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ABSTRACT 

Rapid industrial development and advances in the fields of engineering and related 

technologies during the last five decades have led to the extensive use of traditional metals 

and their alloy counterparts. Ti is one such metal which has gained popularity in the 

aerospace and defence related applications due to its wide range of mechanical properties like 

excellent specific strength , stiffness, corrosion and erosion resistance, fracture toughness and 

capability to withstand significant temperature variations. 

 

The present investigation is a step at correlating the crystallographic orientation and 

mechanical properties of commercially pure Ti (CP-Ti). Annealed CP-Ti specimens were 

prepared along the rolling direction, perpendicular to the rolling direction and 45
o
 to the 

rolling direction. The specimens were then deformed to failure under uniaxial tension test in 

tensile test. Crystallographic textures of the specimens were measured before and after tensile 

deformation. Correlation of texture and mechanical properties was investigated. 

Subsequently, hardness of different grains/orientations of CP-Ti was measured through nano-

indentation, grain average misorientation, elastic stiffness and Taylor factor measurements. 

KEYWORDS: CP-Ti, Orientation, Texture, Nano-indentation, elastic stiffness, taylor factor 
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CHAPTER I 

1.0 INTRODUCTION 

Over the past few decades, Ti and its alloys have come up as a preferred choice of use, 

because of their superb mechanical properties like, high strength per unit weight, stiffness, 

commendable erosion and corrosion resistance, fracture toughness and the ability to sustain 

huge temperature variations [1,2]. Continuous research in the field of material sciences have 

established Ti as a preferred choice for use in many performance-critical industries like 

aerospace and defence-related applications [3-4]. 

Pure Ti melts at 1675
o
C and weighs atomistically 47.9 amu [5]. The density of pure Ti is 

4.5g/cm
3
, approximately sixty-percent of steel[2, 5]. Furthermore, pure Ti and its alloys have 

good heat transfer capabilities and non magnetic. The good strength per unit weight of pure 

Ti at both high temperature (exceeding 590
o
C) and low temperature (below  -253

o
C) enables 

it to be the preferred metal that is often chosen and used as an ultrahigh speed metal in 

aerospace applications like space shuttles ,etc. [3, 5]. The high melting point of Ti metal 

enables it to be preferred choice for use in turbine engines [6]. 

Since the Ti metal has excellent superplastic properties, it can be easily deformed to the 

extent of two-thousand percent without experiencing appreciable necking or cracking when 

heated to a temperature of 925
o
C during the super-plastic forming process [6]. Also, Ti and 

its alloy counterparts are nonmagnetic and have a lower linear coefficient of expansion and 

lower thermal conductivity than the widely used family of steel and the alloys of aluminium 

[7]. In more recent years, the automotive industry has increased its use of the Ti metal 

because of its performance at elevated temperatures coupled with good formability. 

Noticeably, the metal has minimal degradation and high oxidation resistance during long 

term service or extended service at elevated temperatures [3, 4]. 

Essentially, the high cost of producing the Ti metal limited its selection and use to those 

applications that either required high performance or where life-cycle cost analysis justified 

its selection and use [8]. It was the aerospace and defences industries that stimulated the 

initial development of Ti in both commercially pure (CP) form and as alloys in the early 

1950’s [9, 10]. From a scientific perspective, Ti is categorized as a polymorphic metal 

because at room temperature [T = 25
o
C], it has a hexagonal close-packed (HCP) crystal 

structure, which is referred to as the alpha phase [11]. However, at temperature above 882°C, 

an allotropic phase transformation occurs to form the body-centered cubic (bcc) crystal 
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structure, which is referred to as the beta phase [12-14]. Unalloyed Ti is generally referred to 

as commercially pure (CP) Ti metal, which has noticeably low strength when compared one-

on-one to alloys, but is the most corrosion resistant version of the metal [13, 14], making it a 

preferred choice for military aircraft stationed on ships. Interstitial elements, such as oxygen 

and nitrogen, are beneficial since they tend to contribute to strengthening of the commercially 

pure Ti and its different grades [15]. Since commercially pure Ti has excellent corrosion 

resistance, it is used on-board kitchens, toilets and de-icing equipment. 

Helicopters use Ti alloys in highly stressed components like rotor head and rotormast. In 

space vehicles, Ti alloys are used for the fuel and satellite tanks due to its light weight, high 

strength and long term chemical compatibility [1, 4]. The automotive industry was attracted 

to Ti alloys for its light weight, high specific strength (σ/ρ), high elastic energy absorption 

capacity and excellent corrosion resistance [4]. It is used in exhaust systems, valves, valve 

cups, connecting rod, turbochargers, suspension springs, etc [5]. The Marine and energy 

industries require materials having 

(a) High corrosion resistance, 

(b) Wide range of strength and performance characteristics under static, cyclic and dynamic 

loading conditions, 

(c) Cold resistance in a temperature range of -50°C, 

(d) High erosion resistance and fire resistance, which they found the alloys of Ti to meet all 

of the requirements [6, 16]. 

Biomedical applications rely on biocompatibility of Ti alloys. Hip and knee-joint prostheses 

and other permanent implants like casing for cardiac pacemakers, bond fixtures, orthodontic 

and dental implants are made from the Ti metal [2, 7, 16]. 

