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Abstract

Cache memory performance is an important factor in determining overall pro-

cessor performance. In a multi core processor, concurrent processes resides in

main memory uses a shared cache. The shared cache memory reduces the access

time, bus overhead, delay and improves processor utilization. The performance of

the shared cache depends on the placement policy, block line size, associativity,

replacement policy and write policy. Every application has a specific memory de-

mand for execution. Hence the concurrent applications with a processor compete

with each other for the shared cache. The traditional Least Recently Used (LRU)

cache replacement policy considerably degrade the cache performance when the

working set size is greater than the size of shared cache. In such cases the per-

formance of the shared cache can be improved by selecting an appropriate shared

cache size with an efficient cache replacement policy. Finding an optimal cache

size and replacement policy for a multicore processor is a challenging task. For the

shared cache management in a multicore processor, the cache replacement policy

should be such that, it will make efficient use of available cache space and make

some cache line available for the longest time. We have analyzed the variation

of shared cache size and its associativity over hit rate, effective access rate and

efficiency in single, dual and quad core processor using multi2sim with splash-2

benchmark. We have proposed a novel cache configuration for a single, dual and

quad core system. This research also suggests a new Bit set insertion, replacement

policy for thrashing access pattern for dual and quad core system. The Bit set

insertion policy considering the miss rate with the shared cache of size = 128kb is

reduced by 15 % for FFT application and 20 % for LU when compared with the

Least Recently Used cache replacement policy in a dual core system. For quad

core system for the shared cache of size=512 KB, the miss rate is reduced by 21

% for FFT application and 24 % for LU decomposition over Least Recently Used

cache replacement policy using multi2sim with splash-2.

Keywords: shared cache size; cache replacement policy; multicore; thrashing
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Chapter 1

Introduction

1.1 Introduction

In the communication between CPU and main memory, the main issue is speed

mismatch which results in poor processor utilization [1], [2]. Hence, to improve the

processor utilization a fast memory cache is introduced [1]. Cache is an important

component of the memory hirearchy. It reduces the access time, bus overhead,

delay and improves processor utilization [2], [1]. There are five design parameter’s

for cache [3]: cache size, cache line size, placement policy, replacement policy, and

write policy.

Importance of cache replacement policies Replacement Policy is an

important parameter for the cache, it is the method of selecting the block to

be deallocated and replaced with the incoming cache line.The basic replacement

policy used are LRU, FIFO and Random [1], [3], [2]. The replacement policy is

responsible for the efficient use of available memory space by making a place for

the incoming line through deallocating one of the cache lines [1].It is called as

primitive allocation [1]. It also reduces the miss rate or increases the hit rate for

the cache. The performance of processor system is calculated in terms of hit or

miss rate [1], this implies the replacement policy affects the overall performance

of processor. Increase in cache size will increase the hit rate but if it is increased

beyond a certain limit for a particular memory organisation, then it will degrade

the performance as proved by amdhal’s law in [4] and also increase the cost [1], [3]

but by changing the cache replacement policy keeping the cache size fixed, we can

increase the overall efficiency and hit rate of system.
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1.1 Introduction

Cache policy with multicore processors Multi-core processor has low

power consumption, less heat dissipation and less space usage on the die which

resuts in good performance in many application. But sharing of cache between

more than one processing unit (core) present on the same die causes poor cache

utilization, hence poor system performance. Therefore, to minimize that we are

changing the cache replacement policy.Moreover, As the number of cores varies

the cache size and replacement policy also varies [5], [6], [7].

Cache: A place to store data temporarily is called as cache [8] and the cache

memory is a smaller, faster intermediate memory within a large memory hierarchy.

Cache can be, a split cache means seperate cahce for data and instruction,unified

cache for processor, browser cache of the internet, disk cache for disk storage, or

local server cache for LAN servers. Cache is designed to speed up the processor

by prioritizing the contents for quick access [9], [8]. The cache is organized in the

memory hierarchy [1], [2] as shown:

Figure 1.1: Cache Memory Hierarchy

A different types of memory form a computer’s memory hierarchy in which

each memory unit is subordinate to its higher level memory unit. The goal for

this memory organization is to have a good tradeoff between speed, cost, and

storage capacity.The technologies used for these different memory units are [1],

semiconductor SRAM’s for cache, semiconductor DRAM’s for main memory and

magnetic disk for secondary memory.The reasons for introducing memory hier-

archy, CPU speed is much faster than the memory [3], bus overhead, delay, less

3



1.2 Literatue review

processor utilization.

he relation between two adjacent levels of memory hierarchy [1] i.e mj and

mj + 1:

� cost per bit: cj > cj + 1

� access time : tj < tj + 1

� storage Capacity:sj < sj + 1

The central processing unit(CPU) directly communicate with the level 1 of

memory hierarchy and so on. In order to increase the CPU utilization this mem-

ory hierarchy is introduced. To read the data from some memory level mj the

sequence followed by CPU is [1] as:

mj − 1 := mj;

mj − 2 := mj − 1;

..... ;

m1 := m2;

CPU := m1

During program execution CPU generates a memory address. If the address is

present at level mj(j 6= 1) then the address is reassigned to m1. The reallocation

of address means that the transfer of data between mj and m1.To improve CPU

utilization the address must be present in m1 and if not then reallocation of storage

is made.

1.2 Literatue review

Cache performance is an important factor in determining overall system perfor-

mance [1] and cache replacement policy is one of the main factor which affects

cache performance [10].Replacement policy is the method of selecting the block to

be deallocated and replaced with the incoming cache line. The basic replacement

policy used are LRU, FIFO and Random [1], [3], [2].

