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ABSTRACT 

In nature spatial variability of the soil is inevitable. The analysis of such unpredictable 

material only on the basis of experimental, finite element method and other traditionally 

available methods is reliable, but overall modeling based on these methods makes it more 

complex and this problem necessitated the usage of statistical models to develop some 

empirical and semi empirical methods with the obtained input and output data.  

 

Many statistical methods came from the past outperforming one another. Since the efficiency 

of certain tool also depends on the data chosen, the developed models though showed good 

results poor generalization was observed for some of the complex problems.  

 

Functional networks introduced by Castillo as an alternative to artificial neural network 

(ANN), in which functions are learned instead of weights, and also the functions are random 

chosen, unlike ANN they are constrained to certain functions. The selection of topology 

depends on both domain knowledge i.e. associativity, commutativity and others, where as 

ANN is a black box which blindly access the data by increasing the weights ( trial and error 

process) 

 

The objective of this study is to show how functional network can be effectively used to 

model certain problems in geotechnical engineering. In this thesis four examples are 

considered under study (1) Prediction of lateral load capacity of piles in clay, (2) Prediction 

of factor of safety of slope, (3) Uplift capacity of suction caisson in clay, (4) Swelling 

pressure in clays, and the results are analyzed based on certain criterion like correlation 

coefficient, root mean square error, efficiency, cumulative probability distribution function. 

 

The observed results are also compared with other statistical methods like ANN, SVM, 

MGGP, etc and it was observed that FN almost added a rung over all those methods and this 

shows that this method can be better used in every aspect of geotechnical engineering. 
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CHAPTER 1 

 

INTRODUCTION 
 

1.1GEENERAL 

 

Soil in nature formed due to weathering and decaying process. The mode of transportation, 

temperature and many factors affect the soil existence and hence its properties vary from 

place to place. Most of the conventional methods in analyzing the concepts of soil mechanics 

include few assumptions inorder to simplify the solution and come to a conclusion. All these 

traditional methods excel its performance in the practical applications. But still because of the 

limitations exercised in all these cases many theories came into existence like numerical 

methods in geotechnical engineering, Theoretical soil mechanics, Finite element methods etc. 

The traditional methods in analyzing the problems in civil engineering mostly follow the 

concepts of mechanics, empirical correlations, experimental analysis, finite element method 

etc., 

Because of its uncertain behavior, spatial variability, the constitutive modeling of soil is 

difficult compared to other engineering materials. Depending on case histories/field tests, 

statistically derived empirical methods and semi empirical methods based on analytical 

methods are more famous in such cases. The success and failure of these empirical and semi 

empirical methods used, mainly depends on statistical/theoretical model chosen for the 

system to be analyzed matching the input output data and statistical methods used to find out 

model parameters (Das and Basudhar 2006). 

Very often it is difficult to develop theoretical/statistical models due to complex nature of the 

problem and uncertainty in soil parameters. These are situations where data driven approach 

have been found to more appropriate than model oriented approach. To overcome such 

problems Functional Network a neural based paradigm has been used as an application in 

Geotechnical Engineering problems. Within a short period of time it has cut its significance 

in the various fields in engineering and sciences. This has given a spurt in the research 

activities in the art of applying such methods to solve real life problems highlighting the 

latent capabilities and drawbacks of such methods. 
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Functional Network is an extension over artificial neural network (ANN) introduced by 

Enrique Castillo (1998). ANN is inspired by behavior of the brain, which consist of one or 

several layers of neurons, or computing units, connected by links. ANN has been identified as 

a powerful tool to learn and reproduce systems in various fields of applications. Most 

important property of neural networks is their ability to learn from data. The process of 

selecting the number of hidden layers and neuron in the hidden layer is by trial and error until 

good fit of the data is obtained. The poor generalization and the constraints of ANN lead to 

develop FN, which was a mathematical based analysis. The analysis of problem in functional 

network is based on the data; topology selection. It takes into account the real world 

problems, and uses both domain knowledge and data knowledge to produce the output more 

accurately. 

 This idea of functional network was inoculated by Castillo from the fact that everything in 

this world was a function of something (Castillo 1998).(Castillo1998; Castillo et al. 2000a)  

Gomez (Castillo and Ruiz-Cobo1992 and Castillo et al). (Castillo et al. 1998, 2000b) 

developed functional network into a powerful tool as an alternative to Artificial Neural 

Network (ANN). FN is coined as a novel generalization of neural network, this is because of 

the fact that it takes into account both domain knowledge and data knowledge to estimate the 

unknown neuron functions. The modeling of the initial topology of the network is based on 

the properties of the real world. This is further simplified using the functional equations, and 

further by using suitable basis function the network is learned and thus one can come up with 

a simplified equation. 

 

The functional network: a neural based paradigm. The key features which make it look 

unique to that of the standard neural network are explained below: 

 

1. In FN, the selection of topology can be done on the basis of the data knowledge, domain 

knowledge or both, whereas in ANN only the data is used.  

 

2. Unlike in the Neural Network where the functions are known and the weights associated 

with the functions are learned, in FN the functions are learned both in the stage of structural 

learning (it involves obtaining thee simplified network) and parametric learning (for 

obtaining optimal neuron functions) 
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3. In FN, arbitrary functions can be used for neurons, where as in ANN they are fixed 

sigmoidal functions. 

 

4. The weights in the ANN is incorporated with the neural functions in FN. 

5. The neural functions in functional networks can be multi argument and multivariate. 

 

In addition to the above, to get effective results with neural network the data has to be 

normalized in the range off 0-1, in FN there is no such restriction, instead one can say that the 

Neural Networks are the special case of functional network. 

 

1.2 Scope and Objective: 

 

The objective of this study is to provide an improved intelligent approach via the use of 

functional network to develop some compact models in the field of Geotechnical engineering. 

Because of the versatility and flexibility of the FN, any problem can be easily modeled in the 

functional network. Functional network is becoming more reliable than statistical method due 

to their special attributes of identifying complex system when the input and output are known 

from either laboratory and field experimentation. However, there is not any comprehensive 

literature on critical evaluation of application of modeling aspects of ANN in geotechnical 

engineering. Since, the efficiency of all numerical methods in general problem dependent and 

the techniques used in solving the problem depend on the efficiency one can use the tool. 

 

The scope of this project is to model the following problems in functional network: 

 

1. Prediction of lateral load capacity of piles in clay  

2. Prediction of factor of safety of slope 

3. Uplift capacity of suction caisson in clay 

4. Swelling pressure in clays 
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CHAPTER 2 
 

LITERATURE REVIEW 
 

 
The ideology of solving a problem is an art; in this context nature is the ideal for any task to 
be accomplished. The two main tools used by the nature in such circumstances are:  
 
1. Learning 
2. Reduction in disorder 
 
The nature doesn’t use any Mathematics, but it is flexible, adaptive and clever. It is tolerant 
of imprecision, uncertainty, partial truth and approximation. It has a family of problem 
solving methods which uses biological reasoning. 

The real world problems are pervasively imprecise and uncertain. Most of the difficult 
problems in the engineering are inverse problems. Very effective methods in solving these 
are by learning from nature’s problem solving strategies, so scientists inspired from human 
mind and introduced Soft Computing techniques, which analogous to nature shows gradual 
improvement by random search. 

 Soft computing techniques (SCT), though this term can’t be precisely defined, these are used 
to solve many complex problems in this world. One way to define it is mimicking the natural 
creatures: plants, animals, human beings, which act as a chain and tackle the situation. The 
real world problems are pervasively imprecise and uncertain, since the precision and 
accuracy carry a cost, the SCT exploit the tolerance of imprecision, uncertainty, partial truth 
and approximation to achieve tractability, robustness and low solution cost. It uses nature’s 
strategy of reduction in disorder and learning. SCT are different from conventional 
mathematically based methods. The principal constituents i.e. tools of SCT are Fuzzy logic, 
Neural Networks, Support Vector machine, Machine learning and Probabilistic learning. 
They operate with imprecise tolerance, Non-universality, Functional non-uniqueness. 

Earlier, standard computing methods are used for information processing, in which 
computations are performed in sequential order. Some of the characteristics while handling 
the information adopted by them were as follows: 

1. The knowledge was explicitly represented using rules, probabilistic models and semantic 
nets etc… 

2. The human logical reasoning was imitated for problem solving, focusing on actions and 
underlying motives (rule changing, probabilistic reference), and 

3. The information was sequentially processed. 

The development of some artificial intelligence fields such as pattern recognition, where 
there is necessity of logical reasoning rather than, explicit representation of knowledge. 
Therefore, the standard algorithm approach and computational structures were inappropriate 
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in solving these problems. These kinds of problems which are hard, intractable and difficult 
to formulate using conventional computing techniques, gave place to new computing 
paradigms like parallel computation and neural networks. The key element of these 
paradigms is a novel computational structure which composed of several interconnected 
elements for processing and operating simultaneously unlike traditional serial processing 
computations. 

 Neural Networks took its role in late 1950’s but due to lack of technology and breakthroughs 
in other artificial intelligence techniques little progress were made. The increasing power of 
available computers in the 1970’s and the development of efficient parallel computing 
techniques renewed the interest in this field among computer and artificial intelligence 
scientists.  

Artificial neural networks were introduced as alternative computational structures, created 
with the aim of reproducing the functions of human brain. The human brain is composed of 
several interconnected neurons which receive electrochemical signals from other neurons 
through synaptic junctions which connect the axon of the emitting and dendrites of the 
receiving neurons. Based on the received input the neuron computes and sends its own signal. 
The emission process is computed by the internal potential associated with the neuron. If this 
potential is a threshold, an electrical pulse is sent down the axon; otherwise no signal is sent. 

Unlike conventional computing methods neural networks follow rigid programmed rules. 
Rather they use a learn-by-analogy learning processi.e. connection weights are automatically 
adjusted to produce a representative set of training patterns with the aim of capturing the 
structure of the problem. This is also inspired in the way learning occurs in neurons, changing 
effectiveness of the synapses, so the influence of one neuron on the other changes. 

Functional Networks was introduced by Castillo (1998) to overcome the draw backs in neural 
networks.  

Castillo et al. 2000 have applied FNs to two structural engineering in deriving prediction of 

shear, moment, slope, and deflection of a beam. 

S Rajsekaran researched in Functional Network in Structural engineering with the by using 

associativity functional network and analyzed five problems in structural engineering, and he 

modeled the slope, moment, deflection of the beam done by Castillo using Orthogonal 

equations. 

 

Ahmed Adeniran et.al also used associativity functional network in Softsensor for 

formationporosity and water saturation in oil Wells. 
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Many works are carried out by Castillo et.al and established its wide variety of applications 

in engineering and sciences. The scope of this project is to effectively use functional network 

in modeling problems in geotechnical engineering. In this thesis a narrow field in functional 

network was used in modeling problems, but still some of the problems in geotechnical 

engineering can’t be solved with this narrow field analysis. An overview of knowledge in 

functional network was presented here. According to the data present, by supplementing with 

the proper domain knowledge functional network can be effectively used to solve any 

problem in any field. 

In Geotechnical engineering the application of functional network was very less only one 

literature was available for determination of permeability in a carbonate reservoir (El-

sebakhy et.al). To this extent no more research much more observed in the geotechnical 

engineering and this research provides it application in some of the fields in geotechnical 

engineering. 
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CHAPTER 3 

METHODOLOGY 

3.1 INTRODUCTION 

Functional Networks, a novel generalization of neural networks that bring together domain 

knowledge and data knowledge inorder to determine the structure of the network and to 

estimate the unknown neuron functions. In functional networks the arbitrary neural functions 

are allowed, and also they assumed to be multiargument and vectortion length principle is 

used to propose a quality measure to be used in the selection procedure. 

Depending on the topology of the neural network the output units are written in several 

different forms and leads to a system of functional equations, which are further simplified, 

which leads the multidimensional arguments reduce to fewer arguments. The crucial step in 

functional network lies in the learning, which deals with both domain and data knowledge. 

