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Abstract

Preserving privacy while publishing data has emerged as key research area

in data security and has become a primary issue in publishing person specific

sensitive information. How to preserve one’s privacy efficiently is a critical issue

while publishing data.

K-anonymity is a key technique for de-identifying the sensitive datasets. In

our work, we have described a framework to implement most of the k-anonymity

algorithms and also proposed a novel scheme that produces better results with

real-world datasets. Additionally, we suggest a new approach that attains bet-

ter results by applying a novel approach and exploiting various characteristic of

our suggested framework. The proposed approach uses the concept of breadth-

search algorithm to generalize the lattice in bottom-up manner. the proposed

algorithm generates the paths using predictive tagging of the nodes in the lattice

in vertically.the proposed algorithm has less execution time than other full domain

generalization algorithms for k-anonymization.

Keywords:k -anonymity, Data Privacy, domain generalization,Quasi-Identifier,

data utility etc.
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Chapter 1

Introduction

Over last 20 years, the digitization of our daily lives has led to an increase in

the data collected by individuals, corporations, and governments. This digitally

available data (known as microdata) has created a good opportunity for decision

making based on available information. Because of mutual benefits, or by orga-

nization’s policies, publication of digitally available data is required to improve

decision making. But the collected microdata in its native form may contain per-

son specific sensitive information of individuals whose privacy can be violated if

the original data is published.

So the important task is to protect the privacy of this microdata. There

exists some guidelines, agreements and policies about how and what data should

be published so that the data remains useful for research and analysis and at

the same, individual’s privacy is preserved, referred as privacy preserving data

publishing (PPDP).

In this thesis, we consider only preserving of information privacy, which pro-

tects sensitive information from being brought to the attention of others. Privacy

preserving is the ability to limit the diffusion and use of one’s personal data. Pri-

vacy can refer to an individual where nobody should know about any entity after

performing data mining or an organization to protect knowledge about a collec-

tion of entities. Various approaches followed for individual privacy preserving are

data obfuscation, value swapping, perturbation, etc. Each organization adopts a

framework for disclosing individual entity values to the public.
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1.1 Privacy-Preserving Data Publishing Introduction

1.1 Privacy-Preserving Data Publishing

Privacy preserving data publishing(PPDP ) is an approach to publish practi-

cally useful data without violating individuals privacy. PPDP focuses on data

anonymization that attempt to conceal the identity of record holders, considering

that private data must be maintained for data analysis [2]. PPDP consist of two

phases: Data collection and data publication.

1. Data collection: in this phase, the original data from record holders is

retrieved by the data publisher.

2. Data publishing: in this phase, the data retrieved by record holders in

data collection phase, is released to data recipient for analysis and mining purpose.

A real time scenario of PPDP is given as follows:

Figure 1.1: Privacy Preserving Data Publishing
[2]

In this example, we can compare this with the hospital patient scenario where

Alice, Bob, Cathy, Doug are the patient (Record holders) and data publisher

(hospital) collects the information from record owners and gives it medical center

(Data recipient) for research and analysis purpose. Finally data recipient perform

data mining to retrieve useful information. On the basis of trust level the data

2



1.2 Anonymization Approach Introduction

publisher is categorizes in two models: trusted data publisher and untrusted data

publisher.

1: Trusted Data publisher: In this model, the record holders know that the

data publisher is reliable and they are willing to provide their personal information

for analysis [13].

2: Untrusted data publisher: In it, the publisher may not be reliable and

may try to gain confidential information from the record holders.

1.2 Anonymization Approach

In basic scenario of privacy preserving data publishing, the published data table

has the following form:

D (Explicit Identifier, Quasi-Identifier,Sensitive Attributes, Non Sensitive Attr-

ibutes)

Where

Explicit Identifier: it is a group of attributes (for e.g. voter id, Name etc.),

able to identify individual record explicitly.

Quasi-Identifier: A group of attributes from a table whose combination can

be used to identify some other record from dataset. Quasi-identifers may be used

to re-identify an individual record from the table.For example [2] combination of

(Job ,Postcode,date of birth) of all these attribute may used to determine any

individual record from the table, to his/her medical problem.

Sensitive-attributes:

Sensitive Attributes contain the sensitive person-specific information which an

Individual will never want to disclose it. Non-Sensitive attibutes are those who

do not come under remaining three types of attributes.

