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Abstract

Advances in data collection techniques and need for automation triggered in

proliferation of a huge amount of data. This exponential increase in the collection of

personal information has for some time represented a serious threat to privacy. With

the advancement of technologies for data storage, data mining, machine learning, social

networking and cloud computing, the problem is further fueled. Privacy is a fundamental

right of every human being and needs to be preserved. As a counterbalance to the

socio-technical transformations, most nations have both general policies on preserving

privacy and specific legislation to control access to and use of data. Privacy preserving

data publishing is the ability to control the dissemination and use of one’s personal

information.

Mere publishing (or sharing) of original data in raw form results in identity disclosure

with linkage attacks. To overcome linkage attacks, the techniques of statistical disclosure

control are employed. One such approach is k-anonymity that reduce data across a set of

key variables to a set of classes. In a k-anonymized dataset each record is indistinguishable

from at least k-1 others, meaning that an attacker cannot link the data records to

population units with certainty thus reducing the probability of disclosure. Algorithms

that have been proposed to enforce k-anonymity are Samarati’s algorithm and Sweeney’s

Datafly algorithm. Both of these algorithms adhere to full domain generalization with

global recording. These methods have a tradeoff between utility, computing time and

information loss. A good privacy preserving technique should ensure a balance of utility

and privacy, giving good performance and level of uncertainty. In this thesis, we propose

an improved greedy heuristic that maintains a balance between utility, privacy, computing

time and information loss.

Given a dataset and k, constructing the dataset to k-anonymous dataset can be done

by the above-mentioned schemes. One of the challenges is to find the best value of k,

when the dataset is provided. In this thesis, a scheme has been proposed to achieve the

best value of k for a given dataset.



The k-anonymity scheme suffers from homogeneity attack. As a result, the l-diverse

scheme was developed. It states that the diversity of domain values of the dataset

in an equivalence class should be l. The l-diversity scheme suffers from background

knowledge attack. To address this problem, t-closeness scheme was proposed. The

t-closeness principle states that the distribution of records in an equivalence class and

the distribution of records in the table should not exceed more than t. The drawback

with this scheme is that, the distance metric deployed in constructing a table, satisfying

t-closeness, does not follow the distance characteristics. In this thesis, we have deployed

an alternative distance metric namely, Hellinger metric, for constructing a t-closeness

table. The t-closeness scheme with this alternative distance metric performed better with

respect to the discernability metric and computing time.

The k-anonymity, l-diversity and t-closeness schemes can be used to anonymize the

dataset before publishing (releasing or sharing). This is generally in a static environment.

There are also data that need to be published in a dynamic environment. One such

example is a social network. Anonymizing social networks poses great challenges.

Solutions suggested till date do not consider utility of the data while anonymizing. In this

thesis, we propose a novel scheme to anonymize the users depending on their importance

and take utility into consideration. Importance of a node was decided by the centrality

and prestige measures. Hence, the utility and privacy of the users are balanced.



Chapter 1

Introduction

Advances in data storage, data collection and inference techniques have enabled the

creation of huge databases of personal information. The collection of these data was

driven by guidelines of government agencies, private corporations, hospitals or for mutual

benefits. The guidelines may include various types of surveillance, mandatory disclosures,

investigations, right to information, etc. Mutual benefits include disclosure of personal

information by people due to coupons, discounts, profits, etc. Regardless of the techniques

used for collecting data, dissemination of information from such databases, even if formally

anonymized, paves serious threats to individual privacy through statistical disclosure.

Proliferation of data mining techniques has fueled the privacy breach problem. Many

civil rights groups and privacy groups oppose surveillance as a violation of people’s right

to privacy. Some of the groups include Electronic Privacy Information Center (EPIC),

Electronic Frontier Foundation (EFF), American Civil Liberties Union (ACLU), etc. This

resulted in setting up many laws pertaining to individual nation or organization. Examples

are Personal Health Information Protection Act [PHIPA (2004)], Health Insurance

Portability and Accountability Act [US Department of Health (1996)] and Data Mining

Moratorium Act [DM Moratorium Act (2003)].

Privacy reflects diverse things to different people like seclusion (desire to be left alone),

property (desire to be paid for one’s data) or autonomy (ability to act freely).

Robert Ellis Smith, editor of the privacy journal states that privacy is “the desire by

1
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each of us for physical space where we can be free of interruption, intrusion, embarrassment

or accountability and the attempt to control the time and manner of disclosures of

personal information about ourselves” [Robert (2004)]. As per Louis Brandeis, United

States supreme court justice, “Privacy was the most cherished of freedoms in a democracy,

and it’s the individual right to be left alone” [Louis (1890)]. Privacy is a fundamental

human right recognized in all major international agreements regarding human rights

such as Article 12 of universal declaration of human rights [Human rights law (1948)].

The preamble to the Australian Privacy Charter declares that “A free and democratic

society requires respect for the autonomy of individuals, and limits on the power of both

state and private organizations to intrude on that autonomy. Privacy is a key value which

underpins human dignity and other key values such as freedom of association and freedom

of speech. Privacy is a basic human right and basic expectation of every person” [Australia

(1994)]. The Calcutt committee in UK pointed out that “nowhere have we found a wholly

satisfactory, statutory definition of Privacy” [Calcutt (1990)].

Privacy can also be classified from different aspects. It can be bodily privacy,

communication privacy, territorial privacy or information privacy [Simon Davies

(1996)]. Bodily privacy is concerned about protection of people’s physical selves

against invasive procedures such as genetic tests, drug testing and cavity searches.

Communication Privacy covers the security and privacy of mail, telephones, e-mail

and other forms of communication. Territorial privacy is concerned about the

setting of limits on intrusion into the domestic and other environments such as the

workplace or public space. This includes searches, video surveillance and identity checks.

Information privacy involves the establishment of rules governing the collection and

handling of personal data such as credit information, and medical and government records.

Personal information is the information about an identifiable individual that is recorded

in any form. It is also known as data preserving.

In this thesis, we consider only preserving of information privacy, which protects

sensitive information from being brought to the attention of others. Privacy preserving

is the ability to control the dissemination and use of one’s personal information. Privacy
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can refer to an individual where nobody should know about any entity after performing

data mining or an organization to protect knowledge about a collection of entities.

Various approaches followed for individual privacy preserving are data obfuscation,

value swapping, perturbation, etc. Each organization adopts a framework for disclosing

individual entity values to the public.

A data source comprises of public and private attributes. We need to reveal public

attributes maximally without revealing the private attributes . Release of data either

pseudonymous or anonymous may still be breached of privacy with inference [Mohammad

and Somayajulu (2008), Verma and Toshniwal (2009)].

Figure 1.1: Linking to re-identify record owner.

An example given by Sweeney is reproduced in Figure 1 [Sweeney (2002b)]. An

individual’s name in a public voter list was linked with his record in a published

medical database through the combination of zip code, date of birth and sex. Each

of these attributes does not uniquely identify a record owner, but their combination,

called the quasi-identifier (QI) [Dalenius (1986)], often singles out a unique or a small

number of record owners. It is reported that 87% of the U.S. population had resembling

characteristics that likely made them uniquely identified with the help of the above stated

quasi-identifiers [Sweeney (2002b)].

Rest of the chapter is organized as follows: Section 1.1 mentions common attack

models, anonymization operations and privacy models. Section 1.2 shows some important
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application domains where privacy preserving techniques are frequently used. In Section

1.3, we discuss major issues and motivation of the thesis. Contributions of the thesis are

highlighted in Section 1.4. Finally, organization of this thesis is discussed in Section 1.5.

1.1 Attack Models and Anonymization Operations

Dissemination of data is subjected to various kinds of attacks. This section discusses

about the common attack models and general solutions. In all these types of attacks,

it is assumed that the attacker knew the quasi-identifiers. Quasi-identifiers are those

attributes of a table that can potentially help in inferring additional knowledge about a

tuple in the table.

1.1.1 Attack Models and Countermeasures

• Record Linkage

Record linkage identifies matching record pairs in two separate tables with the

help of few quasi-identifier values [Rob and Stephen (2010)]. Record linkage

attack has been widely used in crime detection, marketing, antiterrorism, etc.

The negative part of record linkage is that it can lead to identity matching of

private information of an individual. To overcome this attacks, k-anonymity

was proposed [Sweeney (2002a)]. It states that a table comprises of equivalence

classes and, each equivalence class should have at least k values.

• Attribute Linkage

A table can be converted to a k-anonymous table before publishing it in a

public domain. A situation may occur such that in a sigle equivalence class, all

the domain values may be same. This leads to the homogeneity of the domain

values in the equivalence class. In this case, the attacker may not precisely

identify the record of the target victim, but could infer the sensitive values

from the published table, based on the set of sensitive values associated to the
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group that the victim belongs to. Examples of this type of attacks are similarity

attack, homogeneity attack, skewness attack, background knowledge attack,

etc. The attacker need not use the quasi-identifiers to perform this attack.

To overcome this attacks, the l-diversity principle and t-closeness principle was

proposed. The l-diversity principle states that there should be at least l-diverse

domain values in an equivalence class [Machanavajjhala et al. (2007), Krishna

and Valli (2011)]. The t-closeness principle states that the difference between

the distributions of any equivalence class in the table and the distribution of

the whole table should not be more than a threshold t [Ninghui et al. (2007)].

• Table Linkage

Sometimes the presence or absence of the victim’s record in the published table

can be inferred by the attacker with certain level of confidence. These types

of attacks are called table linkage attacks. Assume a table, T1, is published.

There exists another table T2, such that, T1 ⊆ T2. Then if a tuple in T1

can be identified based on T2 with high level of confidence then we call this

attack as table linkage attack. To overcome this type of attack, the δ-Presence

model was introduced [Nergiz and Christopher (2010)]. δ-Presence states that

given two tables, T1 and T2, the probability of inferring the victims record

should be within δ range, i.e., δ = (δmin, δmax) based on the two tables. So,

δmin ≤ P (victim′s record ∈ released table) ≤ δmax.

1.1.2 Anonymization Operations

Anonymization is the process of modifying the relation in such a way that minimal

sensitive data may be inferred. General techniques used to achieve it are: generalization

and suppression, anatomization and permutation, and perturbation.

• Generalization and Supression

A generalization scheme replaces some values with a parent value in the

taxonomy of an attribute. The reverse operation of generalization is called
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specialization. A suppression replaces some values with a special value,

indicating that the replaced values are not disclosed. The reverse operation

of suppression is called disclosure.

Given an attribute A, generalization for an attribute is a function on A.

That is, each f : A → B is a generalization where B is on higher level of

generalization on the taxonomy tree. So,

A0
f0−→ A1

f1−→ A2...An−1
fn−→ An

is a generalization sequence or a functional generalization sequence.

Given an attribute A of a private table T, Domain Generalization Hierarchy

(DGH) for A is a set of functions fh where, h = 0, ..., n− 1 such that:

A0
f0−→ A1

f1−→ A2...An−1
fn−1−−→ An

So, DGH of an attribute A is over:
⋃n−1

h=0 Ah

There are basically five types of generalizations [Benjamin et al. (2010)]

namely, full generalization, subtree generalization, sibling generalization, cell

generalization and multidimensional generalization.

• Anatomization and Permutation

Anatomization and permutation dissociate the correlation between

quasi-identifiers and sensitive attributes by grouping and shuffling sensitive

values in a quasi-identifier group. Unlike generalization and suppression,

anatomization does not modify the quasi-identifier or the sensitive attribute,

but dissociates the relationship between the two. The idea of the permutation

is to dissociate the relationship between a quasi-identifier and a numerical

sensitive attribute by partitioning a set of data records into groups and

shuffling their sensitive values within each group.

• Perturbation
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Perturbation distorts the data by adding noise, aggregating values, swapping

values or generating synthetic data based on some statistical properties of the

original data. The general idea is to replace the original data values with some

synthetic data values so that the statistical information computed from the

perturbed data does not differ significantly from the statistical information

computed from the original data.

1.2 Applications of Privacy Preserving Technique

Public data should not be released without preserving the privacy of each record. It

should ensure that no individual is identified from the anonymized data. This technique

has been utilized in numerous application domains. Some of them are listed below.

• Clinical Records

Huge number of clinical records are gathered through registration of patients in

clinics. These data are shared with the scientific and government firms for research

and mobilization. The clinical records can be anonymized before publishing the

records with other firms.

• Social Networking

People these days have become savvy to the internet and social networking. People

are unaware of the privacy issues. The published data in the social network can be

anonymized and do not infer to any single individual

• Government and Financial Companies

The government and financial companies are bound to publish certain data to the

public. The data to be published may be anonymized so that no one uncovers any

identity and lead to self degradation.

• Business

Huge data is generated by piling up data from everyday shopping of customers.
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The retailers may share with other retailers for mutual benefit. The anonymization

algorithms can be applied on the data to ensure the privacy of each individual.

• Rule Enforcement

Privacy is a fundamental right of every human being. Every nation ensures privacy

preserving guidelines for the data stewards and data collectors. Many of the rules

can be enforced by incorporating anonymization algorithms on the dataset that

needs to be released.

• Surveillance

Raw samples collected from surveillance and features of biometric traits of each

individual is stored in databases. It may end up in the hands of a bad person and

he takes advantage of the available feature. Privacy preserving algorithms can be

tailored and deployed on the databases storing raw data of each individual.

1.3 Major Issues, Motivation and Problem Definition

1.3.1 Issues and Motivation

Projected below are few issues faced while publishing data to the public.

Issues with tradeoff between utility and privacy

Algorithms that ensure privacy should notably ensure the utility of the published data

[Verykios et al. (2004), Ming and Jian (2008), Pin Lv (2008), Kok and Myung (2012),

Junqiang Liu (2011)]. High privacy ensured data may be minimal in utility and vice versa.

A good privacy preserving technique should ensure a balance of utility and privacy, giving

good performance and level of uncertainty.

Issues with finding the best value of k for k-anonymity

Given a dataset and k, constructing the dataset to k-anonymous dataset can be done.

One of the challenges is to find the best value of k for a given dataset.
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Issues with finding the quasi-identifiers

A released dataset can be used to infer sensitive data with the help of the quasi-identifiers

of the released dataset. Quasi-identifiers are those set of attributes that contribute in

inference. Quasi-identifiers depends on the dataset and it is a great challenge to identify

them.

Issues with online privacy

Conventional techniques existing in the literature cannot be adopted directly to provide

privacy in online environment [Raymond et al. (1984)]. They need to be tailored.

Moreover, its dynamic nature poses huge challenges.

1.3.2 Problem Definition

Given a dataset D, the goal is to find D′ using some anonymization function fA: D → D′,

subjected to the following conditions:

• Maximum similarity between D and D′ i.e, minimum |D − D′|,

• Minimum information loss and

• Abide by the quasi-identifies with their domain generalization hierarchies.

1.4 Contributions of the Thesis

In this thesis, we investigate the various privacy preserving data publishing techniques

and study on the privacy and utility issues of the existing mechanisms. We proposed

various algorithms to improve the utility of the data while still preserving the privacy.

Contributions of this thesis are summarized as follows:

• Before the release of any data product, there is a need to consider a balance between

utility and privacy. An improved heuristic is proposed for achieving k-anonymity.

The proposed algorithm has a better balance between privacy, computing time,
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information loss and utility. The proposed algorithm was compared with the

established Datafly and Samarati’s algorithms. It is observed that the new greedy

algorithm performed better than the established ones for balancing utility and

privacy.