Though Ti and its alloys are expensive, it cannot be compromised on account of its varied 

properties, low maintenance and long life usage. Ti is expensive due to its high affinity for 

oxygen creating problems both during extrusion and downstream processing. This limitation 

has started a considerable amount of scientific and technological interest in developing 

potentially viable and economically affordable manufacturing methods that aid in reducing 

the cost of the product. 
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1.1 OBJECTIVES 

The various objectives which are to be achieved in the projects are: 

 Determination of mechanical properties such as tensile strength, yield strength and 

hardness of all the Ti samples. 

 Correlation between texture and mechanical properties of Ti samples. 

 

 

1.2 FRAMEWORK OF THE THESIS 

The thesis is divided into five chapters. Chapter I mainly concerns about the introduction of 

the project work. Chapter II gives theoretical overview of Ti, methods of representing texture, 

development of texture in Ti and properties of CP Ti. Chapter III represents the details of Ti 

and sample preparation followed by characterization techniques used in the present 

investigation. Chapter IV basically tells the results that are obtained by texture measurements, 

hardness and tensile test measurements and discussion of the experimental results obtained. 

Chapter V summarizes the results obtained from the present study and hints the scopes for 

further works 
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CHAPTER 2 

2.1 CP-TI AND ITS METALLURGY 

The physical metallurgy of Ti alloys is portrayed in this segment with the exceptional stretch 

on the different evaluations of commercially pure Ti (CP-Ti). These kind of alloys are 

focused around the low temperature, hexagonal allotropic manifestation of it. Substitutional 

alloying components (Aluminium or Tin) or interstitial components (O, C or N) dissolvable 

in the hexagnal α- phase are available in it. Further particular alloys have been intended to 

meet the particular end utilization like enhancing ecological safety or diminishing expense 

and so forth. This has prompted the expansion of the evaluations prompting 16 identifiable 

alloys or evaluations.  

The phenomenal corrosion safety of CP Ti has made it an appealing material of development 

for substance and petrochemical handling supplies [18]. It additionally has gotten prevalent 

for heat exchangers and other channeling provisions in light of its weldability and great 

general fabricability, both in tubing and the resulting forming of the tubing for particular 

requisitions [19]. In spite of the fact that CP Ti is highly exorbitant at the beginning than SS, 

articles a product of it frequently have easier life cycle cost in light of the prevalent solidness 

of CP Ti in administration [20]. CP-Ti is typically chosen for utilization for different 

requisitions because of its corrosion safety and fabricability, yet different evaluations of Ti 

are some of the time chose because of absence of quality in CP-Ti needed for the provision. 

With the developing number of requisitions where mechanical properties are of prime 

essentialness it is basic for the configuration architect to settle on a prudent decision when 

selecting materials, e.g motor impellers 

The properties of α phase Ti alloys are dependent on constitution and processing history as 

these control the grain size and preferred orientation when compared with α+β and β alloys. 

The elastic modulus and yield strength varies between transverse and longituditnal directions 

in case of sheet products [21]. It varies because of crystallographic texture available. The 

elastic constants are higher along the c-axis than perpendicular to it. Elastic modulus 

increases with increase in Al content but oxygen has no impact on it (Table 1). The basic 

theories for strengthening α phase alloys are solid solution strengthening, both by interstitials 

and substitutional elements, grain size strengthening, texture strengthening, and precipitation 

hardening by α2 phase formation. The strengthening theories relevant to α Ti alloys are given 
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in Table 2. These strengthening mechanisms sometimes lead to strain localization restricting 

the operation of deformation twinning and reducing formability. 

Table 1 Properties of CP Ti 

Material E ( GPa ) σ0.2 (MPa ) UTS(MPa) Elongation% σ10
7
(MPa) σ10

7
/σ0.2 

Grade 1 105 170 240 24 - - 

Grade 2 105 275 345 20 - - 

Grade 3 105 380 445 18 280 0.73 

Grade 4 105 480 550 15 350 0.73 

Table 2 Strengthening mechanisms  Ti alloys 

Strengthening Mechanism  Dependence Examples/Limitations 

Grain Size d
-1/2 

Fine grains limit twinning 

Interstitial Solid Solution c
1/2 

Strain localization>2500 ppm 

O2 

Substitutional Solid Solution c Strain Localization>5%Al.eq 

Texture c-axis orientation Max. Strength when loaded 

along c-axis 

Precipitation r
1/2

, f
1/2 

Occurs> 5.5 % Al.eq 

 

CP-Ti grades are produced in the form of coil. During coiling, the rolling is single directional 

and the texture is due to working practice. The typical texture present in CP Ti has the 

maximum concentration of basal pole lying along the direction that connects the sheet normal 

and width (transverse direction). The point of maximum basal pole concentration is inclined 

about 30 degrees away from the sheet normal toward the transverse direction. A typical basal 

pole figure for CP Ti is shown in Fig.1 [22]. The texture in CP Ti is different from the  

texture in flat rolled α+β alloys due to the absence of twinnig. 

