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Abstract

The sensor nodes in wireless sensor networks (WSNs) are deployed in

unattended and hostile environments. The ill-disposed environment affects

the monitoring infrastructure that includes the sensor nodes and the links.

In addition, node failures and environmental hazards cause frequent topology

change, communication failure, and network partition. This in turn adds a new

dimension to the fragility of the WSN topology. Such perturbations are far more

common in WSNs than those found in conventional wireless networks. These

perturbations demand efficient techniques for discovering disruptive behavior in

WSNs. Traditional fault diagnosis techniques devised for wired interconnected

networks, and conventional wireless networks are not directly applicable to WSNs

due to its specific requirements and limitations.

System-level diagnosis is a technique to identify faults in distributed networks

such as multiprocessor systems, wired interconnected networks, and conventional

wireless networks. Recently, this has been applied on ad hoc networks and WSNs.

This is performed by deduction, based on information in the form of results of tests

applied to the sensor nodes. Neighbor coordination-based system-level diagnosis is

a variation of this method, which exploits the spatio-temporal correlation between

sensor measurements. In this thesis, we present a new approach to diagnose faulty

sensor nodes in a WSN, which works in conjunction with the underlying clustering

protocol and exploits spatio-temporal correlation between sensor measurements.

An advantage of this method is that the diagnostic operation constitutes real work

performed by the system, rather than a specialized diagnostic task. In this way,

the normal operation of the network can be used for the diagnosis and resulting less

time and message overhead. In this thesis, we have devised and evaluated fault

diagnosis algorithms for WSNs considering persistence of the faults (transient,

intermittent, and permanent), faults in communication channels and in one of the

approaches, we attempt to solve the issue of node mobility in diagnosis.

A cluster based distributed fault diagnosis (CDFD) algorithm is proposed

where the diagnostic local view is obtained by exploiting the spatially correlated

sensor measurements. We derived an optimal threshold for effective fault diagnosis



in sparse networks. The message complexity of CDFD is O(n) and the number of

bits exchanged to diagnose the network are O(n log2 n).

The intermittent fault diagnosis is formulated as a multiobjective optimization

problem based on the inter-test interval and number of test repetitions required

to diagnose the intermittent faults. The two objectives such as detection latency

and energy overhead are taken into consideration with a constraint of detection

errors. A high level (> 95%) of detection accuracy is achieved while keeping the

false alarm rate low (< 1%) for sparse networks. The proposed cluster based

distributed intermittent fault diagnosis (CDIFD) algorithm is energy efficient

because in CDIFD, diagnostic messages are sent as the output of the routine

tasks of the WSNs.

A count and threshold-based mechanism is used to discriminate the persistence

of faults. The main characteristics of these faults are the amounts of time the

fault disappears. We adopt this state-holding time to discriminate transient from

intermittent or permanent faults. The proposed cluster based distributed fault

diagnosis and discrimination (CDFDD) algorithm is energy efficient due to the

improved network lifetime which is greater than 1150 data-gathering rounds with

transient fault rates as high as 20%.

A mobility aware hierarchal architecture is proposed which is to detect hard

and soft faults in dynamic WSN topology assuming random movements of nodes

in the WSN. A test pattern that ensures error checking of each functional block of

a sensor node is employed to diagnose the network. The proposed mobility aware

cluster based distributed fault diagnosis (MCDFD) algorithm assures a better

packet delivery ratio (> 80%) in highly dynamic networks with a fault rate as

high as 30%. The network lifetime is more than 900 data-gathering rounds in a

highly dynamic network with a fault rate as high as 20%.

Keywords : WSNs, fault, persistence of fault, fault diagnosis, channel fault,

multi-objective optimization, node mobility, test pattern.
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Chapter 1

Introduction

The rapid advancement in technology, particularly in Micro-Electro-Mechanical

systems has facilitated the development of smart sensors (e.g., Mica motes from

Crossbow, Tmote Sky from Moteiv, the MKII nodes from UCLA, etc.). This

made it possible to connect independent sensor nodes together to create a Wireless

sensor networks (WSNs) with greater monitoring and target tracking [2–6]. Smart

sensor nodes are low power devices subject to tight communication, storage and

computation constraint. A variety of sensor nodes can be deployed in huge

numbers in order to monitor, detect and report time-critical events such that

the urgency of the situation can be evaluated, and efforts are coordinated in a

timely manner. The WSNs have the potential to enable a substantial class of

applications [3,7–14]. In military target applications; aWSN can assist in intrusion

detection and identification. Sensor nodes can sense and detect the environment

to forecast disasters before they occur [7]. Surgical implants of sensors can help

to monitor a patient’s health in biomedical applications (body sensor networks).

Deployment of sensors along the volcanic area can detect the development of

earthquakes and eruptions.

Sensor nodes are expected to operate autonomously in unattended and hostile

environments for applications with short mission time and applications that last for

months to years. Infact, WSNs are prone to have faults compared to traditional

wireless networks where faults are likely to occur frequently and unexpectedly.

Faults may range from simple crash faults where a node becomes completely

inactive to faults where the node behaves arbitrarily or maliciously [15]. The

1



Introduction

fault is an incorrect state of hardware or software as a consequence of a failure

of a component [16]. As faults are inevitable in WSNs, it is crucial to determine

which nodes of the network are working and, which are faulty. As shown in Fig.

1.1, faults can be at each level of six individual components of a node: computing

engine, transceiver and memory subsystems, energy source, sensors, and actuators

which in turn results in node failure.

Power supply unit

Sensor

ADC

Sensor

ADC

Processor

Storage

Transceiver

Mobilizer/Actuator

Figure 1.1: Typical sensor node.

If faults occur, consequences can be severe in terms of human life,

environmental impact or economic loss. The erroneous outputs from faulty

sensors might result in wrong interpretation or undesirable alarms. This may

lead to life-threatening events to occur as a significant percentage of WSNs will

be involved in safety critical applications. For example, faulty sensor nodes in a

WSN, embedded around beams or columns of a railway bridge for detailed building

constructional monitoring, may not give early warning of any structural weakness

or deterioration. In addition, erroneous data generated by faulty sensor nodes

must be protected from entering the network for effective bandwidth and energy

utilization.

The rest of this chapter is organized as follows. A brief description of fault,

error and failure is presented in Section 1.1. Section 1.2 gives a brief description

of system-level fault diagnosis. Definitions and terminologies used are presented

2



Chapter 1 Introduction

in Section 1.3. In Section 1.4, different sources of faults are discussed. Section 1.5

presents the factors influencing fault diagnosis. Section 1.6 presents the motivation

of the proposed works. The problem statement is presented in Section 1.7 and

finally, the organization of the thesis is presented in Section 1.8.

1.1 Faults, Errors and Failures

A fault refers to an abnormal physical state of a sensor node which may have

several causes such as humidity, temperature, power surge, electromagnetic

radiations, design or installation errors, age, etc. Unless ground truth is known

or given by something with high confidence, the term fault can only refer to

a deviation from the expected model of the phenomenon [17]. When the fault

affects a sensor node it produces an erroneous result. The presence of a fault does

not ensure that an error will occur. The reverse, however, is true [18]. When the

errors make a sensor node unable to perform its routine task, it results in a failure.

A failure of the sensor node occurs when the behavior of the node deviates from

the system specification.

The modeling of faults in a sensor node can be approached at different levels of

abstraction. It can range from hardware or software level to system level or node

level. Failures at hardware or software levels may result as errors at the system

level and make the sensor node to behave abnormally. Generally, the hardware

or software level of fault modeling is most generic, but the system level of fault

modeling is easier to analyze as they consider the behavior of the faults [19].

Faults are classified based on behavior of failed components, persistence of

faults, or on the underlying cause [20, 21]. Based on how a failed sensor node

behaves, faults can be classified as hard or soft faults. A sensor node exhibits

hard faults is unable to communicate with other sensor nodes in the network. A

sensor node exhibits soft faults continues to operate with altered behaviors. Based

on persistence, faults can be classified as permanent, intermittent, or transient.

Permanent or hard faults are software or hardware faults that always produce

errors when they are fully exercised [1]. Temporary faults can be distinguished into

external faults (transient) and internal faults (intermittent). The former are soft
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faults that are caused by events, which come from a sensor node’s environment and

do not imply that the sensor node is faulty. These faults are hard to be traced to

a defect since normally their adverse effects rapidly disappear [22]. A particularly

problematic type of transient fault is the intermittent fault that by its nature,

usually exhibits a relatively high occurrence rate after its first appearance and,

eventually, tends to become permanent [21, 22]. An intermittent fault originates

from inside the system when software or hardware is faulty. A different mode of

classifying faults is presented in [1], where faults are classified as: crash, omission,

timing, incorrect computation, fail-stop fault and Byzantine. Crash faults are

hard faults, and all the others can be considered soft faults. Fig. 1.2 illustrates

the classification of fault types. Knowledge of all possible fault classes allows a

protocol designer to design a generalized diagnosis protocol.

Fail
Stop

Crash

Omission Timing
Incorrect
computation

Byzantine

Figure 1.2: An ordered fault classification [1].

• Crash fault: The fault that occurs if the battery is completely depleted, the

transceiver is faulty or the node is completely damaged. A crash faulty sensor

node loses its internal state and cannot participate in network activities.

This is a natural permanent fault [23] that are caused by natural phenomena

without human participation.

4



Chapter 1 Introduction

• Omission fault: A sensor node that does not respond to the sink node on

time, fails to send a required message on time or fails to relay the received

message of its neighbor is exhibiting an omission fault. This may be either

a malicious fault [23] that is introduced by a human with the malicious

objective or a natural fault. This fault can be either permanent, intermittent

or transient in nature.

• Timing fault: A timing fault causes the sensor node to respond with the

expected value but either too soon, or too late. An overloaded sensor node

(e.g., cluster head) which produces correct values, but with an excessive

delay suffers from a timing failure. This failure can occur in a WSN which

imposes timing constraints on computations. Like an omission fault, this

may be a natural or human-made fault. This fault can be either permanent

or transient in nature.

• Incorrect computation fault: The fault that occurs when a sensor node fails

to send the true measurement even though the sensing element of the sensor

node perceived the true data. Like omission and timing fault this may

be a natural or human-made fault. This fault can be either permanent,

intermittent or transient in nature.

• Fail-stop fault: The fault that occurs when a sensor node ceases operation

due to depletion of battery and alerts its one-hop neighbors of this fault.

This may be a natural or human-made permanent fault.

• Byzantine fault: The previous failure classes have specified how a sensor

node can be considered to fail in the different domain. It is possible for a

sensor node to fail in all the domains in a manner, which is not covered by

one of the previous classes. A failed sensor node which produces such an

output will be said to be exhibiting an arbitrary failure or Byzantine failure.

The most basic fault classes such as crash, fail-stop, omission, and timing

failures, are problems that occur and detected in the time domain [1]. The fault

classes like incorrect computation and Byzantine faults occur in data domains.
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Crash faults are hard faults, and all others can be considered as soft faults [20].

These faults may appear continuously or intermittently.

1.2 System-Level Fault Diagnosis

System-level diagnosis is a technique for fault tolerance that strives to identify the

faulty sensor nodes in a WSN. This is done by deduction, based on information

in the form of results of tests applied to the sensor nodes [24]. Once the faulty

sensor nodes have been identified, the system is able to isolate them, ignore their

output such that the lifetime of the WSN [25] can be maintained in the long run.

System-level fault diagnosis was introduced by Preparata, Metze and Chien

in 1967 [26], as a technique aimed at diagnosing faults in wired interconnected

networks composed by a number of processing elements. The so called PMC model

is based upon the outcomes of reciprocal tests performed by the units themselves.

In this model, the test requires a bidirectional interconnection between units, i.e.,

the tester and the tested units must be adjacent. The testing unit provides a test

sequence as input to the tested unit, which in turn executes a test program on

the input sequence and returns the result to the testing unit. The testing unit

generates the test outcome by comparing the actual and the expected results. If

they agree, the outcome is 0, otherwise it is 1. Many variants of PMC model

have been proposed and are well presented in the survey [1]. The realistic variant

of PMC model is based on comparisons rather than explicit tests [27]. The first

comparison-based diagnosis model for wired interconnected networks was proposed

by Malek [28]. This model assumed that in a system with n processing elements, it

is possible to compare the outputs produced by task executions from some or every

pair of processing elements. A comparison that results in a mismatch indicates

that one or both units are faulty. However, these previously developed diagnosis

models are tailored for wired interconnected networks and hence not well suited

to wireless networks since observability is the major issue.

System level diagnosis in WSNs takes advantage of the shared nature of

communication medium. In addition, this exploits the fact that sensor faults

are likely to be stochastically unrelated, while sensor measurements are likely to
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be spatially correlated [29]. The major issues involved in system-level diagnosis

of WSNs are characterization problem, diagnosability problem, diagnosis problem

and diagnosis overhead problem.

Characterization Problem

The characterization problem is to find the necessary and sufficient conditions to

achieve the desired diagnosability in a network. Preparata et al. [26] showed that

the necessary conditions for t-diagnosability are that n ≥ 2t + 1 and each node

must be tested at least by other t distinct nodes. Hakimi and Amin [30] showed

that the conditions given by Preparata et al. are sufficient for t-diagnosability for

the special case in which no two processors test each other. They also presented

a general characterization of t-diagnosable systems. Much efforts have also been

made in order to find a general characterization for wired interconnected networks.

However, this characterization may not be applicable to WSNs as observability and

resources like energy and bandwidth are the major issues. The current hypothesis

is that, to achieve high diagnosability in a WSN a node with large one-hop neighbor

size is needed [31–36].

Diagnosability Problem

The diagnosability problem is to determine the number of faulty sensor nodes in

WSNs those can be unambiguously identified.

Diagnosis Problem

The diagnosis problem is to identify the correct set of faulty sensor nodes in

WSNs. The diagnosis problem is scaled by two standard performance metrics

namely detection accuracy (DA) and false alarm rate (FAR) [31, 33, 34].

Diagnosis Overhead Problem

The diagnosis overhead problem characterizes the message, time and energy

complexity in diagnosing the WSN [20, 37, 38].
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1.3 Definitions and Terminologies

A monitoring system that detects faulty sensor nodes and diagnoses their location

in the WSN is called a fault diagnosis system [39]. A fault must be promptly

diagnosed even at its early stage to prevent any serious consequences. A fault

diagnosis system commonly carries out following tasks:

• Fault detection: to make a binary decision - either a sensor node deviates

from its normal behavior.

• Fault diagnosis: to locate all faulty sensor nodes in a WSN such that each

sensor node will have a global view of the WSN.

• Fault identification: to estimate the severity and type of fault.

The relative importance of these tasks is absolutely subjective. However,

fault detection is vital for any practical system, and isolation is almost equally

important. Fault identification may not be crucial if reconfiguration action is not

demanded. Hence fault diagnosis is very often believed as fault detection and

isolation.

The following terminologies are used in connection to fault diagnosis in WSNs:

• Correctness. The diagnosis is said to be correct if there are no fault-free

sensor nodes mistakenly diagnosed as faulty.

• Completeness. The diagnosis is said to be complete if all faulty sensor nodes

are correctly identified.

• Consistency. All sensor nodes agree on the same set of faulty sensor nodes

at each diagnostic round.

• Latency. Time elapsed since appearance of fault to isolation of the sensor

node.

• Communication complexity. Total number of diagnostic messages exchanged

in the WSN to ensure correct and complete diagnosis.
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• Detection accuracy. It is defined as the ratio of the number of faulty sensor

nodes detected to the actual number of faulty sensor nodes in the WSN.

• False alarm rate. It is the ratio of the number of fault-free sensor nodes

diagnosed as faulty to the actual number of fault-free sensor nodes.

1.4 Sources of Faults

Data aggregation and delivery in WSNs are inherently faulty and unpredictable

[40,41]. The key sources of failure are calibration error, malfunctioning hardware,

hostile environment, low battery and link failure.

Though the calibration during deployment is performed, sensors throughout

their deployed lifetime may drift. This in turn lowers the accuracy of sensor

measurements. Three different types of calibration errors are reported in [17]

namely offset faults (sensor measurements offset from the ground truth by a

constant amount), gain faults (the rate of change of the measured data does

not match with expectations over an extended period of time), and drift faults

(performance may drift away from the original calibration formulas). A falling

battery voltage will lead to calibration issues and cause the sensor to drift. Sensors

with calibration error are treated as permanent faulty.

Sensor nodes may fail due to hardware problems such as poor connections or

malfunctioning sensors or other embedded components. One of the prime causes

of hardware faults are weather or environment conditions. As reported in [42],

water contact with temperature and humidity sensors leads to a short circuit path

between the power terminals which in turn cause for unusually high or low sensor

readings. Electrical malfunctions may not be the only cause of hardware failure.

For instance, the ion-selective electrode sensors used in soil deployments or sensors

exposed to high radiation area are often prone to failures [2,43]. Such type of faults

may appear continuously or intermittently.

Noise is common and expected in sensor environment, which creates random

errors in sensor reading. Sensor reading is subject to several sources of noise

such as noise from external sources (electromagnetic interference, atmospheric

perturbation, etc.), hardware noise (white noise, low batteries, etc.) [44]. High
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environmental noise influence sensing components and thus sensor nodes may

capture and communicate incorrect readings where these readings can even occur

outside of the feasible environmental range. Unusually high noise may be due to

a hardware failure or low batteries. Faults of such a type appear intermittently

and most often transient in nature.

Residual energy left in the battery relative to the minimum operating power

required for sensor operation is a crucial measure of sensor health [2, 42]. Low

battery levels are not only an indication of remaining lifetime of a sensor node as it

can also influence sensor readings from different perspectives and cause unreliable

or faulty data. Ramanathan et al. [45] have experimentally shown that old battery

can result in significantly noise data. Their experimental results show that the

standard deviation of samples within a noise window increases more than three

times when used with a lower voltage battery. The fault due to law battery is

continuous in nature and is treated as permanent fault.

Unlike wireless local-area networks, the path between the source and the

destination in WSNs normally contains multiple wireless links (hops). The wireless

links between sensor nodes are susceptible to wireless channel fading, which causes

channel errors or link failure. In addition, links may fail when permanently or

temporarily blocked by an external object or environmental perturbation. Such

faults are always transient in nature.

1.5 Challenges of Fault Diagnosis in WSNs

The context of WSNs and the nature of sensor data make design of an efficient fault

diagnosis technique more challenging. For the following reasons, conventional fault

diagnosis techniques devised for wired interconnected networks [28, 46–50] might

not be suitable for WSNs.

• Resource constraints. Limited processor bandwidth, small memory, and

limited energy source are the arguable constraints in WSNs. Since the

message exchange is the only means of fault diagnosis and the energy

consumed by the WSN is proportional to the amount of traffic generated

in diagnosing the WSN [7], the diagnosis scheme must be lightweight and
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impose a negligible extra communication cost in the WSN. The diagnostic

messages are advocated to be sent as the output of the routine tasks of

a WSN. Accordingly, a challenge for fault diagnosis in WSNs is how to

minimize the energy overhead while keeping high detection accuracy and

low false alarm rate.

• Random deployment. Sensor nodes can be deployed by dropping from a

plane, throwing by a catapult, placing in factories, and placing one by one

either by a human or a robot [7]. A sparse deployment of sensor nodes

is expected in underwater and volcanic data collection contrary to a dense

deployment of sensor nodes in a terrestrial WSNs. Fault-free sensor nodes

may be wrongly diagnosed as faulty in a threshold-based diagnosis scheme

[31,33,34,51] if such schemes are applied to a sparse network or a randomly

deployed WSNs having sparse areas.

• Dynamic network topology. In this scenario, sensor node densities show large

spatio-temporal variations. Dissemination of diagnostic information in such

dynamic networks is extremely challenging since network connectivity is a

big issue. The ability of diagnosing faults decreases under this scenario,

meaning that mobility significantly reduces the quality of the diagnosis

returned by a diagnosis protocol [37].

• Attenuation and Signal loss. The multi-hop communication in WSNs suffers

from channel fading. In addition, applications like underwater WSNs,

communications are established through transmission of acoustic waves [3].

In such applications, issues like limited bandwidth, long propagation delay,

and signal fading make fault diagnosis more challenging.

1.6 Motivation

The fault diagnosis has been recognized by researchers as an important problem

in the wired interconnected networks since the late 1960’s. Although the basic

principles of fault diagnosis are well understood, its application to specific domains,

especially in WSNs is not well studied. However, the recent breakthroughs of
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the neighbor coordination-based diagnosis in WSNs have opened enough research

scopes.

Large-scale deployment of low-cost sensor nodes in uncontrolled or hostile

environments is the inherent property of WSNs. It is common for the sensor

nodes to become faulty and unreliable. The normal operation of a WSN suffers

from faulty data since it decreases the judgment accuracy of the base station,

it increases the traffic in the WSNs, and it wastes much limited energy [32].

System level diagnosis appears to be a viable solution to these problems. System

level diagnosis serves as a tool that enhances data reliability, event reporting,

and effective bandwidth utilization of the network. In particular, it helps in

increasing the network lifetime and reconfiguring the network for better data

delivery. System level fault diagnosis provides a list containing all possible faulty

sensor nodes. With such a list, further recovery processes become possible, like

correcting faulty readings, replacing malfunctioning sensor nodes with good ones

and isolating faulty sensor nodes from a WSN that has sufficient redundancy.

Most of the classical fault diagnosis techniques found in literature do not send

diagnostic messages as the output of the routine tasks of a WSN. The correct

and complete diagnosis of the WSN is affected by sparse areas resulting from

random deployment of sensor nodes. With intermittent faults, the diagnosis is

more complicated as an intermittent faulty node may pass a test and detected

as fault-free. Therefore, several test sessions may be necessary to identify the

faulty nodes. On the other hand, effect of transient faults rapidly disappears.

If they do not occur too frequently, removing the fault-free nodes with transient

faults will affect the available resources. Isolating the sensor nodes that have

been hit by transient faults is particularly not worthwhile in the operation of

unattended systems like WSNs. The ability of diagnosing faults decreases if the

nodes are allowed to move randomly. These issues motivate the need to design

fault diagnosis algorithms to address the aforementioned problems.
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1.7 Problem Statement

Motivated by the need of fault diagnosis in wireless sensor networks, the

shortcomings of the present fault diagnosis techniques and keeping the research

directions in view, it has been realized that there exists enough scope to improve

the diagnosis performance. In this thesis, the proposed diagnosis algorithms reduce

the diagnosis overhead while maintaining high detection accuracy, low false alarm

rate, low diagnosis latency and low communication and energy overhead. In

particular, the objectives are as follows:

1. To design and evaluate an online lightweight cluster based distributed fault

diagnosis algorithm to diagnose hard and soft faults in WSNs. To devise an

optimal threshold for effective fault detection in sparse networks.