The two types of learning are as follows: 

1. Structural Learning: 

(a) It is done based on the initial topology and some properties available according to the 

design 

(b) The posterior simplification using functional equations, leading to a simpler 

equivalent structure 

2. Parametric Learning: 

 It concerns about the estimation of the neuron functions, and their associated 

parameters from the available data. 

3.2 DEFINITION OF FUNCTIONAL NETWORK: 

A functional network is a pair (X,U), where X is a set of nodes and U=((Yi,Fi,Zi)/i=1,..,n} is a 

set of functional units over X, which satisfies the following conditions: Every Xi € X must be 

either an input or an output node of at least one functional unit in Y. 

3.3 ELEMENTS OF FUNCTIONAL NETWORK: 

The functional Network consists of the following elements: 
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1. Storing Units 

• One layer of Input storing units for the input data ,,, 321 xxx .etc 

• One layer of output storing units which contains output data .54 , ff  

• One or several layers of processing units evaluate inputs from the previous layer and 

delivers to the next layer, 6f . 

 

2. Layer of computing units, :,, 321 fff  A neuron in the computing unit evaluates a set of 

input   values coming from a previous layer and delivers a set of output values of the next 

layer. 

3. A set of directed links: The intermediate functions are not arbitrary but depend on the 

structure of the network. Such as ),,( 65447 xxxfx =  as in Fig. 3.1 

 

 

In addition to the data, information about the other properties of the functional network like 

the associative, commutative and invariance are used in the selection of the final network of 

the model.  

3.4 WORKING WITH FUNCTIONAL NETWORK: 

Fig 3.1: Functional Network 

1x
 

2x  

3x  

4x  
f1 

f2 

f3 

f4 

f5 

f6 

5x  

6x  

7x
 

8x  
9x
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The sequence of steps to be followed while working with the functional network was 

presented as a flow chart in fig 3.2 and the detailed description of each step was explained in 

the later section followed. 

 

 

Step1: Statement of the problem: This is the first crucial step in functional network, the 

problem taken to be understood carefully.  

Step2: Initial Topology: Based on the knowledge of the problem the initial functional 

network is selected. Based on the properties and the initial topology has to be selected which 

lead to a clear and single network structure.  

Statement of the problem 

Initial Topology 

Simplify initial topology using Functional Equation 

Arrive at conditions to hold for uniqueness 

Data collection 

Sub model selection and parametric learning 

Model validation 

If the above is satisfied the model can be readily used 

Fig 3.2 Working with Functional Network 
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Step 3: Simplification or Structural learning: In these functional equations play main tool for 

simplifying the functional networks.  

 

Step 4: Uniqueness of representation: Before learning a functional network, a unique 

representation of the structure is to be obtained. 

Step 5: Data collection: For learning, the data is to be collected 

Step 6:Parametric learning: The neural functions are estimated based in the given data. This 

is done by considering the linear combinations of appropriate functional families and using 

some minimization methods to obtain the optimal coefficients.  

Step 7:Model validation: the test for the cross validation of the model is performed, and the 

error check is important in this. 

Step 8: If the validation process is satisfactory the model is ready to be used. 

3.5 FUNCTIONAL EQUATIONS: 

While working with functional Network some knowledge of functional equations is 

necessary without which one will be constrained to the fixed number of functional network 

and well known topologies, hence this theory helps in two ways: 

1. While simplification the functional equations are to be solved to obtain the simplified 

network. 

2. In the Uniqueness representation step, to know the number of degrees of freedom  

 

This aims to establish a connection between the physical, economical or engineering problem 

and the resulting equation. The definition of the functional equation and the general solutions 

of the most important functional equations is explained. 

3.5.1 Definition of Functional Equation (Castillo  1998) 

A Functional equation is an equation in which the unknowns are functions, excluding 

differential and integral equations. 

3.5.2 Examples of Functional Equations: 
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3.5.2.1 Cauchy’s Equation 

The four most common Cauchy’s functional equation was given and the proofs of the 

theorem  can be found in Aczel(1966) and Castillo and Ruiz-Cobo (1992) 

Theorem 3.1:  If the equation    

 

)10.3(,;)()()( Ryxyfxfyxf ∈+=+
 

is satisfied for all real yx,  and if the function )(xf is (a) continuous at a point, or (b) 

nonnegative for small x, or (c) bounded in interval or (d) integrable or (e) measurable, then 

)11.3(,)( Rxcxxf ∈=
where c is an arbitrary constant. 

Theorem 3.2: The most general solutions of the functional equation 

)12.3(,,),()()( ++∈∈=+ RyxorRyxyfxfyxf
which are continuous at a point are 

)13.3(.0)()exp()( == xfandcxxf
 

Theorem 3.3: The most general solution of the functional equation 

)14.3(,,),()()( Tyxyfxfxyf ∈+=
 

which are continuous at a point, are 
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Theorem 3.4: The most general solutions of the functional equation 

  )16.3(,,),()()( Tyxyfxfxyf ∈=  
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which are continuous at a point, are 
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where c is an arbitrary real number, together with 
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which are common to the three domains. 

3.5.2.2 The Pexider’s Equations: 

Here, the solutions of the four most common pexider’s functional equations are described 

Theorem 3.5: Pexider’s main equation 

f(x+y) = g(x)+h(y)  ; x,y ∈ R or [a,b] with a,b ∈ R                                                      (3.18) 

with f : (a) continuous at a point , or (b) non- negative for small x, or  (c) bounded in an 

interval, is 

   f(x) = Ax + B + C ; g(x) =Ax+ B ; h(x) = Ax + C ,                                                   (3.19) 

where A,B and C are arbitrary constants. 

Theorem 3.6:  The most general system of solutions of  

                   f(xy) = g(x) + h(x) ;  x,y  ∈ R  or  R++  or  R –{0},                                    (3.20) 

with f continuous at a point is  
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f(x) = A log( BCx) 

g(x) = A log (Bx)                ; x,y ∈  R++ 

h(x) = A log(Cx) 

f(x) = A log( BC|x|) 

g(x) = A log (B|x|)                ; x,y ∈  R –{0}                                                             

(3.21) 

h(x) = A log(C|x|) 

 

f(x)= A + B ; g(x) =A ;  h(x) = B; 

         if x, y ∈ R or  R-{0} or  R ++ . 

Theorem 3.7:  The most general system of solutions of  

f(x+y) = g(x)+h(y)  ; x,y ∈ R                                                                           

(3.22) 

with f continuous at a point is  

 f(x)=AbeCx; g(x)=AeCx; h(x) = BeCx ,                                                                     (3.23) 

where A,B and C are arbitrary non- zero constants , together with the trivial solutions. 

  f(x) = g(x) = 0; h(x) arbitrary, (3.24) 

  f(x) = h(x) = 0; g(x) arbitrary. 

 

Theorem 3.8:  The most general system of solutions of  

 f(xy) = g(x)h(x) ; x,y ∈R or  R++  or  R –{0},                                                        (3.25) 

with f continuous at a point is  

  f(x) = AB ; g(x) = A; h(x) =B 
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  if x,y ∈ R or  R++or  R –{0},                                                                      (3.26) 

   

  f(x) = AB xC 

g(x) = A xC  

 if  x,y  ∈  R++ (3.27) 

h(x) = B xC 

f(x) = g(x) = 0; h(x) arbitrary, (3.28) 

  f(x) = h(x) = 0; g(x) arbitrary. 

 

f(x) = A B|x|Cf(x) = A B|x|C sgn(x) 

g(x) = A |x|C                or       g(x) = A |x|C sgn(x)                    if   x,y  ∈ R –{0},                                                                     

 h(x) = B |x|C                           h(x) = B |x|C sgn(x) 

 

f(x) =      AB|x|C        x≠ 0    

                 0               x=0 

              g(x) =       A |x|C        x≠ 0   

0         x=0                                   or                                                 (3.29) 

              h(x) =        B |x|C          x≠ 0 

                                    0             x=0 

f(x) =      AB|x|C sgn(x)       x≠ 0    

                 0                          x=0 

              g(x) =       A |x|C sgn(x)      x≠ 0    
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0                  x=0                                 if   x,y  ∈ R  ,                                        

              h(x) =        B |x|C  sgn(x)    x≠ 0 

                                  0                      x=0 

Where A,B and C are arbitrary constants. 

3.5.2.3:  Uniqueness  

Theorem 3.9: Two solutions { f1 , g1, h1 } and { f2 , g2, h2 } of the functional equation (3.28) 

are related by : 

 f2 (x)= f1(x) ; g2(x) = g1(x+ α ; h2 (x) = h1(x) +  β ,                                                (3.30) 

where α and β are arbitrary constants. 

3.5.2.4 The Uniqueness Model Functional Equation: 

Theorem 3.10: (Uniqueness of representation of F(x,y) = k (f(x) = g(y) ) if the function 

F(x,y) 

has the following two representations. 

 F(x,y) = f3
-1 [f1(x) + f2(y)] = g3

-1 [g1(x) + g2(y)], 

   x,y∈ R  or [α,β] with  α,β ∈ R,                                                       (3.31) 

where the functions fi , gi (i=1,3) are continuous and strictly monotonic functions. Then, we 

must have 

f1 (x) = ag1 (x) + b 

  f2 (y) = ag2 (y) + c 

  f3
-1(u)=g3

-1((u-b-c)/a),                                                      (3.32) 

where a,b and c are arbitrary constants. 

3.5.3:  Functional Equations in Functions of Several Variables 
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For the functions involving several unknown input variables with a single output is described 

here, this is the most important generalization of functional equations mostly one come out 

while dealing with the general problems. 

3.5.3.1 The Generalized Associativity Functional Equation  

Theorem 3.11:  (Generalized associativity equation)  

 The general continuous on a real rectangle of the functional equation 

  F[G(x,y),z]=K[x,N(y,z)]                                                                             (3.33) 

With G invertible in both variables, F invertible in the first variable for a fixed value of the 

second variable and K and N invertible in the second variable for a fixed value of the first , is  

F(x,y) =k[f(x) + r(y)], G(x,y) = f-1[p(x) + q (y)], 

K(x,y)=k[p(x)+n(y)],N(x,y)= n-1[q(x) + r(y)],                                                        (3.34) 

Where f,r,k,n,p and q are arbitrary continuous and strictly monotic functions. The two sides 

of (3.33) can be written as  

  K[p(x)+q(y)+r(z)].                                                                                      (3.35) 

Theorem 3.12: (Generalized associativity equation (uniqueness)) 

 Assume there are two sets of functions {k1,p1,r1,q1} and {k2,p2,r2,q2} ∃  

 k1[p1(x)+q1(y)+r1(z)]= k2[p2(x) + q2(y) + r2(z)]                                                      (3.36) 

then we must have 

  k2(u) = k1((u-b-c-d)/a) 

  p2(x) = ap1(x) +b, 

  q2(y) = aq1(y) +c, 

  r2(z) = ar1(z) +d, 

where a,b,c and d are arbitrary constants. 
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In addition to the above several other functional equations can be used. All the above are the 

overview of the kind of functions to be used when dealing with different aspects in functional 

networks. For further study refer (Castillo 1998) 

3.6: MODELS IN FUNCTIONAL NETWORK: 

In analyzing the problems in Functional Network initially, the structure of the network has to 

be chosen. This is followed by simplifying the structure of the network by using the 

functional equations and reducing the number of arguments in the neuron functions. After 

simplification of the functional network, uniqueness of the problem leading to important 

conditions is to be satisfied for the estimation of the model to be correct. In all these aspects 

functional equations play an important role. 

The important functional network models, detailed analyses of the simplification and the 

uniqueness of representation of the problem are presented in the following section. 