4



1.2 Literatue review

Replacement policies with single core The most commonly used policy

in cache management is LRU(Least recently used) [3] , [11] but it also suffers from

some problems as discussed in [12]. The LRU policy shows less hit rate for par-

ticular application with significant increase in cache size and its inability to cope

with different access pattern ,weak locality . [12].

In [13] Qureshi,Jaleel etal. discuss a solution to the problem of LRU policy to

thrashing for memory intensive workloads that have a working set greater than

the available cache size.They proposed LIP(LRU Insertion Policy) which places in-

coming line in LRU position instead of MRU position and BIP(Bimodal Insertion

Policy ) it accepts changes in working set while executing thrashing application

and finally DIP (Dynamic Insertion Policy) which chooses dynamically between

BIP and traditional LRU depending upon fewer misses.These polices does not

require any hardware change to cache structure and require storage capacity less

than 2 bytes.

In [14] Jaleel,Theobald,Steely and Emer attempt to implement optimal replace-

ment policy by predicting the re-reference interval of cache block.LRU only deals

with the near - immediate re-reference interval but Jaleel et.al consider distant and

intermediate re-reference interval also .They proposed an algorithm SRRIP(Static

Re-reference Interval Prediction) which is scan-resistant and DRRIP (Dynamic

Re-reference Interval Prediction)i.e both scan and trash resistant .These policies

requires 2-bits extra per cache block and can easily get integrated with LRU.In [14]

they discussed about NRU(Not Recently Used) replacement policy which inserts

the incoming line at LRU position instead of MRU.

Mazrouee and Kakoee [15] proposed a Modified pseudo LRU which is a novel

block replacement policy and reduces the complexity of hardware implementation

of LRU.

Chaudhuri [16] introduces a pseudo-LIFO(last in first out) , a new family of

replacement heuristics for managing each cache set as a stack (opposed to the

5



1.2 Literatue review

traditional access recency stack).It improves the performance of LLC(last level

cache) with the increases in capacity and associativity.

There are some other polices which are implemented to improve the perfor-

mance of cache [ [17]] proposes LRFU (least recently frequently used )combines

both LRU and LFU(least frequently policy) , [ [18]] by its algorithm 2Q increases

the performance of LRU by a constant additive factor , [ [19]] proposes CAR(Clock

with adaptive replacement) improves recency,constant time , scan-resistance ,fre-

quency and Lock contention/MRU Overhead ,[ [12] ] proposes LIRS(Low inter-

reference recency set ) which deals with the inability of LRU for access pattern

with weak locality and it uses recency to evaluates the inter-reference recency for

making replacement decision.

Kedzierski and Moreto etal. [20] proposed a complete partitioning system using

pseudo -LRU replacement policy. In this through there algorithm they overcome

the complexity and area overhead of LRU policy implemented on LLC (last level

cache) with high associativity.

In [21] Wong and Baer proposed an algorithm for the detection of tempo-

ral locality in the Level 2 cache with two new strategy profile based and on-line

scheme.It basically deals with the high associativity in case of level 2 cache(last

level cache).

Replacement policies with multi core Qureshi and Patt [5] proposed a

new algorithm UCP(utility-based cache partitioning) which is a low overhead, run-

time mechanism that partitions a shared cache between different applications on

the basis of reduction in misses that each application is likely to get from available

cache resources.It requires a hardware circuit of storage space less than 2kB.This

algorithm overcome the limitation of LRU policy of demand based partitioning

which may cause poor performance for some applications.

In [6] Jaleel etal. proposed an algorithm for the CMPs(Chip Multiprocessor

) that allows different application run on single chip .Due to single shared cache

6



1.3 Motivation

between these applications it causes thrashing which gives poor result for LRU.

Hence Jaleel proposed a new algorithm Thread -Aware Dynamic insertion policy

i.e extension to DIP .It requires storage overhead less than 2 bytes per core.

In [7] Xie and Loh proposed a approach that combines both dynamic inser-

tion and promotion polices of cache partitioning , adaptive insertion and capacity

stealing for cache management. It basically advantages to the shared last level

cache for the multiple cores.

In [22] proposes TAP-TLP (TLP(thread level parallelism) aware cache man-

agement policy) and [23] proposes heterogeneous cache management policy for

heterogeneous architecture for efficient utilization of shared cache.

1.3 Motivation

In multicore processor the performance of the shared cache can be improved by

taking appropriate cache size with an efficient cache replacement policy which

manages the shared cache in multi core processor. The analysis of the cache size

and associativity on single and multi core processor is done to improve the pro-

cessor utlization by reduceing its access time and miss rate. There are four access

patterns [6, 13, 14]: cache friendly, thrashing, steaming, mixed.Thrashing occur in

cache when the size of cache is less than working size of problem. To overcome the

high miss rate problem in thrashing (cache size more than the working set size)

application with traditional LRU policy [6, 13, 14] :

7



1.4 Objective

Figure 1.2: Access Patterns v/s Miss rate

As shown in the Fig 1.2 where n represents the unique addresss references

and m represents the number of cache line, for the thrashing access pattern the

LRU gives all misses where as the optimal cache replacement gives less miss rate.

Hence, the gap between the LRU and optimal replacement policy can be bridge

by changing the existing policy so that it works well for thrashing trashing access

patterns. The performance of the processor can be improved by changing the

existing replacement policy for multicore processors.