2. To design and evaluate an online lightweight cluster based distributed

intermittent fault diagnosis algorithm to diagnose intermittent faults in

WSNs. To tune the detection parameters like inter-test interval and number

of test repetitions required to diagnose the intermittent faults by modeling

this problem as a multiobjective optimization problem.

3. To design and evaluate an online lightweight cluster based distributed fault

diagnosis and discrimination algorithm to diagnose intermittent faults in

WSNs. To device a count-and-threshold mechanism to discriminate transient

from intermittent or permanent faults in WSNs.

4. To design and evaluate an online lightweight mobility aware cluster based

distributed fault diagnosis algorithm to diagnose hard and soft faults in

WSNs. To develop and employ mobility and energy aware clustering for

fault diagnosis in dynamic environment.

5. To demonstrate the efficacy of the proposed algorithms by using the standard

performance parameters like detection accuracy, false alarm rate, diagnosis

latency, message overhead, network lifetime, and packet delivery ratio.

6. To validate the proposed diagnosis algorithms using Castalia-2.3b [52], a

state-of-art WSN simulator based on the OMNET++ [53] platform.
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1.8 Organization of The Thesis

The thesis is organized as follows—

Chapter 1: Introduction

This chapter explains the need and challenges of fault diagnosis in WSNs.

Chapter 2: Related Research

This chapter integrates the key research efforts that are available in this field.

Specifically, this chapter describes the shortcomings of existing state-of-art

diagnosis techniques.

Chapter 3: Hard and Soft Fault Diagnosis in WSNs

This chapter introduces an online cluster based fault diagnosis algorithm (CDFD).

CDFD is shown to be energy efficient as it works in conjunction with the normal

network activities and requires minimum additional diagnostic messages to be

exchanged.

Chapter 4: Intermittent Fault Diagnosis in WSNs

This chapter introduces an online cluster based intermittent fault diagnosis

algorithm (CDIFD). The intermittent fault detection in WSNs is formulated as a

multiobjective optimization problem.

Chapter 5: Transient Fault Diagnosis in WSNs

This chapter presents an online cluster based fault diagnosis and discrimination

algorithm (CDFDD). A count-and-threshold mechanism is used to discriminate

transient from intermittent faults.

Chapter 6: Hard and Soft Fault Diagnosis in WSNs with Mobile Sensor
Nodes

This chapter introduces mobility aware cluster-based distributed fault diagnosis

(MCDFD) algorithm. Specifically, this chapter investigates mobility factor in

diagnosis modeling and analysis.
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Chapter 7: Conclusions

This chapter provides the concluding remarks with a stress on achievements and

limitations of the proposed schemes. The scopes for further research are outlined

at the end.

The contributions made in each chapter are discussed in the sequel, which

include proposed schemes, their simulation results, and comparative analysis.
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Related Research

In this chapter, we present the state-of-art system-level diagnosis algorithms

developed for wireless sensor networks (WSNs). The existing fault diagnosis

algorithms for WSNs may be broadly classified into two primary types: centralized

and distributed approaches [54].

In centralized approaches, a geographically or logically centralized sensor node

with high computational power, larger memory size and uninterrupted energy

sources undertakes the responsibility for fault detection and diagnosis of the overall

WSN. The central node periodically sends diagnostic queries into the WSN to

obtain the state of the individual nodes in the WSN. After analyzing the diagnostic

response messages it takes a decision about failed or suspicious nodes.

The centralized approach is efficient and accurate in certain ways but adopting

such approaches may not be advocated for large-scale WSNs. The reason is that it

is very expensive for the base station or the sink node to accumulate information

from every sensor node and identify them in a centralized manner. In addition, this

leads to rapid energy depletion in certain regions of the WSN, especially the nodes

closer to the base station. The detection latency is expected to be more due to the

multi-hop communication in WSNs and may not be adoptable in applications with

short mission time. In summary, localized and distributed generic approaches are

highly preferred in WSNs as the implementation of centralized approach would

place a bottleneck on performance, reduce availability, and impair expandability.

For these reasons, this chapter particularly focuses on localized and distributed

approaches. In this chapter, we have presented a technique-based taxonomy for
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fault diagnosis in WSNs, where the fault diagnosis techniques are classified based

on the nature of a test, correlation between sensor readings and characteristics of

sensor nodes and the WSN.

The rest of the chapter is organized as follows. Section 2.1 presents

the technique-based taxonomy framework. Section 2.2 presents variants of

the distributed approaches namely test based approach, neighbor coordination

approach, hierarchal approach, node-self detection approach, cluster-based

approach, and probabilistic approach. Finally, this chapter is summarized in

Section 2.3.

2.1 Technique-based Taxonomy Framework

Since WSNs become popular in scientific research, many fault detection and

diagnosis techniques specifically developed for WSNs have emerged. As illustrated

in Figure 2.1, fault diagnosis techniques for WSNs can be broadly categorized

into centralized and distributed approaches. In centralized approaches, often it

is assumed that a supervising arbiter (sink node or base station) is available to

analyze the diagnostic messages and disseminate diagnostic information. The

implementation of such an approach would place a bottleneck on the network

lifetime. For these reasons, distributed diagnosis has been introduced and studied.

In distributed approaches, each sensor node executes the fault detection algorithm

and generates a fault local-view. The fault local-view is the view of a sensor

node regarding the fault states of its one-hop neighbors. This local-view is

then disseminated in the network such that each fault-free sensor node correctly

diagnoses the state of all the sensor nodes in the WSN.

Application of test and message passing is the only means to detect faults in

distributed approaches. In this section, we identify and discuss several important

aspects to further categorize the distributed approach.

Correlation

The faults in a WSN can be detected by exploring temporal, spatial, or

spatio-temporal correlations between sensor readings. Sensor data are correlated
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Figure 2.1: Taxonomy framework for fault diagnosis techniques.

in both time and space. Sensor readings are temporally correlated since the

readings observed at one time instant are related to the readings observed at the

previous time instants. Similarly, sensor readings are spatially correlated since the

readings from sensor nodes geographically close to each other are expected to be

identical. The faults in a WSN can be detected by exploring temporal, spatial,

or spatio-temporal correlations between sensor readings. Neighbor coordination

approaches explore these correlations to detect faults. The diagnosis efficiency of

these algorithms is proportional to the average node degree of the WSN.

The Nature of Tests

Exchange of test messages is a good alternative to detect faulty nodes in a WSN.

A sensor node vi tests the sensor node vj by sending a test message and comparing

the resulting outputs with some set of correct responses. Based on the nature of

test and comparison, fault diagnosis techniques can be classified. A group of sensor

nodes may test a sensor node (invalidation approach) to take a decision. On the

other hand, the same test task may be assigned to sensor nodes, and decision can

be taken based on agreement or disagreement among sensor nodes on the obtained
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results (comparison-based approach).

Testing may be performed by each sensor node on itself (self-test) by hardware

or software checkers, watchdog timers, or error-detecting codes. Thus, faults can

be detected using minimal network resources. In this approach, all free time at

sensor node vi may be utilized to test itself with a predefined test or a test provided

by its one-hop neighbor vj .

Communication Cost

In many diagnosis approaches, the communication and energy overhead is too high.

Dissemination of local decision at each node contributes more to this overhead.

Cluster-based and hierarchal approaches address this problem. In a cluster-based

approach, the diagnosis algorithm works in conjunction with the underlying

clustering algorithm. In this approach, the deployment area is divided into a

number of clusters. Each cluster is headed with a manager node or cluster head.

The head node tests its cluster members and constructs a cluster level local-view

or each cluster member constructs their local-view using neighbor coordination or

test-based approaches and conveys it to the respective cluster heads. A hierarchal

structure of cluster heads can be used to disseminate the cluster level local-views.

In hierarchal approaches, the parent nodes in the hierarchal structure tests for

faults in its descendant. The same hierarchal structure is used to disseminate the

decision made at each node.

Characteristics of Sensor Node and Network

Apart from the temporal, spatial and spatio-temporal correlations between sensor

reading characteristics like node dynamics and node degree can be used to predict

faults in WSNs. Nodes can estimate its true reading using these characteristics

and soft-computing-based approaches. The node interconnection can be explored

to detect faults.

Based on the aforementioned aspects, the distributed approach can be

categorized into neighbor coordination, hierarchal, node-self detection, watchdog,

test-based, clustering-based, soft-computing-based and probability-based

approaches. Neighbor coordination approach can be further categorized into
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majority-voting and weighted-majority-voting approach. In addition, test-based

approach can be further categorized into invalidation and comparison-based

approach.

2.2 Distributed Approaches

Different practical applications may require the fault diagnosis to be conducted in

a real-time mode with a low latency, low message overhead and high throughput.

Therefore, the development of diagnosis approaches should aim to address these

issues in addition to the aforementioned limitations of centralized approaches.

Distributed approaches address these issues and limitations. The working sensor

nodes perform their own independent diagnosis of the WSN. In these approaches,

every sensor node decides independently the state of the WSN. Here, a sensor

node makes decisions at certain levels by monitoring behavior locally. The more

decisions a sensor node can make, the less information (i.e., number of messages)

must be delivered to the central node. As a result, these approaches conserve the

node energy and consequently, prolong the network lifetime [54]. This allows the

diagnostic framework to scale easily to much larger and denser WSNs.

2.2.1 Test-based Approaches

In test-based approaches, tasks are assigned to sensor nodes, and the test results

are the basis for identifying the faulty sensor nodes. Based on the type of

test this approach is further categorized into invalidation and comparison-based

approaches.

Invalidation Approaches

In these approaches, every sensor node tests a set of sensor nodes and passes

the test result to other sensor nodes. Based on these results a consensus can

be made regarding the correct fault set. In 1967 Preparata, Metze, and Chien

(PMC) introduced system-level diagnosis for wired interconnected networks with

their well-known PMC model [26]. In their model a processing element tests other

processing elements and that the results are used to find the state of the system.
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However, test results may not be reliable if the testing processing element is faulty.

In order to diagnose t processing elements of a n processing element system, nmust

be greater than or equal to 2t + 1, and a processing element must be tested by

at least t other processing elements. Later, Hakimi and Amin [30] characterize

the PMC model stating that these two conditions are necessary and sufficient for

t-diagnosability provided there are no reciprocal tests, i.e., no two units test each

other. They suggest a third diagnosability condition for the scenario where the

processing elements test each other. They argue that for a digraph G constitutes

of n processing elements; if K(G) ≥ t, then the system is t-diagnosable, where

K(G) is the connectivity of G. Variations of this PMC or invalidation approach

are applied in WSNs to diagnose faults.

Chessa and Santi [38] propose a fault diagnosis algorithm namely WSNDiag. In

this approach, in response to an explicit request of an external operator a unique

fault-free sensor node called the initiator initiates the detection process. Two

types of messages are exchanged during its execution: I’m alive (IMA) messages,

and diagnostic messages. A tree spanning all fault-free sensor nodes is constructed

during the propagation of IMA messages. After a timeout time Tout, sensor nodes

that did not reply with their IMA message are diagnosed as faulty. Once a sensor

node vi has its local diagnostic view (i.e., the state of its one-hop neighbors), it

waits for the local-views of its children in the spanning tree. Once these local-views

have been received, a sensor node updates its view and then selectively sends

this updated view to its parent in the spanning tree. Once the initiator receives

local-views from all of its children in the spanning tree, it generates the global view

by combining these local-views. The global view is then disseminated downward

in the spanning tree using a broadcast protocol in order to ensure that each sensor

node will have a global view.

Weber et al. [55] considers the problem of determining a test strategy of the

sensors in a WSN in order to ensure a desired level of diagnosability of the system.

They propose a strategy of mutual tests among the sensor nodes in a region where t

numbers of faulty sensor nodes are present such that the system graph representing

the region of the WSN is t-diagnosable. Thus, this approach depends on the node

degree, i.e., depends on WSN topology. Since the diagnosability of a diagnostic
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graph depends on whether the graph defines reciprocal tests among units or not,

they discuss two strategies namely testing strategy without reciprocal tests and

testing strategy with reciprocal tests.

Weber et al. present a diagnosis approach namely energy-efficient test

assignment (EETA) without reciprocal tests [56] which is based on their previous

work [55]. This approach presents a heuristic that chooses the set of sensors to be

involved in the tests in order to meet the conditions presented in PMC model.

Comparison Approaches

Chessa et al. [37] present two implementations of the comparison-based diagnosis

model, which detects both hard and soft faults under the hypothesis of fixed

and time-varying topology in ad-hoc networks. In this approach, a fault-free

unit vi (the testing unit) tests its neighbors sending them a test request message

m = (vi, q, T estq) and waiting for their responses where Testq is the qth test task.

At the same time, it generates the expected result Rvi,q. Upon receiving m a

node vj ∈ N(vi) generates the result Rvj ,q for Testq and sends response message

m′ = (vi, q, Rvj ,q) at time T ′, with T0 < T ′ < T0+Tout. N(vi) is the neighbor set of

a node vi. The timeout (Tout) is chosen in such a way that all the fault-free one-hop

neighbors which do not migrate out of its transmitting range are guaranteed to

respond to the test request within that time. As the responses are received, the

generated test result is compared with the received test result, and the nodes are

detected based on the comparison rule.

The diagnosis techniques proposed by Elhadef et al. namely Adaptive-DSDP

[57], Mobile-DSDP [57] and Dynamic-DSDP [20] are based on Chessa and Santi’s

model [37] and WSNDiag [38]. Similar to Chessa and Santi’s model and WSNDiag,

these approaches can diagnose at most K−1 nodes where K is the connectivity of

the network. Unlike Chessa and Santi’s model, Adaptive-DSDP doses not include

the test task when it replies to a test request. A similar test task is executed in

each node contrary to different test tasks as in Chessa and Santi’s model. In order

to test their neighbors, nodes send test tasks either periodically or when abnormal

behavior is detected. Once any of the other nodes receive a test task or overhear

a response message, it initiates its own testing phase by generating its own test
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message. Once a node collects responses of all its one-hop neighbors, it determines

its local diagnostic view by comparing their outputs for the identical test task.

Adaptive-DSDP uses a spanning tree to disseminate the local-views where

the dissemination starts at the leaf nodes. On the other hand, Chessa and

Santi’s model uses a flooding-based dissemination strategy. Mobile-DSDP follows

Chessa and Santi’s model by including the test task with the response message.

The rational are that even if the node vi can no longer reach its old neighbor

vj (the tester), then any other node in its new neighborhood will be able to

diagnose its status given that it has provided both the test task and its output

for that task. Similar to Chessa and Santi’s mode, it uses the flooding-based

dissemination to disseminate local diagnostics. In this approach, two timers are

used. The first timer is set to Tout which is used to detect stable one-hop neighbors.

The second timer namely TDiagnosisSession is used to detect nodes those remain

undiagnosed due to mobility. In Chessa and Santi’s model, Adaptive-DSDP and

Mobile-DSDP, every node should reply to any test request it receives. However,

in Dynamic-DSDP, each node is required to respond to exactly K test requests.

This is feasible since it deals with K − 1 diagnosable networks. Dynamic-DSDP

uses a spanning tree in order to disseminate the local diagnostic views gathered

separately by the nodes.

In invalidation approach, in order a system to be t-diagnosable a node must

be tested by t number of neighbors. This in turn increases the message overhead.

In both invalidation and comparison-based approaches, the applied test is not

sufficient enough to check the state of the sensing elements. The reason is that

these approaches rely only on the test response generated by the testee sensor node.

The test response does not carry any information about the sensing elements.

2.2.2 Neighbor Coordination Approaches

Unlike test-based approaches, a node takes a decision about whether or not

to disregard its own sensor reading based on the sensor readings from its

one-hop neighbors or based on weights like physical distances from the event,

trustworthiness and their measurements, etc. Based on these attributes neighbor

coordination approach is further categorized into majority-voting and weighted-
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majority-voting approach. In neighbor coordination approaches, sensor nodes

co-ordinate with their neighbors (usually one-hop neighbors) to detect faulty

sensor nodes before conferring with the central node. Therefore, this design

reduces the number of messages and subsequently, conserve sensor node energy.

Majority-voting approaches

This approach exploits the fact that the faulty measurements are uncorrelated

while the normal measurements are spatially correlated. This means; readings

from faulty sensors are geographically independent while readings from sensors in

close proximity are spatially correlated [29]. For example, let vi be a neighbor

of vj , xi and xj are the sensor readings of vi and vj respectively. Sensor reading

xi is similar to xj when |xi − xj | < δ where δ is application dependent. As

an illustration, in bolt loosening monitoring, a sensor node and its neighbors

are expected to have similar voltage. Similarly, in the case of temperature, a

sensor node and its neighbors are expected to have similar temperature reading.

Hence δ is expected to be as a small number. The fundamental principle of this

approach is to compare a sensor node vi’s measurement with vj ∈ N(vi) and find

Resultij ∈ {0, 1}. As shown in Figure 2.2, Resultij = 0 if |xi−xj | < δ. Otherwise,

Resultij = 1. This approach estimates the fault state of vi by comparing the

number of 0s with a predefined threshold.

Figure 2.2: Illustration of comparison result. Crossed sensor nodes are faulty.

Chen et al. [31] propose a localized distributed fault detection (DFD) algorithm

to identify the faulty sensors. It uses local comparisons with a modified majority

voting, where each sensor node makes a decision based on comparisons between

its own sensor reading (such as temperature) and sensor readings of one-hop

neighbors. DFD algorithm consists of four rounds of tests. In the first round,
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a test result Resultij ∈ {0, 1} is generated by sensor vi based on its neighbor

vj ’s measurement using two variables namely mTl
ij and ΔmΔTl

ij , and two predefined

threshold values Φ1 and Φ2. The measurement difference between vi and vj from

time Tl to Tl+1 is defined as

ΔmΔTl
ij = m

Tl+1

ij −mTl
ij = (x

Tl+1

i − x
Tl+1

j )− (xTl
i − xTl

j )

where xTl
i is the reading of vi at time Tl. In DFD algorithm, for any node vj ∈

N(vi), the node vi first set Resultij to 0. This algorithm next calculates mTl
ij .

If |mTl
ij | > Φ1 then it calculates ΔmΔTl

ij . The comparison test result Resultij is

set to 1 if |ΔmΔTl
ij | > Φ2. If Resultij is 0, most likely either both vi and vj are

good or both are faulty. Otherwise, if Resultij is 1, vi and vj are most likely in

different status. In this approach, for any sensor node vi, its test results with

each sensor node in the neighbor set N(vi) is obtained. If there are more than

�|N(vi)|/2� sensor nodes whose comparison test results are 1 in N(vi), then initial

detection status (i.e., tendency value Tendi) of sensor node vi is possibly faulty

(LT), otherwise, it may be possibly normal (LG), i.e.,

Tendi =

⎧⎪⎨
⎪⎩

LT if
∑

vj∈N(vi)

Resultij ≥ �|N(vi)|/2�

LG otherwise

(2.1)

where |N(vi)| represents the number of one-hop neighbors of vi. Each sensor

node sends its tendency value to all its neighbors. When the initial detection

status of all nodes in the WSN is obtained, in the second round of test of DFD

algorithm, the number of LG nodes whose test result with vi is 1 is subtracted from

the number of LG nodes whose test result with vi is 0. If the result is greater than

or equals to �|N(vi)|/2�, then vi is detected as fault-free. That is ∀vj ∈ N(vi) and

Tendj = LG,
∑

(1−Resultij)−
∑

Resultij =
∑

(1− 2Resultij) must be greater

or equal to �|N(vi)|/2� to detect vi as fault-free. This can be defined as

vi =

⎧⎪⎨
⎪⎩

fault-free(GD) if
∑

vj∈N(vi),T endj=LG

(1− 2Resultij) ≥ �|N(vi)|/2�

Undetermined otherwise

(2.2)

A sensor node vi that has failed to pass the threshold test of equation (2.2) is

marked as undetermined and follows a third round of test. All the undetermined
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nodes repeat to check for logn times in the best case (
√
n in average case and

n times in the worst case) if one of its neighbors is determined to be fault-free.

If such a sensor node exists and Resultij = 0(1) then vi detected as fault-free

(faulty).

If still ambiguity occurs, in fourth round of test, the sensor’s own tendency

value determines its status. For instance, if the status of vj , vk ∈ N(vi)

are determined as fault free (i.e., Tendj = Tendk = GD), vi is marked as

undetermined andResultji 	= Resultki then vi will be detected as fault-free (faulty)

if Tendi = LG(FT ).

Jiang [34] claims an improvement over the DFD algorithm by introducing an

improved distributed fault detection scheme (improved-DFD). In this approach a

node vi first set Resultij to 0 for any node vj ∈ N(vi). Improved-DFD algorithm

then calculates mTl
ij and if |mTl

ij | > Φ1 then comparison test result Resultij is set to

1. If |mTl
ij | ≤ Φ1 then it calculates ΔmΔTl

ij . The comparison test result Resultij is

set to 1 if |ΔmΔTl
ij | > Φ2. This algorithm then follows equation (2.1) to determine

the initial detection status (i.e., LG or LT) of the nodes. In this approach, for

any sensor node vi and the sensor nodes in N(vi) whose initial detection status

is LG, if the sensor node whose test result with vi is 0 is not less than the nodes

whose test result is 1, then the status of vi is GD. Otherwise, the status of vi is

FT. Alternatively this can be explained as

vi =

⎧⎪⎨
⎪⎩

GD if
∑

j∈N(vi),T endj=LG

Resultij < �|N(vi)Tendj=LG|/2�

FT otherwise

(2.3)

If there are no neighbor nodes of vi whose initial detection status is LG, and if the

initial detection status Tendi of vi is LG, then improved-DFD sets the status of

vi to GD, otherwise to FT.

Lee and Choi [33] approached WSN fault detection problems where time

redundancy is used to tolerate transient faults in sensing and communication.

A sliding window is employed to eliminate delay involved in the time redundancy.