 

Figure 1 Crystallographic texture CP-Ti sheet[12] 
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Table 3 Industrial uses for Ti  

Industry Equipment Environment 

Power Generation Heat-exchangers, Flue Gas 

Scrubbers, Condensers 

Aqueous Solution of various 

purity,SO2 containing gases 

Water Plants Desalinization heat-exchangers Sea water 

Petrochemical industry Heat-exchangers, pipe ,well heads,  

and down hole hardware 

H2S containing brines 

Pulp and paper Diffusion washers in bleaching 

section of process 

Chlorides containing liquids 

Chemical industry Dimensionally stable electrodes Cl2 and Cl2 compounds 

Metal production Cathodes for electro winning Cu, 

Au, and Zn 

Various aggressive aqueous 

solutions 

Mineral dressing Pressure vessels at high T and P Various aggressive aqueous 

solutions 

Biomedical devices Orthopaedic implants, surgical 

implants, surgical implements 

Human body and autoclave 

sterilizers 

Spacecraft Cryogenic tanks  N2O4, liquid O2, liquid H2 

 

2.2 CRYSTAL STRUCTURE 

Ti changes by allotropic phase change at 882.5 °c, transforming from a closed packed 

hexagonal crystal structure (α phase) to body-focused cubic crystal structure (β phase). The 

definite change temperature is impacted by interstitial and substitutional components. The 

hcp unit cell of the low temperature α phase is demonstrated in Figure 2a. The ensuing 

proportion c/a = 1.587 for pure α-Ti is more modest than the perfect degree for a hexagonal 

closed packed crystal structure with c/a = 1.633. The unit cell of the bcc β phase is 

demonstrated in Figure 2b. The anisotropic conduct of the α phase has a far reaching impact 

on the versatile and plastic deformation model of Ti and its alloys. The variety of Young's 

modulus E of pure α-Ti single crystals at room temperature as a capacity of the angle γ 

between the c-axis of the unit cell and the stress axis is demonstrated in Figure 3 [23], 

prompting modulus varieties between 145 Gpa (stress axis ‖c-axis) and 100 Gpa (stress axis 

┴c axis). These sorts of varieties are seen in the worth shear modulus G for shear stresses 

connected on distinctive planes, despite the fact that such contrasts are less in polycrystalline 

α-Ti however it can build with profoundly textured material. The flexible moduli have a 

straight diminishing pattern with expansion in temperature upto conversion temperature. For 

polycrystalline α-Ti without composition the Young's modulus drops from about 110 Gpa at 
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RT to something like 58 Gpa simply underneath the transus, while the shear modulus 

diminishes from something like 42 to 20 Gpa in the same temperature interval[24]. Since the 

β phase of pure Ti can't be held at RT, Young's modulus qualities are demonstrated here for 

binary Ti-V strong result alloys in Figure 4. The moduli of β-Ti increment with expanding 

solute substance and their qualities are much lower as contrasted with those of α- Ti.  

2.2.1 DEFORMATION MODES 
The observed ductile behaviour of α-Ti, also at low testing temperatures, results from the 

combined contribution of slip and twinning modes. 

 

Table 4 Slip systems in the hcp α phase[15] 

2.2.1.1 SLIP MODES 

The various slip systems observed in α-Ti are listed in Table 4 and respective slip planes and 

slip directions in the hcp unit cell are shown in Figure 5. The three slip systems in Table 4, 

which all have the same type of Burgers vector, together, possess nominally 8 independent 

slip systems. However, this number reduces to only 4 systems due to the changes of shape 

that can be produced by the combined slip systems 1+2 are exactly the same as those of the 

slip system 3. In no case is an extension parallel to the c-axis possible. Therefore, in order to 

satisfy the von Mises criterion, which requires at least five independent slip systems for a 

homogeneous plastic deformation of polycrystals, the operation of one of the slip systems 

{   ̅ } with a  ̅   ̅ Burgers vector needs to be activated, which has been observed in a 

number of Ti-alloys [14, 15]. The predominant slip mode in α-Ti is {10 ̅0} <   ̅  >, 

followed by {   ̅ } and (0002) both with an  ̅ type Burgers vector. The highest critical 

resolved shear stress (CRSS) is required for slip with  ̅   ̅ Burgers vector. Absolute values 

of CRSS are strongly dependent on alloy content and on test temperature. An example of 

CRSS for three different slip systems in solid solution strengthened Ti-Al single crystals as a 

function of test temperature is shown in Figure 6 [16].  
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Figure 2 Unit cells of α and β phases                                      Figure 3 Variation of young’s modulus with declination angles 

            

Figure 4  E = f(vanadium content) [15]                                          Figure 5 slip directions and slip planes in hcp α phase[15] 

       
Figure 6 CRSS of slip with burgers vector[15]                    Figure 7 Influence of alloying elements[15] 

2.2.1.2 DEFORMATION TWINNIG 

There are many twinning modes observed in Ti [12]. The {1121} twins allow an extension 

along the c-axis, while the {1122} twins permit a reduction[14]. Therefore, twinning is 

dependent on the sense of the applied stress, in contrast to plastic deformation by 

dislocations. Increasing contents of solute atoms are suppressing twinning, such as oxygen or 

aluminum, therefore twinning as a deformation mode to allow a shape change parallel to the 

c-axis of a-Ti plays only a role in pure or commercial purity Ti with lower oxygen 
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concentrations [14]. Twinning is also drastically reduced with decreasing grain sizes or phase 

dimensions [12].  

