ33. The proper normal among the two is the one 

that produces 𝑡𝑧 in the direction of the robot’s motion. The translation terms may be obtained using 

the following relations as illustrated in [13] using the entries of the normalized homography matrix 

Hi. 
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𝑡𝑥 =
h11

i − cos(𝜃𝑦
𝑖 )

𝑛𝑥
𝑖

 

𝑡𝑧 =
h33

i − cos(𝜃𝑦
𝑖 )

𝑛𝑧
𝑖

 

       

            5.16 

The thus obtained translation and rotation parameters need to be appended to the previously 

estimated rotation and translation parameters to obtain the absolute pose of the camera mounted 

atop the robot. This appending operation may be done as illustrated below, which gives the total 

pose of the robot. Let RT be the total angular pose of the robot pose of the robot. Initially it is 

assumed to be identity matrixI, implying that the robot is oriented at zero Euler angles i.e.— 

RT = Rx(0). Ry(0). Rz(0)         5.17 

The relative change is angular pose is appended as – 

RT
i = RT

i−1 Ri         5.18 

Similar the translation is appended as – 

𝑡𝑇
𝑖 = 𝑡𝑇

𝑖−1 + 𝑡𝑖         5.19 

Here 𝑡𝑇
𝑖  is the absolute pose whose initial state at step 𝑖 = 0 is known. And 𝑡𝑖 is the relative change 

in the translation parameter estimated by tracking key points over consecutive frames as the robot 

moved. This way the robot motion was estimated using the planar model of the environment. 

5.4 Conclusion 

A planar model of the environment was used in the estimation of the motion trajectory for vision 

based steering of the mobile robot platform. This was done by using the vanishing point to form 
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an approximate model of the environment. The vanishing point was estimated using line detection 

followed by estimation of vanishing point using the RanSaC based approach.  

    The RanSaC based approach was used in two instance, at the VP estimation stage and then the 

homography estimation step. At both stages, this was done to sift the inliers from data points 

corrupted by spurious noise in the optical flow tracks as well as the imperfections in the line 

detection step during the vanishing point estimation stage. The DLT based approach to 

homography estimation was also discussed in detail and the RanSaC based approach in the 

presence of outliers is also outlined. The environment modelling done under the Manhattan World 

constraints were clearly illustrated in section 5.3.1 and 5.3.2. This was followed by comparing the 

obtained homography matrix to the pre-defined models of the planes to estimate the motion of the 

robot as it traversed the environment. 

 

 

 

 

 

 

 

 

 

 

 

 



62 
 

Chapter 6                   

EXPERIMENTAL RESULTS AND DISCUSSION 

 

6.1 Results and Discussion 

The experiments were carried out on the University of Michigan Dataset [7, 8] which consisted of 

long sequence of video frames taken as the robot navigated the indoor environments. A camera 

was mounted atop a moving platform and the ground truth was estimated used a laser range finder. 

The estimation of the robots ground truth pose was done using an occupancy grid based algorithm. 

The camera calibration matrix was also provided by the data set and the images were corrected 

beforehand for distortion incurred during the imaging process. The camera setup place at zero 

pitch and roll angles as assumed during the motion estimation stage. The camera set up of the 

dataset recording platform of the University of Michigan Indoor Navigation Dataset [7, 8].  

 

 

Fig 6.1 Above- the indoor video acquisition setup and snapshot of the four video sequences. Below – the top 

view of different trajectories taken by the mobile platform in the corridor. 
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For each video sequences, an estimated camera pose in each frame of the video was provided in 

the dataset. It provided with information of the camera’s pose at each frame when it was captured. 

The pose was provided in the form of its 𝒙, 𝒚 and 𝜽 values. The cameras ground truth poses were 

estimated using an occupancy grid mapping algorithm. The intrinsic parameters of the camera used 

i.e. the camera calibration matrix was also provided. The intrinsic parameters of the cameras are – 

        Focal length     𝑓𝑐 =  [ 391.689294937162117 392.998178928112054 ] 

        Principal point 𝑐𝑐 =  [ 346.792888397916727 145.190086296047753 ] 

The distortion in the images has been corrected. The camera was set-up so that there was zero 

tilt and roll angle with respect to the ground. The camera has a fixed height (0.47 m) with the 

ground throughout the video. 