A label xij is associated with (vi, vj) ∈ E and is set to 0 if |xi−xj | < δ. Otherwise,

xij = 1. Here E is the set of communication edges. To cope with transient faults,
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xij is obtained at regular intervals for � number of times, where � is a small

positive integer. A node vi represents these comparison results for all vj ∈ N(vi)

in a |N(vi)| × � matrix M = [xk
ij ], where k = 1, 2, · · · , �. The detection algorithm

uses two threshold values such as Φ3 and Φ4. If
�∑

k=1

xk
ij ≤ (� − Φ4), the status

variable Resultij is set to 0. The number of 0s in Resultij is denoted by |Resulti|.
If |Resulti| ≥ Φ3, fault-state of vi is set to 0 (fault-free) and this decision is

broadcasted. A fault-free node vi failed to pass the threshold test is later diagnosed

as fault-free through a fault-free neighbor vk. For relatively high fault rates, both

DA and FAR increase with Φ3.

Choi et al. [35] present an adaptive fault detection scheme that closely follows

[33]. They have suggested time redundancy to tolerate transient faults. In their

approach, the diagnosis parameters such as effective node degree dt and decision

threshold Φ4 are dynamically updated. Hsin et al. [58] suggest a two-phase

neighbor coordination scheme. In the first phase, a sensor node waits for its

neighbors to update information regarding the faulty nodes. In the second phase,

it consults with its neighbors to reach a more accurate decision. In this approach,

two timers are maintained for monitoring a sensor node vi, with values C1 and

C2 respectively. If a sensor node vj ∈ N(vi) does not receive any packets from

vi before C1(vi) expires, vj activates the second timer C2(vi). During the second

timer period, vj will query the common neighbors regarding the status of vi and

take a decision accordingly.

Miao et al. [36] present a failure detection scheme namely Agnostic Diagnosis

(AD). This approach is motivated by the fact that the system metrics (e.g.,

radio-on time, number of packets transmitted) of sensors usually exhibit certain

correlation patterns. This approach collects 22 types of metrics from each sensor

node that are classified into four categories. AD exploits the correlations between

metrics of each sensor using a correlation graph that describes the status of the

sensor node. By mining through the periodically updated correlation graphs,

abnormal correlations are detected.

Krishnamachari and Iyengar [51] explicitly consider measurement faults and

develop a distributed and localized Bayesian algorithm for detecting and correcting

such faults. They propose three different detection schemes namely the randomize
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decision scheme, the threshold decision scheme, and the optimal threshold decision

scheme. The real situation at a sensor node is modeled by a binary variable GTi.

GTi = 0 if the ground truth is that the sensor node is in a normal region and

GTi = 1 if the ground truth is that the sensor node is in an event region. The real

output of the sensor node vi set to zero (i.e., Si = 0) if the sensor measurement

indicates a normal value and set to one (i.e., Si = 1) if it measures an unusual

value. There are thus four possible scenarios: Si = 0; Gi = 0 (sensor correctly

reports a normal reading), Si = 0; Gi = 1 (sensor faultily reports a normal

reading), Si = 1; Gi = 1 (sensor correctly reports an unusual/event reading), and

Si = 1; GTi = 0 (sensor faultily reports an unusual reading). A sensor node makes

a decision about whether or not to disregard its own sensor reading Si in the face

of the evidence Ei(a, k) from its neighbors. Ei(a, k) is defined such that k of N

one-hop neighbors report the same binary reading a as sensor node vi.

This work is further extended by Luo et al. [59]. They consider both

measurement errors and sensor faults in the detection task. Under a given

detection error bound, minimum neighbors are selected to minimize the

communication overhead. Both Bayesian and Neyman-Pearson detection methods

are presented. Their approach did not explicitly attempt to detect faulty sensors,

instead their schemes improve the event detection accuracy in the presence of

faulty sensors.

Yim and Choi [60] propose an adaptive fault-tolerant event detection scheme.

This approach employs a filter for tolerating transient faults. The threshold for

event detection is dynamically adjusted depending on the fault status of sensor

nodes. Confidence levels are used to manage the status of sensor nodes. The

confidence levels are updated each time a fault or event is detected.

The majority-voting techniques have the potential to enhance the detection

performance from both detection accuracy and false alarm rate perspectives. The

performances of these techniques are worst affected by low average node degree.

However, researchers argue a better performance due to the expected high average

node degree in WSNs. This hypothesis may not be always correct. The primary

reason for not achieving an extremely good performance for a low average node

degree is that the fault-free sensor nodes are unlikely to pass the threshold test.
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Therefore, a better majority-voting scheme should be formulated by finding an

optimal threshold such that it will outperform in sparse WSNs or WSN with

sparse areas.

Weighted-voting approaches

Unlike majority-voting approaches, the weighted-voting approaches use properties

such as physical distances from the event, trustworthiness, measurements, etc. as

weight. These weights are used to take decision regarding the state of a sensor

node.

Xiao et al. [61] present an in-network voting scheme that determines faulty

sensor readings in WSN by considering both the correlation of readings between

sensor nodes and the trustworthiness of a sensor node. Each sensor node is

associated with a SensorRank which is used in voting. SensorRank represents

the trustworthiness of sensor nodes. In this approach, if a sensor has a large

number of neighbors with correlated readings, its vote deserves more weight and

a sensor node with a lot of trustworthy neighbors is also trustworthy. This trust

voting algorithm consists of two phases such as the self-diagnosis phase and the

neighbors diagnosis phase.

Guo et al. [62] propose a detection scheme namely FIND that detects sensor

nodes with data faults. It ranks the sensor nodes based on their measurements

as well as their physical distances from the event. The authors have shown

experimentally that the sensor measurements monotonically change as the distance

becomes further from the event. A sensor node is detected faulty if there is a

significant mismatch between the sensor data rank, and its readings violate the

distance monotonicity significantly.

The weighted-voting approaches inherit the advantages of majority-voting

approach. However, the computational complexities of these approaches are more.

Similar to majority-voting approaches, the weighted-majority-voting approaches

show poor performance in sparse WSNs or WSN with sparse areas.
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2.2.3 Hierarchal Detection Approaches

The basic idea of hierarchal detection is to first construct a spanning tree rooted

at the sink node or base station that spans all the fault-free nodes in the network

and next to decide on faults at each level of the tree. The spanning tree is used

to disseminate the decision taken at each node in the WSN such that each node

in the WSN correctly diagnoses the fault states of all nodes in the WSN.

Rost and Balakrishnan [63] propose a detection algorithm namely Memento.

In this approach, the sensor nodes in the WSN cooperatively monitor each other to

implement distributed sensor node failure detection. The failure of any sensor node

is monitored by a number of other sensor nodes in its vicinity. Memento requires

two components for fault detection such as heartbeats and a failure detector. Each

sensor node periodically sends heartbeat messages. A failure detector running on

a different sensor node detects a sensor node as faulty if a certain amount of time

expires since the receipt of that sensor node’s last heartbeat. In this approach, a

failure detector generates a liveness bitmap. This bitmap summarizes detector’s

current belief in the liveness of neighbors. The child sensor nodes send their

bit patterns to their parent sensor nodes. The parent performs an aggregation

(bitwise OR) operation on the results of the child sensor nodes together with its

own results and forwards it to the tree ancestor. The sink can then compare the

list of fault-free sensor nodes with the roster of deployment to determine which of

the sensor nodes have failed.

Gheorghe et al. [64] suggest an adaptive trust management protocol (ATMP).

This protocol uses cooperative trust management and has a hierarchical view over

the WSN. The protocol operates in three phases such as the setup, learning and

an exchange phase. In the setup phase, a spanning tree is constructed. In the

learning phase, the local penalty value is modified based on the fault detection

techniques. In the exchange phase, sensor nodes exchange reputation values,

recompute them and determine trust. Reputation can be defined as an expectation

about an individual’s behavior based on information about or observations of its

past behavior [65]. To perform error detection, leaf sensor nodes transmit the

sensor measurements. Every other sensor node within the spanning tree waits
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to receive sensor measurements from children sensor nodes for a predefined time.

After the waiting period, the sensor nodes are grouped in clusters based on the

location of each source of data. Each cluster of nodes is represented by a list of

measurement values generated by member nodes, and each list of nodes is sorted

in an ascending manner. For each list of values, the median value is computed.

For each list, the values are compared with the median value. If the difference

between the considered value and the median is greater than a constant deviation,

the value will be considered erroneous.

These approaches suffer from relatively high detection latency. This is because

the diagnosis process is either started by the sink node or the leaf nodes. In

addition, similar to centralized approach this approach leads to rapid energy

depletion in certain regions of the WSN, especially the sensor nodes closer to

the sink. This may lead to the hot spot problem [4].

2.2.4 Node Self-detection Approaches

In these approaches, the sensor node architecture is self-competent of detecting

its own status. This is achieved by including additional hardware to the sensor

node architecture.

Harte et al. [66] propose a self-detection architecture to monitor faults in

components of a sensor node. Both hardware and software interfaces are used.

The hardware interface consists of a number of miniature accelerometers mounted

on a flexible printed circuit board. This acts as a sensing layer around a sensor

node to detect the orientation and impact on the sensor node. It also introduces

some redundancy into the design to cope with damaged accelerometers. In order

to sample sensor nodes’ reading, this design adopts several software components

(e.g., ADCC, TimerC) from TinyOS operating system.

Koushanfar et al. [16] propose self-detection of sensor nodes in WSNs. This

approach observes the binary outputs of its sensors by comparing with the

predefined fault models. Faults caused by battery exhaustion can be estimated

when the hardware is competent to measure the current battery voltage [67, 68].

A detection algorithm can determine an estimation of the time to failure of the

battery by analyzing the battery discharge curve, and the current discharge rate.
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Wireless sensor node architecture is expected to be simple and energy efficient.

Node self-detection approach needs extra hardware which in turn increase the

hardware complexity, weight and energy requirement.

2.2.5 Cluster-based Approaches

The cluster-based approaches create a virtual communication backbone to group

sensor nodes and split the overall WSN into different groups (e.g., clusters). Fault

detection is normally distributed and executed in each individual group. Usually,

the leader node of a cluster (e.g., the cluster head) executes fault detection in its

group using a centralized or distributed approach.

Gupta et al. [69] assume a fail silent model where any erroneous behavior does

not affect the healthy components. In their fault tolerant clustering scheme, failure

detection of the cluster head is investigated. This approach adopts a method of

periodic status updates through inter-cluster communication. Along with the

sensed data, sensor nodes provide their energy status to the cluster head. Once

the sensed data and energy status of affiliated member sensor nodes are obtained,

a cluster head constructs a Status containing information about the sensor nodes

in its cluster, and the status of the cluster head itself. In the Status Update slot,

the statuses of cluster heads are exchanged. At the end of detection phase, a

cluster head CHi believes that CHj is faulty if it does not receive the update

from CHj. Since the updates can be missed due to link failures between two

sensor nodes, before taking any decision, CHi consults the consensus derived by

all cluster heads.

Jaikaeo et al. [70] propose the sensor information networking architecture

(SINA). Their approach consists of mechanisms for hierarchical clustering,

attribute-based naming, and querying and tasking supports. The manager node

issues a script programmed in the SQTL language to all cluster heads to diagnose

the sensor nodes. Upon receiving this script, cluster heads trigger their associated

members for temperature readings. Cluster heads then compare the difference

between each reading and the average reading of all the associated members with

a predefined threshold. Member sensor nodes those failed to pass the threshold

test are identified as faulty sensor nodes.
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Tai et al. [71] propose a heartbeat-style failure detection service for the

middle-ware implementation. This approach exploits the inherent message

redundancy of ad-hoc networks. This approach is coupled with cluster-based

communication architecture. The fault diagnosis is achieved by exchanging

three types of messages namely Heartbeat message, Digest message and

Health-status-update message.

Ossama et al. [72] suggest an approach in which a cluster head periodically

broadcasts a heartbeat message to inform its members that it is still functional.

Upon not receiving any heartbeats from its cluster head, a member sensor node

detects that its cluster head is faulty. In a WSN if member sensor nodes go through

a duty cycle, they cannot hear periodic cluster head heartbeats. This approach

addresses this issue where a member sensor node can solicit a heartbeat from its

cluster head after sending a certain number of messages. Cluster heads detect

neighboring cluster head failures using routing updates.

Wang et al. [73] propose an agreement-based fault detection mechanism

for detecting cluster-head failures in clustered underwater sensor networks.

Periodically, it performs a distributed detection process at each cluster member.

This requires each cluster member in a cluster to maintain a status vector, in

which each bit corresponds to a cluster member and is initialized to zero. A bit

in the vector is set to one once its corresponding cluster member detects that the

cluster head has failed. If all elements of the status vector of a cluster member

become one, an agreement is reached and the cluster member takes a decision.

Venkataraman et al. [74] propose an approach in which the sensor nodes detect

the energy failures in their respective clusters. In this approach, every sensor node

has a record of its balance energy. The sensor nodes in each cluster embed their

current energy status in the hello message and send to their first hop members,

including their parent. The hello message consists of the location, energy and ID

of the sensor node. A sensor node sends the failure report message to its parent

and children when its energy level drops below a threshold value. The threshold

value is the energy required to transmit D number of messages across a distance

equal to the transmission range. D is the maximum number of one-hop sensor

nodes selected during clustering.

33



Chapter 2 Related Research

Asim et al. [75] suggest a cellular-based approach where the cell manager

(cluster head) and gateway nodes coordinate with each other to detect faults. In

this approach, the cell manager sends get messages periodically to the associated

member sensor nodes and gateway node and in return they send their updates. An

update includes sensor node ID and energy level. Upon not receiving update from

any sensor node, it sends an instant message to the sensor node and acquires its

status. If a cell manager does not receive the acknowledgment in bounded time, it

declares the sensor node as faulty and conveys this decision to other nodes in the

WSN. Wei et al. [76] suggest a cluster-based real-time fault diagnosis aggregation

algorithm (CRFDA). It closely follows [37] where the diagnostic tasks are assigned

to the cluster members by the affiliating cluster head. The cluster head takes a

decision by comparing the test results sent by its member sensor nodes.

Kazi [77] proposes an asynchronous failed sensor node detection (AFSD)

method. In this approach, separate detection protocols are assigned to cluster

heads and cluster members. A numeric counter variable called failure counter is

used to track the received and sent data packets between active sensor nodes.

AFSD modifies the failure counter such that for a fault-free sensor node, the value

of the counter is bounded and tends to zero. For a failed sensor node, the value

of this counter is unbounded and tends to infinity and eventually will cross a

predefined threshold.

2.2.6 Soft-computing-based Approaches

The soft-computing-based approaches use the characteristics of sensor nodes and

the WSN to detect faults in the sensor nodes.

Zhang Ji et al. [78] exploit the redundant or complementary information of

multi-sensor in space or time to detect and isolate the faulty sensor nodes in WSN.

The authors present a structure of three-layers to detect and isolate multiple faults.

The first layer is a state recognition network. It is composed of some modularity

radial basis function neural network (RBFNN). The belief assignment of a sensor

state is obtained by RBFNN with two-input and one-output. The two inputs are

the data provided by sensor vi and vj . The output is mij({OKi, OKj}). Here,

mij(OK) means both vi and vj are fault-free. Each trained RBFNN is used as
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one model. The second layer is merging of the different frames of discernment.

These frames of discernment are merged to a common frame of discernment by

refinement operation. The third layer is evidence fusion and state decision.

Jabbari et al. [79] present the fault detection and isolation technique based on

artificial neural network (ANN). This approach follows two phases namely residual

generation and residual verification phases. Two separate ANN algorithms are

considered for these phases respectively. This approach compares the measured

data with network prediction and generates fault residuals. All the residuals are

evaluated and analyzed. A residual is a signal that is used as a fault detector.

Normally, the residual is considered to be zero (or small in a realistic case where

the process is subjected to noise and the model is uncertain) in the fault-free case

and deviate significantly from zero when a fault occurs. For generating residuals, it

considers generalized regression neural network architecture data approximation.

In this phase, measurement residuals are generated by comparing measured

data with network prediction. In second phase, it uses a probabilistic neural

network (PNN) for analyzing probable fault/failure conditions and fault/failure

classification.

Azzam and Rastko [80] introduced a neural network modeling approach for

sensor node identification and fault detection in WSNs. The recurrent neural

networks (RRNs) have the ability to capture and model the dynamic properties of

nonlinear systems. In this approach, RRNs are used to model the sensor node, the

node’s dynamics, and interconnecting with other WSN nodes. The RRN nodes

have their own dynamics with interconnecting weights between the nodes similar

to WSNs, and each sensor node has its own dynamics. The dynamic RRNs consist

of a set of dynamic nodes that provide internal feedback to their own inputs. This

is used to simulate a network of sensors. This approach assumes that there is

one sensor per sensor node where the sensor nodes are viewed as small dynamic

systems with memory-like features. The introduced ad-hoc RRN is analogous

to WSN systems with confidence factors (0 < CFij < 1) between sensor nodes

vi and vj . The confidence factor depends on the signal strength and the data

quality in communication links between the nodes. The overall modeling process

is divided into two phases such as the learning phase and the production phase.
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In the learning phase, the neural network adjusts its weights that correspond to

the healthy and N faulty models. The production phase compares the current

output of the sensor node with the output of the neural network. The difference

between these two signals is the basis to detect a sensor’s health status. Barron

et al. [81] implement this approach on Moteiv’s Tmote Sky platform with TinyOS

operating system.

In these approaches, the computational complexity is high, which may lead to

more energy overheads.

2.2.7 Watchdog Approaches

The simplest case of monitoring the network for faults is the watchdog mechanism.

The basic principle of the watchdog is to monitor whether a node’s one-hop

neighbor forwards the packets just sent by overhearing. If its one-hop neighbor

fails in forwarding within a certain period, the neighbor is viewed as misbehaving

node. When the misbehaving rate exceeds a predefined threshold, the source is

notified and the following packets are forwarded along other routes.

Marti et al. [82] propose an intrusion-detection system for wireless ad-hoc

networks. Their approach focuses on intrusion prevention methods by introducing

two overlays to the dynamic source routing (DSR) algorithm. The proposed

system consists of two tools to detect and mitigate abnormal routing behavior.

The Watchdog tool identifies the misbehaving nodes. The Pathrater aids the

routing protocol in avoiding the misbehaving nodes. When a node forwards a

packet, the node’s watchdog verifies that the next node in the path also forwards

the packet. The watchdog does this by listening promiscuously to the next node’s

transmissions. If the next node does not forward the packet, then it is misbehaving.

Marti’s approach fails to detect misbehaving nodes in a number of scenarios.

For example, nodes with malicious intent might falsely report other nodes as

misbehaving. A more sophisticated attack that this model cannot detect occurs

when multiple nodes collude to bring the network down. Patcha and Mishra

[83] have extended Marti’s approach. In their approach, collaborating groups

of malicious nodes were considered. This approach classifies the nodes in the

network into trusted and ordinary nodes. The first few nodes that form a network
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are trusted nodes. The watchdog nodes are selected from among the set of trusted

nodes for a given period of time depending on node energy, node storage capacity

and node computing power. Nodes are considered to be trustworthy only after

they show good behavior over a considerable period of time.

Current watchdog techniques can only judge the behavior of its one-hop

neighbors. These approaches can make the judgment of its last-hop if the data

flows in both forward and reverse direction. However, in practice, most of the

traffic is approaching to sink. The amount of reverse traffic is very less.

2.3 Summary

It has been observed from the literature study that quite a good number of fault

diagnosis schemes have been proposed till date. However, the existing schemes are

expensive from communication, energy, and time perspectives. The shortcomings

of present fault diagnosis techniques are as follows.

• In the majority of existing works diagnostic messages are not sent as

the output of the routine tasks of a WSN. This increases energy and

communication overhead.

• Little work has been done on diagnosing intermittent and transient faults.

• Most of the techniques do not address a mechanism to discriminate transient

from an intermittent fault in WSNs.

• Most of the techniques assume that sensor nodes are static and do not

consider node mobility.
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Chapter 3

Hard and Soft Fault Diagnosis in
WSNs

3.1 Introduction

The wireless sensor networks (WSNs) continue to gain the importance due to

various applications such as battlefield surveillance, environmental monitoring,

intruder detection systems, scientific data collection, intelligent infrastructure

monitoring, underwater monitoring, health and medical monitoring, habitat

monitoring, industrial monitoring, and ship detection [6–13]. These applications

need the sensor nodes to form a network by deploying them in hostile and human

inaccessible environment. It is common for the sensor nodes to become hard or

soft faulty due to various reasons such as an exposer to unfriendly environment,

calibration error, depletion of battery, age, etc. A hard faulty sensor node does not

respond, and a soft faulty sensor node continues to operate with altered behavior.

Unlike wireless local-area networks, the path between the source and the

destination in WSNs normally contains multiple wireless links (hops). The wireless

links between nodes are susceptible to wireless channel fading, which causes

channel errors. As the presence of hard and soft faulty nodes impact the network

lifetime, design and evaluating the diagnosis algorithm that can diagnose the hard

and soft faulty nodes in presence of channel impairment is the main objective of

this chapter.

In order to efficiently diagnose the sensor nodes, the WSN is partitioned into

non-overlapping clusters. This will not only improve the diagnosis efficiency but
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also reduces the message and time complexity. The existing clustering techniques

are intended to address the problems such as a prolonged network lifetime. Most of

the state-of-art clustering approaches do not consider fault diagnosis as an integral

part. Similarly, most of the state-of-art diagnosis techniques fail in exploring the

advantages of clustering approaches over a non-cluster-based approach.

The proposed cluster-based distributed fault diagnosis (CDFD) algorithm

works in conjunction with the underlying clustering protocol and exploits the

spatially correlated sensor measurements to diagnose the WSN. A decision about

the fault state of a node is taken based on the number of one-hop neighbors agree

with its sensor measurement. This is based on the consensus on the number of

one-hop neighbors of a sensor node to declare the sensor node fault-free. We

derive an optimal value for this threshold which in turn makes our algorithm less

sensitive to the average node degree for a wide range of fault rates.

The rest of the chapter is organized as follows. Section 3.2 presents the system

model. The description, analysis and implementation are presented in Section 3.3.

Simulation results are presented in Section 3.4 and finally, summary is given in

Section 3.5.

3.2 System Model

3.2.1 Notations

The list of the notations used in this chapter and their meanings are shown in

Table 3.1.

3.2.2 Assumptions

The following assumptions are considered for the algorithm CDFD.

• A base station (i.e., sink node) located outside the sensing field. Sensors and

the base station are all stationary after deployment.

• Sensors are homogeneous and have the same capabilities.