2.2.2 PHASE DIAGRAMS 
Alloying components in Ti are considered α or β stabilizers on the premise of their 

consequences for the α to β conversion temperature or on their contrasting solubilities in the 

α or β phases. The substitutional component Al and the interstitials O, N and C are solid α 

stabilizers and expansion the transus temperature with expanding solute content, as indicated 

in Figure 7. The β-balancing out components bring down the transus temperature. These are 

recognized into β-isomorphous sorts (e.g. V, Mo, Nb, Ta) and β-eutectoid sorts (e.g. Mn, Fe, 

Cr, Co, Ni. Cn, Si, H). What's more, there exist different components, for instance Zr and Sn, 

which carry on pretty much impartial or are marginally diminishing the transus temperature 

(Figure 7). Actual equilibrium phase diagrams for all of these systems can be found in [18]. 

2.2.2.1 PHASE TRANSFORMATIONS 

The transformation of the bcc β to the hcp α structure by freezing through the transition 

temperature occurs by a nucleation and shear type process. The crystallographic direction 

relation between α and β has first been studied for Zr by Burgers [19], and is therefore named 

Burgers-Relationship:  

{110}β // (0002)α 

<111>β // <11 ̅0>α 

This relationship was confirmed later also for Ti [20]. According to this relationship a bcc 

crystal can therefore transform to 12 hexagonal variants, having different orientations with 

regard to the parent β crystal. This transformation can occur either martensitically or by a 

nucleation and growth process, depending on alloy composition and cooling rate. 

2.2.2.2 ALLOY CLASSIFICATION 
Ti alloys are separated customarily into three separate sorts as α, α+β, and β alloys as per 

their equilibrium constitution, which shifts with the sorts and amassings of alloy components. 

This is indicated in a schematical pseudobinary β-isomorphous phase graph in Figure 10. Ti 

having different measures of interstitial oxygen to enlarge the yield stress and alloys with α 

stabilizers (Al, Sn) having hcp crystal structure at low temperature are considered α alloys. 

These alloys hold, notwithstanding the α stabilizer Al, additionally β balancing out 

components, for example, V, Mo, Nb or Cr. These components diminish the α to β change 

temperature and expansion the width of the α+β phase field with expanding β-solute content. 

Additionally they bring down the temperature, when the β phase begins to convert by the 

martensitic methodology. With a further expand in β balancing out components, past that 
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level which brings down the Ms-temperature to RT, those alloys are then called metastable β 

alloys. For these alloys the β phase might be held at RT even in extensive segments 

throughout air cooling. In any case, these metastable β alloys can generally be changed to a  

α+β mixture by isothermal maturing. At significantly higher β stabilizer substance the alloys 

are steady β alloys, which can't be changed to a α+β mixture by further heat treatments. 

 

 
Figure 8  Acicular martensite structure[15] 

 
Figure 9 Lamellar α+β microstructure in Ti-6Al-4V slowly cooled from the β phase field[15] 

       
Figure 10 Pseudobinary β isomorphous phase diagram [15]     
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2.3 TEXTURE 

Crystallographic orientation or simply orientation means the relative positioning of atomic 

plane in a crystal to a fixed reference. Even though grain orientations are highly unlikely to 

be randomly distributed but crystallization from melt to solid state and thermomechanical 

processing increase the likely development in certain patterns in orientation. This tendency is 

known as texture. Texture is very important as it influences the material properties. Indeed, it 

has been found that the influence of texture on material properties is, in many cases, 20%–

50% of the property values [33]. 

The direction of any 3-D vector in a crystal—a crystallographic direction or the ordinary to a 

crystal plane—might be depicted as a point on the unit reference circle, that is, a circle with 

span 1 notionally living around the crystal . As an illustration, Figure 11 shows the (0001) 

plane in a hexagonal crystal. The purpose of crossing point of the typical to this plane with 

the reference circle, that is, its post, is a measure for the game plan of this plane in the crystal. 

Gave that the reference unit circle is appended to an outer edge, the position of the shaft on 

the circle additionally gives data on the crystallographic introduction of the crystal 

concerning this casing, in spite of the fact that the crystal has still one level of flexibility by 

turning around this specific pivot. In crystallography and metallurgy, most generally the 

stereographic projection is utilized, the guideline of which is indicated in Figure 12 has a 

tendency to be more famous 

2.3.1 THE POLE FIGURE 

The projection of poles onto a pole figure from a reference figure is appeared. The position of 

the obliged pole  on the circle is resolved as far as two angles (Hansen et al., 1978): The 

angle α is the azimuth of the pole, where north pole is given by α = 0° and the angle β 

describes the rotation of the pole around the polar pivot, beginning from a specified reference 

bearing (Fig 11). For the characterisation of the crystallographic orientation the exceptional 

game plan is dead set as far as the angles α and β concerning an outside reference frame, that 

is, the example or specimen coordinate framework S. For instance while rolling the sheet 

normal course ND is ordinarily decided to be in the north pole of the circle, with α = 0° for 

ND, and the rotation angle β is 0° for the rolling heading RD or, less every now and again, 

the transverse bearing TD. For other deformation modes or example geometries a fitting 3-D, 

ideally right-handed, coordinate framework must be determined. 