1.3 k-anonymity:

In the generalized table, a tuple must be indistinguishable from (k-1) other tuples

having the same quasiIdentifier. A relation is consist of quasiidentifier and non-

quasiidentifier attributes in which quasiIdentifier attributes needs to be anonymized

3



1.4 Anonymization Introduction

Table 1.1: Original Table

Job Birth Zipcode Disease
Engineer 1970 9008 Hepatitis
Engineer 1960 9008 Hepatitis
Engineer 1960 9005 HIV
Engineer 1960 9006 HIV
lawer 1970 9008 HIV
lawer 1970 9008 Flue

because their combination can reidentify the individual’s record. Consider t is a

tuple in the generalized table, the value of the ith tuple is ti[C].

A relation, T1 satisfies k-anonymity if for each tuple ti0 ∈ T1 ,there are (k-1)

other tuples ti1, ti2, ti3, ....., ti(k−1) ∈ T1 such that ti0[C] = ti1[C] = ti2[C] = ti3[C] =

..... = ti(k−1)[C]

1.4 Anonymization

Protection of individual’s confidential data is of prime importance. Releasing in-

dividual’s data (containing sensitive information) publicly might cause risk for

individual’s privacy [5]. so the first step to anonymize the table is to remove the

explicit identifier because this attribute directly reveals identity of record holder.

Figure 1.2: Linking attack to identify record holder

But L seweney’s survey [6] shows that removing explicit identifier is not enough

to protect individual’s privacy. the survey shows that approximately 87 percentage

of USA citizens can be re-identified with the help of birth data, zipcode and gen-

4



1.4 Anonymization Introduction

der attributes when linked with the voter list database to the published medical

database. According to this survey, the record holder is linked with the pub-

licly available databases and re-identified with the help of quasi-identifiers(date of

birth, gender and age).

for this linking attack, [7]adversary requires only these two prior knowledge:

the record of the victim should be present in the published database and the

quasi-identifier of the victim.

Table 1.2: 2-anonymous table

Job Birth Zipcode Disease
Engineer * 9008 Hepatitis
Engineer * 9008 Hepatitis
Engineer 1960 900* HIV
Engineer 1960 900* HIV
lawer 1970 9008 HIV
lawer 1970 9008 Flue

To protect from this linking attack, the data table must be anonymized to the

following form:

T(QID′ , Sensitive-Attributes, Non-Sensitive Attributes),

where QID′ is ananonymized type of the given QID generated by perform-

ing anonymization actions to the attributes in QID in the original data table D.

Anonymization approach conceal the information of some quasi-identifier so that

few other records also become similar to that record in the published table. now

with the generalized table,if an adversary links a record holder to a tuple in QID′,

the record holder is also matched with (k-1) other records in the QID′.

The main goal of the anonymization task is to generate an anonymous table T

that fulfills the basic guidelines of a given privacy model and also contains as much

useful information as possible. To estimate the utility of the anonymous data,

there are some metrics like general purpose, special purpose, trade-off metrics.

5



1.5 Attack Models in Privacy Preserving and Data Publishing Introduction

1.5 Attack Models in Privacy Preserving and

Data Publishing

According to Dalenius [1977] [8], the privacy protection is not allowing an ad-

versary to gain any person-specific sensitive information of a targeted individual

even though he has some background knowledge from external sources. The at-

tack models in the PPDP can be categorized in two ways based on their attack

principles: [9]In first type, if an adversary finds a way to map a record holder to

a tuple present in the published anonymized table or to an sensitive attribute in

the table. these are known as linking attacks.

In second type, main focus of the adversary is to gain information about the

victim with the help of previously known knowledge (background knowledge).

1.5.1 Record Linkage

Record linkage refers to the mapping of some records to the targeted victim in

the publicly released table based on quasi-identifier of the victim. If the victim’s

quasi-identifier matches with the records in the released table then the adversary

faces less no. of possibilities for targeted record.With some additional information

From given tables 1.3 to 1.6, The research center maps the records in table

1.3 and 1.4 based on same quasi-identifiers present in both table it gain sensitive

information , here by joining these two tables 1.3 and 1.4 for quasi -identifier job,

sex and age it can found that male whose age is 38 and profession is lawyer suffers

from HIV is mapped to Doug.