1.4 Objective

The objective of this thesis is to improve the performance of multicore processor

by improving the efficieny of cache. By changing the cache size for single and

multicore procesoors we have tried to find the optimum cache size with maximum

hit rate and efficency for single core and multicore processors and to implement a

new cache replacement policy, Bit Set Insertion Replacement Policy(BSIRP) for

thrashing application in multicore processor so that it gives the lower miss(access)

for thrashing access pattern and improves the performance of multicore processor.

.

8



1.6 Research contributions

1.5 Problem statement

In multicore processors, the efficiency of shared cache plays a vital role in deciding

overall system performance. If s bits can store in a memory then the total memory

space would be 2s, this address can map to a cache of size 2b with associativity

2m. To improve the cache performance first we are finding appropriate b and m

for single core, dual core and quad core system.

Secondly, when the shared cache size is less than the problem working size, then by

manipulating the cache replacement policy the performance of cache is improved.

In a particular cache, assume Level 2 cache is containing m block lines with 2m

associativity. When a program Y executes, it generates yj, zj Unique Address

References(UAR) [1] where j=(1,2......n) and it represents block line address.

n= Number of distinct address lines.

The temporal sequences [6,13,14]with unique address references that repeats itself

x times in cache are

(y1, y2, ...........yn)x, (z1, z2, ...........zn)x

Our problem is defined for thrashing accesss pattern in cache i.e m < n and

x >> n. We are considering the thrashing problem in cache and proposing a

cache replacement policy for a thrashing access pattern. We have analyzed differ-

ent cache sizes with different associativity over different organization for finding

appropriate cache size.Here we have also used different replacement polices Least

Recently Used(LRU) ,First In First Out(FIFO) ,Random to compare with a new

replacement policy, for maximizing the Cache Utilization.

1.6 Research contributions

This research work contains two contributions :

1. Cache configuration for single and multicore processor.

2. A Cache replacement policy for thrashing access pattern in multicore pro-

cessor.

9



1.7 Thesis organization

1.7 Thesis organization

The rest of the thesis is organized as follows chapter-2 summarizes the cache con-

figuration for the processors and cache replacemnt policies, Chapter-3 summarizes

the differnt organisations, varriation of cache size with associativity , hitratio and

efficency , chapter-4 provides the new approch named Bit Set Insertion Policy

to solve the replacemnt problem in cache, chapter-5 provides the Conclusion and

Futurework.

10
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Chapter 2

Cache memory organisation for
the processors

2.1 Introduction

In memory hirerachy, level 2 cache is introduced between main memory and level

1 cache to reduce the access time (the time taken to retrieve data from storage

(main memory) and make it available to computer ).Level 1 cache is a split cache

and Level 2 cache is unified cache. Access time may be called as delay or latency.A

computer memory hierarchy for level 2 cache is as shown in fig: [1]

The level 2 cache is introduced to improve the system performance. This is in-

Figure 2.1: Level 2 Cache Hierarchy

troduced between the main memory and level 1 cache [9], [24].For any request the

processor will first check level 1 cache if it data is not there than it will access

the level 2 cache and finally the main memory .The block size of the level 2 cache

must be either large or equal to the block size of level 1 cache as if miss occur

in level 1 cache than one or more second level cache block can accommodate into

level 1 cache block but i.e is not feasible.

12



2.1 Introduction

Access time for level 2 cache We will consider an example to compute

average access time for level 2 cache and will prove that the access time for level

2 cache is much lower than the access time for main memory.

Why level 2 cache is considered: Assume T h(access time of level 1 cache

) = 2ns ,

P hc(hit rate for level 1 cache) = 75% ,

T h(access time of level 2 cache ) = 10ns ,

P hc(hit rate for level 2 cache) = 80% ,

T m(access time of main memory) = 60ns ,

P mc(miss rate for level 1 cache)= (100− 80 = 20%),

P mc(miss rate for level 1 cache)= (100− 75 = 25%),

P hm(hit rate for main memory)=99% ,

P hm(miss rate for main memory )=1% ,

T s(access time for secondary memory)= 10ms(millisecond)

Hence, the average access time for the request that reach to main memory

main is:

EAT mainmemory = (60ns ∗ 0.99) + (0.01 ∗ 10ms)

EAT mainmemory = (100059.4ns)

The average access time for level 1 cache with main memory:

EAT level1cache = (2ns ∗ 0.75) + (0.25 ∗ 60ns)

EAT level1cache = (16.5ns)

The average access time for level 2 cache with level 1 cache and main memory:

EAT level2cache = (2ns ∗ 0.75) + (0.25 ∗ ((10ns ∗ 0.80) + (0.20 ∗ 60ns))

EAT level2cache = (6.5ns)

Hence , from above example it is clear that the access time for main memory

13



2.2 Performance metrics

is approx 100% more than the access time for level 1 cache and for Level 2 cache.

The access time level 2 cache is further reduced. Hence,level 2 cache is added to

memory hirerachy.

The level 1 cache ,level 2 cache and main memory also differ is size and cost per

bit i.e the size of level 1 cache is lower than size of level 2 Cache and both are

much lower than the size of main memory and cost per bit is lower for the main

memory than the level 1 cache and Level 2 cache [1], [3].

2.2 Performance metrics

Some important definitions

� Throughput: Throughput is defined as the amount of work done by com-

puter in given period of time. In determines the performance.It is measured

in terms of IPC(Instruction Per Cycle).

For single core it is calculated as the geometric mean of the improvement of

IPC from baseline system to new system [13].

For multicore it is calculated as given in [5], [6], [7] :

Throughput= Σ IPCi

IPCi = Represents IPC of the ith application when it concurrently executes

with other application.