• Each sensor node is assigned a unique identifier (ID).
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Table 3.1: Notations.

n Number of sensor nodes.
nc Number of cluster heads.
vi Sensor node.
Fstatei Fault state of vi.
xi Sensor reading at node vi.
N(vi) One-hop neighbor set of vi.
Nx Number of one-hop neighbors report similar reading x.
Rtx Transmission range.
ETx The energy spent in transmitting one bit.
ERx The energy spent in receiving one bit.
EDA The energy spent in aggregation of both routine and diagnostic data.
Eelec The per bit electronics energy.
α Path loss exponent.
Mc Matching criteria.
da Average node degree.
p Fault probability.
pcerr The average bit error probability of the channel.
Tout Timeout timer.
Tslot The duration of each TDMA time slot.
Tp Upper bound on the time needed to propagate a message between

cluster heads.
Tsink Upper bound time to propagate a message from the sink node and the

farthest node from sink node.
δ Application specific constant.
θ Optimal threshold.
DST Depth of the spanning tree.

• Each sensor node can estimate its channel error probability.

• Each sensor node is capable of transmitting at variable power levels

depending on the distance to the receiver. An example of such sensor nodes

is MICA Motes which use the MSP430 [84, 85] series micro controller and

can be programmed to 31 different power levels.

• Links are symmetric, i.e., the data speed or quantity is the same in both

directions, averaged over time.
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3.2.3 Network Model

The WSN consists of n sensor nodes v1, v2, v3,· · · , vn. The sensor nodes are

uniformly distributed in the network which form a random network topology.

Sensor nodes are considered as neighboring sensors if they are within the

transmission range (Rtx) of each other. Every sensor node vi maintains a neighbor

table N(vi). All sensor nodes in the WSN are identical and are arranged into

non-overlapping clusters. Nodes are organized into one-hop clusters where every

node is aware of its cluster head. The intra-cluster communication is accomplished

using the TDMA-MAC protocol. The inter-cluster communication is accomplished

using the CSMA-MAC protocol. Each sensor node periodically produces sensor

measurements such as temperature as it monitors its vicinity.

3.2.4 Fault Model

The proposed algorithm considers both hard and soft faults in sensor nodes.

A hard faulty node is unable to communicate with the other sensor nodes in

the WSN, whereas a soft faulty sensor node continues to operate and generates

erroneous results. A sensor’s reading is said to be erroneous if it is significantly

different from those of its one-hop neighbors. A sensor node is subjected to hard

faults due to the faulty transceiver, depleted battery, and damaged node. A sensor

node is subjected to soft faults if at least one of the functional blocks (Figure 1.1)

is malfunctioning. The sensor fault probability p is defined as

p = P (S = ¬x|A = x) (3.1)

where the real temperature reading obtained by the sensor node is represented by

variable S and the actual ambient temperature is represented by variable A. x is

any value of S and A and ¬x is any value not equals to x. The faulty measurements

are uncorrelated. The normal measurements are spatially correlated. This means;

readings from faulty sensors are geographically independent while readings from

sensors in close proximity are spatially correlated.
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3.2.5 Channel Model

The model used for a channel is a two-state Gilbert-Elliott channel (two-state

state Markov channel model) with two states: G (good) state and B (bad) state

[86, 87]. This model describes errors on the bit level. In the good state, the

bits are received incorrectly with probability Pgood and in the bad state, the bits

are received incorrectly with probability Pbad. For this model it is assumed that

Pgood � Pbad. The transition probability TGB = P (G→ B) and TBG = P (B → G)

will be small and the probability remaining in G and B is large. The steady-state

probability of a channel being in the bad state is PB = TGB/(TGB + TBG). Thus,

the average bit error probability of the channel is Pcerr = PbadPB + Pgood(1−PB).

For the simulations, this work uses this model that independently generates error

patterns for all channels between nodes.

3.2.6 Energy Consumption Model

Similar to [88], we assume a simple model for the radio hardware energy

dissipation. The transmitter dissipates energy to run the radio electronics and

the power amplifier. The receiver dissipates energy to run the radio electronics.

Both the free space (fs) (q2 power loss) and the multi-path (mp) fading (q4 power

loss) channel models are used, depending on the distance between the transmitter

and receiver. The threshold q0 for practical systems using low gain antennas is

typically chosen to be 1 meter in indoor environments and 100 meters in outdoor

environments [89]. The energy spent for transmission of a r-bit packet over

distance q is:

ETx(r, q) = rEelec + rεqα =

⎧⎨
⎩ rEelec + rεfsq

2 q < q0

rEelec + rεmpq
4 q ≥ q0

(3.2)

The electronics energy, Eelec, depends on factors such as the digital coding, and

modulation. The amplifier energy, εfsq
2 or εampq

4, depends on the transmission

distance and the acceptable bit-error rate. To receive this message, the radio

expends energy:

ERx(r) = rEelec (3.3)
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Cluster head consumes EDA(nJ/bit/signal) amount of energy for both routine

and diagnostic data aggregation.

3.2.7 Diagnostic Model

Each sensor node periodically senses temperature measurements and broadcast

to one-hop neighboring nodes. The sensor measurements are spatially correlated,

i.e., for each fault-free sensor node, its neighboring fault-free sensor nodes have

broadcasted similar sensor reading in their allotted TDMA time slots. Due to

the shared nature of communication in wireless networks, a node vi receives the

sensor measurements of its one-hop neighbors. Since TDMA-MAC protocol is

used for intra-cluster communication, vi will receive these sensor measurements

at different times. A sensor performs a self-test on the received identical

temperature measurements from one-hop neighbors and a derived optimum

threshold. Fault-free nodes fail to pass the threshold test later been diagnosed

as fault-free through the fault-free neighbor(s). The sensor measurement xi is

identical to xj ∈ N(vi) if |xi − xj | < δ. In other words, xi ≈ xj if |xi − xj | < δ.

Based on this a matching criteria Mcij can be defined as

Mcij =

⎧⎨
⎩ 1 if |xi − xj | < δ

0 otherwise
(3.4)

where δ = C × f(Tdiff (xi, xj)). Tdiff (xi, xj) is the time difference between the

time vi takes its own measurement and receives sensor measurement of vj ∈ N(vi)

and C is application dependent constant.

3.3 The Proposed CDFD Algorithm

3.3.1 Description of the Algorithm

The CDFD algorithm consists of three phases namely clustering phase, fault

detection phase and dissemination phase. In the clustering phase, the WSN is

partitioned into different non-overlapping clusters. In the fault detection phase,

each cluster head accumulates the fault states of their affiliated member sensor

nodes. In the dissemination phase, the cluster level local view is disseminated in
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the WSN such that each sensor node correctly diagnoses the state of each sensor

node in the WSN.

Clustering Phase

Numerous previous studies have focused on WSN clustering [5]. However,

we choose the approach namely unequal cluster-based routing (UCR) protocol

suggested by Chen et al. [90] because it mitigates the hot spot problem [4]. The

operation of UCR protocol is divided into rounds. The cluster head status is

rotated among sensors in each round to distribute the energy consumption across

the WSN.

The clustering phase further consists of two phases such as cluster head

selection phase and setup phase. In the cluster head selection phase, the

energy-efficient unequal clustering (EEUC) algorithm selects cluster heads based

on the residual energy of tentative cluster heads. The EECU algorithm produces

clusters of unequal sizes to address the hot spot problem. Clusters closer to the

base station have smaller cluster sizes, and in turn consume less energy during

the intra-cluster data processing. The size of cluster increases with an increase in

distance from the base station or the sink node. In this phase, several tentative

cluster heads are randomly selected to compete for final cluster heads with the

same predefined probability. Nodes those fail to be tentative heads keep sleeping

until the cluster head selection stage ends. Each tentative cluster head vi has a

competition range Ri. Different competition ranges are used to produce clusters

of unequal sizes. R0 is the predefined maximum competition range. The minimum

competition range is set to (1− c)R0, where c is a constant coefficient (0 ≤ c ≤ 1).

Only one final cluster head is allowed in each competition range. The tentative

cluster head sensor node vi’s competition range Ri can be expressed as a linear

function of its distance to the base station [90]:

Ri =

(
1− c

Dmax −D(vi, BS)

Dmax −Dmin

)
R0 (3.5)

where Dmax and Dmin denote the maximum and minimum distance between

network boundary and the base station. For instance, Dmax for a WSN shown

in Figure 3.1 is
√

(l +Dmin)2 + (b/2)2. D(vi, BS) denotes the distance between
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vi and the base station.

Figure 3.1: An overview of Dmax and Dmin.

In the cluster head selection process, each tentative cluster head nodes

broadcast COMPETE HEAD MSG by setting transmission radius to R0. The

COMPETE HEAD MSG contains tentative cluster head node’s competition

radius and residual energy. Upon receiving COMPETE HEAD MSG, each

tentative cluster head sensor node constructs a set (SCH) of its adjacent tentative

cluster heads. Tentative head sensor node vj is an adjacent node of vi if vi is

in vj ’s competition diameter. A tentative cluster head sensor node vi decides to

become a final cluster head based on the residual energy of the nodes in vi.SCH .

Once vi finds that its residual energy is more than all the nodes in vi.SCH , it

broadcasts the FINAL HEAD MSG to inform its adjacent tentative cluster heads.

Tentative cluster head sensor node vj ∈ vi.SCH quit the competition immediately

after receiving this FINAL HEAD MSG, and inform all nodes in its vj .SCH by

broadcasting a QUIT ELECTION MSG.

In the setup phase, sleeping nodes wake up and each cluster head broadcasts

an advertise message. Each non-cluster head node chooses its closest cluster head

with the largest received signal strength and then informs the cluster head by

sending a JOIN CLUSTER MSG. Each cluster head sets up a TDMA schedule and

transmits it to the affiliated member nodes. After the TDMA schedule is known

to all nodes in the cluster, the setup phase is completed, and the steady-state

operation (data transmission) begins. To reduce inter-cluster interference, nodes
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in each cluster communicate by using the direct-sequence spread spectrum (DSSS).

Each cluster uses a unique spreading code. All the nodes in the cluster transmit

their data to the cluster head using this spreading code.

In the setup phase, the greedy geographic routing protocol constructs a cluster

head backbone rooted at the base station as shown in Figure 3.2. In this approach,

distance between each pair of cluster heads can be calculated approximately

according to the received signal strength. Each sensor node computes the

approximate distance to the base station based on the received signal strength

of a beacon signal broadcasted by the base station during initial deployment. If

a node’s distance to the base station is smaller than a threshold (TD MAX), it

transmits its data to the base station directly. Otherwise, it finds a relay node

which can forward its data to the base station. The relay node is chosen based on

the energy cost of the relay path.

Figure 3.2: An overview of clusters and spanning tree.

Detection Phase

Each node broadcasts their sensor measurements in their allotted TDMA time

slots (Algorithm 1). Each node sets a timeout timer Tout to detect hard faults.

A node vi will receive these sensor measurements at different times. Node vi

executes Algorithm 2 to form a set of neighbors {Nx} ⊆ N(vi) those have reported

similar sensor measurement (x). Algorithm 2 uses two counters such as count1

and count2 to determine the value of x. Upon receiving the sensor measurements,

vi buffers the sensor measurements and marks their time of reception. Next, vi
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compares this currently received measurement with the sensor measurements (if

any) those have already been received by vi from other one-hop neighbors. If it

finds a match, the count1 is incremented. The count1 defines the number matches

between sensor measurements received earlier, and the currently received sensor

measurement. The count1 is then compared with count2. If count1 > count2 then

count2 is assigned with value of count1. This ensures a value of x with which

highest number of one-hop neighbors of vi agrees. The node vi next compares its

own reading xi with x. If xi ≈ x and |{Nx}| ≥ θ then vi is detected as fault-free

where |{Nx}| equals to count2. Otherwise, vi is detected as possibly soft-faulty.

Alternatively, this can be defined as

vi =

⎧⎨
⎩ Possibly soft-faulty if (xi ≈ x and |{Nx}| < θ) or (xi 	≈ x and |{Nx}| ≥ θ

Fault-free otherwise.

(3.6)

The optimal value for θ is 0.5(|N(vi)| − 1), which is derived in Section 3.3.2

where |N(vi)| is the number of neighbors of vi. This decision is then broadcasted.

The probability that a node vi is detected as possibly soft faulty is given by

pps =

θ−1∑
l̂=0

(|N(vi)|
l̂

)
(1− p)l̂p(|N(vi)|−l̂) (3.7)

A node vi identified as possibly soft-faulty first checks for a node vk ∈ N(vi)

such that the kth entry in its fault table is fault-free, i.e., vi believes that vk is

fault-free. If such vk exists, Mcij = 1 and vk ∈ {Nx} then vi is detected as fault-free

or else faulty.

The detection algorithm uses a timeout mechanism to detect hard faulty nodes.

Node vi declares node vj ∈ N(vi) as possibly hard-faulty (initial detection status),

if vi does not receive the sensor reading from vj before Tout. Tout should be chosen

carefully so that all the fault-free nodes vj ∈ N(Vi) connected by fault-free channels

Channelij must report node vi before Tout. The node vj cannot report to vi

due to at least one of the following reasons: the transceiver of vj is faulty, the

communication channel Channelij is faulty, battery is drained and the node is

completely damaged. For faulty communication channel vi will mark vj as hard

47



Chapter 3 Hard and Soft Fault Diagnosis in WSNs

Algorithm 1 CDFD

1: // Clustering phase
2: Construct clusters using EECU algorithm [90].
3: Construct the cluster head backbone (spanning tree) using greedy geographic

routing protocol [90].
4: // Detection phase
5: Broadcast the sensor reading xi in its TDMA time slot.
6: set timer Tout.
7: Determine {Nx}, the set of one-hop neighbors report similar sensor

measurement x using Algorithm 2.
8: if Tout = true then
9: Declare unreported nodes as possibly hard faulty.
10: end if
11: if (xi ≈ x and |{Nx}| < θ) or (xi 	≈ x and |{Nx}| ≥ θ) then
12: Fstatei ← Possibly soft faulty.
13: else
14: Fstatei ← Fault-free.
15: end if
16: Broadcast the Fstatei .
17: Node identified as possibly soft faulty checks for a node vk ∈ N(vi) such that

Fstatek is fault-free. If such vk exists, Mcij = 1 and vk ∈ {Nx} then set Fstatei

as fault-free or else faulty. Broadcast the fault table FTi.
18: If vi is cluster head, it constructs a cluster level local view and takes a decision

on possibly hard faulty nodes by comparing the fault tables of member nodes.
19: // Dissemination phase
20: if vi is cluster head and has no tree descendants then
21: Append the cluster level local diagnostic view to its data packet and send

to the tree ancestor.
22: else if vi is cluster head and has tree descendants then
23: Wait until all diagnostic views of its tree descendants are received.
24: Take decision on possibly hard faulty nodes.
25: Combine the received and its own diagnostic views, append this combined

view to its data packet and send to the tree ancestor.
26: end if
27: Upon receiving all the diagnostic local views, the base station constructs

the diagnostic global view and broadcast it along with the synchronization
message.

faulty, which may not be always correct. Final decision regarding vj (hard faulty

or fault-free) is taken during the dissemination stage.

The node vi constructs a fault table FTi that contains its own correct fault

state and the IDs of nodes those have detected as possibly hard faulty by it. At

this stage, each cluster head has a local view that reflects its view about the

48



Chapter 3 Hard and Soft Fault Diagnosis in WSNs

Algorithm 2 Determination of x

1: // Node vi receives sensor measurements from all vj ∈ N(vi) in different time,
where the time of reception depends on the TDMA time schedule of these
neighbors.

2: Initialize an empty array of size |N(vi)| and set a counter count2 = 1.
3: for j = 1 to |N(vi)| do
4: Upon receiving sensor measurement from vj ∈ N(vi), store the sensor

measurement in array(j).
5: if j ≥ 2 then
6: Initialize a variable data = 0 and counter count1 = 1.
7: for J=j-1 to 1 do
8: if array(j) ≈ array(J) then
9: Increment the counter, i.e., count1 = count1 + 1.
10: data = data+ array(J).
11: end if
12: end for
13: if count2 < count1 then
14: count2 ← count1.
15: x← data+array(j)

count2
.

16: end if
17: else
18: x← array(j).
19: end if
20: end for

state of its affiliated member nodes as well as the non-affiliated nodes in one-hop

distance. We call this as cluster level local view.

Dissemination Phase

The cluster level diagnostic views are disseminated using the spanning tree of

cluster heads constructed by the greedy geographic routing protocol. The leaf

cluster heads start this dissemination by appending its cluster level local diagnostic

view to its data packet. A cluster head that has received data packets from tree

descendants first compares cluster level local diagnostics of their decedent and

takes a decision about hard faults. The final decision regarding a node detected

as hard faulty is based on a consensus made at each level. For example, if a node

is detected as hard faulty by a cluster head CHi but CHj believes that the node

is fault-free, then cluster heads in the upper level of the spanning tree detect the

node as fault-free. Second, it appends its cluster level local view and the data
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packet of its tree descendants to its own packet and sends them up to the root.

At the end of local dissemination, the base station generates the global view and

broadcasts it along with the synchronization message. This ensures that each

fault-free node correctly diagnose the state of all the sensor nodes in the WSN.

Implementation

In this section, we discuss the design details for practical deployment of

CDFD algorithm. As shown in Figure 3.3 CDFD algorithm includes six

time triggers: (1) cluster head selection triggers (T1), (2) cluster set-up

triggers (T2), (3) intra-cluster communication for routine data triggers (T3), (4)

intra-cluster communication for exchanging fault state information triggers (T4),

(5) intra-cluster communication for communicating the correct decisions about

nodes detected as possibly soft-faulty triggers (T5), inter-cluster communication

and local dissemination trigger (T6), and global dissemination and network

synchronization triggers (T7).

Figure 3.3: Time line showing UCR and CDFD algorithm operation.
.

First, we describe the MAC mechanism together with the duty cycles schedule

in various phases of the CDFD. T1 triggers the cluster formation phase. At T2,

the non-cluster head nodes wake up. The cluster heads transmit the advertise

message for cluster formation and the control messages to construct the cluster

head backbone using CSMA. To reduce inter-cluster interference, each cluster in

UCR protocol communicates using the direct-sequence spread spectrum (DSSS).

UCR protocol uses transmitter-based code assignment [91], where all transmitters

within the cluster use the same spreading code. Once the cluster head backbone is

50



Chapter 3 Hard and Soft Fault Diagnosis in WSNs

constructed, and the base station is aware of the IDs and cluster head declaration

times, the base station assigns unique spreading codes to cluster heads from a

predefined list. The codes are assigned on a first-in, first-served basis, starting

with the first cluster head to announce its position, followed by subsequent cluster

heads. Each cluster head transmits TDMA schedule and their unique spreading

code messages using CSMA. The number of TDMA time slots in each cluster

depends on the number of member nodes in the cluster. Neighboring cluster

heads share their spreading codes such that a node, irrespective of its affiliation,

can de-spread the messages received from all its one-hop neighbors. This ensures

a node to obtain the sensor measurements of all its neighbors for a diagnosis

purpose. T3 triggers intra-cluster routine data transmission and the detection

phase. Member nodes turn off their transmitter at all times except during their

transmit time. However, the receiver is on to receive diagnostic data. During T4 to

T5 nodes broadcast the local decisions in their time slot. The decision is stored in

the local fault table. During T5 to T6 nodes with possibly soft-faulty status take

final decision and broadcast the updated decision in their time slot. Cluster head

turns off their radio once their TDMA time slots run out. At T6, all cluster heads

wake up, and the inter-cluster communication is triggered. Cluster heads transmit

control messages and data packets using CSMA. The local diagnostics and the

routine data are aggregated through the spanning tree up to the sink. Thus, at T7,

the sink has the global fault state view of the WSN. Synchronization is important

for the operation of UCR and CDFD. This work assumes that all sensor nodes are

synchronized and start CDFD phase at the same time. This could be achieved,

for example, by having the sink periodically broadcast synchronization pulses. In

this work at T7, the sink node broadcasts the synchronization message along with

the global view such that all nodes in the WSN will receive this message.

Since the diagnosis operation is integrated to clustering, there is a cost in terms

of energy and time to cluster as well as diagnose the WSN. If the clustering and

diagnosing overhead are incomparable to the application packet load, clustering

and diagnosing can be triggered every data-gathering round. For continuous

monitoring applications where all nodes are continuously sending reports, however,

frequent clustering and diagnosing the network will lead to instability, delayed
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response and faster energy depletion. In addition, the mean time between failures

(MTBF) is expected to be much longer, thus, frequent diagnosis of the network

may not be cost effective. Therefore, there is always a trade-off in determining

time duration between two diagnosis rounds, and it is application specific.

3.3.2 Analysis of The Algorithm

Determination of Tout

In scenarios where the node density is not homogeneous, if this timeout is short,

some sensor nodes with high neighbor density can be working on the fault diagnosis

while some sensor nodes with low neighbor density may be detected incorrectly

as faulty. If the timeout is longer and most of the nodes have high neighbor

density, the diagnosis may not be efficient in terms of time. Thus, determination

of a proper value for Tout is required, which is determined by considering various

delay components from WSN perspective. We first discuss the delays introduced

at each layer of WSN architecture. When a node decides to transmit a packet,

it is scheduled as a task in a sensor node. The total time spent in constructing

the packet at the application layer and then passing to MAC layer is denoted as

TAM . This delay depends on the underlying operating system. At MAC layer,

the diagnostic packet waits until it can access the channel. This delay (TMAC) is

specific to wireless networks, which is critical and depends on the MAC protocol

employed by the sensor node. The delay in transmitting a packet bit by bit at

the physical layer over the wireless link is mainly deterministic in nature and can

be estimated using the packet size and the radio speed. The propagation delay

(Tpro) is the actual time taken by the packet to traverse the wireless link from the

sender node to the receiver node which is negligible as compared to other sources

of delay. The reception delay (Tres) refers to the time taken in receiving the bits

and passing them to the MAC layer. This delay is mainly deterministic in nature.

The MAC layer then passes the received packet to the application layer where it

is decoded. The total time spent in passing the received packet from MAC layer

to the application layer (TMA) depends on the underlying operating system.

Lemma 1 The upper bound on the time such that a fault-free node will receive the
sensor measurements of all its neighbors is Tout = TAM+Tpro+Tres+TMA+NcTslot
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Figure 3.4: Analysis of Tout (A,B, and C are clusters).
.

where Nc is the number of member nodes of the largest neighbor cluster and Tslot

is the duration of each TDMA time slot.

Proof: The time delay introduced in receiving a packet from a neighbor sensor

node vj ∈ N(vi) by node vi is TAM + TMAC + Tpro + Tres + TMA. As TDMA-based

MAC protocol is used, TMAC depends on the slot position in the TDMA frame.