• In order to achieve utility and privacy best value of k is required. Various

experiments were conducted on the Adult dataset with different ranges. It was

observed that the value of k differed from dataset to dataset. A procedure has been

suggested for determining the best value of k for a dataset.

• The k-anonymity scheme suffers from homogeneity attack. As a result, the l-diverse

scheme was developed. The l-diversity scheme suffers from background knowledge

attack. To address this problem, t-closeness scheme was proposed. The drawback

with this scheme is that, the distance metric deployed in constructing a table,

satisfying t-closeness, does not satisfy the distance characteristics. In this thesis, we

have deployed an alternative distance metric (Hellinger) that satisfy the distance

characteristics for constructing the t-closeness table. In addition to this, an improved

t-closeness was proposed to preserve the identity disclosure.

• The k-anonymity, l-diversity and t-closeness schemes can be used to anonymize the

dataset before publishing (releasing or sharing) in a static environment. There are

situations where data need to be published in a dynamic environment. One such

example is the social network where huge information can be derived using data

mining [Bellaachia and Anasse (2011), Rajput et al. (2011), Yung and Lin (2012)].

Of the late research states that anonymizing social networks poses great challenges.

Current solution adopted, is to leave the freedom of setting the privacy levels to

users. This poses another problem like every user setting the privacy level to the

maximum. This reduces the utility of the data. In this thesis, we propose a novel

scheme to anonymize the users depending on their importance [Huangmao et al.

(2012)]. Therefore the utility and privacy of each user are balanced before they are

published in the public domains.
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1.5 Organization of the Thesis

The thesis is organized as follows:

Chapter 2 presents a survey of existing methods and background of the present work.

Contributions of the thesis are discussed in subsequent chapters, Chapter 3 to Chapter 6.

Conclusions and future research directions are discussed in Chapter 7.

Chapter 3 presents the strengths and weaknesses of the existing algorithms for

k-anonymity. The observations of the results motivated to move in the direction of

proposing an improved greedy approach for balancing utility, privacy, information loss

and computing time.

Chapter 4 proposes a method to find the best value of k for a given dataset so that the

dataset may be later converted to k-anonymous.

Chapter 5 discusses the t-closeness method of achieving privacy. An alternative distance

metric was embedded in the algorithm of t-closeness for better performance.

Chapter 6 proposes a novel method to anonymize dynamic structures like nodes in social

networks to ensure privacy of users based on their significance in the network.

Chapter 7 summarizes overall contributions of the thesis and discusses future research

directions.



Chapter 2

Background and Related Work

2.1 Introduction

The concern for privacy dates back to 1948 in the United Nations Declaration of Human

Rights Article 12 [Human rights law (1948)]. According to Sweeney, the three pillers of

privacy are consent (obtain permission to access the information), notice (notify before

using one’s personal data) and de-identification (altering to remove certain data elements

associated with an indivudual). In a deeper sense, the concern is the identification of

individuals within anonymized data through the use of linkage attacks. Several models

has been investigated over the years to keep the data de-identified from a published

anonymized data [Samarati and Sweeney (1998b), Machanavajjhala et al. (2007), Ninghui

et al. (2007), Nergiz and Christopher (2010)].

In the remainder of this chapter, Section 2.2 gives background; Section 2.3 describes

the k-anonymity model. We review algorithms that give full domain generalization with

record suppression. Section 2.4 describes other models of privacy preservation. Section

2.5 gives a survey on anonymizing social networks followed by conclusion in Section 2.6.

2.2 Background

This section provides the basic definitions and preliminaries.

12
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2.2.1 Relation

Let B(A1, ..., An) be a relation with a finite number of tuples. The finite set of attributes of

B are {A1, ..., An}. Given a relation B(A1, ..., An), {Ai, ..., Aj} ∈ {A1, ..., An}, and a tuple

t ∈ B, we use r[Ai, ..., Aj] to denote the sequence of the values, vi, ..., vj, of Ai, ..., Aj in r.

B[Ai, ..., Aj] denotes the projection, maintaining duplicate tuples, of attributes Ai, ..., Aj

in B.

Given a population U, a person-specific table T (A1, ..., An), fc: U → T and fg:

T → U ′, where U ⊆ U ′. A quasi-identifier of T, written QT , is a set of attributes

{Ai, ..., Aj} ⊆ {A1, ..., An} where ∃pi ∈ U such that fg(fc(pi)[QT ]) = pi.

2.2.2 Quasi-identifier

A quasi-identifier is a set of attributes in a relation T that can be linked to external

information to re-identify individual records. The quasi-identifier when combined with

corresponding external data can lead to the correct association of a data record with

a population unit (also known as identification disclosure). Whether a variable is a

quasi-identifier or not depends on a variety of factors, the most important is the availability

of external data with a variable that corresponds to the potential quasi-identifer.

2.2.3 Generalization

A set of values of a particular attribute is called a domain. Given two domains S0 and S1,

the expression S0 ≤ S1 means that values of attributes in S1 are more generalized than

those in S0. Generalization T1 is k-minimal if it satisfies k-anonymity and there does not

exist another generalization satisfying these conditions less general than T1.

There are several schools of thought about how generalization ontologies should be

generated and represented [Samarati and Sweeney (1998a)]. The Figures 2.1, 2.2, 2.3

and 2.4 shows examples of domain generalizatin hierarchies and value generalization

hierarchies.

In most of the anonymizing models the anonymizing operation used is generalization



2.2 Background 14

S1={CITY}

S0={DELHI, MUMBAI, KOLKATA, CHENNAI}

Figure 2.1: Domain generalization hierarchy for residence.

Figure 2.2: Value generalization hierarchy for native country.



2.3 k-anonymity 15

and suppression. These operations are performed on the quasi-identifiers of the table.

Figure 2.5 shows a generalization hierarchies of three quasi-identifiers namely, age,

gender and zipcode. Anonymization can be achieved in different combinations of these

generalization hierarchies. This can be viewed like a lattice. Figure 2.6 shows the

generalization lattice of the generalization hierarchies of Figure 2.5.

2.3 k-anonymity

A relation is comprised of QIs and non-QIs. The QIs need to be anonymized as they

can re-identify individual records. Let r be a tuple, then, the value of ith tuple can be

represented as ri[C].

A relation, T satisfies k-anonymity if for every tuple ri0 ∈ T, there exist k-1 other

tuples ri1 , ri2 , ... ri(k−1)
∈ T, such that ri0 [C] = ri1 [C] = ... = ri(k−1)

[C], ∀ C ∈ QI.

The first model for anonymizing the data before publishing is the k-anonymity model

given by Sweeney [Sweeney (2002b)]. As an example, Table 2.2 is a 2-anonymous table

of Table 2.1.

Table 2.1: Example of original table.
Age Gender Zipcode
21 Male 769008
56 Female 769008
35 Female 769008
24 Male 769008
60 Male 769132
22 Female 743161
24 Male 743372

A k-anonymous dataset can be achieved through local recording or global recording.

Local recording refers to different generalization rules within a column to equal the values

of the domain. Global recording (also known as full domain generalization (FDG)) apply

the same rule throughout the column.
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Figure 2.3: Value generalization hierarchy for race.

Private_emp

Gov_emp

Unemployed

Self−emp−not−inc

Private

Self−emp−inc

Federal−gov

Without−pay

Local−gov

Never−worked

State−gov
xxx

Figure 2.4: Value generalization hierarchy for workflow.

Figure 2.5: Generalization hierarchies.
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Table 2.2: 2-anonymization of Table 1.
Age Gender Zipcode
< 25 * 769***
≥ 25 * 769***
≥ 25 * 769***
< 25 * 769***
≥ 25 * 769***
< 25 * 743***
< 25 * 743***

2.3.1 Global Recording Algorithms

Datafly Algorithm

The Datafly algorithm [Sweeney (1997)] goes with the assumptions that the best solutions

are the ones that are attained after generalizing the variables with the most distinct values

(unique items). The search space is the whole lattice. However, this approach only goes

through a few nodes in the lattice to find its solution. This approach is very efficient from

a time perspective. Datafly uses a greedy algorithm to search the domain generalization

hierarchy. At every step, it chooses the locally optimal move. One drawback with Datafly’s

approach is that it may become trapped in a local optimum [Cormen et al. (2001)].

Samarati Algorithm

Samarati’s algorithm assumes that the best solutions in the lattice are the ones that

result in a table having minimal generalizations [Samarati (2001)]. So, the solutions are

available in the height that is minimal in a lattice. The algorithm is based on the axiom

that if a node at level h, in domain generalization hierarchy satisfies k-anonymity, then

all the levels of height higher than h also satisfy k-anonymity. In order to search the

lattice and identify the the lowest level with the generalizations that satisfy k−anonymity

with minimal suppression, Samarati used binary search. The algorithm goes through the

lattice with a binary search, always cutting the search space in half. It goes down the

level if a solution is found at that level, otherwise it goes up the lattice. Eventually, the

algorithm finds the solution with the lowest height with the least generalizations. This
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level ensures less information loss but time consumed is higher than Datafly.

Incognito Algorithm

Incognito [Lefevre et al. (2005)] implements a dynamic programming approach with an

idea that if a subset of quasi-identifiers of a relation T is not k-anonymous then the

relation T cannot be k-anonymous. The approach constructs generalization lattice of

each individual subset of quasi-identifiers and traverses them by performing a bottom-up,

breadth-first search. The number of generalization lattice constructed in case of Incognito

for QIs of order r is 2r. Thus Incognito algorithm is of order Ω(2r) because at least one

lattice is checked for k-anonymity in every generalization lattice.

Optimal Lattice Algorithm

El Emam et al. proposed an algorithm called Optimal Lattice Anonymization and showed

that it outperforms Incognito [Emam et al. (2009)]. It use predictive tagging to prune

the search space of the lattice. However, if global optimal k-anonymous lattice lie on or

above the middle level of full domain generalized hierarchy, then the algorithm check all

the middle level lattices for k-anonymity. We will show in Proposition 2 of Chapter 3,

that checking only the middle level of full domain generalized hierarchy is exponential in

number of QIs.

Flash Algorithm

Kohlmayer et al. proposed Flash algorithm for finding efficient, stable and optimal

k-anonymity [Kohlmayer et al. (2012)]. They implemented their algorithm in a frame

work, which holds all the data in a main memory with dictionary compression on these

data. The maximum number of quasi-identifiers for the datasets considered by them is

only nine. If the number of quasi-identifiers are very high, then it would be difficult to

put all the data items in the main memory.

The algorithms listed above have their pros and cons. They have tradeoffs between

utility of the dataset, information loss and computing time.
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2.4 Closeness

The k-anonymity method can limit the disclosure risk of publishing data. It arrange

the records of a table in such a way that at least k records exist in an equivalence class

for the quasi-identifiers. Table 2.3 shows the inpatient data and Table 2.4 shows the

4-anonymous inpatient data. Though k-anonymity protects against identity disclosure,

it does not provide sufficient protection against attribute disclosure [Aggarwal et al.

(2005), Ninghui et al. (2007)]. Two attacks were identified, homogeneity attack and

the background knowledge attack. Table 2.4 shows that, having a little knowledge of any

of the non-sensitive identifiers, the sensitive attribute like disease can be easily determined

as they are homogeneous in nature in the last equivalence class. As a countermeasure

to these attacks, the l-diversity was introduced [Machanavajjhala et al. (2007), Ninghui

et al. (2007)].

The l-diversity principle represents an important step beyond k-anonymity in

protecting against attribute disclosure. The principle of l-diversity states that a table

is said to possess l-diversity if every equivalence class of the table has atleast l-diversified

values for the sensitive attribute. Tables 2.5 and 2.6 shows an example of a original table

and its 3-diverse table respectively. There are various instantiations of l-diversity namely,

distinct l-diversity, entropy l-diversity and recursive (c,l)-diversity. A table is said to have

distinct l-diversity if each equivalence class has at least l well-represented sensitive values.

A table is entropy l-diverse if for every equivalence class Equation (2.1) holds true.

−
∑
s∈S

P (QI, s) log(P (QI, s)) ≥ log l (2.1)

where,

S is a sensitive attribute,

QI is the quasi-identifier and

P (QI, s) is the fraction of records in a qid group having the sensitive value s.

A large threshold value l will definitely have low certainty of inferring a particular sensitive

value in an equivalence class. The drawback of entropy l-diversity is that it does not handle



2.4 Closeness 20

Figure 2.6: Lattice.

Table 2.3: Inpatient data.
# Zipcode Age Nationality Disease
1 13053 28 Russian Heart Disease
2 13068 29 American Heart Disease
3 13068 21 Japanese Viral Infection
4 13053 23 American Viral Infection
5 14853 50 Indian Cancer
6 14853 55 Russian Heart Disease
7 14850 47 American Viral Infection
8 14850 49 American Viral Infection
9 13053 31 American Cancer
10 13053 37 Indian Cancer
11 13068 36 Japanese Cancer
12 13068 35 American Cancer
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probability based risk. The recursive (c,l)-diversity ensures that the most frequent value

does not occur too frequently and less frequent values do not occur too rarely.

For an equivalence class, let ri denote the number of times the ith most frequent

sensitive value appears in that equivalence class. Given a constant c, the equivalence

class satisfies recursive (c,l)-diversity if the Equation (2.2) is satisfied.

r1 < c(rl + rl+1 + ...+ rm) (2.2)

A table T satisfies recursive (c,l)-diversity if every equivalence class in T satisfies

recursive (c,l)-diversity.

The l-diversity privacy model cannot prevent attribute disclosure. Two attacks are

possible on a l-diversity table namely, skewness attack and similarity attack. When the

overall distribution is skewed, satisfying l-diversity does not prevent attribute disclosure.

When the sensitive attribute values in an equivalence class are distinct but semantically

similar, an adversary can learn important information. The distributions that have the

same level of diversity may provide very different levels of privacy. This is because

there are semantic relationships among the attribute values, as different values have very

different levels of sensitivity and privacy is affected by the relationship with the overall

distribution. To prevent skewness attack, the t-closeness model was introduced [Ninghui

(2007)]. This principle requires the distribution of a sensitive attribute in any group on

the quasi-identifiers to be close to the distribution of the attribute in the overall table.

2.4.1 t-closeness

An observer has some prior observation, O1 about the sensitive attributes of a table.

After he or she observes the released table containing sensitive attributes, even if formally

anonymized, there may be a change in the current observation. Let us consider this

posterior observation as O2. The information gain of the observer is the difference between

these two observations.

Prior belief (represented as Q) depends on the distribution of a sensitive attribute in
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Table 2.4: 4-anonymous inpatient data.
# Zipcode Age Nationality Disease
1 130** <30 * Heart Disease
2 130** <30 * Heart Disease
3 130** <30 * Viral Infection
4 130** <30 * Viral Infection
5 1485* ≥ 40 * Cancer
6 1485* ≥ 40 * Heart Disease
7 1485* ≥ 40 * Viral Infection
8 1485* ≥ 40 * Viral Infection
9 130** 3* * Cancer
10 130** 3* * Cancer
11 130** 3* * Cancer
12 130** 3* * Cancer

Table 2.5: Example of original table.
# Zipcode Age Salary Disease
1 47677 29 3K gastric ulcer
2 47602 22 4K gastritis
3 47678 27 5K stomach cancer
4 47905 43 6K gastritis
5 47909 52 11K flu
6 47906 47 8K bronchitis
7 47605 30 7K bronchitis
8 47673 36 9K pneumonia
9 47607 32 10K stomach cancer

Table 2.6: Example of 3-diverse table.
# Zipcode Age Salary Disease
1 476** 2* 3K gastric ulcer
2 476** 2* 4K gastritis
3 476** 2* 5K stomach cancer
4 4790* ≥ 40 6K gastritis
5 4790* ≥ 40 11K flu
6 4790* ≥ 40 8K bronchitis
7 476** 3* 7K bronchitis
8 476** 3* 9K pneumonia
9 476** 3* 10K stomach cancer
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the whole table. Posterior belief (represented as P) depends on the distribution of the

sensitive attribute value in an equivalence class. So, information gain is the difference

between these two distribution can be denoted as (D[P,Q]).