� Cache size: The size of cache implies amount of data it can store. [1].Larger

the size of cache ,more data it will store but with more cost.

� Associativity: Associativity of cache determines that how many locations

with in the given cache are occupied by particular memory address [1].

� Number of cores: In CMP’s (chip multi processors) the number of cores is

an important parameter in determining performance of replacement policy.
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2.2 Performance metrics

� Weighted speed up: This speed is calculated as given in [6], [7], [5] :

Speedup= Σ (IPCi/SingleIPCi)

SingleIPCi = It is the IPC of the same ith application when it executes in

isolation.

� Harmonic speed up: It balances the fairness and performance [25] .It is

calculated as[ [6], [7], [5]] :

HSP = N
Σ(IPCi/SingleIPCi)

HSP=Harmonic Speed Up.

N=Threads executed concurrently.

� Hardware overhead: Hardware overhead for replacement polices is consid-

ered as the storage overhead [13] , [5] required by any policy if we change

the design of base policy.

� Misses per Kilo Instruction: It is defined as the ratio of number of misses

and the sum of total number of instruction. It is calculated as :

MPKI = ΣmissesofallCores
ΣInstructionofallcore∗1000

MPKI=Miss per Kilo Instruction .

� Block line size: It is the size of the chunks of the data that are brought in

and thrown out of the cache in response to miss in the cache [1].

� Hit rate: It is defined as the probability that the address generated by CPU

refers to the information currently stored in faster cache memory [1].It is

calculated as:

15



2.2 Performance metrics

H = N1

N1+N2

H =Hit Rate.

N1=Number of references hit in cache.

N2= Number of references hit in main memory or cache .

� Miss Rate: It is the probability of miss in cache when referred by CPU.It is

calculated as:

H = N1

N1+N2

H =Miss rate.

N1=Number of references miss in cache.

N2= Number of references miss in main memory or cache .

� Effective Access Time: It is the time to access the data from lower level

cache. It is caclulated as [3], [1] :

Ta = (ThPh) + (TmPm)

– Th = The time taken to access request that is hit in the level,

– Ph = The rate of hit in the level (expressed in terms of probability)

– Tm = The average access time of the all the levels below this level in

the hierarchy, and

– P m = The miss rate of the level

16



2.2 Performance metrics

� Efficency: It is calculated as a ratio of:

Efficency = tc
tm

– tc = Cache access time

– tm = Main memory access time

� Combined hit ratio: For more than one cache the combined hit ratio is cal-

culated as:

Combined hit ratio=Hit rate of Level 1 cache + Miss rate of Level 1∗ Hit

rate of Level 2 cache
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2.2 Performance metrics
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2.3 Access patterns for cache

In the Table 2.1 we have summarized thirteen replacement policies in level

2 cache over different performance parameters. These policies considering both

single and multicore system. In case of single core throghput, miss rate and as-

sociativity are varied to analyze the performance of cache. With multicore they

have considered miss rate, throghput and speed ups to analyze its performance.

For our research work, we have considered following parameters: cache size, ef-

ficency, access time, hit ratio, associativity,Block line size to analyze the cache

configuration for single core, dual core and multi core and for cache replacement

policy we have considered throughput,miss rate ,number of cores, hit rate,

cache size to analyze its performance.

2.3 Access patterns for cache

During a program execution a memory is accessed in a particular sequence called

as access pattern. There are four access patterns [14], [6] cache friendly, thrashing,

streaming and mixed.

Assume Level 2 cache’s is containing m blocks. When a program Y executes,

it generates Yj Unique Address References(UAR) [1] where j=(1,2......n) and it

represents block address.

n= Number of distinct address references.

The above four access pattern are:

� Cache friendly: When UAR is less than or equal to the given cache size(n≤

m).With this condition the access pattern for all the policies will give mini-

mum and same number of misses as the size of the cache(compulsory misses

[ [3]]). The illustration of particular cache pattern is as shown in example

with LRU,FIFO and optimal.

� Thrashing: When UAR is greater than the cache size(n>m). If this condi-

tion is true the LRU and FIFO receives zero hits(i.e all miss) [14] but optimal

shows variation and receives less misses. As shown below in example.
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2.4 Existing cache replacement policies

� Streaming: When UAR is much greater than cache size (n=∞). With this

condition the access pattern shows no hits and number of misses equal to n

as shown in graph. These type of pattern has no locality and have infinite

re-reference interval [14].

� Mixed: UAR may be less than or greater than cache size but there is a

cyclic re-reference pattern i.e UAR will repeat itself in the distant future.

This type of pattern is used in most of the application containing both near

and distant re-references interval [14].For this pattern LRU is showing best

results in comparison to FIFO but less than optimal as shown in below

example.

2.4 Existing cache replacement policies

Cache replacement policy is one of the main factor which effects cache perfor-

mance [10]. In placing the cache line these cache replacement policies plays a vital

role [1], [2], [3].

LRU LRU replacement policy is widely used policy. In this policy,the in-

coming data is sorted by ageing factor [1]. In case of cache miss, the data at the

LRU position is evicted and if it is a cache hit the data is moved to the head of

linklist.
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2.5 Tool and benchmark

Algorithm 1 Least Recently Used cache replacement algorithm

1: tag← tag of new cache block
2: way = 0
3: while way < cache− > assoc do
4: k ← (tag == cache− > block.tag) or (cache− > set− > way.way − prev)
5: if k then
6: move cache block to head
7: break
8: end if
9: way ← way + 1.
10: end while
11: if way == cache− > assoc then
12: replace cache block at tail and insert the incoming block at head
13: end if

But LRU policy does not consider the frequency of data, it only focus on

the most recently used data which degrades the system performance in case of

thrashing application. LRU policy can be expensive when the set associativity is

high [21]. Hardware overhead is more for LRU policy [14]. Hence, we are going to

improve the LRU policy for thrashing application.