Some important functional network models are as follows: 

1. The Uniqueness model 

2. The Associative Model 

3. The Generalizes Associative Model 

4. The Separable Model 

5. The Generalized Bisymmetry Model 

6. Serial Functional Model 

7. Independent Multiple Output Models 

8. Dependent Multiple Output Network 

9. One Layer Functional Network 

 

Though all these models are used in the analyses relevant to the problem under consideration, 

only the above first three are explained here, and description of the other models are not 

much significant and also beyond the scope of the, thesis and for further knowledge refer 

(Castillo 1998). 
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1. THE UNIQUENESS MODEL: 

 

The uniqueness model is an extension of the Associative model. The architecture is 

shown in Fig 3.6, and the output z  can be written as a function of the input x  and y  as 

follows: 

)37.3())()(( 21
1

3 yfxffz += −

 

 

Simplification of the Model:  

 

Since no arrows are convergent to the storing units included in the network, further 

simplification was not possible. 

  

 

 

 

Uniqueness of Representation: 

 

Consider two different triplets of functions { }321 ,, fff  and{ }321 ,, ggg , ∃ their equivalent 

associated functional Network was as follows: 

 

 [ ])()()]()([),( 21
1

321
1 ygxggyfxffyxF +=+= −−    (3.38) 

Fig 3.3: Uniqueness Functional Network 
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bxagxf += )()( 11  

 

cyagxf += )()( 22         (3.39) 

 







 −−

= −

a
cbugxf 1

33 )(  

 

Where a, b and c are arbitrary constants i.e.  if they are replaced in the Eq. 4.2 we obtain the 

same F(x,y), however might be the values of a, b and c are chosen.. 

 

 

 

 

Learning the Model: 

 

Learning the functional Eq. 4.2 is equivalent to learning the functions )(),( 21 xfxf and ).(3 xf  

thus, learning reduces to estimating these functions from the triplet data set 

{ }nixxFxxxx iiiiii ,......2,1);,(|),,( 213321 ==  

 

Minimization can be done using sum of square errors, given by the eqution 

 

)39.3(,)(
1

2

1

2

1 1
333

1

2

1

2

3

∑ ∑ ∑∑∑

∑

= = = ==

=

















−=

=

n

i

m

l s

m

i
sisjsjlli

n

i
j

n

i
j

s

xaaxe

eQ

φφ

 

it is constrained to  

 

)40.3(,3,2,1;)()(
1

00 ==≡ ∑
=

lxaxf l

m

j
ljljl

l

αφ

The learning can be done either using linear model or non linear model (Castillo 1998),where 

lα  and 0x are constants, these are the conditions to achieve the uniqueness of solution. 
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Solving Eq. 4.6 and replacing them in Eq. 4.5, the equation of the coefficient take the form 
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2. ASSOCIATIVITY FUNCTIONAL NETWORK: 

 

 

Assume two inputs x1,x2 and the output x3 is given. The obtained functional network for this 

model is as follows: 

 

)42.3()(
1

∑
=

=
m

i
sisiss axf φ  

Where s=1,2……..ms 

siφ , shape function which can be any polynomial, trigonometric, exponential or any 

admissible function, or simply called shape functions. The function f3 can be expressed as: 

 

)43.3()(
1

3333 ∑
=

=
m

i
iiaxf φ  

From the input functions, error function obtained can be written as:  

)44.3()()()( 332211 xfxfxfe j −+=
 

Minimizing the equation using the sum of  least square error 

Fig 3.4: Associativity Functional Network 
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Subject to constraints 
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α is a real constant. Thus using Lagrangean minimization technique the equation is 

minimized and the constants are obtained. 

The minimum corresponds to
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Where, 

B- matrix of coefficients bij  , a=a1, a2, ……………..am. 

3. SEPERABILITY FUNCTIONAL NETWORK: 
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The general separable model is represented as shown in the figure 

Simplification of the model: 

Let  )(.).........(),()()........(),( 2121 xgxgxgandxfxfxf nn  are two sets of linearly independent 

functions, the general solution is given by: 

This can be written as: 

∑
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         Fig: 3.5 Seperability Functional Network with two inputs and one output 
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Learning the Model: 

For learning the functional conditions least square method technique was obtained, and the 

error can be measured as: 
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4. GENERALIZED ASSOCIATIVITY MODEL: 

The output of the Generalize Associative functional Network can be represented as the 

function of G(x,y) which is a function of inputs  x,y  and the input z, or as a function of 

N(z,y) (a summary of inputs z,y) and  input x, this can be represented with the following 

equation 

  F[G(x,y),z]=K[x,N(y,z)]       

 (3.51) 

4.3.1 Simplification of the model 

The general solution of (4.21), as shown in the Theorem 3.11, is: 

F(x,y) = k[f(x)+r(y)] ; G(x,y) =𝑓−1[p(x)+q(y)]; 

K(x,y) = k[p(x)+n(y)] ; N(x,y) = 𝑛−1[q(x)+r(y)];    

 (3.52) 

Where f, r, k, n, p and q are arbitrary continuous and strictly monotonic functions. 

Substituting (4.22) in (4.21) we get  

F [G(x,y),z] = K[x, N(y ,z)] = u = k(p(x) + q(y) + r(z)].    

 (3.53) 

Thus, the functional network in Figure 4.3(a) is equivalent to the functional network in 

Figure 4.3(b). 
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4.3.2 Uniqueness of Representation 

In Theorem 3.12 we have seen that if there are two sets of functions {𝑘1 ,𝑝1, 𝑞1 , 𝑟1} and {𝑘2 

,𝑝2, 𝑞2 , 𝑟2} such that  

𝑘1 [𝑝1  (𝑥) +  𝑞1(𝑦) + 𝑟1(𝑧) ] = 𝑘2 [𝑝2  (𝑥) +  𝑞2(𝑦) + 𝑟2(𝑧) ] ;                 

(3.54) 

Then  we must have                        

(3.55) 

𝑘2(𝑢) = �
𝑢 − 𝑏 − 𝑐 − 𝑑

𝑎 �  , 

𝑝2  (𝑥) = 𝑎𝑝1  (𝑥) +  𝑏 , 

𝑞2(𝑦) =  𝑎𝑞1(𝑦) +  𝑐 , 

𝑟2(𝑧) =  𝑎𝑟1(𝑧) +  𝑑 , 

Where a, b, c , d are arbitrary constants. Thus, uniqueness of solution requires fixing the 

functions k, p, q and r at a point. 

4.3.3 Learning the Model 

The problem of learning from data, the functional network in Figure 4.3(b) involves 

estimating the functions k, p, q, r in (4.23). To this end, we write (4.23) in the form 

(𝑢) =  𝑝(𝑥) +  𝑞(𝑦) +  𝑟(𝑧),       (3.56) 

 

And define the error 

𝑒𝑖 =  �̂� (𝑥1𝑖) + 𝑞� (𝑥2𝑖) + �̂� (𝑥3𝑖) - 𝑘� (𝑥4𝑖) ; i = 1,…….,n,                                              (3.57) 

Where n is the sample size and {(𝑥1𝑖,𝑥2𝑖,𝑥3𝑖,𝑥4𝑖) | i = 1,……,n} is the observed sample. We 

have used  𝑥1,𝑥2,𝑥3,𝑥4 to denote  x, y, z, u respectively. 
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Suppose that each of the functions is a linear combination of known functions from given 

families, i.e. : 

�̂� (𝑥1) = ∑ 𝑎1𝑗𝑚1
𝑗=1 𝜙1𝑗(𝑥1) ; 𝑞� (𝑥2) = ∑ 𝑎2𝑗𝑚2

𝑗=1 𝜙2𝑗(𝑥2), 

𝑞�(𝑥3)= ∑ 𝑎3𝑗𝑚3
𝑗=1 𝜙3𝑗(𝑥3) ; 𝑘−1�  (𝑥1) = ∑ 𝑎4𝑗𝑚4

𝑗=1 𝜙4𝑗(𝑥4) ,                                                 (3.58) 

Where the coefficients  𝑎𝑘𝑗 are the parameters of the functional network. Then , the sum of 

square errors becomes a linear function of the coefficients   𝑎𝑘𝑗 : 

Q =∑ 𝑒𝑖2𝑛
𝑖=1  = ∑𝑛

𝑖=1 (∑ ∑ 𝑎𝑘𝑗𝑚𝑘
𝑗=1

4
𝑘=1 𝜙𝑘𝑗(𝑥𝑘𝑖))2             (3.59) 

To guarantee the uniqueness of representation we specify the values of the four functions p, 

q, r, 𝑘−1 each at a point, that is : 

 �̂�(𝛼1 ) = ∑ 𝑎1𝑗𝑚1
𝑗=1 𝜙1𝑗(𝛼1) = 𝛽1 ; 

𝑞�(𝛼2 ) = ∑ 𝑎2𝑗𝑚2
𝑗=1 𝜙2𝑗(𝛼2) = 𝛽2 ; 

�̂�(𝛼3 ) = ∑ 𝑎3𝑗𝑚3
𝑗=1 𝜙3𝑗(𝛼3) = 𝛽3 ;       

 (3.60) 

𝑘−1�  (𝛼4 ) =  -  ∑ 𝑎4𝑗𝑚4
𝑗=1 𝜙4𝑗(𝛼4) = 𝛽4 ; 

Where  (𝛼𝑘, 𝛽𝑘); k = 1,2,3,4 are the selected points. Then ,the  Lagrange multipliers 

technique leads to the auxiliary function  

𝑄𝜆  =  ∑𝑛
𝑖=1 (∑ ∑ 𝑎𝑘𝑗𝑚𝑘

𝑗=1
4
𝑘=1 𝜙𝑘𝑗(𝑥𝑘𝑖))2  +  ∑4

𝑘=1 𝜆𝑘( ∑ 𝑎𝑘𝑗𝑚𝑘
𝑗=1 𝜙𝑘𝑗( 𝛼𝑘 ) - 𝛽𝑘 )   (4.31) 

The minimum can be obtained by solving the following system of linear equations, where the 

unknowns are the coefficients in the set  { 𝑎𝑘𝑗 | j = 1,…..,𝑚𝑘; k = 1,2,3,4 } and the multipliers  

𝜆1 ,…….,𝜆4 . 

𝜕𝑄𝜆
𝜕𝑎𝑠𝑟

 = 2 ∑ 𝑒𝑖𝑛
𝑖=1 𝜙𝑠𝑟(𝑥𝑠𝑖) +  𝜆𝑠𝜙𝑠𝑟 ( 𝛼𝑠 ) = 0;  
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𝜕𝑄𝜆
𝜕𝜆𝑠

 = ∑ 𝑎𝑠𝑗𝑚𝑠
𝑗=1 𝜙𝑠𝑗( 𝛼𝑠 ) - 𝛽𝑠 = 0 ;       (3.61) 

Then, solving this linear system of equations we get the optimal neuron functions for a given 

problem. 

Alternatively, the non-linear method can also be used, but the linear method seems more 

convenient. 

 

3.7 MODEL SELECTION: 

 

3.7.1 Introduction: 

 

For the given data, selection of the topology of the network, simplifying the network and 

achieving the uniqueness of the network by using the functional equations was described in 

the above section. While learning, to approximate the neuron functions we chose different 

sets of linearly independent functions. Hence, the significance in solving the problem consists 

of selecting the optimal model using the Minimum Description Length Principle (MDLP). 

The description length is a measure that computes not only different functional networks but 

also the quality of different approximations. Using this principle, for a given problem the best 

functional network is approximated.  

 

3.7.2 Necessity of Model Selection: 

 

For the given data if we assume { Iiyxx iii ∈|)},,( 21 are the 2 inputs and one output of the 

data, and the functional network of the model is as follows 

[ ],)()( 21
1

iii xfxffy += −  

This step as described above to be followed by approximating with the functional neurons f

by some of the basis function models as Polynomial , Fourier, Exponential, Trigonometric 

approach as follows: 
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1. Polynomial approximation:  

 

∑
=

=
n

i

i
i xaxf

1
)62.3(,)(  

 

The approximation of the above is based on the set of linearly independent function as 

{ }nxxx ,........,,1 2  

2. Fourier approach:  

 

{ }∑
=

− ++=
n

i
ii ixaixaaxf

1
2120 ,)cos()sin()(  

This can be further approximated in simplified method on the basis of set of linearly 

independent functions: 

  { }.)cos(..,),........cos(),sin(.,),........sin(,1 rxxnxx  

The same approach is applied for the any type of basis function selected. After approximating 

the neurons with one of  the basis function, the best model of the above all to be chosen, and 

determine the best value ‘n’ for the selected model. Inorder to approximate this, the least 

squared sum of square errors developed in the later sections becomes more complex, hence 

the necessity of measuring the quality of fit is required, as we look forward the MDLP 

supplements in solving the problem without much complexity. 