Requring t-closeness would result in records of one equivalence class be grouped

with the records of other equivalence class to make the distribution close to the overall

distribution. This greatly reduces the utility of the data, as it hides the very information

one wants to discover. This motivated for (n,t)-closeness model.

An equivalence class of a set, E1 is said to have (n,t)-closeness if there exists a set E2

of records that is a natural superset of E1 such that E2 contains at least n records, and

the distance between the two distributions of the sensitive attribute in E1 and E2 is no

more than a threshold t. A table is said to have (n,t)-closeness if all equivalence classes

have (n,t)-closeness.

Ninghui et al. state that the metric used in the above methods for determining

closeness of the dataset does not satisfy the properties of a distance metric [Ninghui et al.

(2007)]. The t-closeness principle protects against attribute disclosure but not identity

disclosure.

2.5 Privacy issues in Social Networks

Social networking and data mining has emerged as key areas of research interest in recent

times. Social networks reflect the concept of small world representing many real-world

instances [Travers and Milgram (1969)]. Social Network consists of social entities and ties

between them [Wasserman and Faust (1994)]. Social entities, known as actors or nodes,

can be an individual, corporate or an organization. Social ties, also called as edge, can

be a kinship, social role, affective, cognitive, action, flow, transfer of material resources,

distance, co-occurrence, etc. On the other hand data mining is the process of discovering

interesting patterns from huge volumes of data. The intersecting research interest between

social networks and data mining algorithms has posed problems like privacy and has

received considerable attention as of the late. Qiang Yang et al. address privacy as one of

the ten challenges of data mining [Qiang and Xindong (2006)]. Mining of data must be
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done taking privacy into consideration [Qiang (2011), Aggarwal and Yu (2008)]. Privacy

depends from person to person and may be in various forms like relational [Na et al.

(2011)], influential [Jie et al. (2009a)] and emotional [Jie et al. (2009b)]. Efficient methods

do exist to infer great treasure of knowledge in social networks [Gautam et al. (2008)].

The conventional security systems does not ensure privacy. Data encryption has

its own limitation due to key sharing problem, computational cost and efficiency, trust

violation and intransitiveness of trust. A definition in [Bin and Jian (2008)] states that

general definition of privacy must be one that is measurable, of value and actionable.

Privacy has three interrelated classes; secrecy, anonymity and solitude. Secrecy is concern

about the information that other may gather anonymity about how the information is

generalized. Solitude measures the degree of physical access.

Social network data pose a different and unique challenge in modeling privacy due

to highly interrelated nodes. These challenges include modeling adversary background

knowledge, calculating information loss and deciding anonymization method [Aggarwal

and Wang (2010)]. Apart from modeling privacy, the utility of the published data in

social network is attributed by degree, path length, transitivity, network reliance and

infectiousness [Hay et al. (2008)].

2.5.1 Attacks on Social Networks

The attacks on social network data publishing can be broadly classified into two categories

[Backstrom et al. (2007)]. (i) Active attack: The attacker creates new user accounts

and edges in the original network and uses them to find targets and their relations in

anonymized network. (ii) Passive attack: The attackers consider the uniqueness of small

random sub-graphs embedded in a network. The attack is launched observing a particular

node or sub-graph and re-identify them in the anonymized graph. Another classification

of attacks can be made based on the target to which the attack is aimed. Such attacks

are classified into three categories namely identity disclosure attack, link disclosure attack

and content disclosure attack [Liu et al. (2008)].
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Identity Disclosure Attack

This is a kind of attack in which the attacker tries to reveal the identity of the actors in

the anonymized network. The solutions proposed for this are (i) k-candidate anonymity

and graph randomization [Liu et al. (2008), Hay et al. (2007), Samarati and Sweeney

(1998b)], (ii) k-degree anonymity and minimal edge modification [Liu et al. (2008)] and

(iii) k-neighborhood anonymity and graph isomorphism [Zhou and Pei (2008)]. A variation

of identity disclosure attack is neighborhood attack. In this type of attack, the attacker

tries to identify the target (node or sub-graph) having a background knowledge of its

neighbors. Liu et al. demonstrated that even if all the labels are removed from the

network, an attacker will be able to reproduce the original network with the help of

background knowledge [Liu et al. (2008)]. If all labels in the published data are removed

then the utility is hampered.

Figure 2.7 shows a model social network. To publish this network, the first approach

is to remove labels of all the edges and vertices as in Figure 2.8. But still the attack

on this network is possible if the attacker knows the background information about the

neighbor of the target node which is shown in Figure 2.9.

Background Knowledge 1: One node in Figure 2.8 has degree 4. Using this knowledge

the attacker now identified the node 4 in the networks as shown in Figure 2.9.

Background Knowledge 2: Node 4 has one neighbor with degree one in Figure 2.9.

So node 3 is discovered in Figure 2.10. Likewise, rest of the nodes in the network are

revealed. This is shown in Figure 2.11.

Link Disclosure Attack

Link disclosure attack aims at revealing an important relation between a pair of actors.

The relations between actors are very significant in social networks and signature property

of the social network representation. Sensitive edge disclosure attack belongs to this

category. To overcome this problem of link re-identification, Zheleave and Getoor

proposed a concept of sensitive edge and observed edges to attain the balance between

utility and privacy through series of algorithms named intactedges and partial edge
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Figure 2.7: A social network.

Figure 2.8: Label of the edges and vertex are removed.
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Figure 2.9: Node 4 identified.

Figure 2.10: Node 3, 1, 5 and 6 identified.
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Figure 2.11: Entire network revealed.

removal [Zheleva and Getoor (2007)]. Other techniques found are privacy preserving link

analysis, random perturbation for privacy relationship protection [Ying and Wu (2008)],

cryptographic protocol for private relationships protection [Curminati et al. (2007)] and

synthetic graph generation [Leskovec and Faloutsos (2007)].

Content Disclosure Attack

Sometimes private information associated with the network is revealed. These kinds of

attacks generally launched by advertising organizations on online social networking sites.

The activities of the users are notified to the friends associated with them. An example

of the content disclosure attack is Facebook’s Beacon service attack [Liu et al. (2008)].

2.5.2 Social Network Anonymization

The levels of privacy expected by each user in the network vary. A solution provided by

Xiao and Tao is the concept of personalized anonymity [Xiao and Tao (2006)]. Here a user

in a social network can specify the degree of privacy protection for his/her sensitive values.
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The preferences of the users’ can be collected from them when he or she is supplying the

data. This scheme is focused on the interests of the users as a primary criterion. Therefore,

high privacy can be ensured but may tend to provide very little utility of the published

data.

A sub-graph matching scheme using minimum depth first search is proposed by Zhou

and Pei which relates sub-graphs in a graph and anonymize the labels of these sub-graphs

[Zhou and Pei (2008)]. Since the social networks have millions of nodes and finding the

similar sub-graphs are very challenging in a big network, this scheme seems impractical

in real life. It considers only one neighbor. On increasing the number of nodes to more

than one, the size of neighbors grows exponential [Tripathy and Panda (2010)]. The

anonymization approaches used by [Zhou and Pei (2008), Tripathy and Panda (2010)]

statically anonymized the nodes. The concern for utility of the data is not emphasized in

these schemes.

Liu et al. proposed two methodologies to solve the problem of sensitive edge

disclosure attack [Liu et al. (2008b)]. They used the Gaussian randomization and greedy

perturbation scheme. These two methods are computationally intensive and consume

huge time. Still, this method is appreciated but they do not consider the dynamic nature

of the weight associated with the edges.

Anonymizing dynamic structures like nodes in a social network are challenging.

Algorithms available in the literature focus only on anonymity of nodes in a social network.

Hence, the utility of these data after publishing is mostly neglected. Increase in privacy

level decreases the utility of the data and vice versa. Optimal balance of utility and

privacy is a NP hard problem. It is a fact that a reputed person in the society needs

more privacy than the person with less reputation. Based on the social phenomena of

importance of an user, we anonymize the social network. This gives a balancing of utility

and privacy.
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2.6 Conclusion

This chapter discussed basic background of various privacy models that can be used on

the dataset before publishing them. Various attacks were also projected concerning to

each of the privacy model.



Chapter 3

Achieveing k-anonymity with

Improved Heuristics

3.1 Introduction

Linkage attack is one of the major covert channels for violating privacy. To address the

problem of linkage attack, various techniques of statistical disclosure control are employed.

One such approach called k-anonymity, works by reducing data across a set of key variables

to a set of classes [Samarati and Sweeney (1998b)]. Other variations of k-anonymity can

be found in [Sweeney (2002a,b), Aggarwal et al. (2005), Bayardo and Agrawal (2005),

Gionis and Tassa (2007)]. In a k-anonymized dataset each record is indistinguishable

from at least k-1 other records. Therefore, an attacker cannot link the data records to

population units with certainty thus reducing the probability of disclosure. However,

preserving privacy through statistical disclosure control techniques reduce the utility of

the data. Most of the techniques proposed in literature do not focus on the tradeoff issues

between privacy and utility, information loss and computing time to achieve k-anonymity.

The method described in this chapter maintains a balance between computing time

and information loss. An improved greedy heuristic was deployed to attain the balance

of the tradeoffs. Unlike the heuristic used in Datafly, the improved greedy heuristic

considers all the higher level generalization nodes that are associated to the current node

31
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in the generalization lattice. The computing time is the time taken by a method to

convert a given dataset to k-anonymity. The information loss is the loss occurred in the

process of anonymization due to generalization of attributes. More details are provided

in subsequent sections. Three metrics, namely information loss, computing time and

level of generalization are used to compare the proposed algorithm with the exiting ones.

In the remainder of this chapter, Section 3.2 describes the related work. Algorithms

that give full domain generalization with record suppression were considered. We observe

that there is a tradeoff between anonymization achieved and computing time. Section

3.3 describes the details of the proposed improved greedy approach. Section 3.4 describes

experiments conducted on two benchmark datasets. Section 3.5 gives the conclusions.

3.2 Related Work

Several algorithms have been developed with the purpose of making de-identified data

k-anonymous [Ciriani et al. (2007), Truta et al. (2008), Benjamin et al. (2010), Aditya

and Vijayalakshmi (2006), Jaideep et al. (2006), Iyengar (2002), Jacob and Tamir (2010),

Bercic and Carlisle (2009)]. However, this chapter is only concerned with the methods

that aim to achieve k-anonymity through full domain global recoding, hierarchical

generalization and minimal suppression. Two of the most popular approaches that

meet this specification are Sweeney’s Datafly algorithm [Sweeney (1997)] and Samarati’s

algorithm [Samarati (2001)].

Samarati proposed the concept of the domain generalization hierarchy. The algorithm

is based on the axiom that if a node at level h, in domain generalization hierarchy satisfies

k-anonymity, then all the levels of height greater than h also satisfy k-anonymity. To

exploit this, the algorithm uses a binary search over the levels of the domain generalization

hierarchy, i.e., for a domain generalization hierarchy of height h, the search starts at a

level of h/2 and if that level satisfies the k-anonymity then it searches at the level h/4.

Otherwise, it searches at the level 3h/4 and it goes on the same way till it finds the

solution in the lowest possible level. This approach assumes that the optimal level is the
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one with the least generalization and, within that level, it takes the node that has the

minimum information loss as the solution.

Datafly uses a greedy algorithm to search the domain generalization hierarchy; at

every step, it chooses the locally optimal move. One drawback with Datafly’s approach

in common with all such hill climbing type algorithms is that it may be trapped in a local

optimum [Cormen et al. (2001)].

3.2.1 Problem Complexity

A combination of the values of a set of quasi-identifiers can be viewed as a hierarchical

lattice. The k-anonymization algorithms need to search the solution space i.e., the full

domain generalization lattice to find the k-minimal solution. In this section, we investigate

how the size of the lattice (i.e., the number of nodes in the lattice) depends on the number

of quasi-identifiers, r, and the height of generalization of each quasi-identifier.

Proposition 3.1 Let the quasi-identifier set, QIs = {A1, ..., Ar} be the quasi-identifiers

for a private table, T with corresponding domain generalized hierarchy, DGH = {DGHA1,

..., DGHAr} and let H = {h1, ..., hr} be the corresponding height of domain generalized

hierarchy such that hi = height(DGHAi
), for all 1 ≤ i ≤ r. Then size of the full domain

generalized hierarchy, DGH<A1,...,Ar> is given by

|DGH<A1,...,Ar>| =
r∏
1

(hi + 1) (3.1)

Proof : The problem of finding the number of nodes at level n of the lattice of full

domain generalization is the same as the problem of finding the number of solutions to

the equation:

x1 + x2 + ...+ xr = n (3.2)

subject to the condition

0 ≤ x1 ≤ h1, 0 ≤ x2 ≤ h2, ..., 0 ≤ xr ≤ hr (3.3)
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So, the number of nodes at level n is equal to the coefficient of xn in

(x0 + x1 + ...+ xh1)× (x0 + x1 + ...+ xh2)× ...× (x0 + x1 + ...+ xhr) (3.4)

This is because the number of ways in which sum of r integers in Equation (3.2),

subject to the conditions (3.3) equals n is the same as the number of times xn appears

in Equation (3.4). Also, height(DGH<A1,...,Ar>) = h1 + h2 + ... + hr = hmax, since

maximum value attained by n in Equation (3.1) is hmax, according to the condition (3.3).

Let

(x0+x1+...+xh1)×(x0+x1+...+xh2)×...×(x0+x1+...+xhr) = C0x
0+C1x

1+...+Chmaxx
hmax

(3.5)

Where, C0, C1, ... , Chmax is the number of nodes in the level 0,1, ... ,hmax of the lattice

respectively. We are interested to find the total number of nodes in the lattice which will

be C0 + C1 + ... +Chmax . So, if in Equation (3.5) we let x=1 we get,

C0 + C1 + ...+ Chmax = (h1 + 1)× (h2 + 1)× ...× (hr + 1) =
r∏
1

(hi + 1) (3.6)

From Proposition 3.1 it can be shown that the size of full domain generalized hierarchy

is exponential on the number of QIs of a database.

Proposition 3.2 Let f(h, r) denote the number of nodes in DGH<A1,...,Ar>, where QI =

{A1, ..., Ar} are quasi-identifiers for a private table T. Then f(h, r) = O((h+ 1)r) where

h is the average height of the domain generalized hierarchy of a quasi-identifier in the

quasi-identifier set.