Random Random policy is a low cost technique [1]. In this policy, a block

to be evicted is selected randomly. Unlike, LRU this replacement policy does not

require any prior access information.

Algorithm 2 Random cache replacement algorithm

1: if cache miss then
2: replace the bloock at (random()%cache− > assoc)
3: end if

This policy suffers from very less delay and hardware overhead [1]. In case of

thrashing application works better than LRU.

MRU In this policy the most recent block is evicted for a cache miss. This

policy is good when older data is more likely to be accessed in future.

This policy is good for thrashing application when the old data is expected to

be accessd in the distant future.

2.5 Tool and benchmark

We have used multi2sim for simulation work.Multi2sim [26] is a heterogenous

open source Simulator.It is capable to model superscaler pipelined processor,
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2.6 Summary

Algorithm 3 Most Recently USED cache replacement algorithm

1: tag← tag of new cache block
2: way = 0
3: while way < cache− > assoc do
4: if tag == cache− > block.tag then
5: move cache block(tail)
6: break
7: end if
8: way ← way + 1.
9: end while
10: if way == cache− > assoc then
11: replace cache block at tail and insert the new block at head
12: end if

GPUs(Graphical Processing Unit) and multithreaded and multicore architecture.

It supports the most common real time benchmarks. Memory hierarchy configu-

ration and interconnection network is highly flexible. We can define as many cache

level as needed and cache cohrence is maintained using a protocol MOESI(Modiefied,

Owner, Exclusive, Shared, Invaild). Write back policy is used. Cache memory can

be split in to data and instruction cache memories.Due to its flexibility towards

the memory configuration we have choosen multi2sim.

We have used splash- 2 benchmark. It is a suite of parallel applications. It is

used to provide the studty of address-space replated to multiprocessors [27]. We

have used Baren, FFT(Fast Fourier Transform) and LU (Lower Upper) applica-

tion from splash-2 benchmark suite. Baren simulates the intraction of number of

bodies in three dimension over number of time stamp, FFT is used to optimize the

interprocessor communication and the input is (sqrt(n) * sqrt(n)) matrix for the

dataset of n data points, LU kernal factors a dense matrix (n*n) i.e the product

of lower and upper triangular matrix.

2.6 Summary

In this chapter, we have seen different performance parameters and access patterns

for cache and cache replacement policy. Cache are used to improve the procesoor

utlization and to increase its efficency. Here we have considered cache and cache

replacement policy. Efficency of processor can be improved by reducing the access

time for CPU. Different Cache replacement policies have explained.
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Chapter 3

Cache configuration for single
and multicore processors

3.1 Introduction

Cache Configuration plays a vital role in designing any processor. The perfor-

mance of the processor depends on the three factors [1,2]speed,cost and capacity.

For a good processor there must be a balance in all these three factors. As we go

from cache to secondary memory in memory hierarchy the cost reduces and access

time increases(speed decreases). Hence, for a particular processor we must take a

cache configuration which is less in cost and gives maximum hit rate(speed of a

processor depends on hit rate [1]).

For simulating different cache for single , 2 and 4 core syatem we have used

Multi2sim [26] and Splash-2 [27] benchmark is used. Splash-2 benchmark suite

containing real time parllel application. In order to analyze the different cache

configuration we have taken Baren and FFT application of splash-2 suite. All t

he experiments were run on system with 32 bit linux (Operating system) on intel

core i3 processor.

3.2 Cache configuration for single core processor

In deciding the cache configuration for processor we have considered Hit ratio to

analyze the performance of processor.

1. We have analyzed the variation associativity over cache size as follow as:
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3.2 Cache configuration for single core processor

Figure 3.1: Hit ratio with associativity on executing baren for different cache size

In the figure 3.1 by varying hit ratio on y axsis and x axsis is representing

L2 cache size with associativity, we observed that there is no change in hit

ratio after 128kb for single core and not much improvement from 4 to 8 or

16 way associativity. Hence, we have considered 4 way associativity for L2

cache.

2. The variation of block line size with L1 cache size in single core system :

Figure 3.2: Hit ratio with block line size on executing baren for different L1 cache
block lines

In the figure 3.2 by varying hit ratio on y axsis and x axsis is representing

25



3.2 Cache configuration for single core processor

L1 block line size in bytes with 8kb and 16kb L1 cache sizes, we observed

that the hit ratio increases the with increase in block line size and maximum

at 256b. Hence, we have considered the block line size 256b for L1 cache.

3. The variation of block line size for L2 cache size in single core system:

Figure 3.3: Hit ratio with block line size on executing baren for different L2 cache
block lines

In the figure 3.3 by varying hit ratio on y axsis and x axsis is representing

L2 block line size in bytes with 128kb, 256kb and 512kb L2 cache sizes, we

observed that the hit ratio increases the with increase in block line size and

maximum at 256b. Hence, we have considered the block line size 256b.