. 
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Figure 11 Orientation in hexagonal crystal (basal plane)[29] 

 

 

Figure 12 Illustration of the {100} poles [29] 

The reference system of the pole figure is the specimen coordinate system S which is 

determined by the specimen axes {s1s2s3}, and the crystal orientation given by the axes of the 

crystal coordinate system C = {c1c2c3} is projected into this frame. If R is a vector parallel to 

the pole of interest (XYZ), then it can be expressed in the two frames S and C according to 

R = s1 sinαcosβ + s2 sinαsinβ + s3 cosα 

and 

R= 
 

 
(c1X+c2Y+c3Z) 

(XYZ) are the coordinates of the pole in the crystal frame, for example, (111), and N is a 

constant with N = √         to normalize R to unity. Scalar multiplication of above 

equations in succession by the three vectors s1 under consideration of the definition of an 

orientation finally yields 

         
        
    

=
 

 
(

         
         
         

)(
 
 
 
) 
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(note that g
t
 = g

–1
 shows up here). Above mathematical statement yields nine equal 

statements to determine the pole figure angles α and β for a given pole (XYZ) from the 

orientation lattice g (Hansen et al., 1978). Just distinctive poles were recognized. 

Nonetheless, as officially said, one pole does not yield the whole orientation data, since the 

crystal can at present turn about this specific pole (Fig 13). Consequently, the dissemination 

of the c axes in a hexagonal material, that is, its (0001) pole figure, does not give an 

unambiguous representation of the surface of the example; different poles must be 

acknowledged to speak to unambiguously an orientation. In this illustration, the extra data 

about the position of, say, the (1010) pole might focus the orientation in an unequivocal way 

(Fig 13). In spite of the fact that in this illustration the orientation is completely described by 

two poles, all in all—contingent upon the symmetry of the crystal or the poles—three poles 

are important to determine totally the orientation grid g. Normally, the extra data is given by 

different poles of the same group of planes, that is, diverse poles (hkl) of the family {hkl}. 

For example, the hexagonal crystal has three equal {1120} planes, (1120), (1210), and 

(2110), so that every orientation in the comparing {1120} pole figure is precisely portrayed 

by the relating three poles. In pole figures like {1121} and {1101}, any orientation is 

characterized by six comparable poles. In cubic crystals, a given orientation is depicted by 

(not numbering the same poles with negative signs) three {100}, four {111}, six {110}, 

twelve {012}, {112}, {113}, and so on., and—in the most general case— twenty-four {hkl} 

poles, which implies that all pole figures of cubic crystals include enough poles to depict 

unambiguously an direction 

2.3.2 THE INVERSE-POLE FIGURE(IPF) 

Instead of depicting the orientation of the crystal-coordinate system in the specimen- 

coordinate system, that is, in a pole figure, vice versa the orientation of the specimen- 

coordinate system can be projected into the crystal-coordinate system. This representation is 

called the inverse pole figure. Thus, the reference system of the inverse pole figure is the 

crystal coordinate system C, and the “orientation” is defined by the axes of the specimen 

coordinate system S, for example, RD, TD, and ND. In an analogy to previous Equation 

where the pole figure angles α and β of a unit vector parallel to the crystallographic axis 

(XYZ) have been considered in the frame S, now the angles γ and δ of a vector parallel to a 

specimen axis si in the coordinate system C must be introduced: 

si = c1 sinγi cosδi + c2 sinγi sinδi + c3cosδi 

Scalar multiplication now leads to 
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Figure 13 The [001][011][111] unit triangle; and inverse pole figure using the unit triangle to indicate with the help of 

contour plots how intense a particular crystallographic direction is oriented parallel with an external reference 

direction[29] 

These statements depict the components of the orientation grid g as far as the position of the 

example axes. IPF are regularly utilized for axial symmetric examples, where one and only of 

the axes is endorsed. Case in point, for tensile or compression or examples the orientation 

progressions of the compression or tensile pivot are plotted in the crystal direction 

framework. As indicated by the crystal symmetry it is not important to show the whole pole 

figure, however a single unit triangle will be enough. 

2.3.3 THE EULER ANGLE AND EULER SPACE. 

 Generally, the three rotations are expressed as 
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Figure 14 Rotation between specimen and axes described by Euler Angles[29] 

 

 

Figure 15 Representation of the necessary orientations defined by Euler angles (Bunge Convention)[29]  

 

Table 5 Size of the Euler Space Necessary to Represent Unequivocally Orientations[29] 

 

 



16 | P a g e  
 

2.4 X RAY DIFFRACTION 

The crystallographic orientation of a crystalline sample can be determined by X-Ray 

diffraction. Earlier the orientations were determined by studying the inhomogeneous peak 

distribution along Debye Scherrer rings. Present day X-Ray diffraction use texture 

goniometer and Geiger counters. This method can be employed for all kinds of materials 

except for materials with multiphase systems and materials with low crystalline symmetry. 

Generally a X-Ray system has the a a X-ray tube,X-ray generator,goniometer with a sample 

stage and a detection system. The following is of a texture goniometer. 

 

. 