 

Fig 6.2 Montage of the frames and the ground plane tracks ‘T 2’ Sequence 
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Fig 6.3 Detected Vanishing Point and the corresponding planar segmentation 

 

The above image is a montage of several frames of the ‘+’ sequence of the video in which the 

vanishing point is detected and the the planar segmentaion of the image has been done. This is 

done to segment the image into its planar components. The Manhattan World assumption works 

in our favour and helps make a good approximation of the structure in the environment. The 

Vanishing Point is detected using the RanSaC based approach as suggested in the previous 

sections.The  thus obtained imageis segmented based on the VP location and  the dominant edges 

in the image as suggested in the previous section. Sometimes the estimate of the VP was not 

accurate which can however be skipped by assuming that the distance change in the VP is not that 

significant over two consecutive frames.  
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Above is a montage of the different frames of the ‘+’ Sequence with the tracking being done only 

in the masked region. The masks for each frame are obtained by making use of the Vanishing Point 

of that frame and segmenting the image into the respective planar components as suggested and 

illustrated above. Each of the frame is probed for key points which are then tracked in the next 

frame. The tracks are processed to estimate a homography that relates the point correspondences. 

Fig 6.4 Montage of the frames and the ground plane tracks ‘+’ Sequence 
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Fig 6.5 above – Plot of the Camera Trajectory (‘ + ’ Sequence) and below – Squared error plot of the X, Z 

estimates of Camera Pose. 
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Fig 6.6 above – Plot of the Camera Trajectory (‘T 2’ Sequence) and below – Squared error plot of the X, Z 

estimates of Camera Pose. 
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Fig 6.7. Plot of the estimated camera pose against the ground truth poses of the camera (‘+’ Sequence) 

 

Fig 6.8. Plot of the estimated camera pose against the ground truth poses of the camera (‘T 2’ Sequence) 

The two previous plots of the estimated and the obtained trajectories have a commonality between 

the two. This similarity becomes further evident in the form of the increase in error as the camera 

reaches intersection in the corridor paths. This is due to the accumulated direction drift resulting 

from the inherent error in the pose estimation. It is also a result of the lack of vanishing point 

location as the camera moves closer to the corridor terminus points. Since the VP location is 
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unknown, a proper mask for the ground plane may not the present resulting in an improper 

homography being fit into the point correspondences.  

 

6.2 Conclusion and Future Work 

    The use of Vanishing Points in the estimation of the camera motion seems to have an advantage 

over the traditional ground plane based tracking approaches. This is mainly due to the solution to 

problem of virtual plane which has been addressed through the use of the Vanishing Points. The 

RanSaC based approaches used in the context of Homography estimation as well as its use in the 

finding of the Vanishing Point proves to be efficient in sifting the inliers even when corrupted by 

outliers. Most of the outliers in the Homography estimation stage have been observed to be due to 

spurious tracks and some due to the points that belong to other planes. The problem of error 

accumulation discussed above needs to be addressed. Also, the error due to lack of proper 

vanishing points at the end of a path in the corridor video sequences needs additional attention. 

The pose drift may be reduced through the use of Kalman filter based pose refinement by 

modelling the motion of the camera. Also the use of landmarks in the pose estimation may help 

further reduce the error at the endings. Absolute pose estimation may be done through key point 

based recognition and localization. This is necessary only at the end location of a straight path. 

Also, the assumption that – the environment is devoid of any obstacles – is relatively strong as in 

reality there may be obstacles in the environment. The use of obstacle detection algorithms may 

further increase the scope of the vanishing point based camera motion estimation as it increases 

the accuracy of the estimated camera pose trajectory. 
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