4. The analysis of combined hit ratio on increasing the cache sizes in single core

system.
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3.2 Cache configuration for single core processor

Figure 3.4: Combined hit ratio on executing baren for L1 cache sizes
(8kb,16kb,32kb) in single core system

In the figure 3.4 by varying combined hit ratio on y axsis and x axsis is

representing L2 cache size in kilo and mega bytes with 8kb, 16kb and 32kb

L1 cache sizes, we observed that the Combined hit ratio is approx same for

L1-8,16 or 32 kb after 128 kb L2 cache. Hence, there is conflict for the

apropriate size for L1 of cache.

5. To decide the apropriate size for L1 cache we have considered effective access

time. The variation of access time with different cache sizes:

Figure 3.5: Effective access time on executing baren for L1 cache sizes
(8kb,16kb,32kb) in single core system
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3.3 Cache configuration for dual core processor

In the figure 3.5 by varying effective access time on y axsis and x axsis is

representing L2 cache size in kilo and mega bytes with 8kb, 16kb and 32kb

L1 cache sizes, we observed that the effective access time is less for the L1

= 16k or 32k than 8k but it is approx same for both of them as the cache

memory is very costly [1] so we go for L1= 16k and L2= 128kb.

6. Atlast we have analyzed the varriation of L2 cache size with efficency :

Figure 3.6: Efficiency on executing Baren for L1 cache sizes (8kb,16kb,32kb) in
single core system

In the figure 3.6 by varying efficiency on y axsis and x axsis is representing

L2 cache size in kilo and mega bytes with 8kb, 16kb and 32kb L1 cache sizes,

we observed that the efficiency is maximum with L1=16kb and L2=128kb

same as in case of effective access time.

3.3 Cache configuration for dual core processor

In deciding the cache configuration for a processor we have considered Hit ra-

tio, effective access time and efficency to analyze the performance of a dual core

processor system.

1. The analysis of combined hit ratio on increasing the cache sizes in dual core

system.
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3.3 Cache configuration for dual core processor

Figure 3.7: Combined hit ratio on executing FFT for L1 cache sizes
(8kb,16kb,32kb) in dual core system

In the figure 3.7 by varying combined hit ratio on y axsis and x axsis is

representing L2 cache size in kilo and mega bytes with 8kb, 16kb and 32kb

L1 cache sizes, we observed that the combined hit ratio is approx same

for L1-16 or 32 kb after 512 kb L2 cache. Hence, there is conflict for the

apropriate size for L1 of cache.

2. To decide the apropriate size for L1 cache we have considered effective access

time. The variation of access time with different cache sizes:

Figure 3.8: Effective access time on executing FFT for L1 cache sizes
(8kb,16kb,32kb) in dual core system
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3.4 Cache configuration for quad core processor

In the figure 3.8 by varying effective access time on y axsis and x axsis

is representing L2 cache size in kilo and mega bytes with 8kb, 16kb and

32kb L1 cache sizes, we observed that the effective access time is least and

approx same for both the L1 = 16k and 32k but as the cache memory is

very costly [1] so we go for L1= 16k and L2= 512kb.

3. Finally, we have analyzed the varriation of L2 cache size with efficency :

Figure 3.9: Efficiency on executing FFT for L1 cache sizes (8kb,16kb,32kb) in
dual core system

In the figure 3.9 by varying efficiency on y axsis and x axsis is representing

L2 cache size in kilo and mega bytes with 8kb, 16kb and 32kb L1 cache sizes,

we observed that the efficiency is maximum with L1=16kb and L2=512kb.

3.4 Cache configuration for quad core processor

In deciding the cache configuration for a processor we have considered Hit ratio,

effective access time and efficency to analyze the performance of a quad core

processor system.

1. The analysis of combined hit ratio on increasing the cache sizes in quad core

system.
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3.4 Cache configuration for quad core processor

Figure 3.10: Combined hit ratio on executing FFT for L1 cache sizes
(8kb,16kb,32kb) in quad core system

In the figure 3.10 by combined hit ratio on y axsis and x axsis is representing

L2 cache size in kilo and mega bytes with 8kb, 16kb and 32kb L1 cache sizes,

we observed that the effectiveThe Combined hit ratio is maximum for L1-8kb

and after L2-1Mb cache size is approx same.

2. To decide the apropriate size for L1 cache we have considered effective access

time. The variation of access time with different cache sizes:

Figure 3.11: Effective access time on executing FFT for L1 cache sizes
(8kb,16kb,32kb) in quad core system

In the figure 3.11 by varying effective access time on y axsis and x axsis is
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3.4 Cache configuration for quad core processor

representing L2 cache size in kilo and mega bytes with 8kb, 16kb and 32kb

L1 cache sizes, we observed that the effective access time is also showing the

same behaviour as shown by combined hit ratio i.e is is good to consider

L1= 8k and L2= 1Mb for 4 core system.

3. Finally, we have analyzed the varriation of L2 cache size with efficency :

Figure 3.12: Efficiency on executing FFT for L1 cache sizes (8kb,16kb,32kb) in
quad core system

In the figure 3.12 by varying efficiency on y axsis and x axsis is representing

L2 cache size in kilo and mega bytes with 8kb, 16kb and 32kb L1 cache sizes,

we observed that the efficiency is maximum with L1=8kb and L2=1Mb.
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3.6 Summary

3.5 Proposed cache configuration for single, dual
and quad core system

Table 3.1: Proposed cache configuration for single and multicore system
Number of cores L1 Data Cache L1 Instruction Cache L2 shared cache