To avoid such type of attack by record linkage , a new technique is proposed

by Sweeney ,Samrati [9] in this model for each set of all quasi-identifiers having

same value in table must have atleast k number of records .The benefit of this

model is that there are other (k-1) tuples that are mapped to same quasi-identifier

set with probability of attack 1/k. As it shown in table 1 for quasi-identifier

(job,birth,postcode).

Subset Property of k-anonymity

If a table is k anonymous with a set of quasi-identifiers Q , then the must satisfy

6



1.5 Attack Models in Privacy Preserving and Data Publishing Introduction

k anonymity with respect to all subset Q [10].

Table 1.3: Patient Table

Job Sex Age Diease
Engineer Male 35 Hepatitis
Engineer Male 38 Hepatitis
Lawyer Male 38 HIV
Writer Female 30 Flu
Writer Female 30 HIV
Dancer Female 30 HIV
Dancer Female 30 HIV

Table 1.4: 3-Anonymous Table

Job Sex Age Desiese
Professional Male 35-40 Hepatitis
Professional Male 35-40 Hepatitis
Professional Male 35-40 HIV
Artist Female 30-35 Flu
Artist Female 30-35 HIV
Artist Female 30-35 HIV
Artist Female 30-35 HIV

7
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Table 1.5: External Table

Name Job Sex Age
Alice Writer Female 30
Bob Engineer Male 35
Cathy Writer Female 30
Doug Lawyer Male 38
Emily Dancer Female 30
Fred Engineer Male 38
Gladys Dancer Female 30
Henry Lawyer Male 30
Irene Dancer Female 32

Table 1.6: 4 Anonymous External Table

Name Job Sex Age
Alice Artist Female [30-35)
Bob Professional Male [35-40)
Cathy Artist Female [30-35)
Doug Professional Male [35-40)
Emily Artist Female [30-35)
Fred Professional Male [35-40)
Gladys Artist Female [30-35)
Henry Professional Male [30-35)
Irene Artist Female [30-35)

(X,Y)-Anonymity The assumption of k anonymity [11] is that each records

present in anonymized table is unique existence in real life which may not be

true for example let a patient may have more than one disease at a time so it

might be possible it its quasi-identifier present in original table may satisfy k

but in reality their records links to single identity. [12]To avoid this problem [28]

proposed (X, Y)-anonymity, where X and Y are disjoint sets of attributes. AY (X)

is the anonymity for set of quasi-identifiers X .it is the total number of unique Y

values with respect to same X. So the table satisfy (X,Y) anonymity if AY (X) ≥

K.

It states that for set of attribute size(quai-identifier) X must be mapped to at

least Y unique values. [13]Eg. as in previous case ,X is set of {Job,age,gender}

and Y is the sensitive attribute so for each same set of X there must be at least

Y different values.

8



1.5 Attack Models in Privacy Preserving and Data Publishing Introduction

1.5.2 Attribute Linkage

In this attack , attacker gain some information about his sensitive attribute from

the released table , even though attacker is not able to link the victim with any

individual published record . [14]From the table 1.6, attacker can find that all the

female having age 30 whose profession is dance suffer from HIV.so {Dance,Female

,30} is confidence 100 percent HIV by this information it found that Emily suffers

from HIV. L -Diversity. To prevent from attribute linkage attack it is purposed by

Machanavjjhala [13] [14] .Its necessary conditions is every equivalence of released

table must have at least l different values.The fundamental concept is to avoid

attribute linkage as we seen from the last example if there will be different unique

sensitive values it prevents attribute linkage. But probabilistic attacks can not be

avoided by this because flu is very common disease compared to HIV. The released

table satisfy l -diverse property if for all qid group

−
∑

P (qid, s)log(P (qid, s)) ≥ log(l) (1.1)

Here S is sensitive attribute, P(qid,s) is a part of records whose sensitive value

is s for the total records whose equivalence class is group denoted by qid [15]. The

more uniformly distributed sensitive values in each equivalence class group qid

higher will be the entropy of sensitive attribute. So higher value of entropy in the

released table , lesser is the chances probabilistic attack, higher value of threshold

l increases its privacy and lesser is the information gain by attacker from released

table.