2.4.1 POLE FIGURE DIFFRACTOMETRY 

A pole-figure goniometer contains a four-axis single crystal diffractometer. The detector is 

placed at the required Bragg angle with respect to incident x ray beam. The sample is placed 

relative to 3 ┴ axes ω φ and χ; the ω axis coincides with θ as shown in the figure. The 

diffractometry can be done in 2 modes 
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Figure 16 Different Modes of Pole figure diffractometry 

2.4.2  POLE FIGURE SCANNING 

The goniometers that are regulated by a single motor, the pole figures are examined by 

changing both α & β at the same time.  An electrical counter measures the reflected intensity 

for each point (α,β). There are two different methods of pole figure scanning. 

1. Step scanning mode- Here the intensities are measured after rotating the samples by a 

particular angle on a spiral or continuous axis. The values are taken after the specific 

interval of angles. 

2. Continuous scanning mode-Here the values are measured continuously over the given 

range and integrated . The scanning grid has to be continuous in this case. 

.2.5   ELECTRON BACKSCATTER DIFFRACTION(EBSD) 

Electron backscatter diffraction (EBSD) or backscatter Kikuchi diffraction (BKD) is a 

microstructural crystallographic procedure. It is utilized to focus the crystallographic 

introduction of numerous materials, which might be utilized to depict surface or favored 

introduction of any crystalline or polycrystalline material. EBSD can list and distinguish all 

the seven crystal frameworks. Thus it is connected to crystal introduction mapping, stage 

recognizable proof, deformity studies, grain limit and grain morphology studies, local 

heterogeneity examinations, material separation, mapping micro strain, and utilizing 

reciprocal techniques,and physicochemical ID. Traditionally these sorts of studies have been 

done utilizing X-beam diffraction (XRD), neutron diffraction and/or electron diffraction in a 

TEM.  
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Electron Backscattered diffraction is carried out utilizing a Scanning Electron Microscope 

(SEM) outfitted with an EBSD indicator which is associated with a phosphor screen, minimal 

lens and low light CCD Polaroid chip. Economically accessible EBSD frameworks ordinarily 

accompany one or two distinctive CCD Polaroids: The CCD chip with a local determination 

of 640×480 pixels is utilized for quick estimations while for slower, and more delicate 

estimations, the CCD chip determination can go up to 1600×1200 pixels. Nonetheless, with 

higher resolutions the readouts are more lengthy. The greatest focal point of the high-

determination identifiers is their higher affectability. For composition and introduction 

estimations, the pictures are binned so as to diminish their size and lessen computational 

times. Accordingly, the exchange and elucidation of up to just about 1000 pictures/s is 

conceivable if the diffraction sign is sufficient.  

For an EBSD estimation a level/cleaned crystalline example is put in the SEM chamber at an 

exceedingly tilted point (~70° from flat) towards the diffraction Polaroid, to build the 

differentiation in the resultant electron backscatter diffraction design. The phosphor screen is 

spotted inside the example assembly of the SEM at an edge off more or less 90° to the shaft 

piece and is coupled to a smaller lens which centers the picture from the phosphor screen 

onto the CCD Polaroid. In such a design a percentage of the electrons entering the example 

backscatter may escape. As these electrons leave the example, they may retreat at the Bragg 

condition identified with the dispersing of the occasional nuclear cross section planes of the 

crystalline structure and diffract. These diffracted electrons can get away from the material 

and some will impact and energize the phosphor making it fluoresce.  

An electron backscatter diffraction design (EBSP) is framed when numerous distinctive 

planes diffract diverse electrons to structure Kikuchi groups which relate to each of the grid 

diffracting planes. On the off chance that the framework geometry is generally depicted, it is 

conceivable to relate the groups introduce in the EBSP to the underlying crystal stage and 

introduction of the material inside the electron connection volume. Each one band could be 

recorded independently by the Miller records of the diffracting plane which shaped it. In most 

materials, just three groups/planes which block are obliged to depict an extraordinary answer 

for the crystal introduction (based upon their interplanar points) and most business 

frameworks use find tables with global crystal information bases to perform indexing.  

While this "geometric" depiction identified with the kinematic result (utilizing the Bragg 

condition) is influential and helpful for introduction and composition investigation, it just 
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depicts the geometry of the crystalline cross section and disregards numerous physical 

methodologies included inside the diffracting material. To sufficiently portray better 

characteristics inside the EBSP, one must utilize a numerous pillar dynamical model (e.g. the 

variety in band intensities in an exploratory example does not fit the kinematic result 

identified with the structure variations. 

 

Figure 17 Origin of Kikuchi lines from the EBSD (i.e., tilted specimen) perspective.[29] 

2.6 NANO-INDENTATION 

The objective of nano-indentation tests is to find out elastic modulus and hardness of the 

material from load-displacement estimations. Conventional indentation hardness tests include 

the approximation of the measure of a leftover plastic impression as a capacity of the indenter 

load. This gives a area of the region of contact for a given indenter load. In a nano-

indentation test, the extent of the leftover impression is just a few microns and this makes it 

largely troublesome to get a exact measure utilizing optical procedures. In nano-indentation 

testing, the depth of infiltration underneath the example surface is measured as the load is 

connected to the indenter. The indenter’s geometry permits the measure of the range of 

contact to be resolved. 