Single core size- 16kb size- 16kb size- 256kb
assoc- 2way assoc- 2way assoc- 4way
latency- 2 latency- 2 latency- 10

policy- LRU policy- LRU policy- LRU
2 core size- 16kb size- 16kb size- 512kb

assoc- 2way assoc- 2way assoc- 4way
latency- 2 latency- 2 latency- 10

policy- LRU policy- LRU policy- LRU
4 core size- 8kb size- 8kb size- 1Mb

assoc- 2way assoc- 2way assoc- 4way
latency- 2 latency- 2 latency- 10

policy- LRU policy- LRU policy- LRU

In table 3.1, we have summarized all the simulation results. Level1 cache we

have taken 2 ways associative and level2 4 way associative as it give maximum hit

rate in single core, dual core and quad core system. 256 bytes block line size give

maximum hit rate in single core, dual core and quad core system. For single core

system the l1 cache size =16kb and l2 cache size =256kb gives optimum result. For

dual core system the l1 cache size =16kb and l2 cache size =512kb gives optimum

result. For quad core system the l1 cache size =16kb and l2 cache size =1 Mb

gives optimum result.

3.6 Summary

In this chapter, we have seen analyzed different cache configuration for single and

multicore processors. On varying cache size with combined hit ratio,effetive access

time and efficiency in single core system we observed that it performs better for

L1 size= 16kb and L2 size = 128kb than other configuration. On varying cache

size with combined hit ratio,effetive access time and efficiency in dual core system

we observed that it performs better for L1 size= 16kb and L2 size = 512kb than

the other configuration. On varying cache size with combined hit ratio,effetive

access time and efficiency in quad core system we observed that it performs better

for L1 size= 8kb and L2 size = 1Mb than other policies.
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Chapter 4

A cache replacement policy for
thrashing application in multicore
processors

4.1 Introduction

Replacement Policy is an important parameter for the cache, it is the method

of selecting the block to be deallocated and replaced with the incoming cache

line.The basic replacement policy used are LRU, FIFO and Random [1], [3], [2].

The replacement policy is responsible for the efficient use of available memory

space by making a place for the incoming line through deallocating one of the

cache lines [1].

In the new replacement policy we are addressing the thrashing problem i.e when

the cache size is less than the working size of application. As discussed in chapter

we have considered: n > mandn << x . In Bit Set Insertion Policy (BSIP) our

concept is to make some of the cache line stay for longer time so, that they would

be hit in distant future. In this policy we have tried to overcome the drawback

of LRU policy with thrashing application. In BSIP we have taken one extra tag

bit k per cache block line. Our concept in BSIP is that if there is a hit in cache

then set the bit k for that cache line this implies that this block may get hit

in distant future hence, it will stay in cache for longer time. If miss occur for

particular access in the cache than search for first reset bit i.e(k=0) and replace

the corresponding cache line with incoming block line and if all the cache lines are

set in a particular set then replace block at LRU position and reset its k bit. As

shown in fig 4.1, if there is a hit than the corresponding bit will be set and if miss
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4.2 Proposed Algorithm

will occur than starting from MRU position the first k=0 will be replaced and if

all the bit are set for all cache lines than for next 50% of n cache line k bit will be

reset and block at LRU position is replaced..

Figure 4.1: BSIP Policy HIT and MISS

4.2 Proposed Algorithm

Our aim for this algorithm is to make cache efficient in case of thrashing access

pattern i.e (when cache size is less than the working size of application).
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4.2 Proposed Algorithm

Algorithm 4 BIR SET INSERTION cache replacement algorithm

1: tag← tag of new cache block
2: k← extra tag bit for each cache line
3: way = 0
4: flag = 0
5: u = 0
6: while way < cache− > assoc do
7: if tag == cache− > tag then
8: set k for that cache line
9: flag=1 and return the way for that cache line
10: break
11: end if
12: way ← way + 1
13: end while
14: if flag == 0 then
15: way = 0
16: while way < cache− > assoc do
17: if ( (k == 0) then
18: insert cache block to that position, set k, u=1 and return the way for

that cache line
19: break
20: end if
21: way ← way + 1
22: end while
23: if ( (u == 0) then
24: then for the next 50 % of n cache line make k=0 and replace the cache

block line at LRU position
25: end if
26: end if

The flow for the algorithm 4 is repsented as shown for level 2 cache in dual

and quad core system:
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4.2 Proposed Algorithm

Figure 4.2: Flow chart for bit set insertion policy
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4.3 Observation with dual core system

In the alogritm 4 and figure 4.2 we have represented the proposed algorithm,

in this technique if the cache block is already there in cache then we will set the

value of k for the corresponding cache else if it is a miss than we search for first

cache line from MRU position for which k==0 and replace that cache line with

incoming cache line and if all the bits are set than we will reset the 50 % of the

cache lines in a particular set and will insert the incoming line at LRU position.

With this algorithm we have tried to improve the shared cache performance in

dual and quad core system. Hardware Overhead for LRU is O(mlogm) [14] but

for BSIP it is O(m).

4.3 Observation with dual core system

Cache replacement policies are implemented and observed using multi2sim [26] in

dual core system. We have considered Splash-2 benchmark [27] as it contains all

real time applications. In splash-2 benchmark we have considered FFT and LU

application.

Table 4.1: Simulation model for analysing replacement policies in dual core system

Number of cores L1 instruction Cache L1 data cache L2 shared cache

2 size- 16kb size -16kb size - 128kb

assoc- 2way assoc- 2way assoc- 4way

Policy- LRU, MRU,
Random, BSIP

Policy- LRU,
MRU, Random,
BSIP

Policy- LRU,
Random, BSIP

In table 4.1 we have given the basic cache configuration for L1 and L2, for that

we have varied the cache replacement policies such as LRU,Random and BSIP.