3.7.3 The Minimum Description Length Principle: 

Based on the data of the model, the parameters θ , parametric space, model space M, the 

model )/( θxfm )( Mm∈ associated probability ),(θπ m  the way of encoding the model, i.e. 

minimization criteria. The minimization criteria can be done in three ways,  

1. Based on m 

2. Based on θ  

3. Based on jδ  
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 Rissanen (1989) gave a brief description leading to an approximate solution, and came up 

with a general equation to perform the MDLP. While applying it to Functional Networks, 

Castillo(1998), has used this equation directly, and it is as follows: 

If we consider all the data used to estimate the parameters θ ,i.e. nj=n ∀ j, and the error is as 

follows: 

( ) )63.3()|()|(|)( 21 θθθθ jmjmjmj xfxfyfe −−=
 

are normal ),,0( 2σN  we have 
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The above equation leads to 

)65.3()(1log
22

log)(log)(
1

2
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With the above equation different approximations and different functional networks can also 

be compared using several different methods. Out of those few important models are 

described here. 

Exhaustive method: In this method )(xL  of all possible functional networks and different 

subsets of approximating functions is calculated and the one leading to smallest )(xL  is 

selected, but the disadvantage is that it requires lot of computational power. 

Forward method: For all possible models of functional networks starting with single 

parameter selection process continues which outputs with minimum value of )(xL . Next by 

selecting new model and incorporating another parameter, leading to smallest value of )(xL , 

all this process comes to end until no improvement in )(xL is obtained. 

Backward method: In this method, it starts the model with all parameters and removes the 

parameter which gives smallest )(xL , this elimination continues until the no improvement in 

the model was observed. 
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Forward-Backward method: For all possible models of functional networks starting with 

single parameter selection process continues which outputs with minimum value of )(xL . 

Next by selecting new model and incorporating another parameter, leading to smallest value 

of )(xL , all this process comes to end until no improvement in )(xL is obtained. After this 

the reverse process is applied i.e. it sequentially omits the parameter leading to the smallest 

value of )(xL . Without adding or eliminating the parameters this double process continues 

until no improvement in )(xL is observed. 

Backward-forward method: In this method the backward method is followed as explained 

above leading to smallest )(xL , and next it is followed by the forward method but starting 

with the obtained model and this double process continues until no improvement in )(xL  is 

observed neither by adding or deleting the model. 

3.8 NOTES ON THE PRESENT STUDY: 

The development of present model follows the following steps: 

Selection of topology: 

The first step in the functional network is selection of initial topology. Since the selection of 

topology depends on the problem chosen, the generalized equation is represented as follows: 

)66.3()()( ............11
11 1......

.......1 krkr

m

r

n

rk
rkr xxCCy φφ∑ ∑

= =

=

 

where, y is the model parameter and rkr CC ........1 are the weights to be estimated and rkr φφ .............1

are the family of linearly independent functions such as polynomial ( nxxx ,......,,1 2 ), Fourier 

functions (1,sin(x), cos(x), sin(2x), cos(2x)…….), or exponential functions. Any of these can 

be selected and can be learned accordingly. 

Simplification of the model: 

In the above network assuming all the coefficients in between the functions are zero and the 

simplified model can be written as follows: 
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The above equation can be represented in matrix form as 

{ } )68.3(φcy =
 

Where c is a row matrix ( ncccc ,...., 21= ), φ  is a column matrix ),.....,( 21 mφφφφ =  

Learning: 

Now the next step includes learning the simplified network. The aim of learning includes the 

estimation of neural functions based on set of data, {D=Ii, Oi}, i=1,2,….n, based on the set of 

Euclidean norm error E, which is given as follows: 

)69.3(){
2
1

1

2∑
=

−=
im

i
ii fOE

the associated optimization function may lead to a system of linear or non linear algebraic 

equations, and with reference to equation (3.69) the equation (3.68) can be represented as 

following: 

{ }( ) { }( ) )70.3(.. φφ cycyyyE tt −−==
 

The coefficients can be estimated with the following equation: 

( ) )71.3(1 yc tt φφφ
−

=
 

Thus with the obtained coefficients the output is obtained and validation and testing is done 

and if the obtained results is satisfactory it the model can be used to estimate other functions. 

The flow chart represented in fig 3.6 shows the sequence of steps to be followed in solving 

problems in functional network  
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Select topology 

Load Data 

Inputs: xi (i=1,2,…n) 

Output:  y 

 

Train the neurons 

1. Calculate minimum description 
length using backward forward 
method and obtain the best 
substitute. 

2. Learn the obtained model using 
method of least squares, and 
obtain the coefficients. 

3. Based on the topology and 
coefficients an equation is 
obtained 

 

1. Select basis 
function 

2. Select degree 

ERROR CALCULATION 

1. Ratio of yp/ya is close to one  

2. RMSE as low as possible  

3. correlation coefficient close 
to 1 

No 

Yes 

1. Test the model with 
the obtained equation 

Model is ready to use 

Perform error calculation  

Is  reasonable 

 

Yes 
N
O 

Fig 3.6 Flow chart for performing in Functional Network 
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CHAPTER 4 

PREDICTION OF LATERAL LOAD CAPACITY OF PILES IN 

CLAY USING FUNCTIONAL NETWORK 

4.1 INTRODUCTION 

 

Pile foundations have its own significance in the present day construction field because of the 

increase in demand of the various requirements of the people. Significant research work went 

on in the design of piles taking into account various factors like location, load coming to the 

structures etc. (Poulos and Davis 1980), designed the axially loaded piles based on the static 

and dynamic equilibrium equations. Considering the structures like in that of tall buildings, 

off shore structures where lateral forces are significant, lateral loaded piles came to the design 

field. Analysis of this type of structures involves non linear techniques. Winkler’s elastic 

model of soil, (Poulos and Davis 1980), equations is not suitable for the nonlinear soil 

behavior. A non linear analysis was carried out on, lateral load (p) capacity- deflection(y) i.e. 

(p-y) curves based on the theory of elasticity by Matlock and Reese (1962). Portugal and 

Secoe Pinto (1993) examined the behavior of laterally loaded piles using the non linear p-y 

curves and the finite element method.  

These two methods most widely used in the design of laterally loaded piles. Though these 

methods gave good platform for design, but performing FEM analysis require extensive field 

characterization, and also it is complex to build constitutive models in clayey soils even with 

suitable laboratory testing methods. So for the initial estimation of load capacity of pile, field 

based methods (Hansen 1961, Broms 1964, Meyerhof 1976), has become much popular. All 

these methods require pile load test case histories and involve statistically derive empirical 

equations for determination of lateral load capacity of piles. But later came the computational 

methods like Artificial neural Networks (ANN), Support Vector machine (SVM) which 

proved to develop a good correlation technique for the above research field, (Das and 

Basudhar, 2006, Das et al., 2011a). (Goh 1995, Chan et al. 1995, Goh 1996,Lee and Lee 

1996, Teh et al. 1997, Abu-Kiefa 1998), has found that ANN is very effective in predicting 

the pile load capacity in both clayey soils and cohesion less soils. (Samui 2008), worked with 

the Support Vector machine and improved the efficiency of prediction than that of ANN, 

especially for the frictional resistance of the piles in clay. Similar studies done by (Das and 

Basudhar 2006), based on their studies and examining it with various Statistical methods they 
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observed that ANN is more effective than that of the studies conducted by Brom’s and 

Hansen’s method.  With the same data, SVM and Gaussian Progress Regression (GPR) 

models are developed and observed to get better than SVM model. They also compared the 

GPR model with the ANN model in terms of correlation coefficient (R) and Root mean 

square error(RMSE). Since R is only a biased estimate (Das and Sivakugan, 2010), it is 

difficult to predict the model in terms of under prediction or over prediction in terms of R 

value. RMSE gives the overall error in the data set but doesn’t give the maximum deviation 

from the prediction of individual case. Generalization is an important aspect while dealing 

with the computational methods, i.e. the developed model should efficiently present itself 

during testing and validation. In the process of implementation of ANN for complex 

problems generalization had become a problem, therefore (2001, Das and Basudhar 2006) 

developed different methods for generalization like early stopping and cross validation.  One 

of the reasons for this poor generalization is because of the magnitude of weights, inorder to 

compensate with it Bayesian regularization neural network (BRNN) (Das and Basudhar 

2008) have been used, which served as a platform to reduce the error due to magnitude off 

weights. The optimization process for error function can also be taken into account as the 

reason for poor generalization; the error function connected with weights and sigmoid 

functions is a highly nonlinear optimization problem and ends up with many local minima  

(Das and Basudhar 2008). The traditional non linear optimization methods are the initial 

point dependent, hence global optimization techniques like simulating annealing and genetic 

algorithm are widely used in training the ANN model (Morshed and Kaluarachchi 1998, Goh 

et al. 2005). Differential evolution neural network (DENN) (Ilonen et al. 2003, Das et al. 

2011a), in which differential evolution optimization is used in training the feed-forward 

neural network. Das et al. (2011b) observed that the DENN performance is better than that of 

BRNN and it traditionally used Levenberg-Marquardt neural network (LMNN) in the 

analysis of slope stability. The ANN is coined as ‘black box’ because off its inconsistency in 

relating between the input and output. To have a brief description about SVM, in this the 

error parameter ‘C’ and sensitivity function ‘e’ are found out by trial and error process. As it 

is not possible to write down an equation using trained SVM model (Das et al. 2010, Das et 

al. 2011a) and developed ANN model, but now (Gohet al. 2005,Das and Basudhar 2006, Das 

and Basudhar 2008) with the trained ANN model and SVM model an equation was 

developed, but in that model SVM was not comprehensive. Later with the same data points 

many researches has come up with their own models with the tools like Genetic 

Programming (GP) and Multivariate Adaptive Research Spline (MARS), every tool aim is to 
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contribute its part to develop a best model and FN which was developed as powerful tool 

over ANN, added a small rung to the ladder over all this models. 

 

The developed model was compared with the other models based on the following criteria.  

 

1. Best fit calculation i.e. correlation coefficient (R) and Error (E) for predicted lateral load   

capacity (Qp) and measured lateral load capacity (Qm) 

2. Mean µ and Standard deviation σ of the ratio Qp/Qm. 

3. 50% and 90% cumulative probabilities (P50 ,P90) of the ratio Qp/Qm. 

 

4.2 Database and Preprocessing 

 

 The present study takes the experimental database of Rao and Suresh kumar (1996). ANN 

model was developed by Das and Basudhar (2006), GPR and SVM models was developed by 

Pal and Deswal (2010) using the above database. The inputs of the data are depth (D), Length 

(L), eccentricity (e), Undrained Shear strength (Su ) and Qmas as output are taken. Out of 

which 80% is used for training and remaining used for testing. FN doesn’t show much 

difference in the output though data is normalized or not, but inorder to reduce the scaling 

effects this can be done. 