Proof : Let h = {h1, ..., hr} be the corresponding height of domain generalized

hierarchies, DGH = DGHA1 , ..., DGHAr and let havg be the average height of the domain
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generalized hierarchies, DGH. That means, havg = h1+h2+...+hr

r
. The number of nodes in

DGH<A1,...,Ar> is given by,

f(h, r) = (h1 + 1)× (h2 + 1)× ...× (hr + 1)[FromProposition3.1] (3.7)

and using arithematic mean - geometric mean inequality, we can write the above formula

as follows:

( r
√

(h1 + 1)× (h2 + 1)× ...× (hr + 1)) ≤ (h1 + 1) + (h2 + 1) + ...+ (hr + 1))

r
(3.8)

Therefore Equation (3.7) can be written as

f(h, r) ≤ (
(h1 + 1) + (h2 + 1) + ...+ (hr + 1)

r
)r (3.9)

≤ (havg + 1)r (3.10)

= O((havg + 1)r) (3.11)

Thus, Proposition 3.2 shows that the solution space is exponential with respect to

r (the number of QIs). Given this, as r becomes large, it becomes impractical to

exhaustively search the lattice for a k-minimal solution. Thus, the lattice should be

searched heuristically in a manner that optimizes the tradeoff between computing time

and information loss. Samarati’s algorithm used binary search to choose levels of the

lattice to be searched. In the next few paragraphs, we show that even if binary search

is used, Samarati’s algorithm is exponential in r. Datafly is polynomial of first order in

r, but results in high information loss. Our proposed algorithm is polynomial of second

order in r and maintains the best tradeoff between computing time and information loss.
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If we assume that QI contains only the attributes having the domain generalized

hierarchy of height, h, then, from Equation (3.4), the number of nodes at level n of the

full domain generalized hierarchy (FDGH) is the coefficient of xn in the expansion of (x0

+ x1 + ... + xh )r since, h1 = h2 = ... = hr = havg = h. The expansion of the above

expression is given by,

(x0 + x1 + ...+ xh)r =
rh∑

n=0

 r

n


h+1

xn (3.12)

 r

n


h+1

denotes the number of integer compositions of the non-negative integer n

with r parts x1, ..., xr each from the set {0, 1, ..., h} and allows the representation,

 r

n


h+1

=
∑

r0+...+rh=r
0.r0+1.r1+...+h.rh=n

 r

r0, r1, ..., rh

 (3.13)

where

 r

r0, r1, ..., rh

 is a multinomial coefficient, defined as r!
r0!r1!...rh!

, for

non-negative integers r0, ..., rh. We can verify the Equation (3.13) by noting that for

real numbers y0, ..., yh , the following holds [Weisstein (2009)].

(y0 + y1 + ...+ yh)r =
∑

r0,...,rh≥0
r0+...+rh=r

 r

r0, r1, ..., rh

 yr0
0 ...y

rh
h (3.14)

Then setting yi = xi for all 0 ≤ i ≤ h, we get

(x0 + x1 + ...+ xh)r =
∑

r0,...,rh≥0
r0+...+rh=r

 r

r0, r1, ..., rh

x0.r0 + ...xh.rh (3.15)

Comparing coefficients of the right-hand sides of Equations (3.12) and (3.15), we get

(3.13). Now we prove that central coefficient

 r

bhr

2
c


h+1

is the largest from the

remaining coefficient in the expansion of (x0 + x1 + ... + xh)r. This means that the
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number of nodes in the middle level of the FDGH is the highest among all levels.

Lemma 3.1 Let r ≥ 0 and h ≥ 0 be integers. For all integers n such that 0 ≥ n ≥ hr, r

n


h+1

≤

 r

bhr

2
c


h+1

(3.16)

The proof can be found in [Steffen (2012a)].

Now we investigate the lower and the upper bound of the central coefficient.

Lemma 3.2 In the expansion of expression (x0 + x1 + ... + xh)r, the central coefficient r

bhr

2
c


h+1

satisfies

(h+ 1)r

hr + 1
≤

 r

bhr

2
c


h+1

≤ (h+ 1)r (3.17)

Proof : The sum of all coefficients in the expansion of the expression is (h + 1)r, which

can be obtained by setting h1 = h2 = ... = hr = h in Proposition 3.1. The central

coefficient is the largest amongst all coefficients, which is shown in Lemma 3.1. Since the

total number of terms in the expansion of the expression is (hr + 1), we get the lower

bound of (h+1)r

hr+1
and the upper bound of (h+ 1)r. Thus, (h+1)r

hr+1
≤

 r

bhr

2
c


h+1

≤ (h+ 1)r

Recently, Steffen has found a sharper approximation of the central binomial coefficient

by generalizing the famous Stirling’s approximation to the central binomial coefficient

[Steffen (2012b)]. In the following lemma, we write ak ∼ bk as a short-hand for

limk→∞
ak

bk
= 1.

Lemma 3.3 For all fixed h,  r

bhr

2
c


h+1

∼ (h+ 1)r√
2πr (h+1)2−1

12

(3.18)
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The proof can be found in [Steffen (2012b)].

3.3 Proposed Method for k-anonymization

Sweeney’s Datafly starts checking from the lowest level of the domain generalization

hierarchy and checks for the k-anonymity. If it is not satisfied then it generalizes the most

differentiated attribute, stepping into the next level of hierarchy and repeating until it is

satisfied that k-anonymity has been achieved. It checks only one attribute in each level,

which guarantees that a solution will be found in polynomial time, but not necessarily

the optimal one.

Analyzing the algorithms (Samarati’s and the Incognito algorithms), we observe that

both give theoretically optimal solutions but not in polynomial time, whereas the Datafly

algorithm finds a solution in a polynomial time but is not necessarily optimal.

Figure 3.1: A visualization of the three processing strategies: the circles with yellow
fillings represent Samarati’s method; the arrow represents the strategy for Datafly and
the dark circles represent the improved greedy method.

The greedy heuristic that Datafly uses simply generalizes the most differentiated
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attribute. Here, we propose an improved greedy heuristic which gives better solutions than

the heuristics of the Datafly algorithm. The algorithm starts by checking for k-anonymity

from the lowest level. If it is not satisfied, the k-anonymity is checked by generalizing

one attribute at a time simultaneously implementing the minimum suppression. If, by

generalizing an attribute, the k-anonymity is satisfied, the attribute is generalized and

declared as the solution to the first phase. If after generalizing all the attributes, none

of them satisfies k-anonymity, the case that is the closest to k-anonymity is selected to

be generalized. In case of ties the most differentiated attribute is selected. This process

continues until a solution is found. In Figure 3.3, the circles with yellow fillings represent

Samarati’s method, the arrow represents the strategy for Datafly and the dark circles

represent the improved greedy method.

Theorem 3.1 The number of nodes in the full domain generalized hierarchy that needs

to be checked for k-anonymity in Samarati’s algorithm is exponential in the number of

quasi-identifiers.

Proof Samarati’s algorithm uses binary search on the levels of the lattice with the nodes

in the middle level being searched first. For simplicity we assume h1 = h2 = ... = hr = h,

then the number of nodes in the middle level of the lattice is given by the central coefficient r

bhr

2
c


h+1

, where QI = {A1, ..., Ar} is the quasi-identifiers and H = {h1, ..., hr} is the

corresponding height of domain generalized hierarchy. In Lemma 3.2 and Lemma 3.3 we

have shown that the central coefficient is exponential in r. Thus, searching only middle

level of the lattice has lower bound (h+1)r

(hr+1)
and the upper bound (h+ 1)r.

Therefore, as the value r becomes large, applying binary search on the levels of the

lattice becomes increasingly less effective in reducing the number of potential nodes that

need to be checked for k-anonymity.

Theorem 3.2 The number of nodes in the full domain generalized hierarchy that needs

to be checked for k-anonymity in the proposed greedy algorithm is polynomial of second
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order in the number of quasi-identifiers and Datafly algorithm is polynomial of first order

in the number of quasi-identifiers.

Proof Let QI = {A1, ..., Ar} be the quasi-identifiers and H = {h1, ..., hr} be the

corresponding height of domain generalized hierarchy. The proposed algorithm starts

checking nodes from the lowest level, 0 of the full domain generalized hierarchy,

DGH<A1,...,Ar>. In the worst case (at level hi), r possible generalizations are checked

for k-anonymity from which the generalization closest to k-anonymity is selected. This

worst case value is obtained by generalizing the attributes from set QI one at a time

from the selected node closest to k-anonymity at level hi−1. Thus in the worst case, the

algorithm goes to the highest level, hmax of the hierarchy, DGH<A1,...,Ar> and the number

of nodes searched in our proposed algorithm is given by O(r× hmax). In Proposition 3.1,

we indicated that highest level, hmax is given by hmax = h1 + h2 + ...+ hr. In Proposition

3.2, we indicated that havg = h1+h2+...+hr

r
. The number of nodes searched is given by

O(r2 × havg). If we assume h1 = h2 = ... = hr = h, it becomes O(r2 × h). Thus, the

proposed algorithm is polynomial of second order in the number of quasi-identifiers.

The Datafly algorithm checks only one generalization at level hi of the hierarchy

DGH<A1,...,Ar>. In the worst case, the algorithm goes to the highest level, hmax. So, the

number of nodes searched by Datafly algorithm is given by, O(hmax) = O(r × havg). If

we assume h1 = h2 = ... = hr = h, it becomes O(r × h) which means the algorithm is

polynomial of first order in the number of quasi-identifiers.

The details of the proposed algorithm are given in Algorithm 3.1. It starts by

constructing a full domain generalisation hierarchy. The algorithm then starts by checking

for k-anonymity in the lowest level of the full domain generalization hierarchy which has

only one node i.e., the node which has all the quasi-identifiers without any generalization.

If k-anonymity is satisfied, then the dataset is k-anonymous as it is and needs no further

anonymization. But if k-anonymity is not satisfied, then k-anonymity is checked by

generalizing one attribute at a time. If none of the nodes at a given level of the full

domain generalization hierarchies satisfies k-anonymity, then the node that is closest
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Algorithm 3.1 Improved Greedy(T ,QI)

1: { T : A table to be k-anonymized, QI : a set of n quasi-identifier attributes }
2: n: number of quasi-identifiers
3: k: desired anonymity
4: m: suppression limit
5: node: array of n integers
6: array node: array of nodes
7: array anonymity: array of integers
8: array index: array of integers
9: dtree: two dimensional array /* each row corresponding to a level of DGH and column

to the node in the particular level */
10: Construct the domain generalised hierarchy using Samarati’s algorithm for the given tables
11: node ← array of n zeros
12: temp ← anonymity(node)
13: if temp ≥ k then
14: return node /* T is anonymous as it is given */
15: end if
16: while temp < k do
17: array node ← array of nodes obtained by generalizing each quasi-identifier at a time
18: array anonymity ← empty array
19: for each level in array levels append anonymity(node) to array anonymity
20: array index ← max(array anonymity)
21: if len(array index) = 1 then
22: node ← array node[array index[0]]
23: temp ← array anonymity[array index[0]]
24: else
25: index ← diverse(array index
26: node ← array node[index]
27: temp ← array anonymity[index]
28: end if
29: end while
30: return node
31: Output D∞
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to k-anonymity is selected (in case of tie, the node which has generalized the most

differentiated attributes is selected) and k-anonymity is again checked by generalizing

one attribute at a time in the selected node. The previous step is repeated until a node

is found which is k-anonymous. Theorem 3.2 shows that the complexity of the proposed

algorithm is polynomial.

Four functions are used in Algorithm 3.1. The function anonymity() takes the node in

the domain generalization hierarchy as input and outputs the anonymity of the particular

node using suppression limit m. The function max() takes an integer array as input and

outputs the array of indices of all the integers with the largest value in the input array.

The function len() takes an array as an input and outputs the number of elements in the

input array. Finally, diverse() is a function which takes an array of integers as an input.

It considers the nodes in array node with indices in array index and outputs the index of

the node which generalizes the most diverse attribute (i.e., the attribute with the most

distinct values as used in Datafly algorithm).

When applying disclosure control to any data product, we need to be mindful of the

impact on the utility of that product. If privacy were our only concern, then utility would

tend to become zero. In the literature, damage to utility is most frequently operationalized

as information loss of which there are many different definitions. According to Domingo

Ferrer, information loss can be obtained by comparing the original data to the masked

one, the closer the data is to the original, the lower is the information loss [Domingo-Ferrer

and Vicent (2003)]. Xu et al. gave a similar definition stating that the information loss

measures “how well the generalized tuples approximate the original ones” [Xu et al.

(2006)]. A general-purpose metric that is considered here is iloss.

Iloss, proposed by Xiao and Tao, is a metric to find the information loss of

transforming a value to a more general one [Xiao and Tao (2006)]. It assumes that

all raw values are at the leaves of the taxonomic tree. The formula to calculate iloss

is given in the following equations [Benjamin et al. (2011)]. Equation (3.19) computes

the information loss of a domain value when generalized. Equation (3.20) computes the

information loss for a tuple level and Equation (3.21) computes information loss for the
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whole table.

Iloss(Vg) =
|Vg| − 1

|DA|
(3.19)

Iloss(r) =
∑
Vg∈r

(wi × Iloss(Vg)) (3.20)

Iloss(T ) =
∑
r∈T

Iloss(r) (3.21)

where,

|Vg| is the number of domain values that are descendants of Vg,

|DA| is the number of domain values in the attribute A of Vg and

wi is a positive constant specifying the penalty weight of attribute Ai of Vg

3.4 Results and Discussion

The three algorithms were tested on two datasets obtained from UCI Machine Learning

Repository: the adult dataset [Adult Dataset (1996)] and CUPS dataset [CUPS (1998)].

The adult dataset has 32,561 records and 15 attributes of which eight attributes (namely

Age (3), Profession (2), Education (2), Marital status (2), Position (2), Race (1), Sex

(1), Country (3)) were considered to be quasi-identifiers1. The CUPS dataset has 96367

records and 479 attributes of which, five attributes (namely Age (4), Gender (3), Income

(4), Cluster (4) and Domain (3)) were considered to be quasi-identifiers. While we

endeavored to maximize the number of attributes that we used as quasi-identifiers, the

data quality of the remaining attributes was poor. So, they were discarded. However,

the results presented here are not dependent on the particular attributes chosen. Similar

patterns of results can be obtained regardless of the cross classification of quasi-identifiers.

Comparing the time complexities of the algorithms, Samarati’s algorithm has an

exponential time complexity (shown in Theorem 3.1) and both the greedy approaches

discussed have polynomial time complexities (shown in Theorem 3.2)). From the time

1The numbers in the brackets indicate the maximum height in the hierarchy.
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Figure 3.2: Anonymity vs time for Adult dataset.
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Figure 3.3: Anonymity vs time for CUPS dataset.
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complexities, it is obvious that Datafly will have the minimum time of execution followed

by proposed improved greedy algorithm. Figures 3.2 and 3.3 compare the execution

times of the Datafly, Samarati and improved greedy algorithms for the two datasets. It

can be observed from Figures 3.2 and 3.3 that the execution time of Samarati’s algorithm

is the highest. The execution time of Samarati’s approach varies non-monotonically. This

is because the execution time of Samarati’s algorithm also depends on the order in which

the quasi-identifier is arranged in the domain generalization hierarchy. The execution

times of the proposed and Datafly algorithms are found to be almost the same with

Datafly being the faster of the two.