The simulations with above considerations are:

1. Miss rate has been observed with different cache sizes over different po-

lices(LRU,Random and BSIP) in order to analyze the performance of BSIP

in dual core system.
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4.3 Observation with dual core system

Figure 4.3: Miss rate on executing FFT and LU for L2 cache block (128kb,512kb)
in dual core system

From figure 4.3 we can observe that it is clear that FFT and LU are forming

a thrashing access pattern when we are taking the cache size less than the

working size of problem, for cache size 128kb the miss rate is reduced by 15

% for FFT and by 20% for LU and for cache size 512 kb, as the cache size

is approprite for the application then the miss rate is low with LRU policy

and it is further reduced by some fraction when executed with BSIP.

2. Throughput has been observed over different polices(LRU,Random and BSIP)

in order to analyze the performance of BSIP in 2 core system over thrashing

access pattern.
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4.4 Observation with quad core system

Figure 4.4: Throughput on executing FFT and LU for L2 cache block
(128kb,512kb) in dual core system

From figure 4.4 we can observe that it is clear that FFT and LU are forming

a thrashing access pattern when we are taking the cache size less than the

working size of problem, for cache size 128kb the throughput is maximum

for BSIP as if miss rate is low then there will be less access time. Hence,

more instructions will be executed per cycle.

4.4 Observation with quad core system

Cache replacement policy is implemented using multi2sim [26] in quad core sys-

tem environment. In splash-2 [27] benchmark we have considered FFT and LU

application.

Table 4.2: Simulation model for replacement policy in quad core system

Number of cores L1 instruction Cache L1 data cache L2 shared cache

4 size- 16kb size -16kb size - 256kb

assoc- 2way assoc- 2way assoc- 4way

Policy- LRU, Ran-
dom, BSIP

Policy- LRU,
Random, BSIP

Policy- LRU,
Random, BSIP
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4.4 Observation with quad core system

In table 4.2 we have given the basic cache configuration for L1 and L2, for that

we have varied the cache replacement policies such as LRU,Random and BSIP in

quad core system. The simulations with above considerations are:

1. Miss rate has observed with different cache sizes over different polices(LRU,Random

and BSIP) in order to analyze the performance of BSIP in quad core system.

Figure 4.5: Miss rate on executing FFT and LU for L2 cache block (128kb,1Mb)
in quad core system

From figure 4.5 we can observe that it is clear that FFT and LU are forming

a thrashing access pattern when we are taking the cache size less than the

working size of problem, for cache size 256kb the miss rate is reduced by 21

% for FFT and by 24% for LU and for cache size 1 MB, as the cache size

is approprite for the application then the miss rate is low with LRU policy

and it is further reduced by some fraction when executed with BSIP.

2. Throughput has been observed over different polices(LRU,Random and BSIP)

in order to analyze the performance of BSIP in qyad core system.
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4.5 Summary

Figure 4.6: Throughput on executing FFT and LU for L2 cache block (128kb,1Mb)
in quad core system

From figure 4.4 we can observe that it is clear that FFT and LU are forming

a thrashing access pattern when we are taking the cache size less than the

working size of problem, for cache size 256kb the throughput is maximum

for BSIP as if miss rate is low then there will be less access time. Hence,

more instructions will be executed per cycle.

4.5 Summary

In this chapter, we have disscused new cache replacement policy BSIP. Impact of

cache replacement policy on dual and quad core system have been observed by

varying the cache size and analysing the miss rate and throughput on thrashing

access pattern. On varying cache size with different benchmarks we observed that

it works best for BSIP policy and worst for LRU as miss rate is maximized. On

observing the throughput with different benchmarks we get that it works best

for BSIP policy and worst for LRU and random is fluctuating. On increasing the

number of cores miss rate is reduced and the throughput is increased, but not as

prominent as with replacement policy.
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Chapter 5

Conclusions and future works

5.1 Conclusions

In this thesis we have proposed a cache configuration to improve the efficiency of

Level 2 cache in single and multicore system. Efficiency of cache means with min-

imum cache size it must give us maximum hit rate i.e least effective access time.

Here we have observed that the for L2 cache with 4 way associativity gives better

performance than the 8 or 16 way and for single core processor the cache combi-

nation of L1 size= 16kb and L2 size= 128kb and for dual core processor the cache

combination of L1 size= 16kb and L2 size= 512kb and for quad core processor the

cache combination of L1 size= 8kb and L2 size= 1Mb gives optimum performance

with less miss rate. In case of applications with thrashing access pattern i.e cache

size is less than the working size of problem, we have optimized the cache per-

formance by changing the existing cache replacement policies. In this thesis we

have used LRU and Random for thrashing access pattern to compare the efficency

of our replacement policy. Simulation results have shown that LRU shows worst

result for thrashing access pattern and Random performs better than the LRU

but it is not fixed. The new replacement policy, BSIP gives much better results

with thrashing access pattern when compared to LRU and Random. Hardware

Overhead for LRU is O(mlogm) [14] but for BSIP it is O(m).
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5.2 Future works

5.2 Future works

� By using a central limit theoram [13] a Dynamic Set Insertion Policy

can be implemented by considering Least Recently Used(LRU) cache re-

placement policy, if a application is cache friendly.

� A Dynamic Set Insertion Policy can be implemented by considering

Bit Set Insertion Policy (BSIP) cache replacement policy, if a application is

thrashing.

� Cache replacement policies can be compared using power consumed as a

performance parameter.

� Cache replacement policies can be implemented by considering thread level

parallelism in multicore processors.
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