 

Table 4.1: Data set used for prediction of lateral pile ( Training) 

D L e Cu Qm Qp (FN) 
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10 

 

89 98.23483 

12.5 
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24 

 

106 106 

13 

 

260 
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24 

 

225 225 

13 

 

132.1 

 

33.8 

 

38.8 

 

53 53 

33.3 

 

300 

 

50 

 

3.4 

 

78.5 83.20318 

12.3 

 

300 

 

50 

 

3.4 

 

29.5 22.92844 

6.35 

 

146.1 

 

19.1 

 

38.8 

 

69.5 69.5 

13.5 

 

190 

 

0 

 

24 

 

128 128 

25.4 

 

300 

 

50 

 

3.4 

 

50 50.33178 

25.4 

 

300 

 

50 

 

10 

 

118.5 110.5017 

18.4 

 

300 

 

50 

 

4 

 

51 46.28954 
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12.3 

 

300 

 

50 

 

10 

 

81 83.09833 

33.3 

 

300 

 

50 

 

5.5 

 

110.5 106.8979 

25.4 

 

300 

 

50 

 

7.2 

 

90 88.9587 

12.3 
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50 

 

7.2 

 

58 61.55536 

18 

 

300 

 

50 

 

10 

 

116.5 98.23483 

20.4 

 

300 

 

50 

 

7.2 

 

76.5 80.4745 

6.35 
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25.4 

 

38.8 

 

65.5 65.5 

20.4 
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50 

 

3.4 

 

38 41.84758 
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5.5 

 

59.5 65.54229 
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5.5 

 

75 74.02649 
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50 

 

10 

 

87 102.0175 

12.3 
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5.5 

 

44 46.62315 

18 

 

300 

 

50 

 

5.5 

 

65 61.75965 

18.4 

 

300 

 

50 

 

7.2 

 

86.5 77.37319 

18 

 

300 

 

50 

 

3.4 

 

39 38.06494 

13.5 

 

300 

 

50 

 

4 

 

36 34.80341 

13.5 

 

300 

 

50 

 

7.2 

 

64 65.88706 

13.5 

 

300 

 

50 

 

5.5 

 

50 50.95485 

20.4 

 

300 

 

50 

 

4 

 

46 49.39085 

 

Table 4.2set used for prediction of lateral pile ( Testing) 

Depth(D) 

 

Length(L) 

 

 e  Cu Qa Qp (FN) 

13.5 

 

300 

 

50 

 

3.4 

 

30 27.26013 

18.4 

 

300 

 

50 

 

5.5 

 

65.5 62.44098 

18.4 

 

300 

 

50 

 

10 

 

114 98.91616 

18.4 

 

300 

 

50 

 

3.4 

 

42.5 38.74627 

25.4 

 

300 

 

50 

 

4 

 

58 57.87505 

18 

 

300 

 

50 

 

4 

 

49 45.60821 

18 

 

300 

 

50 

 

7.2 

 

87 76.69186 

12.3 

 

300 

 

50 

 

4 

 

35 30.47171 

 

4.3 Results and Discussion 

The methodology adopted by the FN in predicting the Lateral load capacity of piles was 

discussed in Sec 3.8. With Polynomial function as the basis function, and degree 3 the 

workability of functional network and the equation generated was discussed below: 
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The scatter of the predicted vs. actual values for training and testing data is drawn. From the 

graph we can depict the less scattering of the data proving the efficiency of functional 

network. 

 

 

 

 

From Fig: 4.1 we can observe that there is less scatter of data in the FN. Table 3.5 shows the 

statistical performance of various methods on the basis of R,E, AAE,RMSE,MAE. It was 
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Fig: 4.1 Comparison of predicted and measured load capacity of piles for training 
and testing 
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observed that FN outperform the other models in the analysis of the present study, for both 

training and testing cases and also gives a very compact equation. 

 

Table: 3.3 statistical performances 

 

Models Statistical Performances 

R E AAE MAE RMSE 

FN Training 0.988 0.976 3.844 18.265 5.8141 

Testing 0.944 0.930 5.374 15.084 7.0424 

GP Training 0.980 0.961 5.337 24.378 7.381 

Testing 0.972 0.913 6.702 15.070 8.194 

DENN Training 0.980 0.959 5.647 18.705 7.667 

Testing 0.967 0.905 7.170 18.110 8.549 

BRNN Training 0.975 0.949 6.609 20.680 8.582 

Testing 0.899 0.734 10.800 33.169 14.312 

Hansen Training 0.950 0.209 30.712 65.360 33.825 

Testing 0.919 0.119 23.650 49.480 26.066 

Broms Training 0.967 0.807 12.391 48.660 16.703 

Testing 0.985 0.574 12.082 46.380 18.127 

MARS Training 0.970 0.940 7.258 32.875 9.108 

Testing 0.98 0.900 6.858 18.705 11.815 

 
Briaud and Tucker (1988) , in mean while predicting the pile load capacity based on cone 

penetration test (CPT) have emphasized that statistical methods have to be carried out along 

with correlation coefficient. Abu-Farsakh and Titi (2004) and Das and Basudhar (2006) have 

used the  

mean (µ) and standard deviation (σ) of ratio of predicted pile load capacity (Qp ) to the 

measured pile load capacity (Qm) as important parameters in evaluating different models. 

These parameters are the important indicators of the precision and accuracy of the predicted 

model.under ideal conditions the mean is 1.0 and standard deviation is 0. The value if greater 

than 1 is an indication of over prediction, else under prediction. In the present study the 

µ (1.002,0.910) and σ are (0.080, 0.045) , shows the values are almost close to 1 and 0 

respectiveely. 
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The other criterion like cumulative probability of Qp/Qm (Das and Basudhar 2006, Abu-

Farsakh 

and Titi 2004) should also be considered for the evaluation of performance of different 

models. 

The ratio Qp/Qmis arranged as per their values in an ascending order and the cumulative 

probability is calculated from the following equation: 

 

)2.4(
1+

=
n

ip

 

Where i= order number given to the Qp /Qmratio; n is the number of data points. If the 

computed 

value of 50% cumulative probability (P50) is less than unity, under prediction is implied; else 

over prediction. The ‘best’ model is that the  obtained P50 valueclose to unity. The 90% 

cumulative probability (P90) reflects the variation in the ratio of Qp /Qmfor the total 

observations. The model with P90 for Qp /Qmclose to 1.0 is a better model. 

 

 
 

Fig 4.5: Cumulative probability plot of Qp/Qa for functional Network for training and testing 
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Table 4.5: Results of the cumulative probability distribution 

 

 P50 P90 

Training 1.0 0.9 

Testing 1.1 1.0 

 

 
5.4 CONCLUSION: 

 

With the selected tool the developed models showed good correlation with the desired output 

and their performance is estimated based on following criteria obtained in testing.  

 

1. Correlation coefficient 

2. Root mean square error 

3. Efficiency and 

4. Cumulative probability distribution function (P50 and P90) 

 

Table : Comparison criterion 

Criterion Value 

R 0.944 

RMSE 7.0424 

Efficiency 0.976 

P50 and P90 1.0 & 1.1 

 

From the above table we can conclude that the error was almost minimum and the efficiency 

is 0.956, the obtained results are good and the also from the literature of the results of other 

statistic models one can observe that the functional network has performed better w.r.t. other 

tool with the selected model 
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CHAPTER 5 
 

PREDICTION OF FACTOR OF SAFETY OF SLOPE USING 
FUNCTIONAL NETWORRK 

 
5.1 INTRODUCTION 
 
The analysis of Factor of safety for both manmade and natural slopes is a great challenge for 

the civil engineers, inorder to avoid catastrophic failures, save life, property etc. Generally 

limit equilibrium method is used for analyzing the factor of safety because of the ease of 

calculation and also of the accuracy obtained compared to that of the rigorous methods like 

finite difference, finite element and variational approach. Though limit equilibrium methods 

are always available for the determination of factor of safety, statistical methods also 

supplemented along with it in the analysis. Considering some of the case studies, Sha et al. 

(1994) initiated the application of statistical approach in the prediction of factor of safety in 

slope stability analysis. They took almost 46 case studies (29 failed and 17 stable), out of 

which 14 cases were for circular slope analysis (8 failed and 6 stable) and remaining wedge 

failure, for which they proposed separate regression equations for circular and wedge failure 

slopes using maximum likelihood method, and observed to have a strong correlation with the 

obtained results and the results of the LEM of about 0.911 for circular and 0.954 for wedge 

failure analysis. But, the results are not checked with the new set of data. 

 
Using back propagation neural network (ANN) Sakellariou and Ferentinou (2005) predicted 

FOS and compared the results in terms of Mean Squared Error (MSE) with different number 

of training data set. To predict the stability number of layered slopes Samui and Kumar 

(2006) used ANN as an alternate statistical method to upper bound limit analysis. To predict 

the FOS of Yudonghe landslide (China) Wang et al. (2005) used four layers BPNN, with five 

input nodes, two hidden layers and two output nodes and found that the FOS is close to 1.1.  

 

An alternate statistical method ANN was proposed by Samui and Kumar (2006), which 

include upper bound limit analysis to predict the stability number of layered slopes. Wang et 

al.(2005) used Back propagation neural network to predict the FS of landslide occurred in 
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China (Yudonghe) and found FS using four-layered BPNN model with 5 input nodes, 2 

hidden layers and 2 output nodes. 

 

5.2 DATABASE AND PROCESSING 

 

Table 5.1: Training data set for prediction of Factor of safety 

 
 

 
19.06 11.71 28 35 21 0.11 1.09 1.1817 
28.44 150.05 45 53 214 0.5 2.05 2.0647 

26 150.05 45 50 200 0 1.2 1.1852 
12 0 0 16 4 0 0.625 0.7089 

28.44 39.23 38 35 100 0 1.99 2.0394 
23.47 0 32 37 214 0 1.08 1.0746 
21.43 0 20 20 61 0.5 1.03 0.9724 
22.4 100 45 45 15 0.25 1.8 1.8187 

18.84 57.46 20 20 30.5 0 2.045 2.0666 
28.44 57.46 40 45 100 0.5 2.045 1.8806 

20 0 36 45 50 0.5 0.67 0.6401 
18 5 30 20 8 0.3 2.05 2.0536 

20.41 33.52 11 16 45.72 0.2 1.28 1.2026 
16 70 20 40 115 0 1.11 1.2084 

18.5 25 0 30 6 0 1.09 0.8951 
24 0 40 33 8 0.3 1.58 1.6375 
14 11.97 26 30 88 0.45 0.625 0.4929 
12 0 30 45 8 0 0.8 0.8892 

22.4 10 35 30 10 0 2 1.891 
14.8 0 17 20 50 0 1.13 1.049 

12 0 30 35 4 0 1.46 1.3149 
20 0 36 45 50 0.25 0.79 0.7585 
22 0 36 45 50 0 0.89 0.9364 
20 0 24.5 20 8 0.35 1.37 1.457 
23 0 20 20 100 0.3 1.2 1.134 

21.51 6.94 30 31 76.81 0.38 1.01 1.095 
25 120 45 53 120 0 1.3 1.2992 
14 11.97 26 30 88 0 1.02 1.1312 

21.82 8.62 32 28 12.8 0.49 1.03 1.298 
18.68 26.34 15 35 8.23 0 1.11 1.2346 
22.4 10 35 45 10 0.4 0.9 0.8278 

18.84 14.36 25 20 30.5 0 1.875 1.7915 
18.84 0 20 20 7.62 0.45 1.05 1.13 
20.6 16.28 26.5 30 40 0 1.25 1.2754 

20.41 24.9 13 22 10.67 0.35 1.4 1.4524 

γ        C                φ                   β              Η               ru           FSa       
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Table 5.3: Testing data for prediction of factor of safety of slope 
 

 
 

28.44 29.42 35 35 100 0 1.78 1.8185 
20 0 36 45 50 0.25 0.79 0.7585 
20 0 36 45 50 0.5 0.67 0.6401 
22 0 40 33 8 0.35 1.45 1.4419 
20 0 24.5 20 8 0.35 1.37 1.457 

18.84 57.46 20 20 30.5 0 2.045 2.0666 
16.5 11.49 0 30 3.66 0 1 0.9064 

14 11.97 26 30 88 0 1.02 1.1312 
22 20 36 45 50 0 1.02 1.1665 

19.63 11.97 20 22 12.19 0.41 1.35 1.2201 
18.84 0 20 20 7.62 0.45 1.05 1.13 

24 0 40 33 8 0.3 1.58 1.6375 
 

 
 