Limitations

The major drawback of entropy l -diversity is it is not able to the measure of

probabilistic attack [16] for eg as it is calculated entropy is 1.8 but in second

equivalence group out of 4 records 3 suffers from HIV from table 1.6, which is easy

for probabilistic attack.

9
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1.6 Anonymization Operations

The table which contains the original records values of each individual person

do not provide any privacy. To publish it and to preserve the privacy of each

individual person, some operations have to be performed . Anonymization is a

technique to solve the problem of data publishing, it while keep the sensitive

information of record owner which is to be used for data analysis it hides the

explicit identity of that record owner from the table which is going to be published.

Anonymization can be done by using following operations [17]

1. Generalization

2. Suppresion

1.6.1 Generalization

Generalization modifies the quasi-identifier original most specific value to the some

generalized values of specific description, eg specific form date of birth to general-

ized to year only while hiding month and date value. Full-domain generalization

scheme [6] while generalizing, for all records and for any quasi-identifier, gener-

alization is applied upto few level of hierarchy tree For eg. If a equivalence class

of {writer, dancer } is generalized to Artist then other equivalence of {Engineer

,Lawyer } must be generalized to Professional. Generaized table is consistent and

it is used in Global recoding algorithms, but the major drawback of this is data

loss is very high.

.

1. Subtree Generalization

In subtree generalization scheme [18] , At any node other than leaf node,

either all its child values are generalized or none is generalized. For example

from figure if all dancer is generalized to artist then writer have to be gen-

eralized to artist but doctor and engineer may be generalized can retain its

specific value at leaf level.It is used in Global recoding algorithms.

10
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2. Sibling Generalization

In this generalization scheme [19],that is same as subtree generalization but

in this some sibling can remain ungeneralized . For eg. if dancer is gener-

alized to artist then writer may remain ungeneralized . It gives the lesser

distortion compared to subtree and full domain and used in global recoding

algorithms.

3. Cell Generalization

All the generalization [20] schemes that are discussed earlier used, are called

global recoding. They give more distortion in this scheme is a value is

generalized in one record then for that specific value must be generalized in

all other records also.

But In cell generalization, it is known as local recoding there is not restriction

means if a value is generalized in one record the same value for same attribute

in other record may be ungeneralized. For example in a record dancer is

generalized to artist dancer in other records may remain ungeneralized. The

problem of this flexibility is that data utility is affected by this because while

applying data mining technique in this dancer assign to class 1 and assign to

class 2 so both are two different classes. While Global recoding generalizing

scheme do not have this data utility problem.

1.6.2 Suppression

Suppression is similar to generalization but in this values of quasi-identifier is

completely hidden for eg from sex male female to Any or not released or from

specific profession to value is suppressed to not released at all. Different Supression

types are defined as

1. Record Level :When the complete entry of a record from the table is elimi-

nated or suppressed.

2. Value Level : When all instance or records of a particular value in the table

is suppressed.

11
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3. Cell Level : When some of records for a given value are suppressed in a

table.

1.7 Motivation

� Individual’s data collected by organizations, governments etc is increasing

at day by day. In recent years, plenty of incidents have come with the cases

when just removing explicit identifier is not good enough to protect indi-

vidual’s privacy. Also, detailed personal specific data is often needed for

research and analysis. In this scenario,data anonymization is the fundamen-

tal base for balancing an individuals privacy and providing processed data

for decision making. To overcome this situation, k -anonymity is the popular

technique. The main aim is to secure a given dataset against linking attack

by applying anonymization operations like generalization and suppression

on the quasi identifiers. the linking attack attempts to link anonymous data

to additionally publicly available data , which may cause disclosure of one’s

identity. [21] A given dataset is said to be k-anonymous when each of it’s

data item can not be distinguished from at least k-1 other data records. In

this scenario, a tabular is assumed. some other methods have been suggested

(for example, differential privacy ), yet k -anonymity is still preferred the first

option in many fields, e.g., medicine.

1.8 Objective

Given a raw dataset D, the purpose is to transform the given dataset to an another

dataset D′ using anonymization operations like generalization and suppression

so that the anonymized dataset D′ satisfies the given privacy requirements and

information loss is minimum.