The information loss of the k-anonymized datasets for the three algorithms are plotted

in Figures 3.4 and 3.5. It can be observed that Samarati’s algorithm has the lowest

information loss. This is because Samarati’s algorithm searches for the optimal solution in

the hierarchy using brute force. So, the ideal would be to achieve the same information loss

as Samarati’s algorithm but with lower time complexity. The Datafly algorithm, having

least time complexity, suffers from very high information loss and the loss is unacceptable

if the value of k is large. The improved greedy algorithm has time complexity comparable

to Datafly and iloss values that are comparable to those of Samarati’s algorithm.

Figures 3.6 and 3.7 shows the level of generalization at which a given level of

k-anonymity was achieved for the three algorithms. The level of generalization for the

improved greedy algorithm is similar to the Samarati’s algorithm for the Adult dataset

although slightly inferior for the CUPS dataset. In both cases the improved greedy

algorithm performs markedly better than Datafly. The improved greedy algorithm has

similar information loss to Samarati’s algorithm so it may seem surprising that it performs

slightly worse in terms of the level of generalization. However, as Samarati’s algorithm

uses brute force method to find the solution in the lowest possible level, it optimizes with

respect to level of generalization metric only. But the information loss within a level of

a full domain generalization hierarchy is not the same for all the nodes. The improved

greedy heuristic gives more emphasis on choosing the nodes within a level. So, the nodes

chosen at a given level by our algorithm have, on average, less information loss than those
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Figure 3.4: Anonymity vs iloss for Adult dataset.
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Figure 3.5: Anonymity vs iloss for CUPS dataset.



3.4 Results and Discussion 47

10 20 30 40 50 60 70 80 90 100
9

9.5

10

10.5

11

11.5

12

12.5

13

13.5

14

Anonimity (k)

Le
ve

l o
f G

en
er

al
iz

at
io

n

 

 

Samarati
Datafly
Improved Greedy

Figure 3.6: Anonymity vs level of generalization for Adult dataset.
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Figure 3.7: Anonymity vs level of generalization for CUPS dataset.
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chosen by Samarati’s algorithm but when we consider only the level of generalization

the Samarati’s algorithm performs better. Overall the information loss of Samarati’s

algorithm and proposed algorithm is comparable.

Figure 3.8 shows the execution times of three algorithms with varying the number of

quasi-identifiers from three to eight for k = 10. This analysis was done for adult dataset.

We can infer that the execution time of Samarati’s approach was highest as expected. Its

execution time is found to increase exponentially with the increase in the quasi-identifiers.
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Figure 3.8: Quasi-identifier vs time for Adult dataset for k=10.

3.5 Observations

Datafly algorithm takes less time but huge information loss. Samarati’s Algorithm takes

more time and less information loss. The improved greedy heuristic consumes less time

than Samarati and less amount of information loss than Datafly. The improved greedy

algorithm maintains a balance between computing time and information loss and privacy.
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3.6 Conclusion

Before the release of any data product, there is a need to consider a balance between

utility and privacy. In this chapter, we have proposed an improved greedy heuristic

for k-anonymization that maintains a better balance between privacy and information

loss than other similar algorithms. Metrics like iloss, computing time and level of

generalization were used to compare the new algorithm with the established Datafly and

Samarati’s algorithms. On balance, the new greedy algorithm performed better than the

established ones.



Chapter 4

Determining k for k-anonymity

4.1 Introduction

Publishing anonymized data need to ensure certain degree of utility. When utility is

guaranteed then privacy is hampered and vice versa. There is a need for balancing

between utility and privacy of the data. This chapter deals with experimental study

of balancing for utility and privacy when data is released and finding the best value of k

for k-anonymization.

4.2 Related Work

Anonymization of the data is to be done so that individual information cannot be inferred.

The first of the kind of anonymization algorithm proposed for preserving privacy while

publishing data is k-anonymity [Sweeney (2002a)]. The algorithm only converts a dataset

to k-anonymized dataset if the input k is provided. The direction of finding the best value

of k for a dataset is not explored. First work in that direction is given in [Jun and Meng

(2008)]. The algorithm is called as one pass k-means algorithm (OKA). This algorithm was

proposed by Jun and Meng in 2008. It is derived from the standard K-means algorithm

50
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and runs in one iteration. This algorithm has two stages first is the clustering stage and

second is the adjustment stage.

Clustering Stage: Clustering stage proceeds by sorting all the records and then

randomly picking N records as seeds to build clusters. Then for each record r remaining

in the dataset, algorithm checks to find a cluster, C for which this record is the closest

and assigns the record to the cluster and updates its centroid. The difference between

the traditional K-means algorithm and OKA is that in OKA whenever a record is added

to the cluster its centroid is updated. This improves the assignments in future because

the centroid represents the real centre of the cluster. In OKA the records are first sorted

according to the quasi-identifiers thus making sure that similar tuples are assigned to the

same cluster.

Adjustment Stage: In the clustering stage the clusters that are formed can contain

more than k tuples and there can be some clusters containing less than k tuples. Therefore,

when these clusters are anonymized it will not satisfy the condition for k-anonymity. These

clusters need to be resized to contain at least k tuples. The goal of this adjustment stage

is to make the clusters contain at least k records while minimizing the information loss.

This algorithm first removes the extra tuples from the clusters and then assigns those

tuples to the clusters having less than k tuples. The removed tuples are farthest from the

centroid of the cluster and while assigning the tuples to the clusters it checks the cluster

which is closest to the tuple before assigning it, thus minimizing the information loss. If

no cluster contains less than k tuples and some records are left they are assigned to this

respective closest clusters.

4.3 Proposed Approach

Organizations cannot refrain from publishing information of the stakeholders. They need

to publish information by the guidelines of the privacy policy. If the privacy policy is

permitting to publish the information, then they need to be anonymized beforehand. The

most practical method is the k−anonymity model. Choosing the value of k is a difficult

task because it is dataset dependant. The proposed method has two steps. First step is
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to construct the clusters and the second step is to run the clusters through the proposed

algorithm (Algorithm 4.1.). With the availability of the quasi-identifiers in the dataset,

attacks may be possible on k−anonymity. Quasi-identifiers are covert channels for the

attacks on k−anonymity. It is advisable to make the quasi-identifiers as generalized as

possible. The following approach is proposed for lessening the attacks. Once the table

T is organized into clusters with k tuples using OKA, apply generalization hierarchy of

quasi-identifier on the clusters to form a privacy preserving k−anonymized table. This

algorithm uses the output of OKA. The generalization hierarchy constructed should be

complete and map all possible values of the attribute to a single value.

Algorithm 4.1 Enhanced Privacy (P ,DGH)

1: { P : an adjusted partitioning (P1toPk)of table T and DGH: Domain Generalization
Hierarchy }

2: QI: Quasi-identifier
3: Pi: Partition i of T
4: for each partition Pi of T do
5: for each QI in Pi do
6: if attribute values for partition Pi are not same then
7: use Generalization hierarchy to generalize
8: end if
9: end for

10: end for
11: Exit
12: Output: Privacy enhanced k-anonymized table T ′

The parameters to check utility and privacy depend from data to data. To determine

the extent of privacy preserved by the dataset, we counted the number of attributes whose

values are completely suppressed. The percentage of privacy can be computed with the

Equation (4.1).

Percentage of Privacy =
Number of Supressed V alues

Number of quasi− identifiers
× 100 (4.1)

To determine the utility of the dataset, Decision stump algorithm for classification is

used. Decision stump is a machine learning model consisting of a single-level decision tree
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with a categorical or numeric class label. The results produced by WEKA tool [Mark et al.

(2009)] show percentage of tuples that can be correctly classified using the algorithm. We

have considered the average of all the percentages obtained from using various attributes

in the Decision stump algorithm for classfication of correct instances.

4.4 Results and Discussion

The experiment was conducted on Adult dataset from UCI machine learning repository

which comprise of 45,222 instances with known values. It contains numerical as well

as categorical attributes. It contains 15 attributes with its properties. Clustering

of the dataset is done using WEKA. The K-means clustering algorithm was deployed

for clustering. Out of the total 15 attributes of the dataset only 5 (age, education,

native-country, race and workclass) were considered as quasi-identifiers and the rest

as sensitive attributes. Generalization was performed on the clustered dataset. These

generalization hierarchies are used for anonymizing evenly clustered data. For age which

is a numerical attribute, mean of all the tuple values was taken. The other attributes are

generalized as shown in the Section 2.2.3 of Chapter 2.

4.4.1 Experiment 1

In the first experiment six attributes (age, education, marital status, occupation, race

and native-country) were considered for our analysis. Randomly 1000 tuples from the

dataset are selected for anonymization to determine how utility varies with privacy. Age,

education, race and country are considered as quasi-identifiers and other two as sensitive

attributes. Clusters were formed using WEKA tool according to the value of k. As

described in Section 4.2, the clusters produced may contain less than k tuples, thus an

adjustment was done so that each cluster contains at least k tuples. After adjusting

the clusters, k−anonymization is performed based on the generalization hierarchy. The

k-anonymization algorithm based on OKA was run to generalize the adjusted clusters.

For evaluating utility, we performed the classification mining on the k-anonymized
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dataset. Classification was performed by using WEKA tool considering native-country

as classification variable. Percentage of correctly classified tuples as the utility of the

dataset was taken for various values of k. Privacy was calculated by counting the number

of tuples which are generalized to highest level of generalization. Privacy and utility was

calculated by varying the value of k. The balancing point between utility and privacy is

the point where privacy and utility curves intersect or tend to converge. Figure 4.1 shows

the variation of utility and privacy with k. It clearly follows from the Figure 4.1 that on

increasing the value of k privacy provided by the dataset increases but utility decreases.

For this sample dataset the balancing point comes between k=8 and k=9, and utility of

the dataset at balancing point is around 60%.

Figure 4.1: Variation of utility and privacy with anonymization.

4.4.2 Experiment 2

In the second experiment all 15 attributes were considered for analysis, to study the effect

of more number of attributes on the privacy and the utility of the k-anonymized dataset.

Again randomly selected 1000 tuples from the dataset for anonymization to determine



4.4 Results and Discussion 55

how utility varies with privacy. Age, work class, education, race and native-country are

considered as quasi-identifiers and all other attributes as sensitive attributes. Similar steps

were followed as in experiment 1 to study the variation of utility and privacy on varying

k value. Figure 4.2 shows the variation of utility and privacy with k. For this sample

dataset the balancing point comes between k=11 and k=12, and utility of the dataset

at balancing point is around 52%. Thus on increasing the number of quasi-identifiers

considered for analysis the balancing point falls down and values of k at which balance is

achieved increases.

Figure 4.2: Variation of utility and privacy with anonymization.

4.4.3 Experiment 3

In this experiment 3000 tuples were taken from the adult dataset considering all 15

attributes, to study the effect of more number of tuples on the privacy and the utility

of the k-anonymized dataset. Age, work class, education, race and native-country are

considered as quasi-identifiers and all other attributes as sensitive attributes. Similar

steps were followed as in Experiment 1 to study the variation of utility and privacy on
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varying k value and shown in Figure 4.3. For this sample dataset the balancing point

comes between k=10 and k=11, and utility of the dataset at balancing point is around

50%.

Figure 4.3: Variation of utility and privacy with anonymization.

4.5 Conclusion

There is a tradeoff between privacy and utility. On conducting the experiments we found

that the balancing point between utility and privacy depends on the dataset and value of

k cannot be generalized for all datasets such that utility and privacy are balanced. On

varying the number of sensitive attributes in a dataset the balancing point varies. If the

number of quasi-identifiers increases balancing point moves down and balance between

utility and privacy occurs at a higher value of k. Thus if a dataset contains more number

of quasi-identifiers then the utility as well as privacy attained at balancing point will be

less than the dataset having fewer quasi-identifiers. The number of tuples in the dataset

has an effect on the balancing point. Increase in the number of tuple slightly shifts

the balancing point and the value of k for which balancing occurs. Thus an approximate
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prediction can be made on the balancing point for huge dataset by conducting experiment

on a sample dataset.



Chapter 5

Enhanced t-closeness for Publishing

Nominal Data

5.1 Introduction

It has been discussed in previous chapters that publishing data in the public domains by

removing sensitive attributes do not guarantee privacy. Even if one removes the attributes

like SSN, name, etc., which are used to identify an individual, sensitive data can be

revealed using linking attacks. These threats make the individuals hide their information

or provide tampered information to protect their privacy.

To publish data with proper limitation of disclosures, Sweeney introduced k-anonymity

[Sweeney (2002a)]. This model states that each equivalence class should contain at least

k records with respect to the quasi-identifiers. While k-anonymity protects from identity

disclosure, it does not provide sufficient protection against attribute disclosure. This has

been recognized by several authors [Aggarwal et al. (2005), Ninghui et al. (2007)]. Two

attacks namely, homogeneity attack and the background knowledge attack were identified.

To overcome these attacks, the l-diversity privacy model was introduced [Machanavajjhala

et al. (2007), Ninghui et al. (2007)].

The l-diversity principle overcomes the lack of diversity in the k-anonymous table for

the sensitive attributes. It protects from attribute disclosure. The principle of l-diversity

58
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Table 5.1: Example of original table.
# Zipcode Age Salary Disease
1 47677 29 3K gastric ulcer
2 47602 22 4K gastritis
3 47678 27 5K stomach cancer
4 47905 43 6K gastritis
5 47909 52 11K flu
6 47906 47 8K bronchitis
7 47605 30 7K bronchitis
8 47673 36 9K pneumonia
9 47607 32 10K stomach cancer

Table 5.2: Example of 3-diverse table.
# Zipcode Age Salary Disease
1 476** 2* 3K gastric ulcer
2 476** 2* 4K gastritis
3 476** 2* 5K stomach cancer
4 4790* ≥ 40 6K gastritis
5 4790* ≥ 40 11K flu
6 4790* ≥ 40 8K bronchitis
7 476** 3* 7K bronchitis
8 476** 3* 9K pneumonia
9 476** 3* 10K stomach cancer

states that a table is said to be l-diversity if every equivalence class of the table has at least

l-diversified values for sensitive attributes. Table 5.1 shows an original table and Table

5.2 shows a 3-diverse table. The l-diversity is insufficient to prevent attribute disclosure.

Two attacks are possible on l-diversity. One of the attacks is skewness attack. When the

overall distribution is skewed, satisfying l-diversity does not prevent attribute disclosure.

The other possible attack is similarity attack. When the sensitive attribute values in an

equivalence class are distinct but semantically similar, an adversary can learn important

information. The distributions that have the same level of diversity may provide very

different levels of privacy. This is because there are semantic relationships among the

attribute values, as different values have very different levels of sensitivity and privacy is

affected by the relationship with the overall distribution. To address the limitations of

k-anonymity and l-diversity, t-closeness was introduced [Ninghui (2007)].
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The t-closeness principle states that the distance between the distribution of a sensitive

attribute in a class and the distribution of the attribute in the whole table is not more

than a threshold t.

Section 5.2 gives related work of t-closeness. We discuss about t-closeness,

(n,t)-closeness and the distance measure used. Achieving t-closeness for preserving privacy

without downgrading the utility is shown in Section 5.3. Identity disclosure can reveal

sensitive values. Attribute disclosure can occur with or without identity disclosure. It

has been recognized that even disclosure of false attribute information may cause harm

[Lambert (1993)]. So identity disclosure is a serious concern in privacy and can often

cause attribute disclosure. Section 5.4 uses a data reconstruction approach for dealing

identity disclosure. Section 5.5 gives the conclusions.