2.6.2 LOAD-DISPLACEMENT CURVES 

The main goal of nano-indentation testing calculates hardness & elastic modulus of the 

specimen material from experimental readings of indenter load and depth of penetration. In a 

typical test, force and depth of penetration are recordes as load is applied from zero to some 

maximum and vice versa. On the off chance that plastic disfigurement happens, then there is 

a leftover impression left on the surface of the example. Not at all like customary space 
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hardness tests, the size (and consequently the anticipated contact region) of the remaining 

impression for nano-space testing is so little it would be impossible measure correctly with 

optical methods. The profundity of infiltration together with the known geometry of the 

indenter gives a backhanded measure of the zone of contact at full load, from which the mean 

contact weight, and in this manner hardness, may be assessed. At the point when burden is 

evacuated from the indenter, the material endeavors to recover its unique shape, yet it kept 

from doing so as a result of plastic twisting. Be that as it may, there is some level of 

recuperation because of the unwinding of versatile strains inside the material. An 

investigation of the introductory segment of this versatile emptying reaction gives an 

evaluation of the flexible modulus of the indented material. The type of the consistence bends 

for the most widely recognized sorts of indenter are very much alike and is demonstrated in 

figure.  

 Figure 18 Loading and Deloading (Compliance Diagrams)[30] 

 

 

 

 

 

Figure 19 Load displacement diagrams for different 

materials[30] 
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CHAPTER III 

3.0 MATERIALS AND EXPERIMENTAL PROCEDURE 

3.1 MATERIALS 

Materials studied (Cp-Ti)in this study were obtained from plates of 0.5mm thickness. 

Chemical composition (in wt.%) of the plates is given in table 6. The 0.5 mm thickness plates 

were obtained from 5 mm thick plates after these plates were subjected to cold rolling leading 

to 90% reduction in thickness in a laboratory rolling mill. The cold rolled sheets were then 

annealed at 600
o
C for 1hr in a batch furnace. Tensile specimens of dimension shown in 

figure, were prepared from the annealed sheets by laser cutting so as to not to introduce any 

residual stresses. Tensile specimens were prepared with respect to different sample 

orientations – along rolling direction, along 45
o
 to the rolling direction and along 90

o
 to the 

rolling direction as shown in figure 21. 

Table 6 Chemical composition (in wt.%) of cp-Ti used in the present study 

Fe C N H O Ti 

0.034 0.004 0.004 0.0004 0.134 Balance 

 

 

 

 

 

 

 

 

 

 

 

3.2 TENSILE TEST 

 All the samples were subjected to tensile deformation beyond yield point, till ultimate 

tensile strength and till fracture respectively. Tensile testing was carried out in an Instron 

1195. The specimens were metallographic polished before tensile testing and after tensile 

testing. 

 

Figure 20 Tensile specimen used 
for study 
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3.3 TEXTURE CHARACTERISATION 

 The specimens were metallographic and electro-polished for XRD (X-ray 

diffraction), EBSD (Electron backscattered diffraction) and nano-indentation analysis. 

Standard procedure was followed for metallographic polishing, whereas electro-polishing 

was carried out in a Struers polisher, LectroPol-5, at 25V for 20sec and the electrolyte used 

was methanol and perchloric acid (80:20) at a temperature of -20°C. 

3.2.1 BULK/MACRO TEXTURE 

 A Panalytical MRD X-ray diffraction system is used for bulk texture characterization. 

This is available at IIT Bombay and is used for the present study. Four different pole figures, 

(01 ̅1), (01 ̅2), (01 ̅3) and (11 ̅4) were measured. Subsequently the ODF was estimated 

using an academic software Labotex. 

 

3.2.2 MICRO TEXTURE 

 A Fei-quanta SEM (scanning electron microscope) attached with TSL-OIM was used 

for microtexture characterization. The system is known as electron backscattered diffraction 

(EBSD) system. This is also available at IIT Bombay and is used for the present study. EBSD 

was carried out for grain size and grain average misorientation determination. Grain average 

misorientation (GAM) is the average misorientation between each point in a grain. An 

approximate area of 1 mm x 1 mm was scanned by the EBSD in each sample. Orientation 

estimated elastic stiffness of different grains was estimated and also the Taylor Factor was 

estimated. 

3.4 NANO INDENTATION TEST    

Nano-indentation was carried out using a nano-mechanical testing instrument, Hysitron 

Triboindenter (TI 900). A Berkovich diamond indenter was used for indentation. Hardness of 

more than 300 grains was measured using a load of 9000N. The load was decided based on 

the indentation depth. 

 

 

 

 

 

 

Figure 21 Different oriented specimens used in the study 
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CHAPTER IV 

RESULTS AND DISCUSSION 

Mechanical properties of cp-Ti with respect to its orientation (i.e. along rolling 

direction, 45
o
 to the rolling direction and 90

o
 to the rolling direction) are shown in table 7. 

The sample has high strength in the rolling and 90
o
 to the rolling direction while the ductility 

is more in the direction 45
o
 to the rolling direction. 