12
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1.9 Thesis Organization

Ch 1. Introduction

In this chapter we have explored briefly about data publishing and what is pri-

vacy preserving,why there is need of privacy preserving techniques while publishing

data. How anonymization can be used to preserve privacy .To maintain privacy

a model K anonymity is explained in it and its basic details and attack on this

model.

Ch 2. Related Work

In this chapter we have discussed ,metric that are used to calculate the quality of

anonymized data , the previous algoriths that have been used for k-anonymization.

Ch 3. Purposed Work

In this chapter we explained that to achieve k-anonymity, the best way is to search

the lattice in the bottom-up manner using breadth first search to obtail the local

optimal node.

Ch 4. Experiment Results

In the chapter we have plotted the graph ,for different values of k taken execu-

tiontime vs quasi-identifer and distortion vs quasi-identifer,.We can compare and

analysis the results of our approach with previous algorithms.

Ch 5.Conclusion

In this chapter, we have explained that after comparing the results and analysis we

can conclude that our purposed algorithm gives takes less time than other efficient

algorithms while other metric also gives better results in maximum cases.

13



Chapter 2

literature Review

2.1 Metrics used to Measure the Quality of Gen-

eralized Data

Privacy preserving data publishing have two objectives, privacy of individual entity

for each record must be preserved and published data must be information which

is useful for data mining. So the quality of anonymized data can be measured by

data metric which are classified into three categories.

2.1.1 General Purpose Metrics

When data publisher do not know what data recipient want to know or analysis

from the published data so data publisher can not focus on any particular data

utility [10].In this case data published is open to all like internet so that data

recipient based on their different interest and they do data mining according to

their requirement, in this is very obvious that same metric is not good or accurate

for different recipients. In this case for better utility of anonymized data,data

publisher choose metric which are more suitable for mostly all data recipients

such as ILoss, distortion, discernibility.

1. ILoss

To calculate the data loss while anonymizing the data proposed a data metric

known as ILoss.

ILoss= |V g|−1
|DA|

Where |V g| is total number of children of node .

14



2.1 Metrics used to Measure the Quality of Generalized Data literature Review

|V g| is total count of leaf nodes for that attribute having vg as a node. If ILoss

= 0, means value remains ungeneralized, same as in original table.It calculates the

fraction of leaf nodes that are generalized.

Example:Let a value is generalized from Lawyer to professional.

So its ILoss = 2−1
1

= 0.25 After generalization ILoss for any record can calcu-

lated as

ILoss(r) =
∑

(Wi × ILoss(Vg))

W˙i is predefined weight penalty assigned to each quasi-identifer The total for

complete generalized table is

ILoss(T)=
∑

rεT ILoss(r)

2 Discernibility

After anonymizing dataset ,each equivalence class has its size that is number

of records in it. the class size contributes to the anonymization based on cost, it

can be calculated for complete generalized dataset by this formula, Discernibility

Metric

DM = |Ei|2

where E˙i is the size of equivalence class .

minimize Discernability cost leads to less distortion with is desirable require-

ment for better anonymiztion.

2.1.2 Special Purpose Metrics

If data publisher know for which purpose the published data will be data mined

or in which information or pattern data recipient is interested ,so that they can

preserve their related information and publish the data according to their require-

ments .For example if the purpose of data recipient is to model the classification

based on a particular attribute in this case generalization must not be done for

values whose identification is necessary to assign a class,which is used for their

classification.
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Classification Metric ( CM )

Iyengar purposed a metric to measure the classification error means a record

is assigned to a class by assuming that in it a particular class is not majority but

in reality that class is not the majority class so, record is assigned to wrong class.

There must be some penalty for it or there is a penalty if record is suppressed

completely and not assigned to the any class. CM can be calculated by sum of

all the penalties of each record, it is normalized by considering total number to

records.

CM =
∑

all rows penalty(row r)

N

A row r is given penalty if the row is suppressed and/or if its class label class(r)

is not the majority class label majority (G)of its group G.

Penality can be calculated as if a record is suppressed or it is assigned togroup

assume class(r) is major class but actual that class is not the major class.