5.2 Related Work

Privacy is measured by the information gain of an observer. Before seeing the released

table, the observer has a prior belief about the sensitive attribute value. After seeing the

released table, the observer has a posterior belief about the sensitive attribute value. So

information gain computed as the following equation:

Information gain = posterior belief − prior belief (5.1)

Prior belief is influenced by the distribution of the sensitive attribute value in the

whole table, Q. Posterior belief is influenced by the distribution of the sensitive attribute

value in the equivalence class, P. So, information gain is the difference between the two

distribution , P and Q. Let it be denoted as (D[P,Q]).

An equivalence class has t-closeness if D[P,Q] ≤ t. A table has t-closeness if all

equivalence classes have t-closeness. For a table, if D[P,Q] is less, then information gained

by the observer is less and there is less privacy risk and vice versa. The distance metric

used in t-closeness is the earth mover distance [Ninghui (2007), Ninghui et al. (2007)].

This is the minimal amount of work needed to transform one distribution to another by
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moving the distribution mass. It can be represented by the following equation:

D[P,Q] = WORK(P,Q, F ) =
m∑

i=1

m∑
j=1

dij × fij (5.2)

where,

P = (p1, p2, ..., pm),

Q = (q1, q2, ..., qm),

dij is the ground distance between element i of P and element j of Q and

F = [fij] is the flow of mass from element i of P to element j of Q that

minimizes the overall work

Here an example to find t-closeness 1. Let Q = {3k, 4k, 5k, 6k, 7k, 8k, 9k, 10k, 11k }

and P = {3k, 4k, 5k }. If we have an ordered list {v1, v2...vm}, then the ground distance

between i and j is |i−j|
m−1

= |i−j|
8

. One optimal mass flow that transforms P to Q is to

move 1
9

probability mass across pair. So, D[P,Q] = (5k → 11k), (5k → 10k), (5k → 9k),

(4k → 8k), (4k → 7k), (4k → 6k), (3k → 5k), (3k → 4k) = 1
9
× (6+5+4+4+3+2+2+1)

8
=

0.375.

An equivalence class of a set,E1 is said to have (n,t)-closeness if there exists a set E2

of records that is a natural superset of E1 such that E2 contains at least n records, and

the distance between the two distributions of the sensitive attribute in E1 and E2 is no

more than a threshold t. A table is said to have (n,t)-closeness if all equivalence classes

have (n,t)-closeness.

5.3 Proposed t-closeness

The challenge in privacy preserving data publishing is to have a good tradeoff between

privacy and utility. The t-closeness property provides privacy in terms of attribute

disclosure [Ninghui et al. (2007)]. The distance metric measures the probability distance

between P and Q [Ninghui (2007), Ninghui et al. (2007)]. In publishing data, P and Q

1We consider the example from Reference [Ninghui et al. (2007)]
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are the two probability distributions where P represents the probability distribution of

the an equivalence class of the table and Q represents the probability distribution of the

whole table. To satisfy the t-closeness property the distance between P , Q should not

exceed t.

Information loss is an unfortunate consequence of anonymization. In order to make

the anonymized data as useful as possible, it is required to reduce the information loss as

much as possible. Generally to achieve better privacy in t-closeness, reduce the distance

between P and Q through anonymization thereby causing the degradation of utility. A

concern in data publishing is to provide necessary information through publishing and at

the same time minimize the advisories’ knowledge.

The goal of this section is to obtain good utility with the same level of privacy as

that of (n,t)-closeness. The distance metric deployed in (n,t)-closeness is earth mover

distance and does not satisfy the properties of distance metrics like trainagle inequality,

probability scaling, etc [Ninghui et al. (2007)]. A study on various distance metrics made

us aware of the fact that Hellinger distance satisfies all these properties [Derpanis (2008),

Comaniciu et al. (2003)]. So, we incorporate Hellinger distance metric in the method of

anonymizing a table to (n,t)-closeness, and study the performances.

5.3.1 Hellinger Distance Method

Let P (x) and Q(x) represent two multinomial populations, each consisting of N classes

with respective probabilities P (x = 1), . . ., P (x = N) and Q(x = 1), . . ., Q(x = N).

Since P (x) and Q(x) represent probability distributions, the following equation holds true.

∑
x∈N

P (x) =
∑
x∈N

Q(x) = 1 (5.3)

The Hellinger distance is given in Equation (5.4).
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D =
√

(1−BC) (5.4)

where,

BC is the Bhattacharyya coefficient.

The BC coefficient for the discrete variables can be given by

BC(P,Q) =
∑
x∈X

√
P (x)Q(x) (5.5)

where,

P (x) is the probability of x in one equivalence class and

Q(x) is the probability of x in whole table.

Let us illustrate with an example the performance of Hellinger distance method and

earth mover distance method to achieve a t−closeness where t=0.1. For the benchmark

Adult dataset, the values attained by using Hellinger distance method and earth mover

distance were 0.204 and 0.241 respectively.

Anonymization reacts on the privacy and utility of the dataset. For a dataset if higher

level of anonymizations are used the privacy is attained but utility of the data is hampered

as higher level of privacy is inversely proportional to information loss. Since P and Q

are the probabilities, the distance between two probabilities can be very well measured

by using Hellinger method. This method improves the utility of the data, by satisfying

t-closeness property.

For the dataset in Table 5.3, the probability of occurring cancer in the dataset Q(x) is

700/3000 i.e. 0.23, while the probability of cancer among individual in the first equivalence

class P (x) is 0.5 for t = 0.1. So the Hellinger distance is near when compared to the other

method. With this comparison, one can conclude that Hellinger method gives better

result.
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Table 5.3: Original patients table.
# Zipcode Age Disease Count
1 47673 29 cancer 100
2 47674 21 flu 100
3 47605 25 cancer 200
4 47602 23 flu 200
5 47905 43 cancer 100
6 47904 48 flu 900
7 47906 47 cancer 100
8 47907 41 flue 900
9 47603 34 cancer 100
10 47605 30 flue 100
11 47602 36 cancer 100
12 47607 32 flue 100

The time required to compute distance is really important because the dataset used in

the data publishing were having large number of records. Figure 5.3 shows the computing

time for the Hellinger metric and earth mover distance metric. As the number of records

increases the performance of (n, t) deteriorates than t−closeness with Hellinger distance

method. This is due to the computation of earth mover distance metric.

5.3.2 Overcoming Identity Disclosure

The t−closeness and (n, t)-closeness do not deal with identity disclosure [Ninghui (2007),

Ninghui et al. (2007)]. A privacy model needs to handle attribute disclosure and identity

disclosure efficiently. We agree that by satisfying t-closeness property one can prevent

identifying the sensitive information. However, there is a need of a technique that can do

better with identity disclosure. Identity disclosure is being a serious concern in privacy.

The (n,t)-closeness can be added with k-anonymity to handle identity disclosure, but

that would be an overhead. This section proposes an approach to overcome identity

disclosure. The proposed approach is data reconstruction method. This method has two

steps: randomization with discrete medians and swapping with second order distribution.
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Figure 5.1: Computing time of the two algorithms.

Randomization with discrete median

For each numeric quasi-identifier attribute, a supervised discretization method is used

to divide the numeric values into groups [Motwani and Xu (2007)]. The goal of this

method is to preserve the relationships between the sensitive attributes and the numeric

attributes after discretization. The method recursively splits an attribute to minimize the

class entropy and uses a minimum description length criterion to determine the stopping

condition. The algorithm evaluates the information gain on each of the potential cut

points, and choose the one with the maximum value to split. This process is repeated

recursively until a stopping criterion is reached (e.g., the subset contains a single class

only). Groups are formed based on the cut points. The value of a numeric attribute

is subsequently set for each instance as the median value in corresponding group. The

process can be illustrated with an example given in Table 5.4. Let us consider age as a

quasi-identifier attribute. Its values can be divided into two groups. Group 1 : age ≤ 34;

with median = 28; Group 2 : age > 34; with median = 40; Then the age values are set to

28 for the first six instances, and 40 for the last six instances. Therefore the anonymized
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table for Table 5.4 is Table 5.5.

Table 5.4: Example of original table.
ID Age Maritial Status BP Blood Type Test Result
1 23 Never married 75/120 O Negative
2 23 Never married 66/113 O Positive
3 27 Never married 74/115 A Negative
4 28 Never married 77/128 AB Negative
5 32 Married 72/125 B Negative
6 33 Married 93/147 O Negative
7 35 Married 75/124 AB Positive
8 37 Divorced 95/142 O Negative
9 40 Widow(er) 88/146 A Positive
10 43 Divorced 110/155 O Positive
11 45 Married 90/140 O Positive
12 45 Divorced 104/145 B Positive

Table 5.5: Anonymized table.
ID Age Maritial Status BP Blood Type Test Result
1 28 Never married 75/120 O Negative
2 28 Never married 66/113 O Positive
3 28 Never married 74/115 A Negative
4 28 Never married 77/128 AB Negative
5 28 Married 72/125 B Negative
6 28 Married 93/147 O Negative
7 40 Married 75/124 AB Positive
8 40 Divorced 95/142 O Negative
9 40 Widow(er) 88/146 A Positive
10 40 Divorced 110/155 O Positive
11 40 Married 90/140 O Positive
12 40 Divorced 104/145 B Positive

Swapping with second order distribution

For each nominal quasi-identifier attribute, use a data swapping method given by Reiss

to mask the value of the attribute [Reiss (1984)]. With this method, a part of the current

values of the quasi-identifier attributes are replaced with new values such that the lower

order statistical distributions of the masked data will be close to those of the original

data. We apply a second order feedback algorithm, which computes the second order
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frequency distributions of the original data and swaps the data such that the new data

have approximately the same distributions [Reiss (1984)]. For classification problems, it

is important to maintain the second order statistics between the class attribute and each

of the quasi-identifier attributes. This is because in many classification techniques, such

as decision tree and naive Bayes methods, classification models are built on such second

order statistics. The method is implemented using the proposed swapping algorithm

(Algorithm 5.1).

Algorithm 5.1 Swapping(Ft)

1: {Ft : Set of all Frequency tables, 0 ≤ t ≤ 2 }
2: D : Database
3: for i=1 to N do
4: Choose(i, 1, f0(1))
5: for j=1 to V do
6: p2← 0
7: for k = 1 to j-1 do
8: p1← f1(i, k, j)
9: p2← f2(p1, p2)

10: end for
11: Choose(i, j, f3(p2, j))
12: end for
13: end for
14: Exit
15: Output D : An N × V database consistent with Ft

The steps in Algorithm 5.1. states that for each tuple in the table, choose the elements

based on probability distribution f0(v). Various function used in Algorithm 5.1 are f0(),

f1(), f2(), f3() and Choose(). The function, Choose(i, j, p) sets Di,j = 0 with probability

p, or Di,j = 1 otherwise. More details about the functions are given in Equations (5.6) to

(5.9).

f0(v) =
F1[v = 0]

F0

(5.6)
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f1(i, j, k) =


F2[(vj=Di,j)×(vk=0)]

F1[(vj=Di,j)]
if F1[(vj = Di,j)] 6= 0

1/2 otherwise
(5.7)

f2(p1, p2) = p1 + p2 (5.8)

f3(p2, n) =
p2

n− 1
(5.9)

5.4 Results and Discussion

The main goal of the experiments are to study the effect of the data utility, privacy on

real data and investigate the effectiveness of proposed approach with the incorporation

of Hellinger method in t-closeness privacy model and then applying identity disclosure

techniques.

Table 5.6: Adult dataset used in the experiment.
Attribute Type Number of Values

Age Numeric 72
Work class Categorical 7
Education Categorical 16

Marital Status Categorical 7
Race Categorical 5

Gender Categorical 2
Occupation Sensitive 14

All experiments were conducted using adult dataset of UCI machine learning

repository [Asuncion and Newman (2007)]. We used seven attributes of the dataset as

shown in Table 5.6. Occupation was considered as the sensitive attribute and the other

six fields were treated as quasi-identifiers. After eliminating the missing value records,

total valid records taken from the UCI repository for our experiment are 30,717.

The experiment compares the utility of the (n, t)-closeness and proposed approach.
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The anonymized data is evaluated with two parameters namely discernibility metric cost

and propensity score. The discernibility metric measures the number of tuples that are

indistinguishable from each other. It attempts to capture in a straight forward way the

desire to maintain discernibility between tuples as much as is allowed for a given value of

t. This metric assigns a penalty to each tuple which is the function of indistinguishable

tuples in the transformed table. If an unsuppressed tuple falls into an induced equivalence

class of size j, then that tuple is assigned a penalty of j. If a tuple is suppressed, then it

is assigned a penalty of |D|, the size of the input dataset. This penalty reflects the fact

that a suppressed tuple cannot be distinguished from any other tuple in the dataset. The

metric can be mathematically given as follows:

CDM(g, k) =
∑
∀|E|≥k

|E|2 +
∑
∀|E|≥k

|D||E| (5.10)

where,

E is a set refer to the equivalence classes of tuples in D induced by the

anonymization g and

CDM is the cost of discernability metric.

The first sum computes penalties for each non-suppressed tuple and the second for

suppressed tuples.

The variations in the utility have an vital role in privacy preserving data publishing. As

the anonymization hides the information which is to be utilized. The utility, being inverse

to anonymization, makes it poor when the anonymization levels are increased. From this it

is clear that the anonymization should be less if one needs good utility. However without

reducing privacy, utility should be provided. Here privacy is maintained by satisfying

t-closeness property. That property will be satisfied when the distance between P , Q

is less than 0.1, so the variation with Hellinger is less than (n,t)-closeness and both the

metrics will be satisfying by making distance reduced through anonymization of table.

The variations are plotted in Figure 5.2.

Figure 5.2 shows the discernibility metric cost of both models. It can be observed

from Figure 5.2 that the proposed approach outperforms (n, t)-closeness privacy models.
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Figure 5.2: Discernibility metric cost.

This ensures that the proposed model has better utility with privacy.

Another metric used for comparison is propensity score [Reiss (1984), Woo et al.

(2009), Rosenbaum and Rubin (1983)] for both anonymized data of proposed model and

(n, t)-closeness model. The similarity of the propensity scores for the masked and original

observations can be assessed in numerous ways, for example, by comparisons of their

percentiles in each group as in Equation (5.11).

UP =
1

N

N∑
i=1

[pi − c]2 (5.11)

where,

N is the total number of records in the merged dataset,

pi is the estimated propensity score for unit i,

c equals the proportion of units with masked data in the merged dataset and

UP is the utility of the propensity score.

The comparative results are shown in Table 5.7. Propensity score metric suggests an

approach for measuring data utility. When two distributions are similar, the distributions
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of the original and anonymized data are similar, so data utility is relatively high. From

Table 5.7, one can draw the conclusion that the utility of proposed model is efficient as

the score is low.

Table 5.7: Comparison of propensity scores.
Utility Measure (n,t)closeness Proposed Model
Propensity Score 17.947 0.25

5.5 Conclusion

Trading between privacy and utility should be good. Existing privacy models have some

drawbacks and are unable to balance privacy and utility. This chapter proposes an

approach for good trading between privacy and utility without degrading the privacy.

All the experiments that have been conducted consider only nominal attributes and no

categorical attributes were considered. The model satisfies t-closeness property using

Hellinger distance method; therefore attribute disclosure is well handled. However to

address identity disclosure, an algorithm is proposed using data reconstruction technique.

Various experiments were conducted showing the proposed models outperform the existing

models for balancing utility and privacy.