 
 
 
5.3 FUNCTIONAL NETWORK MODELING RESULTS: 
 
Using prescribed basis function and degree of the selected function. The model in functional 
network was developed. Though by increase in degree the obtained results would b accurate 
at the same time the complexity in the problem also increases, hence a trade cut off is made 
in the present study, and the best FN model was obtained with degree 5 an d polynomial basis 

18 24 30.15 45 20 0.12 1.12 1.0046 
18.84 15.32 30 25 10.67 0.38 1.63 1.6885 
21.4 10 30.34 30 20 0 1.7 1.4812 
18.5 12 0 30 6 0 0.78 0.9149 

18.84 14.36 25 20 30.5 0.45 1.11 1.1532 
19.63 11.97 20 22 12.19 0.41 1.35 1.2201 

22 0 40 33 8 0.35 1.45 1.4419 
20 20 36 45 50 0.25 0.96 0.9886 

28.44 29.42 35 35 100 0 1.78 1.8185 
20 20 36 45 50 0.5 0.83 0.8702 
14 0 0 20 3.66 0 0.67 0.7423 

16.5 11.49 0 30 3.66 0 1 0.9064 
22 20 36 45 50 0 1.02 1.1665 
12 0 30 45 8 0 0.86 0.8892 
12 0 30 35 4 0 1.44 1.3149 

22.4 10 35 45 10 0.4 0.9 0.8278 
20 20 36 45 50 0.25 0.96 0.9886 

γ        C                φ                   β              Η               ru           FSa       
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function  
The equation predicted with the FN was presented below: 
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where, n= no. of variables 
 m=degree of variable 
Here, n=5 and m=5, and the coefficient of the above equation 5.1 was written below: 
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Fig: 4.1 Comparison of predicted and measured factor of safety for training and testing 
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Fig: 5.2 Comparison of errors of DENN, BRNN, LMNN, MGGP, MARS, FN for training 
data 
 
Table 5.3 Comparison of errors of various statistical methods for training FS 
 
error DENN BRNN LMNN MGGP MARS FN 
MAE 0.3 0.29 0.26 0.34 0.34 0.268 
AAE 0.12 0.12 0.15 0.11 0.12 0.078 
RMSE 0.15 0.14 0.17 0.14 0.15 0.0961 

 
 
 

 
Fig: 5.3 Comparison of error results of DENN, BRNN, LMNN, MGPP. MARS, FN for 
prediction of FS for test data 
 
Table 5.4 Comparison of errors of various statistical methods for training FS 
 
error DENN BRNN LMNN MGGP MARS FN 
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MAE 0.2 0.34 0.3 0.28 0.33 0.1465 
AAE 0.1 0.1 0.1 0.12 0.13 0.082 
RMSE 0.12 0.14 0.14 0.15 0.16 0.0696 
 

 
 
 
Table 5.5: Statistical performance of ANN, SVM, MGGP, MARS AND FN model 
 
Reference Models Coefficient of Correlation 

(R) 
Coefficient of efficiency 
(E) 

 
Training 

 
Testing 

 
Training 

 
Testing 

ANN (Das et 
al. 2011) 

BRNN 0.937 0.920 0.871 0.885 
LMNN 0.902 0.923 0.807 0.846 
DENN 0.922 0.950 0.848 0.842 

SVM 
(Samui 2008) 

SVM-G 0.922 0.922 - - 
SVM-P 0.983 0.844 - - 
SVM-P 0.995 0.918 - - 

MGGP  0.924 0.929 0.852 0.851 
MARS  0.917 0.915 0.842 0.825 

FN  0.972 0.981 0.945 0.956 
 

 
The performance of FN is compared with other statistical model in terms of R, E in table  5.5, 
from the above table it was observed that the performance of FN was increased. 
 
 
 

 
 

Table 5.6: Cumulative probabilities depending on sorted Fp/Fu for ANN, SVM, MGGP, 
MARS and FN models 

 
 P50 P90 
 Training Testing Training Testing 

FN 1.04 0.985 1.1 1.08 
LMNN 0.97 1.016 1.22 1.25 
BRNN 0.99 0.991 1.16 1.202 
DENN 0.957 0.979 1.16 1.202 
MGGP 1.02 1.04 1.23 1.129 
MARS 0.976 1.055 1.22 1.179 
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     Fig 5.4: Cumulative Probability distribution for Training and testing data for FSa/FSp 
 
5.4 CONCLUSION: 

 

With the selected tool the developed models showed good correlation with the desired output 

and their performance is estimated based on following criteria obtained in testing.  

 

1. Correlation coefficient 

2. Root mean square error 

3. Efficiency and 

4. Cumulative probability distribution function (P50 and P90) 

 

Table : Comparison criterion 

Criterion value 

R 0.981 

RMSE 0.0696 

Efficiency 0.956 

P50 and P90 0.985 & 1.05 

 

From the above table we can conclude that the error was almost minimum and the efficiency 

is 0.956, the obtained results are good and the also from the literature of the results of other 

statistic models one can observe that the functional network has performed better w.r.t. other 

tool with the selected model 
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CHAPTER 6 

 

UPLIFT CAPCITY OF SUCTION CAISSON IN CLAY USING 

FUNCTIONAL NETWORK 
 

6.1 INTRODUCTION 

Caissons are used in the offshore structures to serve as anchors because they demand less 

construction time and give grater effectiveness. The caissons are designed for both static and 

cyclic load due to sustain both wind and loop current. The horizontal and inclined loads 

acting on it transfers the uplift force to the caisson anchors. The total uplift capacity of the 

caisson depends upon passive suction under caisson-sealed cap, self weight of caisson, 

frictional resistance along the soil-caisson interface, submerged weight of soil plug inside the 

caisson and uplift soil (reverse end bearing) bearing pressure (Albert et al. 1987). Hence, 

particularly in clayey soils suction pressure become more effective. Various methods used in 

analyzing the suction pressure in clayey soils. Upper bound analysis (Clukey et al. 

1995),finite element method (Whittle and Kavvadas 1994; El-Gharbawy and Olson 

2000;Zdravkovic et al. 2001; Cao et al. 2001, 2002a, 2002b), laboratory model (Goodmanet 

al. 1961; Larsen 1989; Steensen-Bach 1992; Datta and Kumar 1996; Singh et al.1996; Rao et 

al. 1997a, 1997b), centrifuge model (Clukey and Morrison 1993; Clukeyet al. 1995) and 

prototype model tests (Hogervorst 1980; Tjelta et al. 1986; Dyvik et al.1993; Cho et al. 2002) 

have been attempted to understand the axial and lateral loadcapacity of suction caisson for 

static and cyclic load and under different soil conditions.Therefore, development of sufficient 

accurate site model for a detailed numerical analysis requires extensive site characterization 

effort. The constitutive modeling of clay is very difficult even with considerable laboratory 

testing.Field tests are also expensive but various tests have been conducted to find out the 

feasibility of suction caisson in various soil types (Cho et al. 2002). However, several issues 

and uncertainties related to capacity estimation and failure mechanisms are still unresolved. 

 

 Rahman et al. (2001) used an ANN model to predict the upliftcapacity of suction caisson in 

clay. The performance of the ANN model is found to be better than the FEM model in terms 

of correlation coefficient (R). Pai (2005) observed that FEM model is better compared to 

genetic algorithm basedneural network model using the same database.(Goh et al. 2005; Das 
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and Basudhar 2006; Das and Basudhar 2008), developed an equation using ANN. But, ANN 

is associated with poor generalization for some complex problems (Das et al. 2012).Another 

group of artificial intelligence techniques; support vector machine (SVM) and relevance 

vector machine (RVM) are basedon statistical learning theory (Vapnik 1998), are also used. 

The performances of SVM and RVMare found to be better than ANN models for some 

geotechnical engineering problems (Das et al. 2010; Das et al. 2011). Using GP (Muduli 

et.al) used GP to model the present study. 

 

In the present study FN-based prediction model for uplift capacity (Q) of suction caisson in 

clay is developed using the database from literature (Rahman et al. 2001). Different statistical 

criteria like correlation coefficient (R), Nash-Sutcliffcoefficient of efficiency (E), root mean 

square error (RMSE), average absolute error (AAE), maximum absolute error (MAE) and 

normalized mean biased error(NMBE) are used to compare the FN model with FEM, ANN, 

SVM and RVM 

models.  

6.2 DATABASE AND PROCESSING 

Table 6.1: Data table for Prediction of uplift capacity of suction pressure in clay (Training) 

 

 

1.84 11 0 90 0 88.2 96.4021 

1.84 1.84 1.84 1.84 1.84 1.84 1.8481 

1.32 38 0 0 0.1 149 149.0155 

1.4 5.5 0 10 0.56 71.8 71.8001 

2.31 23.9 0 15 0.69 387.2 387.202 

4 5.2 0 75 0.47 48.1 51.5135 

2 25 0 90 0 244.1 244.9694 

0.68 24 0 0 0 21.3 21.3114 

0.43 4.2 0 80 0 48.7 48.7113 

0.23 31 0 0 0.05 128.3 128.3119 

1.4 9 0 0 0 37 37.0113 

0.7 13.7 0 90 0 135 135.0228 

1.5 1.8 0.0001 90 0 12.9 12.9043 

4 5.2 0 90 0 48.8 48.8142 

L/d Su Tk θ D/L Qa Qp 
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1.84 15.8 0 90 0 160.5 158.0023 

2 5.8 0.0001 90 0 46.4 41.3759 

1 5.8 0.0001 90 0 35.6 34.0786 

0.23 24 0 0 0 72 72.0157 

2 20.5 0 90 0 209.4 207.2601 

1.4 9 0 0 0.5 70.5 70.5117 

1.32 14.3 0 90 0 144.6 160.472 

0.4 6.8 0 90 0 75 75.0219 

2 1.8 0.0001 90 0 15.6 17.6495 

0.75 2.5 0.04 90 0 10.1 6.7713 

1.5 5.8 0.0001 90 0 38.1 36.6306 

2 8.3 0 90 0 71.7 78.4442 

2.31 21.6 0 11 0.68 370.4 370.4186 

1.32 14.3 0 90 0 176.3 160.472 

0.75 6 0.04 90 0 21.5 24.8645 

1 1.8 0.0001 90 0 11.1 10.3523 

1.32 38 0 0 0 133.1 133.122 

2 3.6 0.0001 90 0 33.6 36.119 

1.5 3.6 0.0001 90 0 28.8 31.3679 

1 3.6 0.0001 90 0 26.4 28.8218 

2 22.5 0 90 0 214.9 211.5938 

2 6 0 90 0 66.3 65.4903 

2 9 0 90 0 90.1 83.1542 

1.84 11 0 90 0 105.8 96.4021 

1.5 6 0.04 90 0 23 23.0181 

2 7 0 90 0 80.2 69.6358 

2 10.5 0 90 0 90.4 90.0339 

0.75 6 0.0004 90 0 31 32.4145 

2 24 0 90 0 245.3 242.7232 

0.75 2.5 0.0004 90 0 15.7 14.3214 

2 22.5 0 90 0 204.9 211.5938 

2 2.4 0.0001 90 0 21.9 22.4301 

2 7.8 0 90 0 64.5 74.8632 
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1.5 2.4 0.0001 90 0 18.7 17.6789 

1.5 6 0.004 90 0 26.6 26.6226 

1 2.4 0.0001 90 0 15.2 15.127 

4 5.2 0 75 0.47 54.9 51.5135 

2 7.5 0 90 0 70.5 72.7757 

1.84 15.8 0 90 0 154.3 158.0023 

 

Table 6.2: Data table for Prediction of uplift capacity of suction pressure in clay (Testing) 

 

 

 

 

1.32 38 0 0 0 134.9 133.122 

0.75 2.5 0.004 90 0 13.2 10.3758 

0.75 6 0.004 90 0 26 28.469 

1.32 38 0 0 0.1 145.5 149.0155 

1.32 14.3 0 90 0 149.9 160.472 

1.5 6 0.0004 90 0 32.2 30.5623 

1.84 11 0 90 0 86.4 96.4021 

1.84 11 0 90 0 92.6 96.4021 

2 8.5 0 90 0 75.3 79.8495 

2 6 0 90 0 62.7 65.4903 

 

 

 

 

6.3 RESULTS AND DISCUSSION 

The present problem was modeled using Functional Network  with exponential function as 

the basis function with degree 10 and the equation was represented below 

 

.6(
1 1

0

j
ix

n

i

m

j
ij eaay ∑∑

= =

+=

 

where, i= no. of variables 

L/d Su Tk θ D/L Qa Qp 
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 j= degree of variable 

The coefficients are presented in the table 6.3 

 

Table 6.3: Coefficients of the obtained equation 

 

A 1 2 3 4 5 6 7 8 9 10 

1 0.000 0.000 -

0.0001 

0.0011 -

0.0073 

0.0292 -

0.0729 

0.1089 -0.088 0.0291 

2 - 0 0 0 0 0 -

0.0001 

0.0001 -

0.0001 

0 

3 0 0.0005 -

0.2394 

9.8934 - -

9.7417 

- - - - 

4 0.0022 -

0.0347 

0.1206 - - - - -3.364 6.324 -3.048 

5 0 - 0 0.0871 - - - - - - 
 

      All the above coefficient are to multiplied with 1*E10. 