2.1.3 Trade-off Metrics

Specializing from a general value to a specific value loss some level of privacy

but gain some information regarding that attribute which is specialized. Special

metric while anonymizing at final information it may gain sufficient information

but might lose so privacy that it is very difficult to do further anonymization. So

Trade -off Metrics solve this problem, both information gain and privacy loss are

calculated at every iteration of anonymization,so that optimal trade -off can be

found for both necessary requirements.

In this trade-off metric [], for every specialization all records of this group are

assigned to its child level group so it gain some information(IG)and as it divides

the group size into smaller group there is privacy loss(PL).Objective of this metric

is to find a specialization whose information gain is maximum for each privacy

loss

IGPL(s) = IG(s)
PL(s)+1
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Where IG(s) = Information gain can be decrement of class entropy or decre-

ment of distortion by specialization.

PL(s) = avgA(QIDj)− As(QIDj)

privacyloss PL(s) = the average decrement of anonymity over all QIDj that

contain the attribute of s.

A(QIDj) = the anonymity before specializing of attribute j.

2.2 Global Recording Algorithms

Datafly Algorithm

The Datafly algorithm [Sweeney (1997)] goes with the assumptions that the

best solutions are the ones that are attained after generalizing the variables with

the most distinct values (unique items). The search space is the whole lattice.

However, this approach only goes through a few nodes in the lattice to find its

solution. This approach is very efficient from a time perspective. Datafly uses a

greedy algorithm to search the domain generalization hierarchy. At every step, it

chooses the locally optimal move. One drawback with Datafly’s approach is that

it may become trapped in a local optimum [Cormen et al:(2001)].

Samarati Algorithm

Samarati algorithm assumes that the best solutions in the lattice are the ones

that result in a table having minimal generalizations [Samarati (2001)] [9]. So, the

solutions are available in the height that is minimal in a lattice. The algorithm is

based on the axiom that if a node at level h, in domain generalization hierarchy

satisfies k-anonymity, then all the levels of height higher than h also satisfy k-

anonymity. In order to search the lattice and identify the the lowest level with

the generalizations that satisfy k-anonymity with minimal suppression, Samarati

used binary search. The algorithm goes through the lattice with a binary search,

always cutting the search space in half. It goes down the level if a solution is found

at that level, otherwise it goes up the lattice. Eventually, the algorithm finds the

solution with the lowest height with the least generalizations. This level ensures

less information loss but time consumed is higher than Datafly.
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Figure 2.1: incongito algorithm example

Incognito Algorithm

Incognito [Lefevre et al: (2005)] implements a dynamic programming ap-

proach which satisfy subset property which states that a relation T can not be

k-anonymous if it’s subset of quasi-identifiers does not satisfy k-anonymity. The

approach constructs generalization lattice of each subset of QIs and checks by

performing a breadth-first bottom-up search [17]. The number of generalization

lattice constructed in case of Incognito for QIs of order r is 2r. Thus Incognito

algorithm is of order (2r) because at least one lattice is checked for k-anonymity

in every generalization lattice.

Optimal Lattice Algorithm (OLA)

El Emam et al: suggested an algorithm called Optimal Lattice Anonymiza-

tion and presented that it outperforms Incognito [Emam et al: (2009)]. It use

predictive-tagging to reduce the search space of the lattice. However, if global opti-

mal k-anonymous lattice lie on or above the middle level of full domain generalized

hierarchy, then the algorithm check all the middle level lattices for k-anonymity.

This algorithms checks only the middle level of full domain generalized hierarchy

is exponential in number of QIs.

18
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Figure 2.2: OLA example
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Chapter 3

Proposed Work

3.1 Introduction

K-anonymization is a primary approach for the de-identification of datasets con-

taining person specific information. In our work, we have described a framework to

implement most of the k-anonymity algorithms and also proposed a novel scheme

that produces better results with real-world datasets. The implementation frame-

work holds complete data in main memory with dictionary compression to this

data. The maximum count of QIs for the datasets considered by them is only

nine. If the count of QIs is very high, then it would be difficult to put all the data

items in the main memory.

3.2 Basic Framework

Our work is based on a general framework for the efficient application of k-

anonymity based algorithms. In [25], we suggested an optimal and efficient ap-

plication of the optimal lattice anonymization(OLA) algorithm. Furthermore, We

evolute the framework in current section and outline the fundamental objective

behind it:

1. The main task is to check the k-anonymous status of each state and this

task should be efficient.