Chapter 6

Prominence-Based Anonymization of

Social Networks

6.1 Introduction

Social networks allow millions of users to create profiles and share personal information.

They resemble a small world simulating many real-world situations [Travers and Milgram

(1969)]. Social network analysis has a wide variety of applications, such as in business,

marketing, entertainment, etc. The proliferation of social network sites resulted in

numerous problems to the world. Advances in the social network analysis of published

data poses problems related to privacy and have received considerable attention as of late.

Privacy is person-specific and has various forms like relational, influential and emotional.

Efficient methods exist to analyze the great treasure of information in social networks

[Gautam et al. (2008), Ralph and Alessandro (2005), George et al. (1993)]. Paradigms

such as social network federation [Chao et al. (2012)] add more fuel to the burning problem

of privacy issues in social networks.

Data must be published to share useful information. Privacy Preserving Data

Publishing (PPDP) is an approach to publishing data in a hostile environment, while

preserving the privacy of individuals involved in a network [Benjamin et al. (2011), Duan

et al. (2005)]. PPDP techniques include generalization with suppression, anonymization

72
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with permutation and perturbation [Benjamin et al. (2011)]. These techniques use

various mathematical and statistical properties to mask actual data. Performing

mathematical operations on actual data may transform actual values into some other

values (anonymization), group similar items and combine them into one category

(generalization) or generate synthetic data. Any PPDP technique should take utility

into consideration. George et al. discuss various issues regarding utility and risks [George

et al. (2011)].

Social network data poses a different and unique challenge in modeling privacy due

to highly interrelated nodes. These challenges include modeling adversary background

knowledge, calculating information loss and determining the suitability of anonymization

techniques [Aggarwal and Wang (2010)]. The utility of published data in social networks

is affected by degree, path length, transitivity, network reliance and infectiousness [Hay

et al. (2008)].

In this chapter, we propose a method for anonymizing users in a social network. The

anonymization of social network nodes was based on domain generalization and sensitivity

of the nodes. The rest of the chapter is organized as follows. The following section provides

a background and a review of existing methods used to preserve privacy. The proposed

method for anonymization is described in Section 6.3. Section 6.4 presents the simulation

results, and Section 6.5 concludes the chapter.

6.2 Background and Related Work

This section describes various attacks on social networks, centrality measures that

determine the importance of nodes and related work.

6.2.1 Attacks on Social Networks

Three types of attacks can be launched in an anonymized social network namely, identity

disclosure attack, link disclosure attack and content disclosure attack [Liu et al. (2008)].

These attacks can be either active or passive. In active attack, an attacker creates an
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account and targets the nodes and their relationships. In passive attack, the uniqueness

of small random sub-graphs is analyzed and the target nodes are re-identified [Backstrom

et al. (2007)].

Identity disclosure attack aims at identifying a node in an anonymized network.

Solutions proposed for this are k-candidate anonymity and graph randomization [Liu

et al. (2008), Hay et al. (2007), Samarati and Sweeney (1998b)], k-degree anonymity and

minimal edge modification [Liu et al. (2008)] and k-neighborhood anonymity and graph

isomorphism [Zhou and Pei (2008)]. Removing labels of the network will not prevent

identity disclosure [Liu et al. (2008)]. Another method of identity disclosure is through

face recognition [Gross (2005), Liu and Maes (2005)]. Image anonymization may also

be possible with blurring, but one may post any image in a network and later have a

repudiation problem. To overcome such problems, the methods proposed by Preda and

Vizireanu can be deployed [Preda and Vizireanu (2010, 2011a,b)].

Link or sensitive edge disclosure attack aims at revealing an important relationship

between a pair of nodes. Zheleave and Getoor proposed the concept of sensitive edge

and observed edges to attain a balance between utility and privacy through a series of

algorithms called intact edges and partial edge removal [Zheleva and Getoor (2007)].

Other techniques include privacy preserving link analysis, random perturbation for

privacy relationship protection [Ying and Wu (2008)], cryptographic protocol for private

relationships protection [Curminati et al. (2007)] and synthetic graph generation [Leskovec

and Faloutsos (2007)].

Content disclosure attack aims at revealing the private information associated with

a network, such as e-mails, blogs, etc. These types of attacks are generally launched

by advertising organizations on online social networking sites; one recent example is

Facebook’s Beacon service [Liu et al. (2008)].

6.2.2 Centrality Measures

A common method used to understand networks and their nodes in a static design is

to evaluate the location of nodes in the network in terms of strategic position. Node
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centrality measures help to determine the importance of a node in a network. Bavelas

initially investigated the formal properties of centrality as the relationship between

structural centrality and influence on group processes [Bavelas (1948)]. He proposed

several centrality concepts. Later, Freeman argued that centrality is an important

structural factor affecting leadership, satisfaction and efficiency [Freeman (1979)]. To

quantify the importance of an user (node) in a social network, various centrality measures

have been proposed over the years [Bavelas (1950), Freeman (1979), Scott (1991), Alireza

et al. (2011), Krackhardt (2010), Sabidussi (1966)].

The simplest and easiest way of measuring a node’s centrality is by counting the

number of other nodes connected directly to the node. This degree of a node can

be regarded as a measure of local centrality [Scott (1991)]. Nodes with a high degree

centrality imply popularity and leadership [Bavelas (1950), Freeman (1979), Krackhardt

(2010)].

The degree centrality formula is given as

CD(i) =
d(i)

n− 1
(6.1)

where,

CD(i) is degree centrality of node i,

d(i) is the number of edges connected to the node and

n is the total number of nodes in the network.

The closeness centrality [Sabidussi (1966)] is a measure of global centrality in terms

of distance among various nodes. The sum of the distances between a node and other

nodes is farness. Its inverse is closeness. Closeness centrality of node i can be defined

as follows:

CC(i) =
n− 1

Σn
j=1d(i, j)

(6.2)

where,

CC(i) is closeness centrality of node i,
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d(i, j) is the shortest distance from node i to node j and

n is the total number of nodes in the network.

Another global measure of centrality is betweenness [Freeman (1979)]. This measure

describes the number of times a particular node lies between the various other nodes in a

network. Nodes with high betweenness centrality play the role of a broker or gatekeeper

in connecting nodes and subgroups. So, they can most frequently control information flow

in a network. The betweenness of node i is given as follows:

CB(i) =
∑
j<k

Pjk(i)

Pjk

(6.3)

where,

CB(i) is betweenness centrality of node i and

Pjk is the number of shortest paths between nodes j and k.

Page rank is a more refined measure of the prominence of a node in a directed network.

Each node in a social network is treated as a page. The importance of a page i is

determined by how much prominent a page j that has an outlink to i. The formula is

given as follows:

P (i) =
∑
j,i∈E

P (j)

Oj

(6.4)

where,

P (i) is the page rank of node i,

Oj is the number of outlinks of page j and

E is the set of edges in the network.

6.2.3 Related Work

Each user of social networks expects different levels of privacy. The anonymization of a

given node depends on the importance of the node. Xiao and Tao provide the option

of allowing a node to determine its own privacy level [Xiao and Tao (2006)]. However,
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this approach has drawbacks, such as a reduction in the utility of published data because

most nodes set their privacy level to the maximum. This motivates us to anonymize the

privacy level of nodes based on social reputation. The privacy level is denoted by the

sensitivity index, which is calculated according to the centrality or prestige, depending

on the nature of the network.

Zhou and Pei proposed an anonymization scheme, which deploys sub-graph matching

using a minimum depth-first search tree [Zhou and Pei (2008)]. A sub-graph matching

scheme is used to find the related sub-graphs in a graph and anonymize the labels

of these sub-graphs. The drawback of this scheme is that it cannot be practically

implemented in actual social networks with thousands of edges and of nodes. Furthermore,

it considers only one neighbor. Upon increasing the number of nodes to more than

one, the number of neighbors grows exponentially. In a recent study by Tripathy and

Panda, the neighborhood size was increased to three [Tripathy and Panda (2010)]. Still,

these approaches [Zhou and Pei (2008), Tripathy and Panda (2010)] cannot be applied

due to very large size of the social networks, making them practically impossible. The

anonymization approach reported in [Zhou and Pei (2008), Tripathy and Panda (2010)]

statically anonymizes nodes. This reduces the utility of published data.

Liu et al. proposed two methodologies to solve the problem of sensitive edge

disclosure attack [Liu et al. (2008b)]. They used the Gaussian randomization and greedy

perturbation schemes. These two methods are computationally intensive. For a practical

network, the complexity is very high. These two methods do not consider the dynamic

nature of the weight associated with the edges.

In the next section, we discuss the proposed scheme for anonymizing social networks.

6.3 Proposed Scheme for Anonymizing Social

Networks

Social network data are of two types: structural data and composite data. Structural

variables hold the relationships between nodes, and composite variables hold the attributes
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of the node. The domain in each of these variables has some generalization hierarchy. A

taxonomy tree can be constructed with the domain generalization hierarchy. For the

conventional problems of data anonymization, Sweeney proposed a method using domain

generalization hierarchy [Sweeney (2002b)].

6.3.1 Problem Formulation

Given a finite set of entities (S) = {S1, S2, ... , Sn}, its edges (T) = {T1, T2, ... , Tk }, an

entity domain generalization hierarchy (DGHE) = {E1, E2, ... , El} and edges domain

generalization hierarchy (DGHT ) = {R1 , R2, ... , Rm}, an anonymized set of entities

(S1)= {S1
1 , S1

2 , ... , S1
p}, where p < n, with a generalization for DGHE or DGHT as a

function on A. That is for each f : A → B, is a generalization where B ∈ {A1, A2, ...,

Ax} in a generalization hierarchy of A0 → A1 → .. → Ax. The function imposes a linear

ordering from A to B. A0 is the base domain and Ax is the highest domain level. The goal

is to generalize A to B depending on the sensitivity index of each entity Si. Generalization

of DGHE implies generalization of DGHT and vice versa.

The above paragraph states, given a set of entities (nodes) and edges with their

generalization hierarchy, the network is anonymized by promoting the nodes or edges to a

higher level of generalization according to the taxonomy tree of the domain generalization

hierarchy. The generalization must be made based on the sensitivity index of each node.

6.3.2 Process for Anonymization

The step-by-step process for anonymization of the nodes is social network is given below.

Step 1. Generate a taxonomy tree for the quasi-identifiers.

Step 2. Compute the sensitivity index of each node.

Step 3. Generalize each node according to the sensitivity index.

Step 4. Form super nodes from the generalized vertex.

Details of the above steps are provided in the subsequent paragraphs.
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Figure 6.1: Sample tree.

Generating a Taxonomy Tree

A taxonomy tree is a hierarchical representation of domain values. A sample taxonomy

tree regarding job profiles at NIT Rourkela is shown in Figure 6.1. To create such a

tree, both structural and composite data are required. A composite variable of a node

has many attributes. All of the domain generalizations of quasi-identifiers should be

considered while building the taxonomy tree. Quasi-identifiers are the set of attributes

that determine the sensitive data.

Computing Sensitivity Index

The sensitivity index indicates the importance of a node in a network. To evaluate the

sensitivity index, one needs to determine the importance of a node. This idea is borrowed

from the social phenomenon that, if a person is famous or important, the number of

people linked to him or her is high. It is also evident that in social networking sites such

as Twitter, popular people are followed by many people. Centrality measures are used to

determine the sensitivity index of nodes. The details of various centrality measures were
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discussed in Section 6.2.2.

Algorithm 6.1 is used to determine the sensitivity index of all the nodes. The inputs

to this algorithm are a dataset (D) and level of generalization (L). This algorithm

computes the masked centrality (MC) of each node, creates an anonymizing matrix

(AM[][]) using Algorithm 6.2 and determines the anonymization level of each node in

AM using Algorithm 6.3.

The masked centrality of node i, represented by MC[i], is computed and depends on

the category to which a given network belongs. Social networks can be classified into

four categories depending on their directional and weight properties: (i) Unweighted

Undirected Network, (ii) Unweighted Directed Network, (iii) Weighted Undirected

Network and (iv) Weighted Directed Network. More details about the centrality measure

deployed to compute MC in the proposed scheme are provided in Section 6.4. From

a global prospective, the prominence of a node depends on the direction of its edges.

Algorithm 6.4 is proposed to fulfill this criterion.

Generalizing Nodes

The set of values of a particular attribute can be addressed as a domain. Given two

domains S0 and S1, S0 ≤ S1 describes the fact that the values of the attributes in S1 are

more generalized. There are several schools of thought regarding generalization ontologies

[Samarati and Sweeney (1998b)]. Figures 2.2, 2.3 and 2.4 of Chapter 2 shows sample value

generalization hierarchies.

Once the sensitivity index is computed, a node is generalized according to the index.

The generalizations of these nodes must follow the domain generalization hierarchy.

Formation of super nodes

After the generalization step described above, there will be many nodes with the same

label. One can merge these nodes to remove redundancy and maintain the structure of the

network. The other reason for merging nodes is to eliminate attacks such as neighborhood

and sensitive edge disclosure.
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Algorithm 6.1 Compute Sensitivity Index(N ,D,L)

1: {N : Number of nodes, D: Dataset containing source and destination nodes, L:
Taxonomy level of the dataset }

2: SI[]: Sensitivity Index
3: AM[][]: Anonymization Matrix
4: MC[]: Masked Centrality
5: |.|: Cardinality
6: Temp1[], T emp2[]: Temporary Variables /* Both are single dimension arrays */
7: for i = 1 to N do
8: Temp1[i]← Centrality(i) /* Centrality(i) is a function for computing the centrality of a

node, i */
9: Temp1[i]← Temp1[i] * order of D

10: Temp2[i]← Temp1[i] + Mean of the centrality
11: MC[i] ← round(Temp2[i])

/* round(i) is a function for computing the upperbound of the value i */
12: end for
13: AM[][]← Create Anonymization Matrix(MC[],L)
14: for i = 1 to N do
15: SI[i] ← Find Anonymization Level(MC[i],AM[][])
16: return S[]
17: end for
18: Output S[]: Array consisting of sensitivity index of each node

Algorithm 6.2 Create Anonymization Matrix(MC[],L)

1: {MC[]: Masked Centrality, L: Taxonomy level of the dataset }
2: DC[]: Array to store distinct centrality values
3: A,B,C: To store intermediate values
4: DC[]← distinct centrality(MC[])
5: A← |DC[]|
6: B ← ceil(A/L)
7: DC[]← sort(|DC[]|)
8: for j = 1 to L do
9: for k = 1 to B do

10: AM[j][k] ← DC[i] /* AM[] is the anonymization matrix of dimension L x B */
11: i = i + 1
12: end for
13: end for
14: return AM [][]
15: Exit
16: Output AM [][]: Anonymization matrix
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Algorithm 6.3 Find Anonymization Level(MC[node],AM[][])

1: {MC[node]: Masked Centrality of node, AM[][]: Anonymization Matrix }
2: row : Number of rows in AM[][]
3: col : Number of columns in AM[][]
4: for i=1 to row do
5: for j=1 to col do
6: if AM[i][j] = MC[node] then
7: return i
8: end if
9: end for

10: end for
11: Exit

Figure 6.2: Before merging.
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Algorithm 6.4 Node Rank(D, itr)

1: { D : Dataset containing source and destination nodes, itr : Number of iterations
chosen heuristically }

2: ei: Entropy
3: N : Number of nodes
4: Temp1[], T emp2[], T emp3[]: Temporary variables
5: entropy(): Function to calculate entropy of a distribution
6: for i = 1 to N do
7: Temp1[i]← Centrality(i) /* Centrality(i) is a function for computing the centrality of

a node, i */
8: Temp2[i]← Indegree(i)
9: Temp3[i]← Outdegree(i)

10: end for
11: e1 ← 0
12: e2 ← 1
13: for l = 1 to itr do
14: if e1 6= e2 then
15: for i = 1 to N do
16: if Temp1[i] 6= 0 then
17: count← Temp2[i]
18: for j = 1 to count do
19: Temp1[i]← Temp1[i] + Temp2[j]

Temp3[j]

20: end for
21: end if
22: end for
23: e1← e2
24: e2← entropy(Temp1[])
25: end if
26: end for
27: Exit
28: Output Temp1[]
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Figures 6.2 and 6.3 illustrates merging of nodes that are neighbors which have the

same node label. When nodes are merged, their degrees and weights are also merged.