 

The developed model in FN was compared with statistical performance 

 

Table 6.4: Comparison of Statistical performances off different models 

 

Models Statistical Performances 

 

R 

 

E 

 

 

AAE 

 

MAE 

 

RMSE 

FN 0.997 0.997 5.357 10.572 5.3574 

GP 0.997 0.988 8.065 27.055 11.155 

ANN 0.991 0.975 12.204 32.820 16.031 

SVM 0.989 0.955 15.640 42.020 21.310 

RVM 0.992 0.964 14.960 35.980 19.040 

SVM 0.989 0.955 15.640 42.020 21.310 
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The other criterion like cumulative probability of Qp/Qm (Das and Basudhar 2006, Abu-

Farsakh 

and Titi 2004) should also be considered for the evaluation of performance of different 

models. 

The ratio Qp/Qmis arranged as per their values in an ascending order and the cumulative 

probability is calculated from the following equation: 

 

)2.6(
1+

=
n

ip

 

Where i= order number given to the Qp /Qmratio; n is the number of data points. If the 

computed 

value of 50% cumulative probability (P50) is less than unity, under prediction is implied; else 

over prediction. The ‘best’ model is that the  obtained P50 valueclose to unity. The 90% 

cumulative probability (P90) reflects the variation in the ratio of Qp /Qmfor the total 

observations. The model with P90 for Qp /Qmclose to 1.0 is a better model. 

 

 
 

Fig 6.2: Cumulative probability distribution function for overall training and testing data 
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Probability @ P50 P90 

Overall 

performance 

1.0 1.1 

 

 
                   Fig 6.5: Probability density function for overall data 

The probability density function shows that 90% of the data lies in the range of 0.9-1.1, and 

from this we can say the deviation of predicted values from actual and so thus the reliability 

of the functional network can be assured. From this we can say that the functional network is 

an effective tool in solving any problem. 

 

6.4 CONCLUSION: 

 

With the selected tool the developed models showed good correlation with the desired output 

and their performance is estimated based on following criteria obtained in testing.  

 

1. Correlation coefficient 

2. Root mean square error 

3. Efficiency and 

4. Cumulative probability distribution function (P50 and P90) 
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Table : Comparison criterion 

Criterion value 

R 0.997 

RMSE 5.3574 

Efficiency 0.997 

P50 and P90 1.0 & 1.1 

 

From the above table we can conclude that the error was almost minimum and the efficiency 

is close to 1shows that the functional networks gave good and accurate results and the 

reliability of the functional network can be assured and can be extended to wide variety of 

application 
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CHAPTER 7 

SWELLING PRESSURE IN CLAYS 
 

7.1 INTRODUCTION 

 

Expansive soil and bedrock underlie more than one-third of world’s land surface. Each year, 

damage to buildings, roads, pipelines, and other structures by expansive soils is much higher 

than the damage caused by floods, hurricanes, tornadoes, and earthquakes combined (Jones 

and Holtz 1973). The estimated annual cost of damage due to expansive soils is $1,000 

million in the USA, £150 million in the UK, and many billions of pounds worldwide 

(Gourley et al. 1993).  

 

However, as the hazards due to expansive soils develop gradually and seldom present a threat 

to life, they have received limited attention, despite their severe effects on the economy. 

Much of the damage related to expansive soils is not due to a lack of appropriate engineering 

solutions but to the non-recognition of expansive soils and expected magnitude of expansion 

early in land use and project planning. The damage to foundation on expansive soil can be 

avoided/minimized by proper identification, classification, quantification of swell pressure, 

and provision of an appropriate design procedure. Swelling potential of clayey soil is a 

measure of the ability and degree to which such a soil might swell if its environments were 

changed in a definite way. Hence, the expansive soil is classified based on its potential for 

swelling.Though factors like clay content, Atterberg’s limits, and mineral types are found to 

affect the swelling potential, the available literature presents contradicting results. 

McCormack and Wilding (1975) found clay content to be reliable in predicting swelling 

potential for soil dominated by illite, whereas according to Yule and Ritchie (1980) and Gray 

and Allbrook (2002), there is norelationship between clay percentage and soil swelling.  

 

The cation exchange capacity (CEC), saturation moisture, and plasticity index (PI) are also 

important indices for estimation of swelling potential (Gill and Reaves 1957). Parker et al. 

(1977) concluded swell index and PI as superior to other indices for swelling potential. El-

Sohby and El-Sayed (1981) observed that parameters like initial water content, type of clay 

mineral, initial dry density, clay content, and type of coarse grained fraction are major 

controlling factors for the swelling pressure of soil. The swelling pressure depends upon 
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various soil parameters such as mineralogy, clay content, Atterberg’s limits, dry density, 

moisture content, initial degree of saturation, etc. along with structural and environmental 

factors. The parameters are interrelated in a complex manner, and it is difficult to model and 

analyze effectively taking all the above aspects into consideration. However, it can be 

measured easily with relevant data pertaining to soil, structure, and environment. So various 

statistical/empirical methods have been attempted for predicting the swelling pressure based 

on index properties of soil (Mowafy and Bauer 1985; Mallikarjuna 1988; Das 2002). 

Recently, Erzin and Erol (2004) presented regression equation for prediction of swelling 

pressure of Bentonite–Kaolinte clay mixture. However, these regression methods are 

developed based on the total available data and have not been tested with new data set. 

 

Das et.al (2009) analyzed the above model using ANN. Kayadelen et al. (2009) presented a 

neuro-fuzzy model for prediction of swelling potential of compacted soil. Whereas the 

biggest challenge in successful application of ANN is when to stop training. If training is 

insufficient then the network will not be fullytrained, whereas if training is excessive then it 

will memorize the training pattern or learn noise. When the numbers of data points are scanty 

the training set is driven to a very small value, but when new data are presented to the 

network the error is too large, which is known as overfitting. The network needs to be equally 

efficient for new data during testing or validation, which is called as generalization. There are 

different methods for generalization like early stopping and cross validation (Basheer 2001; 

Shahin et al.). The FN are becoming more reliable than any other statistical method due to 

their special attributes of identifying complex system when the input and output are known 

from either laboratory or field experimentation. The draw backs in ANN are come up with 

FN and the results of the present study are presented as follows: (A= actual) ,(p=predicted) 

 

7.2  DATABASE AND PREPRROCESSING: 

 

Table 7.1: Data set for swelling pressure in clays (Training) 

 

 

 

 

 

     w           γd                LL        PI      CLAY  log Spa      log Spp        A/P     
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20 13.5 75 43 45 1.8325 1.8976 1.035525 

5 15.4 193 165 38 2.415 2.437 1.00911 

63.9 10.1534 111 76 77.1 0.4771 0.477 0.99979 

5 20.7972 28 14 42 1.7782 1.8053 1.01524 

17.8 17.1381 122 81 73 2.9058 2.9162 1.003579 

38.7 11.3796 105 73 97 1.7924 1.8188 1.014729 

30 12.5 193 165 38 1.7404 1.6357 0.939841 

30 12.1 47 27 28 0.8451 0.8458 1.000828 

5 14 115 74 47 2.5682 2.5753 1.002765 

4 16.1865 85 41 19 1.8932 1.8355 0.969523 

34.6 12.3606 102 75 66.4 2.1303 2.1782 1.022485 

41.9 12.3116 74 48 51.6 1 1.113 1.113 

14.6 18.7862 54 33 60 2.0792 1.8293 0.87981 

16.3 18.0014 37 22 27.7 1.3802 1.641 1.188958 

5 13.4 47 27 28 1.6532 1.43 0.864989 

20.2 16.677 53 35 31.4 2.1553 1.8007 0.835475 

27.7 15.0584 76 47 60 2.4472 1.9969 0.815994 

12 16.1865 105 55 54 1.9557 1.9868 1.015902 

25 15.7 115 74 47 2.6284 2.5744 0.979455 

51.7 10.9136 94 62 76.9 1.7404 1.7367 0.997874 

10 12.5 193 165 38 1.9542 1.9124 0.97861 

25 15.4 193 165 38 2.2742 2.2409 0.985357 

20 17.1185 59 37 52 1.4771 1.9487 1.319274 

10 15.1 75 43 45 2.4393 2.3186 0.950519 

25 13.4 59 35 25 1.4914 1.4888 0.998257 

2.7 14.3226 73 47 60 1.9243 1.9719 1.024736 

20 15.696 100 50 27 1.9047 1.8486 0.970547 

20 12.7 115 74 47 2.243 2.1163 0.943513 

27.7 12.6549 69 44 58.9 1.3802 1.5149 1.097595 

5 12.2 75 43 45 1.7559 1.7552 0.999601 

14.9 15.7941 85 61 53 2.8865 2.9205 1.011779 

19.3 14.4698 45 27 50 1.5051 1.4611 0.970766 

10 12.1 47 27 28 1.1139 1.1225 1.007721 
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10.7 18.0504 33 19 27.9 2.1072 1.8281 0.867549 

4.8 16.7261 28 15 32 1.6021 1.6484 1.0289 

32.5 11.9682 96 64 95 2.2923 2.2524 0.982594 

15 14.9 59 35 25 1.8062 1.835 1.015945 

37.3 13.1945 53 28 51 1.301 1.1549 0.887702 

36.5 13.1945 86 57 60.8 1.6435 1.8334 1.115546 

26.3 11.6249 85 52 40 1.7324 1.6452 0.949665 

23.4 15.1074 63 40 52.6 2.0607 1.9672 0.954627 

30.9 13.2926 85 56 72.1 2.0128 2.1088 1.047695 

12 18.1485 45 27 50 1.301 1.6834 1.293928 

15.3 18.0504 50 30 38 1.9031 1.8817 0.988755 

22.8 16.1375 97 57 59 2.6201 2.3712 0.905004 

20 13.8 193 165 38 2.0212 2.0546 1.016525 

20 15.696 50 27 35 1.6454 1.8849 1.145557 

10 15.7 115 74 47 2.7634 2.7677 1.001556 

20 12.1 59 35 25 1.1461 1.2165 1.061426 

10 13.5 75 43 45 2.0682 2.0585 0.99531 

22.2 16.5789 49 27 59 1.7782 1.6503 0.928073 

13.2 15.696 46 27 46 1.7559 1.7402 0.991059 

18.2 17.3147 103 66 65 2.9058 2.8952 0.996352 

15 14.2 47 27 28 1.4624 1.4811 1.012787 

5 14.9 59 35 25 1.9956 1.9478 0.976047 

30 13.3 115 74 47 2.1139 2.145 1.014712 

20 15.696 85 41 19 1.6609 1.7138 1.03185 

28.4 13.685 66 41 46.1 1.6021 1.828 1.141002 

38 12.0173 62 40 44.1 1.3802 1.1023 0.798652 

25 15 47 27 28 1.3979 1.5072 1.078189 

8 16.1865 100 50 27 1.9926 2.0595 1.033574 

15 14 115 74 47 2.4728 2.4624 0.995794 

10 12.7 59 35 25 1.415 1.5143 1.070177 

25.4 14.0774 77 49 59 2.0569 1.9364 0.941417 

5 13.8 193 165 38 2.1399 2.2184 1.036684 

15 15.4 193 165 38 2.4116 2.3242 0.963759 
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30 13.4 47 27 28 1.1139 1.1504 1.032768 