[17]The preliminary work of this scheme is a well planned memory layout,

which allows the optimal application of various generalization schemes to a given
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dataset. Additionally, the anonymization operations are problem specific. It offers

some further optimization. The general implementation, involving optimization,

may be applied to all global recording based anonymization schemes.

3.3 Basic Implementation

The layout contains complete data in main memory and apply dictionary com-

pression on whole dataset. Generalization hierarchy is illustrated in a table. Gen-

eralization hierarchy for the attribute age is given in table 3.1.

Table 3.1: Tabular generalization hierarchy [1]

level 0 level 1 level 2
1 <50 *
2 <50 *
. <50 *
. >=50 *
99 >=50 *
100 >=50 *

A dictionary dic0, ..., dicn1 for each quasi identifier is required for mapping

the column values with integer values [7]. Due to encoding of the given dataset

values at lower level before advancing to generalization hierarchies, it is confirmed

that the original dataset values for a column with m different values is given the

count values 0 to m 1.To store the transformed form of the given raw dataset, a

buffer data structure is used. Based on given memory framework [4], modifying an

attribute value taken from the given dataset in cell (row, col) to a value described

on current level of it’s generalization hierarchy and collecting it in chosen buffer

is described by the following assignment:

Buffer[row, col]← heircoldata[[row, col], level]

While checking a particular state, one by one, the algorithm searches all rows in

given dataset and for each cell it apply the above assignment .Then, the modified

tuple is moved to the operator that makes equivalence classes after adding the

tuple to given hash table.After that ,it is ensured whether all equivalence classes
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have size greater or equal to k. Additionally a suppression value is specified which

defines the upper limit on the count of rows that may be suppressed so that the

dataset still remains k-anonymous. this suppression value reduces data loss. With

the help of it , the classes whose size is less than k are deleted from the given

dataset till the count of suppressed tuples does not exceed the defined threshold

value.

3.4 Proposed approach

The proposed approach searches the generalization lattice in a bottom up BFS

manner and creates paths constantly. The scheme is focused on following asump-

tions:

1. Vertical traversal of the generalization lattice in binary manner utilizes pre-

dictive tagging in most efficient way.

2. The time taken in traversing the generalization lattice in vertical manner is

volatile.

3. The optimal performance is achieved when algorithm utilizes the previous

optimizations to check current node.

3.4.1 Main Algorithm

As given the first algorithm, it checks each node at all levels from level o to top

level. It enumerates each node at each level and apply Generate path(node) when

an untagged node is found. Algorithm 2 implements a greedy approach based on

depth first search. The searching aborts when either the algorithm reaches the

top node in the lattice hierarchy or the present node does not have an untagged

successor.
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Algorithm 1: Main algorithm :

Input: generalized lattice

1. Create an empty min heap

2. At each level, starting from level 0 to maxlevel (lattice height− 1)

2.1: Check each node whether it is tagged or not.

2.2: If not, Generate path of untagged nodes starting from this node.

2.3: Check path for nodes that satisfies k-anonymous property.

3. until the heap is not empty:

3.1: Extract min from heap and consider it as current node.

3.2: Check for each successor of this current node whether tagged or not.

3.3: if not, repeat step 2.2 and 2.3 .

As the path is generated, defined function check path(heap,path) is called to

check the k-anonymity. As can be seen in Algorithm 3, it implements a binary

search. Firstly, the node at location 1
2

(path.length− 1) is checked .Each time,a

k-anonymity check is performed, predictive tagging is applied in the lattice. On

the basis of the output of the check, the algorithm moves to either lower or upper

part of the generalized lattice. Each time a node is checked for k-anonymity and

if resulted as non-anonymous then it is added to a min heap otherwise if found

anonymous then its reference is stored to find global optimal.At each traversal,

predictive tagging is taken place to reduce the search space. At the end of the

search process, the optimal node always keeps a reference of the optimal node on

each path. Finally, globally optimal node is decided by doing a comparative study

of all local optimal nodes.

3.4.2 Algorithm 2: Generate path(node)

Input: current node
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1. Consider the path as an empty list.

2. For each node S belonging to successor of the current node, check whether

S is tagged or not. If not

Assign S as current node.

return.

3. repeat step 2 until the top node is reached or Current node does not have

an untagged successor.