Table 7 Mechanical properties of Ti alloy 

SAMPLE YIELD 

STRENGTH(MPa) 

TENSILE 

STRENGTH(MPa) 

YOUNG’S 

MODULUS(MPa) 

ELONGATION(%) 

0 DEG 253 419.72 23733.73 31.56 

45 DEG 235 359.102 26050 33.26 

90 DEG 328 392.359 33684.77 26.57 

 

Nano-indentation of the cp-Ti sample is shown in figure 22. Initially nano-indentation 

was performed on different grains according to the points numbered on the sample of an 

annealed cp-Ti sample. Then the orientation of the same grains where nano-indentation was 

performed was estimated by the EBSD measurements. The hardness values corresponding to 

the colour code is shown in table 8. The figure shows that the basal orientations had higher 

hardness compared to non-basal orientations. The hardness of grains gradually decreased as 

we moved from the centre of stereographic triangle to the outer sides of it. 

 

Figure 22 Inverse pole figure showing nano indentation points 
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Table 8 Nano indentation hardness table 
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To quantify the extent of deformation the grain average misorientation, grain oriented elastic 

stiffness and Taylor factor was calculated for 0 deg sample for 3 different conditions (i) 

deformed till yield point, (ii) deformed till ultimate tensile strength and (iii) deformed till 

fracture. In all the three cases the values were shown to increase with the deformation. In all 

the cases except Taylor factor the average values are seen to be increasing as we move from 

the stereographic centre towards the outer region of the triangle. The average values are 

presented in colour coded table. 

 

 

Colour 

code 

Hardness 

value 

(GPa) 

Colour 

code 

Hardness 

value 

(GPa) 

Colour 

code 

Hardness 

value 

(GPa) 

1 3.10 1 2.50 1 2.00 

2 2.99 2 2.48 2 1.99 

3 2.97 3 2.42 3 1.97 

4 2.96 4 2.41 4 1.96 

5 2.95 5 2.39 5 1.94 

6 2.82 6 2.35 6 1.93 

7 2.81 7 2.33 7 1.92 

8 2.75 8 2.32 8 1.83 

9 2.74 9 2.31 1 1.78 

10 2.72 10 2.30 2 1.77 

11 2.69 11 2.29 3 1.765 

12 2.69 12 2.27 4 1.762 

13 2.67 13 2.23 5 1.76 

14 2.65 14 2.22 6 1.729 

15 2.61 15 2.19 7 1.724 

16 2.59 16 2.17 8 1.70 

17 2.59 17 2.15 9 1.69 

18 2.58 18 2.07 10 1.68 

19 2.58 19 2.04 11 1.675 

20 2.57 20 2.03 12 1.673 

21 2.57 21 2.01 13 1.66 

22 2.55   14 1.64 

23 2.53     

24 2.52     
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GRAIN AVERAGE MISORIENTATION 

(i) Deformed till yield point 

COLOUR CODE AVERAGE GAM 

 0.71 

 0.87 

 1.34 

(ii) Deformed till ultimate tensile strength 

COLOUR CODE AVERAGE GAM 

 0.92 

 1.34 

 1.48 

(iii) Deformed till fracture 

COLOUR CODE AVERAGE GAM 

 1.04 

 1.37 

 1.58 

 

ELASTIC STIFFNESS 

COLOUR CODE  AVERAGE 

 82.19 

 142.76 

 103.19 

 

TAYLOR FACTOR 

COLOUR CODE  AVERAGE 

 3.06 

 2.76 

 1.46 

 

 

Bulk texture developments in cp-Ti w.r.to its orientation (i.e. along rolling direction, 45
o
 to 

the rolling direction and 90
o
 to the rolling direction) is shown in figure 23, 24 & 25. This 
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shows a significant near basal texture in all the samples. The volume fraction of basl texture 

is maximum in 0 deg sample followed by 90 deg and then 45 deg. 

 

 

Figure 23 Inverse pole figure showing bulk texture of sample oriented towards the rolling direction 

 

Figure 24 Inverse pole figure showing bulk texture of sample oriented 45 deg to the rolling direction 

 

Figure 25 Inverse pole figure showing bulk texture of sample oriented 90 deg to the rolling direction 



27 | P a g e  
 

CHAPTER V 

The Hardness and Mechanical properties of Cp-Ti sheets in rolling direction, 45
o
 to rolling 

direction and 90
o
 rolling direction is checked and the following conclusions are drawn 

 The basal/near basal orientations are the hardest orientations in annealed cp-Ti. 

 The GAM (a measure of misorientation in a grain) development was lower in 

basal/near-basal grains during tensile deformation of annealed cp-Ti. 

 The orientation estimated elastic stiffness was lower in basal/near-basal grains during 

tensile deformation of annealed cp-Ti. 

 The basal/near-basal grains/orientations had highest Taylor factor followed by off-

basal & non-basal grains/orientations. 

 Improved mechanical properties were observed in annealed cp-Ti where volume 

fraction of basal/near basal orientations/grains was higher.  

SCOPE FOR FURTHER WORK 

In the present study we found that texture had strong influence on mechanical properties of 

cp-Ti. Also texture is highly dependent on processing parameters. Hence, it may be tried to 

improve the texture in all angular directions of Ti sheets so that the mechanical properties 

will be uniform in all directions. This may be achieved by cross rolling and subsequent heat 

treatments.. 
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