20.8 16.5887 116 71 68 2.658 2.766 1.040632 

29.2 14.0283 69 45 58 1.6021 1.8067 1.127707 

10 12.7 115 74 47 2.3181 2.2772 0.982356 

25 14.9 59 35 25 1.6902 1.7517 1.036386 

30 12.2 75 43 45 1.5563 1.4756 0.948146 

23.4 16.2846 72 44 58 2.1761 2.0828 0.957125 

30 13.8 193 165 38 1.9542 1.9388 0.99212 

25 14 115 74 47 2.3674 2.3791 1.004942 

20 12.2 75 43 45 1.6232 1.5914 0.980409 

11.9 19.5219 35 22 31.4 2.1038 2.0677 0.982841 

20 15.696 105 55 54 1.8663 1.8595 0.996356 

20.6 15.4998 54 35 49.9 1.6812 1.7516 1.041875 

15 13.4 59 35 25 1.6532 1.5721 0.950944 

20 12.5 193 165 38 1.8325 1.7515 0.955798 

20 13.4 47 27 28 1.2553 1.2662 1.008683 

8.6 21.0425 35 19 49 1.9031 1.8952 0.995849 

12 16.1865 85 41 19 1.8407 1.8411 1.000217 

4 16.1865 105 55 54 2.0017 1.9812 0.989759 

30 12.7 59 35 25 1.2553 1.2375 0.98582 

25 15.1 75 43 45 2.1072 2.1253 1.00859 

11.6 18.2466 34 19 29.2 1.8062 1.7883 0.99009 

5 15 47 27 28 1.8325 1.7034 0.92955 

5 14.3 75 43 45 2.1732 2.2194 1.021259 

5 13.4 59 35 25 1.8129 1.6849 0.929395 

10 14.6 193 165 38 2.3118 2.3539 1.018211 

30 12.1 59 35 25 1 1.1007 1.1007 

10 13.4 47 27 28 1.3802 1.4272 1.034053 

20 12.1 47 27 28 1 0.9616 0.9616 

20.6 14.2736 68 45 49.5 1.9777 2.0028 1.012692 

15 14.3 75 43 45 2.1239 2.1065 0.991808 

4 16.1865 100 50 27 1.7731 1.9703 1.111218 

20 14.6 193 165 38 2.2175 2.193 0.988952 
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10 12.9 75 43 45 1.8451 1.9164 1.038643 

20 14.1 59 35 25 1.6902 1.6673 0.986451 

10 14.1 59 35 25 1.8451 1.8282 0.990841 

20 12.7 59 35 25 1.3617 1.3534 0.993905 

25 12.8 47 27 28 1.0414 1.0902 1.04686 

15 15 47 27 28 1.7404 1.5905 0.91387 

10 14.8 115 74 47 2.6232 2.6965 1.027943 

15 15.1 75 43 45 2.2967 2.2086 0.961641 

30 13.5 75 43 45 1.7853 1.7818 0.99804 

18.1 15.0093 49 26 49 1.7709 1.6911 0.954938 

20 15.2055 65 41 52 1.8692 2.0392 1.090948 

10 12.2 75 43 45 1.6335 1.7524 1.072788 

25 14.3 75 43 45 1.9638 2.0232 1.030247 

25 14.6 193 165 38 2.1139 2.1606 1.022092 

5 15.1 75 43 45 2.3444 2.3215 0.990232 

20.2 15.696 68 42 59 2.0828 2.0718 0.994719 

5 15.7 115 74 47 2.8426 2.7706 0.974671 

15 13.5 75 43 45 1.9031 1.9485 1.023856 

10 14.2 47 27 28 1.5315 1.5911 1.038916 

20 14.2 47 27 28 1.3617 1.4302 1.050305 

24.9 12.3606 85 52 40 1.8451 1.806 0.978809 

20 13.4 59 35 25 1.5441 1.5212 0.985169 

10 13.8 193 165 38 2.1903 2.2155 1.011505 

19.4 14.5188 65 41 52 2.1335 1.9654 0.921209 

15 13.4 47 27 28 1.301 1.3171 1.012375 

10 13.4 59 35 25 1.699 1.6821 0.990053 

15 14.6 193 165 38 2.2672 2.2438 0.989679 

25 14.2 47 27 28 1.301 1.3978 1.074404 

20 14 115 74 47 2.3243 2.4115 1.037517 

15 13.8 193 165 38 2.0531 2.1055 1.025522 

15 15.7 115 74 47 2.7324 2.6577 0.972661 

5 13.5 75 43 45 2.0374 2.0614 1.01178 

25 13.8 193 165 38 1.9777 2.0222 1.022501 
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5 14.6 193 165 38 2.29 2.3567 1.029127 

 

 

Table 7.2: Data set for swelling pressure in clays (Testing) 

 

 

 

        w           γd                LL        PI          CLAY     log Spa    log Spp        A/P     

 

 

5 14.8 115 74 47 2.6551 2.6994 1.016685 

10 14 115 74 47 2.5378 2.5725 1.013673 

10 13.3 115 74 47 2.4314 2.4217 0.996011 

15 14.8 115 74 47 2.5185 2.5865 1.027 

20 13.3 115 74 47 2.2833 2.2608 0.990146 

25 14.8 115 74 47 2.4048 2.5032 1.040918 

30 12.7 115 74 47 2.1072 2.0004 0.949317 

15 12.9 75 43 45 1.7782 1.8064 1.015859 

20 12.9 75 43 45 1.716 1.7555 1.023019 

25 13.5 75 43 45 1.8325 1.8652 1.017844 

30 12.9 75 43 45 1.6812 1.6396 0.975256 

10 13.1 193 165 38 2.0128 2.0569 1.02191 

20 13.1 193 165 38 1.9031 1.896 0.996269 

30 13.1 193 165 38 1.8633 1.7802 0.955402 

5 14.2 47 27 28 1.7076 1.5939 0.933415 

10 12.8 47 27 28 1.2304 1.2836 1.043238 

20 12.8 47 27 28 1.1139 1.1226 1.00781 

25 13.4 47 27 28 1.2304 1.2338 1.002763 

30 12.8 47 27 28 1 1.0068 1.0068 

5 14.1 59 35 25 1.8751 1.8311 0.976535 

10 12.1 59 35 25 1.2788 1.3774 1.077104 

15 14.1 59 35 25 1.7243 1.7182 0.996462 

15 12.7 59 35 25 1.3802 1.4043 1.017461 
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25 14.1 59 35 25 1.6812 1.6349 0.97246 

30 13.4 59 35 25 1.3222 1.4053 1.06285 

8 16.1865 85 41 19 1.8791 1.9246 1.024214 

16 16.1865 85 41 19 1.7903 1.7636 0.985086 

4 16.1865 105 55 54 1.9877 1.9812 0.99673 

8 16.1865 105 55 54 1.9791 2.0704 1.046132 

16 16.1865 105 55 54 1.9101 1.9094 0.999634 

12 16.1865 100 50 27 1.9605 1.9759 1.007855 

16 16.1865 100 50 27 1.9315 1.8985 0.982915 

21.5 15.4017 67 44 50 2.0414 2.1019 1.029637 

 

 

7.3 RESULTS AND DISCUSSION 

The methodology adopted by the FN in predicting the Lateral load capacity of piles was 

discussed in Sec 3.8. with exponential function as the basis function, and degree 3 the 

workability of functional network and the equation generated was discussed below: 

)1.4()exp(
1 1

0 ∑∑
= =

+=
s

i

n

j
ijij xaay

 

Where, s = no of input variables 

 n= degree of the function 

Table 7.3: Coefficients of the obtained equation 

a 1 2 3 4 5 6 7 

1 3 -38 166 134 314 -111 0 

2 0 0 27 -95 115 -46 0 

3 0 -158 2364 -13396 37049 -50452 27075 

4 15 -191 986 -2594 3463 0 -4160 

5 0 20 -117 255 -235 78 0 
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Fig: 7.1 Comparison of predicted and measured swelling pressure of clays for training and 

testing 

 

Table 7.4: Error calculation for training and testing 

 

Error Training Testing 

AAE 0.0787 0.0464 

MAE 0.4715 0.1507 

RMSE 0.1177 0.0593 

R 0.9652 0.9901 

 

  The comparison of results with other criterion like cumulative probability 

distribution, and efficiency also to be considered for the evaluation of the best 

performance of the model.  

 

The ratio Qp/Qm is arranged as per their values in an ascending order and the 

cumulative probability is calculated from the following equation: 

 

1+
=

n
ip

 

Where i= order number given to the Qp /Qmratio; n is the number of data points. If 

 

0 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

0 0.5 1 1.5 2 2.5 3 3.5 

Pr
ed

ic
te

d 

Actual 

Training 

Testing 



64 | P a g e  
 

the computedvalue of 50% cumulative probability (P50) is less than unity, under 

prediction is implied; else over prediction. The ‘best’ model is that the obtained P50 

valueclose to unity. The 90% cumulative probability (P90) reflects the variation in 

the ratio of Qp /Qmfor the total observations. The model with P90 for Qp /Qmclose to 

1.0 is a better model. The results are presented in the table below: 

 

 
 

 

Fig 7.2:  Cumulative probability distribution plot for swelling pressure inclay for 

training and testing 

 

 Table 7.4: Cumulative probability distribution functions 

  

Cumulative probability P50 P90 

Training 1.00 1.08 

Testing 1.00 1.10 
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7.4 CONCLUSION: 

 

With the selected tool the developed models showed good correlation with the desired output 

and their performance is estimated based on following criteria obtained in testing.  

 

1. Correlation coefficient 

2. Root mean square error 

3. Efficiency and 

4. Cumulative probability distribution function (P50 and P90) 

 

Criterion value 

R 0.9901 

RMSE 0.0593 

Efficiency 1 

P50 and P90 1.0 & 1.1 

 

From the above table we can conclude that the error was almost minimum and the efficiency 

is close to 1shows that the functional networks gave good and accurate results and the 

reliability of the functional network can be assured and can be extended to wide variety of 

applications 

 

 

 

 

CHAPTER 8 

CONCLUSIONS 

In this study, we propose an alternative approach, functional networks, which provide a 

satisfactory prediction for 

1. Prediction of lateral load capacity of piles in clay  

2. Prediction of factor of safety of slope 
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3. Uplift capacity of suction caisson in clay 

4. Swelling pressure in clays 

 A simplified generalized functional network model is learned and tested with combination of 

data sets from two wells.  Different basis functions are used in the model and minimum 

description length was used to determine the best basis function to use for the problem. The 

results show that functional networks successfully predicted all the problems discussed. 

A clear advantage of this technique over neural networks is the quick and unique solution 

obtained from the model. Another important advantage is that it discovers the relationship 

that exists between the predictor variables and the output. This provides valuable information 

about the variables, making it easy to know their significance as well as to compare with 

existing empirical or theoretical models. 

 

In the present study the functional network was applied to solve some of the problems in 

geotechnical engineering. To the extent applied functional network performed better than the 

other statistical models like SVM, MGGP, ANN and others.  
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