In addition, the sizes of neighboring clusters are not same. Thus, the delay in

receiving sensor measurements by a sensor node from all its neighbors depends on

Nc. For instance, as shown in Figure 3.4, node A1 will receive data of C6 after a

delay equals to 6Tslot. Therefore, TMAC = NcTslot.

The proposed algorithm CDFD is analyzed to show the completeness and

correctness. The diagnosis is complete if all sensor nodes are identified as faulty

or fault-free in a bounded time. A diagnosis is said to be correct if there are no

fault-free nodes mistakenly diagnosed as faulty and no faulty nodes mistakenly

diagnosed as fault-free. Generally, an incorrect diagnosis is unacceptable because

the error information may propagate to the base station or users. Our proposed

algorithm minimizes the likelihood of incorrect diagnosis and ensures a complete

diagnosis.

Threshold Formulation

In this section, we formulate the threshold θ.

Theorem 1 The error probability in detecting the fault state of a node is given

by Pe = f1 ·
(
1− p−

N∑
l=θ

(1− p)fl + pfN−l

)
.
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Proof: After its deployment in the field, a sensor node can be modeled by

two variables such as S and A. S represents the sensor reading and A represents

the actual reading. Let Ei(x, l, N) be the set of l sensor nodes out of N one-hop

neighbors of a node vi report the similar sensor reading x. The fault detection

estimate (DE) is calculated after obtaining information about the sensor readings

of neighboring nodes. The possible values of DE is fault-free (FF ) and faulty

(F ).

The probability that the detection estimate is fault-free, given that l of the N

neighboring sensors report the same reading x as node vi is defined as:

Pl = P (DE = FF |S = x,Ei(x, l, N)) (3.8)

For a faulty communication channel Channeli,j , vi believes that vj ∈ N(vi) is

faulty. In presence of channel faults, let fl is the probability that l out of N

one-hop neighbors of node vi are fault-free. This probability is determined as

fl =

(
N

l

)
P (Si = x|Ai = x, Ch = G)l

· P (Si = x|Ai = ¬x, Ch = G)N−l

=

(
N

l

)
P (Si = x|Ai = x, Ch = G)l

· P (Si = x|Ai = x, Ch = B)N−l

=

(
N

l

)
(1− p)lpN−l (3.9)

The possible values for variables S and A are x and ¬x where ¬x defines

a value which is not similar to x. Thus, eight possible combinations exist for

DE, S and A. The correctness of the proposed algorithm can be analyzed by

the conditional probabilities corresponding to these combinations. From these

combinations, we can calculate the probability that the algorithm estimates the

node is faulty though both the sensed, and actual readings are similar. By using
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marginal probability this can be derived as

P (DE = F |S = x,A = x) = 1− P (DE = FF |S = x,A = x)

= 1−
N∑
l=0

P (DE = FF,Ei(x, l, N)|S = x,A = x)

= 1−
N∑
l=0

P (DE = FF |S = x,A = x, Ei(x, l, N))

· P (Ei(x, l, N)|S = x,A = x)

= 1−
N∑
l=0

Pl · fl (3.10)

In a similar manner, we can calculate the probability that the algorithm

estimates the node is fault-free though the sensor reading does not agree with

actual reading.

P (DE = FF |S = ¬x,A = x) =

N∑
l=0

P (DE = FF,E(x,N − l)|S = ¬x,A = x)

=
N∑
l=0

P (DE = FF |S = ¬x,A = x,Ei(x,N − l, N))

· P (Ei(x,N − l, N)|S = ¬x,A = x)

=

N∑
l=0

P (DE = FF |S = ¬x,A = x,Ei(¬x, l, N))

· P (Ei(x,N − l, N)|S = ¬x,A = x)

=
N∑
l=0

Pl · fN−l (3.11)

As discussed earlier, fault-free nodes which failed to pass the threshold test are

later diagnosed as fault-free through a fault-free neighbor. The probability that

at least one out of N one-hop neighbors is fault-free can be derived from equation

(3.9) as

f1 = N(1− p)pN−1 (3.12)

Equation (3.11) and (3.12) suffice to calculate the probability that the detection

algorithm declares a fault-free node as faulty. This probability is given by
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Pgf = P (DE = F, S = x|A = x) · f1
= P (DE = F |S = x,A = x) · P (s = x|A = x) · f1

=

(
1−

N∑
l=0

Pl.fl

)
· (1− p) · f1 (3.13)

In the similar manner, the probability that the detection algorithm declares a

faulty node as fault-free can be derived as

Pfg = P (DE = FF, S = ¬x|A = x) · f1
= P (DE = FF |S = ¬x,A = x) · P (s = ¬x|A = x) · f1

=

(
N∑
l=0

Pl.fN−l

)
· p · f1 (3.14)

In the proposed algorithm, the detection estimation is fault-free only when

l > θ. Thus equation (3.8) can be rewritten as

Pl =

⎧⎨
⎩ 1 if l > θ

0 otherwise
(3.15)

Thus, the error probability of the proposed algorithm in detecting the status

of a node is given by

Pe = Pgf + Pfg

= f1 ·
(
1− p−

N∑
l=θ

(1− p)fl − pfN−l

)
(3.16)

Theorem 2 The optimum value of θ which minimizes the error probability (Pe)
is 0.5(N − 1).

Proof: Proof of this theorem closely follows a similar proof in [51]. Substituting

fl in equation (3.16), the expression of summand of equation (3.16) can be written

as

(
N
l

)
((1− p)l+1pN−l − pl+1(1− p)N−l)

=
(
N
l

) (
(1− p)l+1pl+l

(
pN−2l−1 − (1− p)N−2l−1

))
(3.17)
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For p < 0.5, equation (3.17) is negative for N > 2l + 1, zero for N = 2l + 1,

and positive for N < 2l + 1. Additional terms with negative contributions is

produced by decreasing θ one at a time from N while θ > 0.5(N − 1) and positive

contributions once θ < 0.5(N − 1). It follows that Pe achieves a minimum when

θ = 0.5(N − 1).

Complexity Analysis

The upper bound time complexity is expressed in terms of the following bounds:

• Tp: an upper bound on the time needed to propagate a message between

cluster heads.

• Tsink: an upper bound on the time needed to propagate a message between

the sink node and the farthest node from the sink node.

Lemma 2 The time complexity of CDFD algorithm is O(Tout + TpdST + Tsink)
where, dST is the depth of the spanning tree.

Proof: The detection phase requires three rounds of communication each

costing Tout time. In at most dSTTp, the sink node collects all diagnostic views.

Then the sink node broadcasts the global diagnostic view that reaches the farthest

node in at most Tsink time. It follows that, CDFD algorithm requires at most

3Tout + TpdST + Tsink to complete a diagnosis session.

The total number of messages exchanged by nodes executing the algorithm is

termed as message complexity of the algorithm.

Lemma 3 Message complexity of CDFD algorithm is O(n).

Proof: The diagnosis starts at each node by sending the sensor reading to its

neighbors. This does not contribute to the message complexity as it is the routine

task of the WSN. Each node then takes a decision about their state and broadcasts

their decision costing one message per node, i.e., n messages in the WSN. The

nodes failed to pass the threshold test (detected possibly soft-faulty) broadcast

their updated state costing one message per node and in the worst case, nmessages

in the WSN where all faults are soft faults (hard faults are detected without any

message exchange), and all nodes are detected as possibly soft faulty. Each cluster
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head, excluding the sink, sends the local diagnostic message along their routine

message and thus contributing no additional cost. The sink node broadcasts the

global diagnostics along with the synchronization costing no additional message

overhead. So, the total number messages exchanged explicitly for diagnosis is

Mcost = 2n = O(n) (3.18)

Lemma 4 The number of bits exchanged to diagnose the WSNk is O(n log2 n).

Proof: In a n-node WSN each node has a unique identifier which can be

encoded with log2 n bits. The state of each node is identified with a single bit (0:

fault-free and 1: faulty). Each node broadcasts its state requires n(log2 n+1) bits

to be exchanged in the WSN. The nodes those have failed in the threshold test,

broadcast their updated state. The number of bits to be exchanged in WSN for

this operation is n(log2 n + 1) bits. Local dissemination of diagnostics up to the

sink needs pncn(log2 n+1) bits to be exchanged where nc is the number of cluster

heads. The sink broadcasts the global view costing pn(log2 n+ 1) bits. Thus, the

total number of bits exchanged is n(log2 n+ 1)(pnc + p+ 2) = O(n log2 n).

Lemma 5 The energy overhead in diagnosing the WSN is n(log2n + 1)((pnc +
2)(ETx + ERx) + pERx).

Proof: The energy dissipated in exchanging states is n(log2 n+1)(ETx+ERx).

The energy overhead in exchanging correct decision on the possibly soft-faulty

nodes is n(log2 n + 1)(ETx + ERx). Dissemination local diagnostics dissipate

pncn(log2 n+1)(ETx+ERx) units of energy and global diagnostic message dissipate

pn(log2 n + 1)ERx units of energy. Thus, the energy overhead in diagnosing the

WSN is n(log2n+ 1)((pnc + 2)(ETx + ERx) + pERx).

3.4 Simulation Results

The performance of the proposed scheme through simulations is presented in

this section. The performance metrics namely diagnosis latency, per node

message overhead, energy overhead, DA, FAR, and network lifetime are used to

evaluate the performance of CDFD algorithm. This work uses Castalia-2.3b [52],

a state-of-art WSN simulator based on the OMNET++ [53] platform. The
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simulation parameters are given in Table 3.2. For these simulations, energy

is consumed whenever a sensor transmits or receives data or performs data

aggregation. The channel error rate Pcerr estimate at each node is 1 × 10−3.

As suggested in [90], UCR protocol parameters are set as T = 0.2, R0 = 80m,

c = 0.3, TD MAX = 200m, and k = 2.

Table 3.2: Simulation Parameters.
Parameter Value
Number of sensors 1000
Network grid From (0, 0) to (600, 400)m
Sink At (700,200)m
Initial energy 1 J
Eelec 50 nJ/bit
εfs 10pJ/bit/m2

εamp 0.0013pJ/bit/m4

d0 87m
EDA 5 nJ/bit/signal

3.4.1 Experiment 1: Efficiency with regard to da and p

In this experiment, the performance of the diagnosis algorithm in regard to DA and

FAR is evaluated and compared with the state-of-art schemes namely DFD [31]

and Improved DFD [34]. In this simulation, sensor nodes are assumed to be faulty

with probabilities of 0.05, 0.10, 0.15, 0.20, 0.25, and 0.30 respectively. To show

the effectiveness, we consider an equal number of hard and soft faults.
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Figure 3.5: Theoretical value of pps: (a) At varying value of da: p = 0.2. (b) At
varying value of p: da ≈ 4.
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Figure 3.6: DA and FAR: Pcerr = 1× 10−3.

In this simulation, the range is tuned to obtain da ≈ 4, 12 and 20. As expected

and shown in Figure 3.6, the DA and FAR of CDFD algorithm outperform both

DFD and improved-DFD algorithm. The results can be explained as follows.

As shown in Figure 3.5, at low average node degree the probability that a node

detected as possibly soft faulty in both DFD and improved-DFD algorithm is very

high as compare to CDFD algorithm. As discussed in Chapter 2, a fault-free node

vi will be detected as fault-free in the second round of test of DFD algorithm if∑
vj∈N(vi),T endj=LG

(1 − 2Resultij) ≥ �|N(vi)|/2�. There is a less probabilities that

a node will pass this threshold test in sparse WSNs or WSNs with sparse areas.

Thus, the number of nodes detected as fault-free in this test round is very less.

In third round of test, DFD algorithm uses the nodes detected as fault-free (GD)

in second round of test to take decision regarding the undetermined nodes. Thus,

there is a high probability that the undetermined nodes will remain undetermined

after third round of test, i.e., the incorrect decision taken in the second round
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of test may not be rectified in subsequent test rounds. In second round of test,

the improved-DFD algorithm diagnoses a fault-free node vi as fault-free if reading

of vi matches with more than �|N(vi)|/2� number of LG one-hop neighbor nodes

(i.e., one-hop neighbor nodes with status possibly fault-free). The probability of

passing this threshold test is very less in sparse WSNs or WSNs with sparse areas.

In the third round of test, the LG (LT) nodes failed to pass this threshold test are

diagnosed as fault-free (faulty) by the improved-DFD algorithm which may not be

always correct. Since the FAR accounts for the number of fault-free nodes wrongly

diagnosed as faulty by a diagnosis algorithm, an algorithm showing high FAR will

reduce available sensor nodes in the WSN and impacting reliability. As shown

in Figure 3.6(a) CDFD algorithm achieves a marginal improvement over DFD

algorithm from FAR perspective. However, the number of messages exchanged by

DFD algorithm to achieve this low level of FAR is comparably higher than CDFD

algorithm.
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Figure 3.7: DA and FAR at varying value of Pcerr: da ≈ 12.

3.4.2 Experiment 2: Robustness with regard to channel

fault

In this experiment, the robustness of the detection algorithm to faults in the

communication channel is analyzed by estimating DA and FAR for various channel

error probabilities. For simplicity in the simulation Pgood is taken as 0 and Pbad is

taken as 1. PBG is fixed to 1/8 and PGB is varied to get different channel error

probabilities Pcerr [103]. We use the previously generated network with p = 0.2
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and da = 12. The channel error rate is increased in steps from 10−5 to 10−1. Faults

in the communication channel might cause some fault-free nodes to fail in receiving

the sensor measurements from its neighbors. This in turn decreases the effective

neighbor size of a sensor node and might affect the local decision. However, as

discussed in Experiment 1, CDFD algorithm shows better performance even in

sparse WSNs. Thus, as expected and shown in Figure 3.7, the detection algorithm

effectively tolerates faults in the communication channel. It is observed that the

improved-DFD algorithm is worst affected by varying channel error rate. The

reason is that in this approach, a node detected as possibly fault-free in first

test round will be detected as fault-free only when more than half of its neighbors

with initial detection status possibly fault-free agrees with its sensor measurement.

This is hard to realize in scenario where the average node degree is affected by the

channel error rate. It is observed that DFD algorithm effectively tolerates errors

in channel but as discussed earlier and will be shown in experiment 3, it suffers

from large message overhead and diagnosis latency.

3.4.3 Experiment 3: Time, message and energy efficiency

In this experiment, we attempted to illustrate the time, message and energy

efficiency of CDFD algorithm with regard to varying average node degree and fault

rate. For better analysis, we consider only soft faults as detection of hard faults

does not require any message exchange. Both DFD and improved-DFD algorithms

only generate the diagnostic local view. Thus, to compare the time, message and

energy efficiency, we implement a spanning tree-based dissemination [20] for both

of the schemes. As shown in Figure 3.8, the message overhead of CDFD algorithm

in diagnosing the WSN is well below that of DFD and improved-DFD algorithm.

The reason is that in CDFD algorithm, the diagnostic messages are sent as the

output of the routine tasks of the WSN. As expected the message overhead of

DFD algorithm is highest among the three schemes. This is because, in the worst

case, a node in DFD algorithm needs to exchange four messages to obtain the

diagnostic local view.

As expected and shown in Figure 3.9 (a), the diagnosis latency of CDFD and

improved-DFD algorithm is not much affected by varying sensor fault probability
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Figure 3.8: Number of messages explicitly exchanged for diagnosis: (a) At varying
value of p: da = 12, Pcerr = 10−3. (b) At varying value of da: p = 0.2, Pcerr = 10−3.

0.1 0.2 0.3 0.4 0.5
1.5

2

2.5

Sensor fault probability

D
ia

gn
os

is
 la

te
nc

y 
(s

ec
)

 

 

CDFD
Improved−DFD
DFD

(a)

5 10 15 20
1.5

2

2.5

Average node degree

D
ia

gn
os

is
 la

te
nc

y 
(s

ec
)

 

 

CDFD
Improved−DFD
DFD

(b)

Figure 3.9: Diagnosis latency: (a) At varying value of p: d = 12, Pcerr = 10−3.
(b) At varying value of da: p = 0.2, Pcerr = 10−3.

and average node degree. The diagnosis latency of the DFD algorithm increase

with an increase in fault rate because this predominately depends on the number

of undetermined nodes (i.e., node with status either possibly faulty or possibly

fault-free), and this number increases with an increase in fault rate. As reported in

Figure 3.9 (b), the diagnosis latency of DFD algorithm decreases with an increase

in average node degree for a fixed fault rate. The reason is that for a higher average

node degree, most of the nodes meet the threshold test, and undetermined nodes’

population is very less. However, diagnosis latency of improved-DFD algorithm

and CDFD algorithm remains unaffected by varying node degree.

The comparisons between the normalized total energy dissipation of these three

schemes are shown in Figure 3.10. We normalize the total energy consumption
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Figure 3.10: Normalized total energy consumption: (a) At varying value of p:
d = 12, Pcerr = 10−3. (b) At varying value of da: p = 0.2, Pcerr = 10−3.

with respect to the number of nodes participated in diagnosis. We examine the

energy consumption with respect to the varying fault rate and average node degree.

It is observed that the difference between DFD and improved DFD algorithm in

terms of the normalized total energy consumption is very small. However, CDFD

algorithm outperforms both DFD and improved DFD algorithms. The reason

is that the energy consumption is directly proportional to the amount of traffic

generated. It is observed from Figure 3.8 that the number of messages explicitly

exchanged for diagnosis of the WSN is very less than these two schemes. As

reported in Figure 3.10(a), the energy consumption increases with a fault rate

because for a higher fault rate, the probability of failing the threshold test is

more. Thus, more messages need to be exchanged to take a correct decision. It

is observed from Figure 3.10(b) that the energy consumption of DFD algorithm

decreases for an increase in average node degree. The reason is that for a higher

average node degree, the probability of failing to pass the threshold test is less

and accordingly, the number of undetermined nodes is less. As expected and

observed the energy consumption of improved DFD and CDFD algorithm is not

much affected by average node degree.

3.4.4 Experiment 4: Network lifetime

The network lifetime is the measure of the number of data-gathering rounds when

the first node dies due to depletion of battery. In this experiment, a node is
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considered dead if it has lost 99 percent of its initial energy. For better comparative

analysis, we implement DFD and improved-DFD algorithm in conjunction with

UCR protocol. Like UCR protocol, we set data packet size to 4000. We first run

the simulation without considering any diagnosis technique. Next we implement

CDFD, DFD and improved-DFD algorithms in conjunction with UCR protocol.

The network lifetime for varying fault rates is shown in Figure 3.11.

0.05 0.1 0.15 0.2 0.25 0.3
800

900

1000

1100

1200

1300

1400

1500

1600

Sensor fault probability

N
um

be
r 

of
 d

at
a 

ro
un

ds
 u

nt
il 

th
e 

fir
st

 n
od

e 
di

es

 

 

UCR
UCR+CDFD
UCR+Improved DFD
UCR+DFD

Figure 3.11: The network lifetime: da = 12, Pcerr = 10−3.

An improvement in the network lifetime is observed when the detection

algorithms work in conjunction with the clustering protocol. As shown, this

improvement is remarkable in the scenario where fault rate is high. The reason is

that if faulty nodes are allowed to send their data, then relay nodes dissipate

energy in forwarding this erroneous data to the sink node. In this approach

since the erroneous data generated by the faulty nodes are discarded, wastage

of energy in relaying these erroneous data is avoided. This in turn improves the

network lifetime. In addition, if the non-cluster-head nodes are unaware of the

failure at the head sensor node, they send meaningless data and therefore, waste

energy. As expected and shown in Figure 3.11, CDFD algorithm shows better

performance compare to both DFD and improved-DFD algorithm. This is because

the number of messages explicitly exchanged for diagnosis of the WSN by CDFD

algorithm is very less than both DFD and improved-DFD algorithm. In addition,

the CDFD algorithm outperforms both DFD and improved-DFD algorithm from

FAR perspective. Thus, the number of fault-free nodes diagnosed as faulty and

isolated by CDFD algorithm is very less as compare to DFD and improved-DFD

algorithm. In other words, under the same fault scenario, the available fault-free
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sensor nodes after the execution of DFD and improved-DFD algorithm are less

compared with CDFD. Thus, the per-node network load is more when DFD and

improve-DFD algorithms are implemented. This in turn cause faster depletion

of battery energy and impacting network lifetime. Though the improved-DFD

algorithm consumes less energy in diagnosing the WSN, it isolates more fault-free

nodes compare to DFD algorithm. Thus, due to the reasons discussed above

DFD algorithm performs better than the improved-DFD algorithm from network

lifetime perspective.

3.5 Summary

In this chapter, a lightweight cluster based distributed fault diagnosis algorithm

has been proposed to diagnose hard and soft faulty nodes in the WSNs. CDFD

algorithm is lightweight since diagnostic messages are sent as the output of the

routine tasks of the WSN. An optimal threshold for fault detection is derived

which in turn improves the performance in regard to detection accuracy and false

alarm rate. A high level (> 0.95) of DA is achieved while keeping the FAR low

(< 0.01) for sparse networks. The message complexity of CDFD algorithm is O(n)

and the number of bits exchanged to diagnose the WSN are O(n log2 n).
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Chapter 4

Intermittent Fault Diagnosis in
WSNs

4.1 Introduction

Experimental studies have shown that more than 80% of the faults that occur in

real systems such as WSNs are intermittent faults [92, 93]. An intermittent fault

originates from inside the system when software or hardware is faulty. By its

nature, an intermittent fault will not occur consistently, which makes its diagnosis

a probabilistic event over time [1]. Since the effect of a fault is not always present,

detection of an intermittent fault requires repetitive testing at a discrete time

kT (k = 1, 2, · · · ) in contrast to single test for detection of permanent faults.

Intuitively this implies that to detect an intermittent fault the issues like number

of test repetitions required, and inter-test interval (T ) are crucial. If T is too

large, then probability that the fault appears after kth test and disappears before

(k+ 1)th test increases and thus detection accuracy decreases. Diagnostic latency

is expected to be more for larger value of T which might not be acceptable for

short mission time applications. Improvement in both detection accuracy and

latency can be achieved with smaller value of T . However, if T is too small, then

frequent exchange of sensor measurements is required as message exchange is the

only means to detect faults. This in turn increases the energy overhead.

These issues motivate to find a trade-off between detection accuracy, detection

latency and energy overhead by properly tuning the detection parameter like

inter-test interval (T ). Finding a good trade-off can be formulated in several
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possible ways, and with emphasis on various aspects of the final output expected.