After the check path() operation the current status of the heap is taken for the

further path generation starting of the successors of the found non-anonymous

nodes in previous path. snapshot and roll-up optimization is the main reason

behind generating these paths. The order of nodes returned by the heap is deter-

mined according to the node level in the generalized lattice. The minimal optimal

node in the heap is taken in consideration in order to increase the length of the

generated path that increases the chance of applying predictive tagging to the

nodes in various paths in the lattice.

3.4.3 Algorithm 3:Check path(path, heap)

Input: Heap, Generated path

1. min ← 0

2. max ← path.length− 1

3. optimum node← NULL

4. While min ≤ max do

mid node← 1
2
b(min + max)c

current node←path.get(mid)

5. If check and tagged(current node)

optimum node← current node

max ← mid node− 1
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6. else

heap.add(current node)

min← mid node + 1

7. Store optimum node

When the heap becomes empty, the main algorithm halts with the termination

of the outer loop of the main algorithm.
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Chapter 4

Implementation and Results

4.1 Implementation Setup and used Dataset

Implementation is done on System having configuration intel (R) core(TM) i5-

3210m CPU @ 2.50ghz, 4GB RAM. Our Implementation is done PYTHON IDLE

2.7.6 .Complete Adult Data Set which contains 32,561 records is taken for analysis

results.The attributes for quasi identifier are Age which is numeric, Work class

which is categorical, Education which is categorical, Marital status is categorical,

race which is categorical, gender is categorical, Occupation and salary are sensitive

attributes. We have taken Discernibility Metric and Exceution Time as parameters

to evaluate and analyse the result for k values taken as 2, 5, 10 over the proposed

algorithm and other previous algorithms like samarati,incognito, OLA(Optimal

lattice Anonymization).

S.No Attributes Generalizations Distinct Value Height
1 Work Class Taxonomy Tree 7 3
2 Education Taxonomy Tree 16 4
3 Marital Status Taxonomy Tree 7 3
4 Race Taxonomy Tree 5 2
5 Sex Suppression 2 1
6 Occupation Taxonomy Tree 14 2
7 Salary Suppression 2 1

Table 4.1: Description of Adult Dataset
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4.1.1 Discernibility Metric

We used Discernibility Metric to measure the quality of anonymized data , the

lesser is discerniblity cost ,better is the quality is anonymized Data . By refering

figures Figure-4.2 ,Figure-4.4 we can conclude that For smaller K value k=2,5 and

, for all number quasi-identifers taken our approach give better anonymized data

than incognito, Samarati and OlA algorithm and if K is large, K= 10 and number

of quasi identifier taken not large our approach gives lesser discernibility otherwise

gives similar result.

4.1.2 Execution Time

We considered Execution time also to evaluate and compare our approach with

Incognito and Samarati and OLA.By refering figures Figure-4.1 , Figure-4.3, Figure-

4.5, we can conclude that for all k values 2, 5, 10 and our approach take lesser

execution time than Incognito, Samarati,OLA algorithm. For all k values taken

and for all number of quasi identifier taken so we can conclude our approach is

faster compared to others.

Figure 4.1: Execution time(sec) VS Quasi-identifier
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Figure 4.2: Discernibility vs Quasi-Identifier

Figure 4.3: Execution time(sec) VS Quasi-identifier
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Figure 4.4: Discernibility vs Quasi-identifier

Figure 4.5: Execution time(sec) VS Quasi-identifier

29



Chapter 5

Conclusion and Future Work

In our work, we have described a framework to implement most of the k-anonymity

algorithms and also proposed a novel scheme that produces better results with

real-world datasets. Further we explained that the framework is applicable for

the implementation of k-anonymity schemes like Incognito, Samarati, Datafly

and optimal lattice Anonymization(OLA).Further we shown that optimal lattice

anonymization performs better than incognito.We further proposed a generic k-

anonymization scheme which gives better result than Incognito, Samarati, OLA,

Datafly. As it traverse the lattice vertically, it utilizes the predictive tagging in

best way to make extensive use of the proposed layout.

In future ,The algorithms discussed in this thesis can be further improved by

reducing the size of the solution space and applying improved searching algorithms.

In future there may be need of disk based application of k-anonymity algorithm

because of limited main memory space.
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