Assuming P and Q are the nodes to be merged, the weight of each edge in this new

network is calculated using Equation (6.5) and all of the edges are rewritten.

Weight
′
(i, j) =

Weighti,j∑
Weights

(6.5)

If weights and directions associated with each edge, then the following formula can be

used to compute the new weights.

Win = W2 +W4 +W6 (6.6)

Wout = W1 +W3 +W5 (6.7)

Through this operation, actual information is very effectively protected without

destroying much utility. The new values provide information about the fraction of the

total weight directed in or out of the network. Thus, a viewer can get an idea about the

percentage of a transaction or material flow but never be able to know what the exact

amount is, which is a very effective way to protect against sensitive edge disclosure attack.

Algorithm 6.5 (Merge Nodes) is invoked when two neighborhood nodes have the same

label.

6.4 Results and Discussion

The dataset used for simulation is the Wiki-votes dataset available in the Stanford Large

Network Dataset Collection [Stanford University (2008)].

6.4.1 Taxonomy Tree

Given a dataset, there are no computational methods to generate a taxonomy tree.

Based on real-life scenarios, one can assume what the taxonomy tree should be using

simple common sense. Table 6.1 shows the statistics of the Wiki-votes dataset. As no
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Figure 6.3: After merging.

Algorithm 6.5 Merge Nodes(N1,N2, AdjMat)

1: { N1,N2: Node to be merged, AdjMat : Adjacency matrix of the network }
2: k: Temporary variable
3: W : Weights
4: Find the Neighbor of N1andN2

5: Copy Neighbors of N1andN2intoN1N2

6: Merge N1(W ) ∪N2(W )−N1(W ) ∩N2(W )
7: Remove Redundancy from neighbors of N1N2

8: Remove N1 and N2 from the AdjMat
9: Exit

10: Output N1N2: New node formed by merging N1 and N2
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structural information is available about the dataset, the node labels are used to create

the taxonomy tree. The hierarchy level is created by dividing the node value by 10. A

sample generalization of a few nodes is depicted in Figure 6.4, with a hierarchy of level

five. Level one is the root node that is fully generalized.

6.4.2 Computing Sensitivity Index

The sensitivity index of each node was computed using Algorithm 6.1. As mentioned in the

earlier sections, the sensitivity of a node depends on its prominence. Different centrality

measures are used to determine the prominence based on the type of network. The

centrality measures deployed and the results obtained are shown in subsequent paragraphs.

Unweighted Undirected Network

This is the simplest type of network. Hence, the degree centrality measure could be the

best to anonymize the network.

The degree distribution of the original network and the distribution of the network

with masked centrality is shown in Figure 6.5 and Figure 6.6.

We have obtained the following results by applying degree centrality to Algorithm 6.1.

maximum degree = 1167, maximum centrality = 0.14067, maximum masked centrality =

141, Number of distinct masked centrality = 67.

For this type of network, one can even deploy other centrality measures. For example,

we consider two more measures, namely betweenness centrality and a hybrid centrality of

degree and betweenness.

Betweenness is an index of a position’s potential for gaining control over the

communication in a network. The leader identification is predicted by the control-based

measure of centralization. A person in such a position with high betweenness can

influence others by withholding or distorting information in transmission. The formula

for betweenness is given in Equation (6.3). Figure 6.7 shows the distribution of the nodes

with betweenness centrality.

The results attained are: maximum betweenness centrality = 0.0646, minimum
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Table 6.1: Description of Wiki-votes dataset.
Details Statistics
Nodes 8297
Edges 103689

Nodes in Largest WCC 7066 (0.993)
Edges in Largest WCC 103663 (1.000)
Nodes in Largest SCC 1300 (0.183)
Edges in Largest SCC 39456 (0.381)

Average Clustering Coefficient 0.2089
Number of Triangles 608389

Fraction of Closed Triangles 0.1255
Diameter (Longest shortest path) 7
90-percentile effective Diameter 3.8

Figure 6.4: Taxonomy tree.
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Figure 6.5: Original network.

0 20 40 60 80 100 120 140
10

0

10
1

10
2

10
3

10
4

Masked Centrality

N
u
m

b
e
r 

o
f 
N

o
d
e
s

Figure 6.6: Masked network.
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Betweenness centrality = 0, max normalized centrality = 1000, Number of distinct

normalized centrality = 127.

The degree centrality is easy to compute but local in nature. The betweenness

centrality is global in nature but does not consider direct influence. One needs to

consider both local and global importance. We combine both centralities to create a

hybrid centrality. The following formula is used for hybrid centrality.

Comb(i) = a×D(i) + b×B(i) (6.8)

where,

i is a node,

Comb(i) is the combined centrality of degree and betweenness,

D(i) is the degree centrality of i,

B(i) is the betweenness centrality of i and

a, b are tuning parameters.

The values of degree centrality and betweenness centrality are normalized such that

they vary between 0 to 1. The values of a and b are determined by the data publisher. It

depends on the network type. We considered a+ b=1.

The horizontal axis of Figure 6.8 is the combined centrality, and the vertical axis is

the number of nodes. A total of nine experiments were performed using different values

of the tuning parameters varying from 0.1 to 0.9. The combined centrality was calculated

using the Equation (6.8).

Unweighted Directed Network

This type of network shows relationships that are not symmetric, such as

Employer-Employee and Producer-Consumer relationships. To rank the nodes, one needs

to consider both the indegree and outdegree. The page rank algorithm [Page et al. (1999)]

operates using a reference model that has been specially tailored and used in Algorithm

6.4 (Node Rank). By using page rank, we ensure that a link from an important node
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Figure 6.7: Betweenness centrality distribution.

Figure 6.8: Combined centrality distribution.
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fetches a higher rank than a link from a less important node. This simulates real-life

experience.

The modification made in the page rank algorithm is due to the nature of the dataset.

The first modification made is in assigning the initial rank. The initial rank assigned in

Algorithm 6.4 is the degree centrality instead of the probability of choosing a link from

all available links. The second modification is in choosing the converging criteria for this

iteration. Page rank use eigen values. Algorithm 6.4 uses the concept of entropy due

to fast convergence and less expensive computation. Once the ranks are calculated, the

nodes can be assigned by their anonymization level using Algorithm 6.2 and Algorithm

6.3.

Figure 6.9 shows the variation in entropy with respect to the number of iterations.

Using Algorithm 6.4, the Wiki-votes dataset was used and it gets converged after 14

iterations. Figure 6.10 shows the power law distribution of the node rank, through which

the utility of the dataset is preserved.

Results attained are: maximum rank = 10826, minimum rank = 0, Number of distinct

ranks = 2465.

Weighted Undirected Networks

Weighted networks simulate quantified relations. These weights can describe the level of

interaction between two nodes or the amount of money or material flow between nodes.

The weight indicates the level of closeness or mutual importance that nodes share. Weight

Centrality (WC) is calculated using the following equation:

WC = Centrality ×Weight (6.9)

For this type of network, the weight centrality is used in Algorithm 6.1 to compute

the centrality. Figure 6.11 shows the rank, which satisfies the power law distribution.

Results attained are: maximum rank = 111, minimum rank = 0, Number of distinct

rank = 55.
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Figure 6.9: Convergence of rank for unweighted directed network.
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Figure 6.10: Node rank showing power law distribution.
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Weighted Directed Network

Weighted and directed networks represent quantified and asymmetrical relationships. This

type of network simulates traffic information, telecommunication networks, etc. The

measure of node prominence is weight centrality. The weight centrality is calculated as

given in Equation (6.10).

WC = DC ×WR (6.10)

WR(forRN) =
InWeight

OutWeight
(6.11)

WR(forPN) =
OutWeight

InWeight
(6.12)

where,

WC = Weight Centrality, DC = Degree Centrality, WR = Weight Ration,

RN = Reference Networks and PN = Production Networks

The calculation of the Weight Ratio depends on the nature of the network. Equation

(6.11) is used to determine importance, where the weight coming into the network is

considered to be important. Equation (6.12) is used for networks in which the outward

weight from the network is considered important.

To rank nodes in this type of network, we consider both the weight and directional

features. Thus, we modify Algorithm 6.4 by providing the initial node ranks with WC.

The node rank is computed by using Equation (6.13). Apart from this, the algorithm

remains the same as Algorithm 6.4.

Noderank(P ) =
∑
Q

Rank(Q)×WeightQ→P∑
WeightQ→AllNeighbors

(6.13)

where

Q represents all of the nodes that have an outlink to node P .

Figure 6.12 shows the variation in entropy with the number of iterations. The

Wiki-votes dataset requires 30 iterations to converge. Figure 6.13 shows a histogram
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of weighted node rank, which satisfies a power law distribution.

Results attained are: maximum rank = 3.1932 × 1052, minimum rank = 0, no. of

distinct rank = 1529.

6.4.3 Generalizing the Nodes

After determining the sensitivity index, we generalize the nodes. The labels of the nodes

are modified based on the index. In this study, while generalizing the nodes, the domain

generalization hierarchy shown in Figure 6.4 was followed.

The generalization of nodes or edges resulted in a loss of information. The metric

chosen to calculate information loss is iloss is given in Section 3.3 of Chapter 3.

Degree Centrality

For simplification, we keep wi=1 in the formula of iloss. This approach is used for all

four types of networks, and iloss by using degree centrality is calculated using Equation

(6.1).

Table 6.2 shows the information loss calculated for different types of networks.

Betweenness Centrality

The weight (wi) considered here also is 1. Table 6.3 shows the values of iloss calculated

through customized privacy, where the sensitivity index of the nodes is determined using

betweenness centrality.

Combined Centrality

Here, we keep wi=1. Table 6.4 shows the iloss due to customized generalization

using combined centrality for different values of the tuning parameters to determine the

sensitivity index of nodes for an unweighted and undirected network and a weighted and

undirected network.
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Figure 6.11: Weighted masked weighted centrality.
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Figure 6.12: Variation in entropy with number of iterations for weighted directed network.
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Figure 6.13: Weighted node rank.

Table 6.2: Iloss for different types of networks
Network Iloss

Undirected Unweighted 1428
Directed Unweighted 1793
Undirected Weighted 1451
Directed Weighted 1791

Table 6.3: Iloss for different types of networks using betweenness centrality
Network Iloss

Undirected Unweighted 1442
Undirected Weighted 1411

Table 6.4: Iloss for various values of a
a Iloss Iloss

(Unweighted Undirected) (Weighted Undirected)
0.1 1455 1410
0.2 1480 1410
0.3 1498 1413
0.4 1521 1418
0.5 1528 1422
0.6 1537 1422
0.7 1540 1422
0.8 1551 1424
0.9 1553 1426
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Table 6.5: Node merging
Original Merged

Nodes Edges Nodes Edges
Undirected 7115 103689 6093 58426
Directed 7115 103689 6109 54579

6.4.4 Formation of Super Node

After the anonymization is complete, many nodes with the same label exist in the network.

The nodes can be merged to generalize and remove redundancy while maintaining the

structure of the network. The main aim of merging nodes is to group as many similar

nodes as possible such that attacks such as neighborhood and sensitive edge disclosure

are not possible. Table 6.5 lists the counts of nodes and edges before and after merging.

6.5 Conclusion

Protecting privacy is an important problem associated with social networks. Nodes must

be anonymized to ensure privacy. This chapter presents a generalization technique used

to anonymize social network data in a hostile environment and maintain a suitable level

of privacy while retaining the utility of the data. This can be ensured with the power

law distribution of the masked nodes. Four types of networks were considered. The

generalization can be tailored according to the sensitivity of the nodes to ensure privacy.

The information loss metric, iloss, is used to verify the amount of information lost due

to generalization. The proposed approach assumes that the viewers are of a static trust

level.



Chapter 7

Conclusions and Future Works

7.1 Summary of Contributions of the Thesis

In this thesis, we investigate the various privacy preserving data publishing techniques

and study on the privacy and utility issues of the existing mechanisms. We proposed

various mechanisms to improve the utility of the data while still preserving the privacy.

Contributions of the thesis are summarized as follows.

Before the release of any data product, there is a need to consider a balance between

utility and privacy. It is observed that the algorithms that achieve k-anonymity has

tradeoff between utility and privacy. An improved heuristic is proposed for achieving

k-anonymity. The proposed algorithm has a better balance between computing time and

information loss. The proposed algorithm was compared with the established Datafly

and Samarati’s algorithms. The benchmarked datasets namely, Adult dataset and CUPS

datasets, are used for experiments. On balance, the new greedy algorithm performed

better than the established ones.

In order to achieve utility and privacy best value of k is required. A scheme is proposed

to determining k that has a balance between utility and privacy.

The k-anonymity scheme suffers from homogeneity attack. As a result, the l-diverse

scheme was developed. The l-diversity scheme suffers from background knowledge attack.

To address this problem, t-closeness scheme was proposed. The draw back with this

98
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scheme is that, the distance metric deployed in constructing a table, satisfying t-closeness,

does not satisfy the distance characteristics. In this thesis, we have deployed an alternative

distance metric for constructing the t-closeness table. In addition to this, an improved

t-closeness was proposed to preserve the identity disclosure.

The k-anonymity, l-diversity and t-closeness schemes can be used to anonymize

the dataset before publishing. This is generally in a static environment. There are

situations where data need to be published in a dynamic environment like social network.

Anonymizing social networks poses great challenges. In this thesis, we propose a scheme

to anonymize the users depending on their prominence. Prominence of a node was decided

by the centrality and prestige measures.

7.2 Scope for Future Work

The proposed improved greedy heuristic algorithm for balancing utility and privacy is

confined only to the full domain generalization with local recording. As a scope of

future work, efficient and better heuristics and optimization techniques can be applied

to determine the optimal node in the generalization lattice. These strategies may

also be investigated with the full domain generalization with local recording, partial

domain generalization with local recording and partial domain generalization with global

recording.

Further research can also be focused in the direction of deterining global methods to

find the best value of k, l and t values. In addition to this, always the quasi-identifiers are

assumed within the given set of variables of table. In real-life scenario, it is very difficult

to find which attribute would be a potential quasi-identifier. Determining all the possible

potential quasi-identifiers for a table and be researched further.

New distance measures can be used in finding t-closeness for balancing the utility and

privacy. In this thesis only nominal attributes were considered. As a scope for future

work, suitable categorical distance measures are yet to be fitted for improving the utility

of the data and preserving privacy.

New centrality measures can be adopted for deciding the improtance of the user in
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online social networks. Research can also be focused in the direction of reducing the time

for anonymizing the social networks.
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