Thus, there may not exist a single optimal solution rather a whole set of possible

solutions of similar quality. This motivated us to use Multiobjective Optimization

algorithms that deal with such simultaneous optimization of multiple, possibly

conflicting, objective functions. This chapter introduces Two-lbests based

multi-objective particle swarm optimization (2LB-MOPSO) [94] algorithm as a

tool in finding trade-offs accounting for the relative importance of detection

accuracy, latency of isolation of faulty nodes and energy overhead. A fuzzy-based

mechanism is employed to extract the best trade-off solution from the Pareto

optimal solutions provided by the 2LB-MOPSO algorithm [95].

The proposed cluster based distributed intermittent fault diagnosis (CDIFD)

algorithm is executed at each data-gathering phase. Similar to the

algorithm CDFD, the algorithm CDIFD exploits the spatially correlated sensor

measurements. CDIFD detects a node as fault-free if the number of matches

between its sensor reading and that of one-hop neighbors exceeds a predefined

threshold value. The system model is presented in Section 4.2. The description,

analysis and implementation details of the diagnosis algorithm are investigated

in Section 4.3. The multiobjective optimization problem is discussed in Section

4.4. Simulation results are presented in Section 4.5 and finally, this chapter is

summarized in Section 4.6.

4.2 System Model

4.2.1 Notations

The list of the notations used in this chapter and their meanings are shown in

Table 4.1.

4.2.2 Assumptions

In addition to the assumptions made in Chapter 3, the following assumptions are

considered for the CDIFD algorithm.

1. The sensor nodes are subjected to either permanent or intermittent faults.
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Table 4.1: Notations.

n Number of sensor nodes.
vi Sensor node.
Fstatei Fault state of vi.
xi Sensor reading at node vi.
Sxi

Standard deviation of I successive sensor measurements of vi.
N(vi) One-hop neighbor set of vi.
NSxi

Number of one-hop neighbors report similar standard deviation set {Sx}.
T Inter-test interval.
p Fault probability.
Pe Probability that a error appears and is not detected by a test.
Pcerr Channel error probability.
Tout Timeout timer.
kmax Maximum number of test repetitions.
FAD Fault appearance duration.
FDD Fault disappearance duration.
δ1 Application specific constant.
θ Optimal threshold.
θ1 Detection error threshold.
λk Failure rate of Weibull distributed FDD.
β Shape parameter of Weibull distribution.
μ Failure rate of exponentially distributed FAD.
γ Failure rate of fault-free nodes (exponentially distributed).
NP Population size.
Q Number of solutions in non dominated set.
da Average node degree.

2. Faults are detected only through tests based on comparisons of sensor

reading between neighboring nodes where tests are scheduled at the periodic

time kT (k = 1, 2, · · · ) for a fixed T .

3. Test is not perfect, i.e., a fault appears and is detected by the test with

probability 1− Pe and not detected with probability Pe.

4.2.3 Network, Channel, and Energy Model

In this chapter, we consider the network model, channel model, and energy model

the same as specified in Chapter 3. The WSN consists of n sensor nodes where all

sensor nodes are arranged into non-overlapping clusters. Gilbert-Elliott channel

model is considered [86,87]. Similar to [88], this chapter assumes a simple energy
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model for the radio hardware energy dissipation.

4.2.4 Fault Model

The proposed model considers both hard and soft faults. If a node is hard faulty,

the sensor node is unable to communicate. A soft faulty node continues to operate

and communicate with altered behavior. Both the hard and soft faults may appear

continuously or intermittently. The model based on the two-state Markov chain

of the reference [96]. The sensor fault probability p is defined as

p = P (S = ¬x|A = x) (4.1)

where the real temperature reading obtained by the sensor node is represented by

variable S and the actual ambient temperature is represented by variable A. x is

any value of S and A and ¬x is any value not equals to x.

4.2.5 Diagnostic Model

Each sensor node produces temperature measurements at the discrete time kT .

The interval between two successive diagnosis rounds is sampled such that each

sample duration is I × T , where I is an integer. At each sample interval, each

node calculates and stores the standard deviation of these I readings. Each node

broadcasts these standard deviations along with the routine sensed data in their

allotted TDMA time slots. A sensor node performs a self-test and is declared as

fault-free if the reading matches with received identical sensor measurement x and

the number of matches between its standard deviations of temperature. Fault-free

nodes fail to pass the threshold test later been diagnosed as fault-free through a

fault-free neighbor. We redefine the matching criteria discussed in Chapter 3 to

detect the intermittent fault as

M ′
cik

=

⎧⎨
⎩ Sxi

≈ Sxk
(1) if |Sxi

− Sxk
| < δ1

Sxi
	≈ Sxk

(0) otherwise
(4.2)

where Sxi
is the standard deviation of I successive sensor measurements of

sensor node vi and δ1 = C × f(Tdiff (Sxi
, Sxk

)). Tdiff (Sxi
, Sxk

) is the time
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Get the routine sensor
measurements and the
standard deviation sets
of one-hop neighbors at

each communication round

Check fault
state using
Algorithm 3

Faulty?

Allow the node
to participate in
WSN activities

Isolate
yes

no

Figure 4.1: Flow diagram to detect an intermittent fault.

difference between the time vi takes its own I th measurement and vi receives

sensor measurement of vk ∈ N(vi) and C is a constant.

4.3 The Proposed CDIFD Algorithm

4.3.1 Description of the Algorithm

Similar to the algorithm CDFD, the algorithm CDIFD consists of three phases

namely the clustering phase, the fault detection phase and the dissemination

phase. The clustering phase and dissemination phase are similar to CDFD

algorithm proposed in Chapter 3. However, the detection phase of CDFD

algorithm is modified to detect intermittent faults. In the clustering phase,

the WSN is partitioned into different non-overlapping clusters. In the fault

detection phase, each cluster head accumulates the fault states of their affiliated

member sensor nodes. In the dissemination phase, the cluster level local view is

disseminated in the WSN such that each sensor node correctly diagnoses the state

of each sensor node in the WSN.

Detection Phase

To test for permanent faults, any particular test need only be applied once. This

is because permanent faults are software or hardware faults that always produce

errors when they are fully exercised. In contrast, the only approach to test for

intermittent faults is through repeated application of tests. To detect intermittent

faults, each node produces sensor readings at discrete times kT (k = 1, 2, 3, ...)

and stores in its local memory. It calculates the standard deviation of I successive
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Algorithm 3 CDIFD (Detection Phase)

1: Each node regularly records its sensor measurement at discrete time kT .
2: // The inter data gathering interval is sampled with sampling interval IT .

The algorithm is executed at each data gathering phase.
3: Calculate the standard deviations of successive sensor measurements in each

sample interval and generate a standard deviation set {Sxi
}.

4: Broadcast xi and {Sxi
} in its TDMA time slot.

5: Set timer Tout.
6: Determine {NSxi

}, the set of one-hop neighbors report similar sensor
measurement x and identical standard deviation set {Sx}.

7: if Tout = true then
8: Declare unreported nodes as possibly hard faulty.
9: end if
10: if (xi ≈ x and {Sxi

} ≈ {Sx} and |{NSxi
}| < θ) or (xi 	≈ x and {Sxi

} 	≈ {Sx}
and |{NSxi

}| ≥ θ) then
11: Fstatei ← Possibly soft faulty.
12: else
13: Fstatei ← Fault-free.
14: end if
15: Broadcast the Fstatei .
16: Node identified as possibly soft faulty checks for a node vk ∈ N(vi) such

that Fstatek is fault-free. If such vk exists, {Mcik} equals to 1, all elements of
{M ′

cik
} equals to 1 and vk ∈ {NSxi

} then set Fstatei as fault-free or else faulty.
Broadcast the fault table FTi.

17: If vi is cluster head, it constructs a cluster level local view and takes a decision
on possibly hard faulty nodes by comparing the fault tables of member nodes.

sensor measurements, where I is an integer. Each node vi broadcasts the routine

sensed data and the set of standard deviations {sxi
} in its allotted TDMA time

slot. For instance, if the duration between two data-gathering round is 50T and

I = 10, then |{sxi
}| = 5. Upon receiving the routine sensor measurements and the

standard deviation sets, vi buffers these routine sensor measurements and standard

deviation sets and marks their times of reception. Node vi next forms a set of

neighbors {NSxi
} ⊆ N(vi) those have reported identical sensor measurements and

identical standard deviation sets, say x and {Sx} respectively. In this approach,

∀vj ∈ N(vi), two standard deviation sets are similar if each element in the set {sxi
}

is similar to the corresponding elements in the set {sxj
}. The decision regarding
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the fault state of a node is taken as follows—

vi =

⎧⎨
⎩ Fault-free if xi ≈ x, {sxi

} ≈ {Sx} and |{NSxi
}| ≥ θ

Possibly soft-faulty otherwise.
(4.3)

A description of the detection phase of the algorithm CDIFD is presented in

Algorithm 3. The operation of the algorithm is described by the flow diagram in

Figure 4.1. The conditional block labeled “Faulty?” represents the snapshot view

of the current diagnostic round. The algorithm loops as long as no errors from a

node are detected. The node is isolated when a fault is observed.

4.3.2 Analysis of the Algorithm

Once an intermittent fault is activated in a sensor node, faults are observable

for a duration called fault appearance duration (FAD) before they disappear.

Eventually, errors will reappear after fault disappearance duration (FDD) either

because of permanent faults or correlated intermittent faults. This is depicted in

Figure 4.2. The behavior of intermittent faults can be characterized by measuring

or estimating the probabilities of error disappearance and reappearance in discrete

time kT .

Figure 4.2: Appearance and disappearance of a fault.

The state of a sensor node is modeled as four-state Markov model. Figure 4.3

depicts this model where the transition probabilities between different states of

the sensor node are shown. According to the proposed model, the node can be in

Figure 4.3: Analytical model.
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either one of the four states — fault-free (FF), permanent faulty (PF), intermittent

faulty and fault is active (FA), and intermittent faulty but the fault is inactive

(FD). The sensor node in FF state can make a transition to either PF state or

FA state with a rate γ. From FD state, it can go either to PF state or to FA

state or stay in FD state. In order to analyze an intermittent fault in more details

we focus on FA and FD states, which can be visualized as a two-state Markov

model. The state FA (1) corresponds to fault exits and appears and state FD

(0) corresponds to fault exits but does not appear. The probabilities for going

from one state at time kT to either state FA or FD at time (k + 1)T depends on

FDD and FAD respectively. The FDD for intermittent faults in a sensor node is

system and deployment specific, thus, unpredictable in most practical scenarios.

Intermittent faults usually exhibit a relatively high occurrence rate after its first

appearance and eventually tend to become permanent. Therefore, as suggested

in [21] a Weibull distribution is considered for FDD with shape parameter β > 1

and failure rate λk. An exponential distribution is considered for FAD with a

constant failure rate μ = (1/mean time in FA state) [21,96]. A similar distribution

is considered for time to failure of a fault-free node with the constant failure rate

γ = (1/mean time in the fault-free state). In practice μ� λk � γ.

In order to devise such a model, let {Fj} is the state space where F0 denotes

that node is fault-free and F1 denotes that node is intermittent faulty. Let {tk}
is the test pattern where tk is the kth test performed by the sensor node by using

Algorithm 3 at time kT (k = 1, 2, · · · ). The outcome of the kth test is 0 if the

node is either fault-free or node is intermittent faulty but the fault does not appear

during the test. Since effect of a fault is not always present, deriving an optimal

test pattern which can certainly detect the intermittent fault is hard to realize.

In order to get a near optimal test pattern, we consider an inequality where the

probability that an intermittent fault exists and is not detected must be smaller

than the error threshold θ1. Using the fact that the network is sampled with

sampling period T , the following inequality is obtained

P (F1|tk = 0) ≤ θ1 (4.4)
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For k = 1, using Baye’s rule we can write

P (t1 = 0|F1) · P (F1)

P (t1 = 0|F0) · P (F0) + P (t1 = 0|F1) · P (F1)
≤ θ1 (4.5)

For kmax number of tests the above equation can be rewritten as

kmax∏
k=1

P (tk = 0|F1) · p

(1− p) +
kmax∏
k=1

P (tk = 0|F1) · p
≤ θ1 (4.6)

The term
kmax∏
k=1

P (tk = 0|F1) of (4.6) defines the probability that the fault remains

inactive at time instants kT , where k = 1, 2, · · · , kmax. Thus, the inequality can

be rewritten as
kmax∏
k=1

P00(kT ) · p

(1− p) +
kmax∏
k=1

P00(kT ) · p
≤ θ1 (4.7)

where P00(kT ) is called the state transition probability, which is the conditional

probability that the sensor node will be in the state FD (0) at time kT immediately

after the next transition, given that it was in the state FD (0) at time (k − 1)T .

This probability is [96, 97]

P00(kT ) =
μ

μ+ λk
+

λk

μ+ λk
e−(λk+μ)T (4.8)

Equation (4.7) is derived under perfect test condition, i.e., a fault is always

detected by a test when it occurs. Since we adopt neighbor coordination as a test

to detect faults, thus, a fault is detected by a test with probability 1 − Pe and is

not detected with probability Pe. The probability Pe is (3.16)

Pe = f1 ·
⎛
⎝1− p−

N∑
l=0.5(N−1)

(1− p)fl + pfN−l

⎞
⎠

where fl is the probability that l out of N 1-hop neighbors of a node are fault-free.

For imperfect test condition, equation (4.7) can be rewritten as

kmax∏
k=1

P00(kT ) · p · (1− Pe)

(1− p) +
kmax∏
k=1

P00(kT ) · p · (1− Pe)

≤ θ1 (4.9)
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As comprehended from (4.9), a better trade-off between detection accuracy,

detection latency and energy overhead can be achieved by properly tuning the

detection parameters such as kmax and T .
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Figure 4.4: Impact of design parameters.

Impact of Design Parameters on fault Detection

The modeling framework discussed in earlier sections allow us to highlight

detection accuracy, detection latency and energy overhead trade-offs in detecting

an intermittent fault. To evaluate the impact of the design parameters on these

trade-offs we have first used (4.9) to find out the number of tests required to

detect faults and the detection latency at varying values of T and θ1. These

theoretical results are shown in Figures 4.4(a) and 4.4(b) respectively. Second, we

have conducted a simulation on a simple network to find the impact of these design

parameters. This simple network we considered has one intermittent faulty node

surrounded by four fault-free one-hop neighbors. For simulation, the mean value
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of FAD is considered 50ms where FAD is exponentially distributed. The FDD is

assumed to follow a Weibull distribution with increasing failure rate (β = 1.5) and

expected value of 1 hour. We run the experiment until the fault is detected, and

the results are shown in Figure 4.4(c) and 4.4(d). As discussed earlier and shown

in Figures 4.4(a) and 4.4(c), the number of tests required and thus the number of

messages exchanged to detect the intermittent faults decreases for an increase in

T . Figures 4.4(b) and 4.4(d) show the latency in detecting the intermittent fault.

It is observed that the latency tends to increase with T . As comprehended from

Figures 4.4(a) and 4.4(b), better detection accuracy, i.e., extremely small value

for θ1 can be achieved at the cost of the number of messages to be exchanged and

detection latency.

Calculation of Objective Functions

From the above discussions, it can be concluded that the objectives are conflicting.

These two conflicting objectives are; 1) to minimize the detection latency and

2) to minimize energy overhead (energy overhead is proportional to number of

tests), while satisfying detection error constraint. This problem is formulated,

mathematically, in this section.

Energy Overhead: The number of messages exchanged to detect intermittent

faults is significant in WSNs as the energy consumed by a sensor node is directly

proportional to the amount of traffic it generates or receives. Thus, a reduction in

the number of tests required (kmax) to detect an intermittent faulty node will in

turn significantly decrease the energy overhead. From Lemma 5, the normalized

total energy dissipation can be expressed as

F1 = kmax(log2 n+ 1)(ETx + ERx) (4.10)

We normalize the total energy consumption with respect to the number of

nodes participated in diagnosis.

Detection Latency: Detection latency is the time elapsed between the first

occurrence of the fault, and the fault detected. Thus, the detection latency is

a function of kmax and T . As discussed earlier and shown in Figure 4.4(b) and

4.4(d), detection latency increases with T and might be undesirable for critical
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applications with short mission time. The detection latency can be expressed as

F2 = kmax · T (4.11)

Constraint Function: There is mainly one constraint corresponding detection

error that should be satisfied, which is given as

kmax∏
k=1

P00(kT ) · p · (1− Pe)

(1− p) +
kmax∏
k=1

P00(kT ) · p · (1− Pe)

≤ θ1 (4.12)

Implementation

Figure 4.5: Time line showing intermittent fault detection.

In this section, we discuss the design details for practical deployment of the

intermittent fault diagnosis algorithm. Each sensor node in the WSN is scheduled

to take sensor measurement at the discrete time kT . As shown in Figure 4.5, the

data-gathering stage is scheduled at GT where G is an integer and is application

specific. For instance, applications with short mission time need the data to be
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gathered more frequently in contrast to applications, where frequency of data

gathering is less. For applications with long mission time, GT is large. Thus,

to detect intermittent faults, G/T number of sensor measurements needs to be

broadcasted by each node. This in turn make the packet to grow with G. Since

energy consumed by a sensor node is directly proportional to the number of bits it

transmits or receives, the energy overhead will be more for large value ofG and may

not be practically implementable. To address this issue, we suggest sampling the

interval GT where each sample constitutes of I consecutive senor measurements

(Figure 4.5). The standard deviation of these I sensor measurements correspond to

each sample interval are calculated and broadcasted along with the routine data at

its defined slot during T3 to T4 of each data-gathering phase. This in turn reduces

the packet size and makes the algorithm energy efficient. Use of standard deviation

instead of individual measurements does not affect the detection performance

since the rate of change in sensor measurements of a fault-free sensor over time

is very less. In addition, a sensor often reports unusually high or low sensor

measurement during FAD. Thus, the standard deviation of sensor measurements

of a sample interval with at least one incorrect measurement will be distinguished

from the corresponding standard deviations of one-hop neighbors with all true

measurements.

During T4 to T5 of each data-gathering phase, nodes broadcast the local

decisions in their time slot. The decisions of one-hop neighbors are stored in

the local fault table. At T5 nodes with possibly soft-faulty status take a final

decision using this fault table and broadcast its updated decision in its time slot

during T5 to T6 of each data-gathering stage. Cluster head turns off their radio

once their TDMA time slots run out. At T6, all cluster heads wake up, and the

inter-cluster communication is triggered. Cluster heads transmit control messages

and data packets using CSMA. The local diagnostics and the routine data are

aggregated through the spanning tree up to the sink. Thus, at T7, the sink has

the global fault state view of the WSN. The sink broadcasts this global view.
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4.4 Multiobjective Optimization Problem

Multiobjective optimization is the process of simultaneously optimizing two or

more conflicting objectives subject to certain constraints. Since many conflicting

objectives to be optimized simultaneously, there is a set of possible solutions of

equivalent quality. Most real-world problems employ the optimization of several

objectives, which are often conflicting in nature. A multiobjective optimization

problem with M conflicting objectives can be defined as in [98]:

Maximize/minimize

y = f(x)

= (f1(x), f2(x), ..., fM(x)), x ∈ [Xmin, Xmax]

subject to:

gj(x) ≤ 0, j = 1, ..., J

hk(x) = 0, k = 1, ..., K

where x and y are the decision vector and the objective vector respectively.

Different from the single objective optimization, there are two spaces to be

considered. One is the decision space denoted as x and the other is the objective

space denoted as y.

Definition 1 Let wi and wj are two solutions to a multiobjective problem. wi

dominates wj if wi performs at least as good as wj with respect to all the objectives
and performs strictly better than wj in at least one objective [94].

Definition 2 Among a set of solutions W , the non-dominated set of solutions W ′

are those that are not dominated by any member of the set W [94].

Definition 3 When the set W is the entire feasible search space, the resulting
non-dominated set W ′ is called the Pareto-optimal solution set [94].

4.4.1 Finding Pareto Optimal Solution

Evolutionary algorithms are correctly fitted to multiobjective optimization

problems as they are essentially based on biological processes, which is inherently

multiobjective. An extensive survey on multiobjective evolutionary algorithms are

well presented in [99]. Central to these articles, considering superior performance
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for solving multi objective problems, the 2LB-MOPSO [94] and NSGA-II [100]

algorithms have been used in this study.

In NSGA-II, initially a random population of size H , which is sorted based

on the non-domination, is created. This population subsequently undergoes

selection, crossover and mutation processes to produce an offspring population

of size H . A combined population of size 2H is formed from the parent

and offspring population. Next, the population is sorted according to the

non-domination relation. This in turn classifies the complete population into

several non-dominated fronts based on the values of the objective functions.

Until each member of the population falls into one front, the other fronts are

determined. The new parent population is generated by adding the solutions from

the first front. Several non-dominated fronts are discarded as the population size is

predefined. The required numbers of members for the new population are selected

using a new parameter called crowding distance. The crowding distance describes

how close an individual is to its neighbors.

Similar to GA, the PSO algorithm has been successfully extended to

multiobjective optimization problems. Different from other variants of MOPSO

algorithms, the 2LB-MOPSO algorithm uses two local bests instead of one

personal best and one global best to lead each particle. The two local bests

are selected to be close to each other in order to enhance the local search ability

of the algorithm. Compared to the other variants of MOPSO algorithms, the

2LB-MOPSO algorithm shows great advantages in maintaining a good diversity

of the solutions, convergence speed and fine-searching ability.

In 2LB-MOPSO algorithm, NP number of particles are randomly and

uniformly initialized in the D-dimensional search space. Next, the fitness values

of all particles are evaluated and all current positions set to be A(0), the external

archive. An external archive is commonly used to store the non-dominated

solutions obtained in the search process. The size of the archive is usually

restricted to a pre-specified size which is normally the same as the finally required

approximation solution set size. In 2LB-MOPSO algorithm, the initialized archive

includes all initialized solutions at iteration 1. In order to select the first lbests

for a particle from the A(0), an objective is first randomly selected followed by a
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random selection of a non empty bin of the chosen objective. Within this bin, the

archived member with the lowest front number and among these with the highest

crowding distance is selected as the first lbests. The second lbests is selected

from a neighboring non empty bin with the lowest front number and the smallest

Euclidean distance in the parameter space to the first lbests. As velocity of each

particle is adjusted by the two lbests from two neighboring bins, the flight of each

particle will be in the direction between the positions of two lbests and oriented

to improve upon the current non-dominated solutions.

Since the first lbests of every particle is chosen randomly, every particle should

not be assigned with a new pair of lbests which come from the different pair of bins

in every iteration. This is because the flight of each particle will be almost random

in this case. Therefore, after assigning a pair of lbests to a particle, the number of

iterations the particle fails to contribute a solution to the archive A(t) is counted.

The particle is reassigned with another pair of lbests when the count exceeds a

pre-specified threshold. When the count is less than or equal to the pre-specified

threshold during the iterative optimization stage, two lbests are chosen from the

same assignment of the objective and the bin as used in the last iteration. The

particle will accelerate potentially in a direction between the two lbests and hence

may explore the region of the two lbests.

The velocity and position of each particle are updated. If any dimension

exceeds the search space, then they are reset to the corresponding bound value.

Next, the fitness value of a particle is evaluated. In every iteration, all new

positions Q(t) generated in iteration t is combined with the members in the archive

A(t) to obtain the mixed-temporary external archive. The sorted archive R(t) is

obtained by applying the non-domination sorting to this mixed-temporary archive.

During this process, all the sorted solutions retain two indicators, namely, the front

rank and crowding distance value. The sorted solution with the lowest front rank

is first included in the archive A(t+1). When the size of the archive equals to the

permitted maximum size of the archive, the crowding distance is applied to select

the required number of members to be included in A(t+ 1) from the lowest front

that still remains unselected in the archive R(t).
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4.4.2 Performance Metrics and Best Trade-off Solution

All the existing multiobjective optimization algorithms aim to find solutions

as close as possible to the Pareto optimal front and as diverse as possible in

the non-dominated front. Different performance metrics to measure these two

objectives have been suggested in the literature. Since the true Pareto-optimal

front for the proposed application is unknown, for performance analysis, we

consider coverage of the Pareto front [101], and spacing of the Pareto front [102].

The first metric measures the convergence of the Pareto front, while the second

metric measures the distribution of solutions along the Pareto front.

Coverage of The Pareto Front

Let A and B are two Pareto-optimal sets. This metric, measures the relative

spread of solutions between two non-dominated sets. The function H maps the

ordered pair (A,B) to the interval [0, 1] and is given by

H(A,B) =
|{b ∈ B|∃a ∈ A : a � b}|

|B| (4.13)

where |B| represents the number of solutions in the set B, and a � b implies that

solution a weakly dominates solution b. The value H(A,B) = 1 implies that all

decision vectors in B are weakly dominated by A. In contrary, H(A,B) = 0,

implies that none of the points in B are weakly dominated by A. If H(A,B) >

H(B,A), then the set A has better solutions than the set B.

Spacing

Schott [102] introduced a metric namely Spacing that measures the distribution of

the solutions over the non-dominated front. Spacing between solutions is computed

as

Spacing =

√√√√ 1

Q− 1

Q∑
i=1

(
Yi

Ȳ
− 1

)2

(4.14)

where

Yi = minj

M∑
m=1

|F i
m − F j

m| for j = 1, · · · , Q and i 	= j. (4.15)

Q is the number of solutions in the non-dominated set, M is the total number

of objectives to be optimized and Ȳ is the mean of all the Yi. The nearer the
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value of Spacing to zero, the more uniformly distributed the solutions found over

the Pareto optimal front.

Fuzzy Decision Making

Upon obtaining a set of Pareto optimal solutions, we need to find a best optimum

trade-off. As suggested in [95], the fuzzy membership functions that represent

the goals of each objective function are used. The fuzzy sets are defined by these

membership functions. These functions represent the degree of membership in

certain fuzzy sets using values from 0 to 1. The membership functions for both

objectives are defined as

μi =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 Fi ≤ Fmin
i

Fmax
i −Fi

Fmax
i −Fmin

i
Fmin
i < Fi < Fmax

i

0 Fi ≥ Fmax
i

(4.16)

where Fmin
i and Fmax

i are the minimum and maximum values from non-dominated

solutions of each objective function, respectively. For each non-dominated

solution, the normalized membership function, can be calculated as

μr =

2∑
i=1

μr
i

R∑
r=1

2∑
i=1

μr
i

(4.17)

where, R is the number of non-dominated solutions. The solution that attains the

maximum membership μr in the fuzzy set can be chosen as the best solution.

Best solution = max{μr : r = 1, ..., R}

4.5 Simulation Experiments

4.5.1 Experiment 1: Tuning of detection parameters

This section is primarily meant to study how the design parameters namely kmax

and T affect detection of intermittent faults in terms of two important figures of

merit: the detection latency and energy overhead while maintaining low detection

error. The NSGA-II and 2LB-MOPSO algorithm based proposed approach for
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tuning of the detection parameters have been implemented in MATLAB. The

mean value of FAD is considered 50 ms where FAD is exponentially distributed.

The FDD is assumed to follow a Weibull distribution with an increasing failure

rate (β = 1.5) and expected value of 1 hour. For 2LB-MOPSO algorithm; the

parameters are set as in the [94]: count and number of bins are considered as 5

and 10 respectively, population size NP = 50, inertia weight ω = 0.729 , C1 =

C2 = 2.05, Vmax = 0.25(Xmax −Xmin). For NSGA-II algorithm (real-coded), we

use a population size of 50, crossover probability of 0.9 and mutation probability

of 0.1. As suggested in [100], the distribution indexes for crossover, and mutation

operators are set as ηc = 20 and ηm = 20. The decision variables are initialized

with uniformly distributed pseudorandom numbers that take the range of these

variables, i.e., T = rand [Tmin, Tmax] and k = rand [kmin, kmax]. We consider

Tmin = 1000 ms, Tmax = 60000 ms, kmin = 1 and kmax = 15000, and θ1 = 10−20.

The maximum function evaluations are set as 15000.

2 4 6 8 10 12
x 10

−3

0

2

4

6

8

10

12

Normalized total energy consumption (J)

D
et

ec
tio

n 
la

te
nc

y 
(h

ou
rs

)

 

 

2LB−MOPSO

NSGA−II

Best trade−off

(a)

Figure 4.6: Trade-off curve.

Performance Analysis

In order to evaluate the performance, 20 independent runs were conducted for both

NSGA-II and 2LB-MOPSO algorithms. To illustrate the difference between the

Pareto fronts obtained with 2LB-MOPSO algorithm and NSGA-II, the Pareto
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fronts obtained with one of the twenty runs of 2LB-MOPSO algorithm and

NSGA-II are plotted in Figure 4.6. Here, we consider the normalized total energy

which is the ratio between the total energy and the number of nodes participated

in the detection. The quality of the Pareto-optimal solutions obtained with

NSGA-II and 2LB-MOPSO algorithm is measured by the two aforementioned

performance metrics. The best, worst, mean, median and standard deviation of

the two performance metrics is presented in Table 4.2. The best average result

with respect to each metric is shown in a bold font.

Table 4.2: Results of different performance metrics for 2LB-MOPSO and NSGA-II.
2LB-MOPSO NSGA-II

Coverage
Best 0.9886 0.3126
Worst 0.7835 0.0192
Average 0.9133 0.2013
Median 0.8361 0.0133
Standard deviation 0.0821 0.1352

Spacing
Best 0.2096 0.3862
Worst 0.3932 0.6696
Average 0.3206 0.5182
Median 0.3182 0.5021
Standard deviation 0.0749 0.1204

In Table 4.2, the value for Coverage = 0.9133 implies that 91.33% of

the Pareto-optimal solutions obtained with NSGA-II are weakly dominated

by the solutions obtained with 2LB-MOPSO algorithm. Likewise, the value

for Coverage = 0.2013 means that only 20.13% of the solutions obtained

with 2LB-MOPSO algorithm are weakly dominated by those with NSGA-II.

In addition, the standard deviation of 2LB-MOPSO algorithm with respect to

Coverage implies that the performance of 2LB-MOPSO algorithm is more stable.

The distributions of the Pareto-optimal solutions over the non-dominated front

obtained with 2LB-MOPSO algorithm and NSGA-II are evaluated with metric

Spacing. Since a lower value of Spacing implies uniform spread of solutions,

as shown in Table 4.2 for our application, 2LB-MOPSO algorithm outperforms
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NSGA-II. The best trade-off solution is obtained on both the solutions by

using the aforementioned fuzzy logic-based mechanism and is shown in Figure

4.6. As depicted in Figure 4.6, the best trade-off solution using 2LB-MOPSO

algorithm-based approach (0.0044 J, 150.7867 minutes) is obtained for T =

8600 ms and kmax = 1052. Similarly, the best trade-off solution using NSGA-II

based approach (0.0057 J, 271.6728 minutes) is obtained for T = 12978 ms and

kmax = 1256.

4.5.2 Experiment 2: Time and energy efficiency

In order to further validate the obtained detection parameter T and measure

its effectiveness, we chose to conduct an extensive set of simulations using

Castalia-2.3b [52], a state-of-art WSN simulator based on the OMNET++ [53]

platform. For the simulation purpose, a communication scenario has been

generated with simulation parameters as summarized in Table 3.2, where nodes

were uniformly distributed. In this experiment, we use the tuned detection

parameters obtained using both 2LB-MOPSO algorithm and NSGA-II. Each

sensor node senses data at every T = 8600 ms interval for 2LB-MOPSO based

implementation and at every T = 12978 ms for NSGA-II based implementation

and stores in its local memory. The values for G and I are set to 50 and

10 respectively. However, different values for G and I can be used depending

on applications, and the type of sensors used. In this experiment, we assume

temperature sensors. The channel error probability estimate at each node is

1× 10−3.

As discussed earlier both FAD and FDD are system specific and depend on

multiple factors. Thus, to simulate the real fault scenario FAD follows a Weibull

distribution with expected value ranging from 1 minute to 10 hours and FAD

follows an exponential distribution with expected value ranging from 5 ms to

50 ms. All the intermittent faults are activated randomly before first tests, i.e.,

before 8600 ms for 2LB-MOPSO based implementation and before 12978 ms for

NSGA-II based implementation. In this simulation, sensor nodes are assumed

to be faulty with probabilities of 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, respectively.

The transmission range is chosen for the WSN to have the desired average node

87



Chapter 4 Intermittent Fault Diagnosis in WSNs

degree da. In this experiment, we attempted to illustrate the detection latency

and normalized total energy overhead of the detection algorithm. All results are

the average of results obtained on 100 topologies. For better analysis, we consider

only intermittent faults. The average detection latency and the average normalized

total energy overhead are shown in Figure 4.7(a) and 4.7(b) respectively for varying

fault rate and da. As shown, both the detection latency and normalized energy

overhead are less affected by the number of faults. The reason is that the detection

of intermittent faults depends only on T and the detection latency depends on the

number of test repetitions executed to detect the fault. The normalized total

energy overhead depends purely on the number of messages exchanged to detect

the fault. As discussed earlier more messages need to be exchanged if nodes fail to

pass the threshold test. Since only intermittent faults are considered, the number

of nodes failed to pass the threshold test is less. This is because the probability

that fault appears in all the intermittent faulty neighbors at the time of test is

less.
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Figure 4.7: Average detection latency and normalized total energy overhead:
Pcerr = 10−3.

4.5.3 Experiment 3: Efficiency with regard to da and p

In this experiment, the performance of the diagnosis algorithm in regard to DA and

FAR is evaluated by first considering only intermittent faults and then considering

both intermittent and permanent faults. In the later experiment, the number of

intermittent and permanent faults are randomly chosen while maintaining the
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total number of faults. For performance evaluation, we assume the number of

intermittent and permanent faults do not change during the simulation period.

Note that this assumption does not mean that the detection algorithm is not

adaptive to change in fault type and fault rate. Since in all respect 2LB-MOPSO

algorithm outperforms NSGA-II, we consider T = 8600 ms and kmax = 1052. To

validate the obtained detection parameter T , the experiment was conducted for

21 epochs (kmax/G = 1052/50 ≈ 21).
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Figure 4.8: DA and FAR with da ≈ 4 and da ≈ 12 for a WSN considering (a)
only intermittent faults and (b) both intermittent and permanent faults: Pcerr =
1× 10−3.

Figures 4.8(a) and 4.8(b) show the average detection accuracy and average

false alarm rate of the detection algorithm considering only intermittent faults.

Interestingly, an improvement in both DA and FAR is observed. The reason

of this improvement can be explained as — (i) a faulty node may be detected as

fault-free only when the node has more than θ faulty neighbors and shows a match

in comparison, and a fault-free node detected as faulty only when the node has

more than θ faulty neighbors and in second round of test it does not find a node

which is detected as fault-free in first round of test, (ii) for the scenario where

all faults are intermittent, the probability of mentioned neighbors at the time of

test is less as compare to the scenario where all faults are permanent because the

probability that fault appears in all the faulty neighbors at the time of test is less.
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4.5.4 Experiment 4: Effect of communication channel
faults

The robustness of the detection algorithm to faults in the communication channel

is analyzed by estimating DA and FAR for various Pcerr. For better analysis,

we consider only intermittent faults. As suggested in [103], for simplicity in the

simulation Pgood is taken as 0 and Pbad is taken as 1. PBG is fixed to 1/8 and

PGB is varied to get different channel error probabilities Pcerr. We have used the

previously generated scenario with da = 12 and the simulation was conducted for

31 epochs. The channel error rate is increased in steps from 10−5 to 10−1. Faults in

the communication channel might cause some fault-free nodes to fail in receiving

the sensor measurements from its neighbors. This in turn decreases the effective

neighbor size of a sensor node and might affect the local decision. However, as

discussed and shown in Chapter 3, the proposed test algorithm shows better

performance even in sparse WSNs. In addition, we consider only intermittent

faults and the probability that the fault appears in all the faulty nodes at the time

of test is very small. Thus, the effective neighbor size is more while considering

only intermittent faults as compared to considering only permanent faults or both.

Accordingly, as shown in Figures 4.9(a) and 4.9(b) the DA and FAR is less affected

by channel error.
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Figure 4.9: DA and FAR at varying value of Pcerr (considering only intermittent
faults): da ≈ 12.

The robustness of the detection algorithm to faults in the communication

channel is analyzed by estimating detection latency and normalized total energy
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Figure 4.10: Average detection latency and normalized total energy overhead at
varying value of Pcerr: da = 20.

overhead in detecting intermittent faults for various Pcerr. As expected and shown

in Figure 4.10(a), the detection latency is less sensitive to change in channel error

rate. The reason is that detection of an intermittent fault only depends on T and

number of test repetitions but not on the average node degree. As expected and

shown in Figure 4.10(b) the normalized total energy overhead is less affected by

varying channel fault rate.

4.6 Summary

The diagnosis of intermittent faults in WSNs is modeled as a biobjective

optimization problem. The NSGA-II and 2LB-MOPSO algorithm are used as tools

to tune the detection parameters such as T and kmax. A fuzzy based mechanism is

also used to find out the best compromised solution on the optimal Pareto front.

In general, it is observed that 2LB-MOPSO algorithm outperforms NSGA-II for

tuning of detection parameters. A high level (> 0.95) of DA is achieved while

keeping the FAR low (< 0.01) for sparse WSNs. The proposed CDIFD algorithm

effectively tolerates faults in communication channels. The CDIFD algorithm is

energy efficient since the normalized total energy consumption is significantly less.
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Transient Fault Diagnosis in
WSNs

5.1 Introduction

The occurrence of transient faults in sensor nodes of a WSN affects the normal

operation of the network. The sensor nodes in WSNs are subjected to transient

faults due to external interventions such as electromagnetic radiations, noise, etc.

If a sensor node suffers from transient faults, the sensor node will not perform

its desirable operation for a small duration of time. After the fault disappears,

the fault may reappear after a long normal operational time. As a first step to

solve this problem of diagnosing transient faults, it is necessary to discriminate the

transient from intermittent or permanent faults. This is because a sensor node with

transient faults does not necessarily imply that the sensor node should be isolated

although the unstable environment might warrant a temporary shutdown [1]. A

discrimination between transient and intermittent or permanent faults addresses

the following key problems that are more likely in a WSN—

• Effective energy utilization. Isolation of sensor nodes with transient faults

will reduce available sensor nodes in the WSN. This increases the network

workload of each sensor node and in turn leads to faster depletion of sensor

node battery energy and impacting network lifetime.

• Network coverage and connectivity. Isolation of fault-free nodes with

transient faults will reduce the available sensor nodes in the WSN thus

impacting network coverage and connectivity.
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These issues motivate the need to design an efficient fault detection and

discrimination algorithm suitable for WSNs. The proposed cluster based

distributed fault diagnosis and discrimination (CDFDD) algorithm not only

detects the faulty sensor nodes but also discriminates the transient from

intermittent or permanent faults.

The rest of the chapter is organized as follows. The system model is

discussed in Section 5.2. The description, analysis and implementation of the

fault discrimination algorithm are discussed in Section 5.3. Simulation results are

presented in Section 5.4 and finally, chapter summery is given in Section 5.5.

5.2 System Model

5.2.1 Notations

The list of the notations used in this chapter and their meanings are shown in

Table 5.1.

Table 5.1: Notations.

n Number of sensor nodes.
vi Sensor node.
Fstatei Fault state of vi.
Sxi

Standard deviation of I successive sensor measurements of vi.
N(vi) One-hop neighbor set of vi.
T Inter-test interval
r Reward counter.
z Penalty counter.
ξ Penalty increment.
θ2 Reward counter threshold.
θ3 Penalty counter threshold.
pp Permanent fault probability.
pi Intermittent fault probability.
pt Transient fault probability.

5.2.2 Network, Channel, and Energy Model

In this chapter, we consider the network model, channel model, and energy model

same as specified in Chapter 3. The WSN consists of n sensor nodes where all
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sensor nodes are arranged into non-overlapping clusters. Gilbert-Elliott channel

model is considered [86, 87]. Similar to [88], this chapter assumes a simple

energy model for the radio hardware energy dissipation. This chapter follows

the assumptions of Chapter 3 and 4 such as a static network, homogeneous

sensor nodes, unique ID for each sensor node, variable transmission power level,

symmetric links, and synchronized networks. The assumptions made in this

chapter are similar to Chapter 5.

5.2.3 Fault Model

The proposed model considers both hard and soft faults in sensor nodes. If a

node is hard faulty, the sensor node is unable to communicate. A soft faulty node

continues to operate and communicate with altered behavior. Both the hard and

soft faults may appear continuously or intermittently. A sensor node that gives an

erroneous reading is not always treated as faulty. A sensor node exhibits consistent

faulty behavior are detected as faulty.

5.2.4 Diagnostic Model

Each sensor node produces temperature measurements at the discrete time kT .

The interval between two successive diagnosis rounds is sampled such that each

sample duration is I × T , where I is an integer. At each sample interval,

each node calculates and stores the standard deviation of these I readings.

Each node broadcasts these standard deviations along with the routine sensed

data in their allotted TDMA time slots. A sensor node performs a self-test

on the received identical sensor measurements, identical standard deviations of

temperature measurements from one-hop neighbors and the derived optimum

threshold. Fault-free nodes fail to pass the threshold test later been diagnosed

as fault-free through a fault-free neighbor. A node detected as faulty enters the

observation stage. In the observation stage, the health of the node is periodically

monitored with interval T . The number of times the node pass (fail) the test is

compared with a threshold namely reward (penalty) threshold, and a decision is

taken. We use the matching criteria discussed in Chapter 4.
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5.3 The Proposed CDFDD Algorithm

5.3.1 Description of the Algorithm

The fault discrimination algorithm consists of two phases namely fault detection

phase and observation phase. The algorithm is executed at the discrete time kT

where k = 1, 2, · · · and T is the inter-test interval. A sensor node detected as faulty

in the detection phase undergoes the observation stage before being isolated from

the WSN. A formal description of the algorithm is presented in Algorithm 4.

The observation phase decides whether to isolate the node from the WSN

(intermittent or permanent faulty) or to reintegrate the node to the WSN

(fault-free with transient faults). To discriminate transient from intermittent

faults, this algorithm follows the count and threshold mechanism proposed by

Serafini et al. in [104] which was primarily designed for wired interconnected

networks. Similar to [104], our approach uses two counters namely reward (r)

and penalty (z) counter to discriminate fault types with low latency and low

energy overhead. Unlike [104] we first tune the inter-test interval T to detect the

presence of faults with minimum test repetition. Second, we adopt the earlier

discussed two-state Markov chain to model fault appearance and disappearance.

We consider the time a node spends in the fault disappearance state to tune the

detection parameters. We consider the following detection parameters:

• Inter-test interval (T ). The time interval of two consecutive sensor

measurements.

• Reward counter threshold (θ2). The number of diagnostic rounds a

node under observation shows expected behavior, after which a node is

reintegrated to the WSN.

• Penalty counter threshold (θ3). The number of correlated diagnostic rounds,

after which a node gets isolated.

• Adaptive penalty increments. The penalties assigned after a fault is detected.

In the observation phase, the node under observation first initializes the penalty

counter to one and the reward counter to zero. If a fault appears and is detected
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Algorithm 4 CDFDD

1: Each node regularly records its sensor measurement at at discrete time kT .
2: Initialize z = 0 and r = 0.
3: // The inter data gathering interval is sampled with sampling interval IT .

The algorithm is executed at each data gathering phase.
4: // Detection phase.
5: Execute detction phase of algorithm CDIFD.
6: if Fstatei is faulty and fault is detected for first time, i.e., z = 0 then
7: The node enters to observation stage.
8: Set z = 1.
9: end if
10: // Observation stage.
11: repeat
12: if Fstatei is faulty then
13: Reset reward counter, i.e., r = 0.
14: if FDDi ≤ FDDi−1 then
15: Increment the penalty counter by ξ, i.e., z = z + ξ.
16: else
17: z = z + 1.
18: end if
19: else
20: Increment the reward counter, i.e., r = r + 1.
21: end if
22: if r > θ2 and z < θ3 then
23: Node is reintegrated. Set z = 0 and r = 0.
24: else
25: Node is isolated.
26: end if
27: until Node is isolated or reintegrated

by the kth test at time kT , it first reset the reward counter to zero. Second,

it checks the present fault disappearance duration (FDDi) with the preceding

fault disappearance duration FDDi−1. If FDDi ≤ FDDi−1, the penalty counter

is incremented by a factor equal to ξ. If FDDi > FDDi−1, then the penalty

counter is incremented by a factor equal to one. This is because, after their first

appearance, intermittent faults usually exhibit a relatively fast occurrence rate.

This adaptive penalty increment ensures a faster isolation of intermittent faults

and in turn decreases the detection latency. If the penalty counter exceeds its

threshold (θ3), the node is isolated from the WSN. Similarly, if the reward counter

exceeds its threshold (θ2), the node is reintegrated to the WSN.

96



Chapter 5 Transient Fault Diagnosis in WSNs

5.3.2 Analysis of the Algorithm

In this section we analyze time complexity, message complexity and the

implementation issues.

Complexity Analysis

Lemma 6 The latency in isolating a faulty node is
θ3∑
i=1

kmaxi
T .

Proof: After the first appearance of the fault, the maximum number of test

repetitions required to satisfy a minimum detection error is kmax (4.9). Since

Weibull distribution is assumed for FDD of an intermittent faulty node, kmax

changes after each fault appearance. A node will be isolated when the number

of times the fault appears and is detected by the algorithm is greater than or

equals to the threshold θ3. Thus the latency in isolating a node that enters the

observation stage is
θ3∑
i=1

kmaxi
T .

Lemma 7 The number of messages exchanged to isolate a faulty node in

observation stage is 2n
θ3∑
i=1

kmaxi
.

Proof: From Lemma 3 it is evident that a single test execution requires

exchange of two messages by each node explicitly for a diagnosis purpose. From

Lemma 6, the number of test repetitions required to isolate a faulty node in the

observation stage is
θ3∑
i=1

kmaxi
. Thus, the number of messages needs to be exchanged

to isolate faulty nodes in the observation stage is 2n
θ3∑
i=1

kmaxi
.

Implementation

In this section, we discuss the design details for practical deployment of the

proposed fault discrimination algorithm. The time line of the proposed approach

follows the time line shown in Figure 4.5. As discussed in Chapter 4, each sensor

node in the WSN is scheduled to take sensor measurement at the discrete time

kT with T = 8600 ms. The data-gathering stage is scheduled at GT where

G is an integer. The interval GT is sampled, where each sample constitutes of

I consecutive sensor measurements. The standard deviation of these I sensor
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measurements correspond to each sample interval are calculated and broadcasted

along with the routine data at its defined time slot. Each node takes the decision

by comparing the corresponding standard deviations of one-hop neighbors. If a

fault is detected, the node enters to the observation phase. The corresponding

cluster head reschedules its TDMA schedule by excluding the node. The detected

node initializes the penalty and reward counter to one and zero respectively. If

the penalty counter reaches θ3 the node is isolated. If the reward counter reaches

θ2 the node is reintegrated and joins a suitable cluster head.

5.4 Simulation Experiments

In order to measure the effectiveness of the proposed discrimination algorithm,

we chose to conduct an extensive set of simulations using Castalia-2.3b [52], a

state-of-art WSN simulator based on the OMNET++ [53] platform. For the

simulation purpose, a communication scenario has been generated with simulation

parameters as summarized in Table 3.2, where nodes were randomly distributed.

Each sensor node senses data at every T = 8600 ms interval and stores in

its local memory. The values for G and I are set to 50 and 10 respectively.

However, different values for G and I can be used depending on application, and

the type of sensors used. Every node exchanges data at an epoch with interval

G = 8600 × 50 ms. In this experiment, we assume temperature sensors. The

channel error probability estimate at each node is 1× 10−3.

5.4.1 Experiment 1: Tuning of Detection Parameters

There are several design parameters in the proposed approach, namely T , z, r,

and ξ. In this experiment, we tune these parameters with regard to the accuracy,

coverage, number of test repetitions and detection latency.

• Accuracy is the probability that a fault-free node with transient fault in the

error-free state entering the observation phase is not isolated [104].

• Coverage is the probability that an intermittent faulty node in the error-free

state entering the observation phase is isolated [104].
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• Number of test repetitions is the measure of the number of times the test

repeated to discriminate transient from intermittent or permanent faults.

• detection Latency is the time interval between a node detected faulty and its

isolation.

In this experiment, we have deployed 100 faulty nodes (p = 0.1) randomly. Each

faulty node can exhibit the permanent, intermittent and transient faults. While

conducting sensitivity analysis on each design parameter, we fix the others to the

nominal values as summarized in Table 5.2. The transmission range of each node

is chosen to have da ≈ 20. This ensures that a fault is detected by a test (execution

of the fault detection algorithm) if it appears at the time of test. In addition larger

value of da ensures low FAR. However, this restriction in node degree is relaxed

in subsequent experiments to observe the performance of the proposed approach

in sparse WSNs.

Table 5.2: Design and system parameters and their nominal values.
Parameter Description Nominal value
θ2 Reward threshold. 104

θ3 Penalty threshold. 5
ξ Penalty increment. 2
T Inter-test interval. 8600 ms
FAD Continuous distribution of fault appearance

duration.
exponential

E[FAD] Expected fault appearance duration. 5ms
FDDu Continuous distribution of fault disappearance

duration of intermittent faulty node.
Weibull(α = 1.4)

E[FDD]u Expected fault disappearance duration of
intermittent faulty node.

1h

FDDh Continuous distribution of fault disappearance
duration of fault-free node with transient fault.

Exponential

E[FDD]h Expected fault disappearance duration of
fault-free node with transient fault.

100h

Figure 5.1(a) shows the average accuracy and coverage at varying values of

T . This result confirms that T has a strong impact on average accuracy. It is

observed that the average accuracy falls after T = 9.4 sec. This is because when

T is excessively long, an excessively long time is required to reach the reward
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threshold. For instance, this time for T = 20 sec and θ2 = 104 is 55.56 hours. The

mentioned period of correct operation is too long and increases with T . Thus, the

occurrence of subsequent transient faults will be viewed as correlated intermittent

faults and the node will be isolated. It is observed that the average coverage

remains unaffected by change in T . However, as shown in Figure 5.1(b), the

average latency of isolation increases with T .
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Figure 5.1: (a) Accuracy and coverage at varying value of T . (b) Detection latency
at varying value of T .
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Figure 5.2: (a) Accuracy and coverage at varying value of θ2. (b) Detection latency
at varying value of θ2.

The impact of the reward threshold θ2 on the average accuracy and coverage is

shown in Figure 5.2(a). In the proposed fault discrimination algorithm a node is

isolated if it fails before reaching the reward threshold θ2. If θ2 is too large, then a

fault-free node with transient faults enters the observation stage may be isolated
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causing poor accuracy. If θ2 is too small, then intermittent faults will be treated

as transient faults and will be reintegrated to the WSN causing poor coverage.

This is because the value of θ2 must be greater than the average number of test

receptions required to detect the presence of a fault. Thus, proper tuning of θ2 is

crucial to achieve good discrimination. The best trade-off for the given scenario is

observed at θ2 = 104. The average detection latency for varied values of θ2 is shown

in Figure 5.2(b). The average latency of isolation is reported almost unaffected

for θ2 ≥ 104. This is because 100% coverage is reported for θ2 ≥ 104. In addition,

detection latency depends only on T and the number of test repetitions required

to reach the penalty threshold θ3. Thus, for θ2 ≥ 104 the detection latency is

negligibly affected.
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Figure 5.3: (a) Accuracy and coverage at varying value of θ3. (b) Detection latency
at varying value of θ3.

Figure 5.3(a) shows the coverage and accuracy at varying value of the penalty

threshold. As discussed earlier, the penalty counter is incremented by a value ξ if

the present FDD is smaller than the preceding FDD. For smaller value of θ3 the

probability of isolation of fault-free nodes with transient faults in the observation

state is more as the transient faults are appeared like correlated intermittent faults.

As expected and shown in Figure 5.3(a), the average coverage is not affected by

varying values of θ3. As shown in Figure 5.3(b), the average latency of isolation

increases with θ3. This is because the number of test repetitions required to detect

the presence of fault increases with θ3. Since the proposed approach implements

an adaptive penalty increment technique and a relatively high fault occurrence
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rate are observed in an intermittent faulty node, the average detection latency

grows less after θ3 = 5.
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Figure 5.4: (a) Detection latency at varying value of ξ. (b) Average number of
tests at varying value of ξ. (c) Accuracy and coverage at varying value of ξ.

Finally, we study the effect of ξ on the average detection latency, the average

number of test repetitions, the average coverage, and average accuracy. Figure

5.4(a) illustrates the improvement of the detection latency with ξ. When ξ is

greater than 2 the detection latency is lower than that of the circumstance when

ξ = 1. Similarly Figure 5.4(b) illustrates the improvement of the number of test

repetitions required to discriminate transient from intermittent faults. The effect

of ξ on average accuracy and coverage is depicted in Figure 5.4(c). A trade-off is

observed where both the average accuracy and coverage attain their highest value

form ξ = 2 to ξ = 3. These results suggest the importance of ξ in discriminating

transient from intermittent faults.
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In summary, for WSNs, a setting of T = 8600 ms, θ2 = 104, θ3 = 5 and ξ = 2

allow to discriminate most of the transient from intermittent faults.

5.4.2 Experiment 2: Robustness with regard to transient
faults

In this experiment, we estimate how well the proposed detection algorithm

discriminate transient from intermittent or permanent faults. We compare the

performance of the diagnosis algorithm with the sate-of-art diagnosis algorithm

proposed by Lee et al. in [33]. Similar to [33], we redefine the FAR as follows.

Let ng, nt and nf represent the number of good nodes, the number of good nodes

with a transient fault and the number of faulty nodes, respectively. Let ngf is the

number of nodes wrongly detected as faulty out of the ng good nodes. Similarly,

the number of fault-free nodes with transient faults identified as faulty is denoted

by ntf . The FAR is redefined as
ngf+ntf

ng+nt
. In this experiment, the impact of transient

fault rates (pt) on DA and FAR have been evaluated for p = 0.05, 0.10, 0.15, and

0.20.
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Figure 5.5: DA in presence of transient faults: Pcerr = 10−3.

As expected and shown in Figure 5.5, the detection accuracy is less affected

by varying rate of transient faults in the WSN. Similar to the proposed detection

algorithm, the detection accuracy of the detection algorithm proposed by Lee et

al. is less sensitive to change in pt. However, as shown in Figure 5.6, the proposed

detection algorithm outperforms Lee et al. approach from FAR perspectives. In

the proposed approach, proper tuning of detection parameters ensures efficient
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Figure 5.6: FAR in presence of transient faults: Pcerr = 10−3.

discrimination of transient from intermittent faults. The fault-free nodes with

transient faults are effectively reintegrated into the WSN which in turn keeps

the FAR low. The two thresholds used in Lee et al. scheme are not adequate

to discriminate transient from intermittent or permanent faults. Thus, their

approach isolates a maximum number of fault-free nodes with transient faults.
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Figure 5.7: DA at varying value of Pcerr: Pt = 0.2.

5.4.3 Experiment 3: Robustness with regard to channel

faults

In this experiment, the robustness of the detection algorithm to faults in the

communication channel is analyzed by estimating DA and FAR for various channel

error probabilities. In this experiment, we set pt = 0.2. For simplicity in the

simulation Pgood is taken as 0 and Pbad is taken as 1. PBG is fixed to 1/8 and PGB
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Figure 5.8: FAR at varying value of Pcerr: Pt = 0.2.

is varied to get different channel error probabilities Pcerr. The channel error rate is

increased in steps from 10−4 to 10−1. Faults in the communication channel might

cause some fault-free nodes to fail in receiving the sensor measurements from its

neighbors. This in turn decreases the effective neighbor size of a sensor node and

might affect the local decision. However, the analytical and simulation study in

Chapter 3 shows better performance even in sparse WSNs. Thus, as expected and

shown in Figures 5.7 and 5.8, the detection algorithm effectively tolerates faults

in the communication channel. It is observed that the detection scheme proposed

in [33] effectively tolerates faults in the communication channel.

5.4.4 Experiment 4: Network lifetime

In this experiment, we evaluate the energy efficiency of the proposed detection

algorithm and compare with Lee et al. approach. We consider an example network

where all sensor nodes are assumed to be fault-free or fault-free with transient

faults. In this simulation, the sensor nodes are assumed to have transient faults

with probability 0.05, 0.10, 0.15 and 0.20 respectively. A node is considered dead

if it has lost 99 percent of its initial energy. As expected and shown in Figure

5.9 the proposed diagnosis algorithm outperforms Lee’s approach. This is because

FAR of Lee et al. approach is worst affected by the increase in transient fault

rates. Thus, their approach isolates fault-free nodes with transient faults. This

in turn increases the workload of each node in the WSN, and the nodes depletes

energy faster. In contrary, the proposed detection algorithm keeps FAR low and
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is less sensitive to change in transient fault rates.
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Figure 5.9: Network lifetime.

5.5 Summary

This chapter has presented a simple, distributed fault detection algorithm for

WSNs where permanent, intermittent and transient faults have been considered.

The detection parameters namely an inter-test interval, reward counter and

penalty counter were tuned to effectively discriminate the persistence (permanent,

intermittent and transient) of faults in WSNs. An adaptive penalty increment

is suggested to reduce the detection latency. In general, it is observed that

the performance of the proposed diagnosis algorithm CDFDD outperforms Lee’s

approach from false alarm rate perspective.
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Chapter 6

Hard and Soft Fault Diagnosis in
WSNs with Mobile Sensor Nodes

6.1 Introduction

In WSNs the individual sensor nodes are generally assumed to be static. However,

some recent applications of WSNs (e.g., in medical care and disaster response)

make use of mobile sensor nodes where different nodes often have different mobility

patterns. Some nodes are highly mobile, while others are primarily stationary.

This causes the network topology to change randomly since sensor nodes are free

to move arbitrarily with different speeds. The ability of diagnosing faults decreases

under this scenario, meaning that mobility significantly reduces the quality of

the diagnosis returned by a diagnosis protocol [37]. This motivates to explore a

mobility aware distributed diagnosis algorithm for WSNs. As an effective solution

to the mobility problem, we propose a hierarchical architecture. The proposed

mobility aware cluster-based distributed fault diagnosis (MCDFD) scheme works

in conjunction with this hierarchical architecture.

Although the considerations of node mobility and the avoidance of frequent

re-clustering enhance the cluster stability, the present mobility aware clustering

algorithms [105–109] have not considered the hot spot problem and presence

of faulty nodes in the WSN. Since multi-hop forwarding mode is adopted in

inter-cluster communication, this many-to-one traffic pattern results in the hot

spot problem. The reason is that the cluster heads closer to the base station need

to relay heavier traffic and deplete energy faster than the farthest cluster heads
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and die much faster than other nodes in the WSN. Thus, the area near the base

station becomes a hot spot. To mitigate the hot spot problem in mobile scenarios,

we extend the UCR protocol which is primarily designed for static WSNs. UCR

protocol consists of two parts namely energy-efficient unequal clustering (EEUC)

algorithm for topology management, and a greedy geographic and energy-aware

routing protocol for inter-cluster communication. The proposed mobility aware

unequal cluster-based Routing (MAUCR) protocol modifies EEUC and proposes

mobility adaptive EEUC (MAEEUC) algorithm where cluster heads are selected

based on local information namely the residual energy of neighboring nodes and

expected neighbor time E(TN). The expected neighbor time is the expected

duration during which two nodes remain in transmission range of each other.

Neighbor time is proportional to nodes’ relative velocity to its neighbor: a larger

value means higher stability.

The proposed fault detection algorithm is executed just prior to the MAEECC.

The nodes detected as faulty are excluded from the competition to become cluster

head. The proposed detection algorithm follows CDFD algorithm but does not

solely depend on readings of one-hop neighbors. In MCDFD algorithm, a test

result set is obtained periodically at each node by executing the proposed test

pattern. Based on these test results, faults are detected.

The remaining of the chapter is organized as follows. Section 6.2 presents

the system model. Description, analysis and implementation of MCDFD are

investigated in Section 6.3. Simulation results are presented in Section 6.4 and

finally, summary is given in Section 6.5.

6.2 System Model

6.2.1 Notations

The list of the notations used in this chapter and their meanings are shown in

Table 6.1.
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Table 6.1: Notations.

n Number of sensor nodes.
vi Sensor node.
{TRi} Test result set of vi.
E[TN ] Expected neighbor time.
Dmax Maximum distance.
τ Pause time.
Fstatei Fault state of vi.
N(vi)

t One-hop neighbor set of vi at time t.
NTR Number of one-hop neighbors report similar test result set {TR}.
Ei Initial energy of vi.
ETx(t) The energy spent in sending number of bits at time t.
ERx(t) The energy spent in receiving number of bits at time t.
Erelay(vi, vj) The total energy cost of the path vi → vj → base station.
da Average node degree.
c Constant coefficient.
wi Distance based weight.
Tslot The duration of each TDMA time slot.
p Fault probability.
pcerr The average bit error probability of the channel.
Tout Timeout timer.
σ2 A difference value which is function of velocity.
θ Optimal threshold.
θ4 Residual battery lifetime threshold.
E[Tavg] Neighbor time threshold.
Ri Competition range of vi.
R0 Maximum competition range.

6.2.2 Network, Fault, Channel, and Energy Model

This chapter follows the assumptions of Chapter 3 and 4 such as homogeneous

sensor nodes, unique ID for each sensor node, variable transmission power

level, symmetric links, synchronized networks, and imperfect test. However,

the assumption on node mobility is relaxed and the nodes are allowed to move

randomly. We consider the network model, channel model, and energy model the

same as specified in Chapter 3. The WSN consists of n sensor nodes where all

sensor nodes are arranged into non-overlapping clusters. Gilbert-Elliott channel

model is considered [86,87]. The assumptions made in this chapter are similar to

Chapter 3. However, after deployment only the sink node is assumed to be static
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and the sensor nodes are allowed to move randomly.

6.2.3 Mobility Model

To demonstrate the effectiveness of the proposed scheme, this work adopts the

flexible node mobility model as suggested in [110], where a node alternates between

the moving and the pausing phases. A node moves from its current location

to a new location by randomly choosing a direction and speed in which it will

travel. The new speed and direction are both chosen from [umax, umin] and [0, 2π]

respectively. This mobility model allows a node to choose its travel distance, which

is a random variable that is uniformly distributed in [0, Dmax]. Upon arriving at

the destination; the node pauses for an exponentially distributed random time τs

before starting another movement.

6.2.4 Diagnostic Model

Each sensor node periodically produces the test result set {TRi} for a common

test pattern and broadcast {TRi}. Due to the shared nature of communication

in wireless networks, a node vi receives the result sets of its one-hop neighbors.

Since TDMA-MAC protocol is used for intra-cluster communication, vi will receive

these sensor measurements at different times. A sensor performs a self-test on

the received identical result sets from one-hop neighbors and a derived optimum

threshold. Fault-free nodes fail the threshold test later been diagnosed as fault-free

through the fault-free neighbor(s). The result set {TRi} is identical to {TRj} if
{TRi} = {TRj}.

6.3 The Proposed MCDFD Algorithm

6.3.1 Description of the Algorithm

MCDFD algorithm consists of four parts; (i) mobility adaptive fault detection

algorithm to generate diagnostic local views, (ii) energy-efficient mobility

adaptive unequal clustering algorithm for topology management (MAEEUC), (iii)

energy and mobility aware greedy geographic routing protocol for inter-cluster

communication, and (iv) dissemination of diagnostic local views. The detection
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algorithm generates the diagnostic local view of one-hop neighbors. Nodes

detected as faulty do not participate in clustering. The clustering algorithm is

a self-organized competition-based algorithm, where cluster heads are selected

based on local information (i.e., the residual energy of neighboring nodes and

the neighbor time). Similar to UCR protocol, the node’s competition range

decreases as its distance to the base station decreases. Clusters closer to the

base station are expected to have smaller cluster sizes. Cluster heads closer to

the base station consumes less energy during the intra-cluster data processing,

and thereby preserves some more energy for the inter-cluster communication. The

greedy geographic routing protocol constructs a stable cluster head backbone by

considering both neighbor time and residual energy. The diagnostic local views

are disseminated using the cluster head backbone.

StatusSensorID
Position
(x,y,z)

Speed
Direction
(dx, dy , dz)

Residual
energy

Diagnosis
information

Figure 6.1: Frame format for Hello message.

Fault Detection Algorithm

In this approach, each node in the WSN broadcasts a Hello message periodically

to acquire the one-hop neighbor set and the diagnosis local view. We propose a

frame format for Hello message as shown in Figure 6.1. The Hello message carries

sender’s unique identification number, position information, residual energy and

the diagnostic information. Information regarding position, speed and direction is

obtained by the GPS system fabricated in each node. The status field is of eight

bit length where the first two bits represent the status (00-cluster head, 01-cluster

member and 11-under clustering processes), and the last six bits represent the

number of nodes affiliated if the status is cluster head. Similar to CDFD algorithm,

it follows neighbor coordination approach. However, unlike CDFD algorithm, it

uses a predefined test pattern to test all the functional blocks of a sensor node. In

CDFD algorithm, the diagnostic local view is obtained by comparing the sensor

readings of one-hop neighbors. In contrary, MCDFD algorithm uses the test result

sets received from one-hop neighbors to construct the local view. This local view
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is shown to be less affected by the node mobility. A detailed description of the

robustness with regard to node mobility is left to the Section 6.3.2. As shown in

Algorithm 5, a node vi executes the test pattern and embeds the obtained result

set {TRi} to the Hello message and then broadcast it. Upon receiving the Hello

messages of one-hop neighbors, vi compares its own test result set with that of its

one-hop neighbors. Next, it forms a set ({NTR} ⊂ {N(vi)
t}) of nodes with the

similar test result set {TR} where, {N(vi)
t} is the neighbor set of vi at time t.

If {TRi} disagrees with {TR} and the cardinality of set {NTR} is greater than a

threshold (θ) then vi makes a decision to disregard its reading and is marked as

possibly soft faulty. The optimal value for θ is 0.5(N−1) where N is the number of

nodes from which vi has received the test result sets. Next, each node broadcasts

their decision. The decision contains the node ID, one-bit decision variable (1

if possibly soft faulty and 0 if fault-free), and its own result set. In the second

round of test, a node vi identified as possibly soft-faulty first checks for a node vk

identified as fault-free, i.e., vi believes that vk is fault-free. If such vk exists and

{TRi} = {TRk} then vi is detected as fault-free. Otherwise, faulty. This correct

decision is subsequently broadcasted. At this stage, each node has a local view

that reflects its view about the state of its one-hop neighbors.

Node ID�
Location�

Speed�
Direction� Test results�

x� y� z� dx� dy� dz� R�
1� ...� R�

n�
1�
2�
3�
....�

Figure 6.2: Neighbor table.

The detection algorithm uses a timeout mechanism to detect hard faulty nodes.

The node vi declares node vj ∈ N(vi) as possibly hard faulty (initial detection

status), if vi does not receive the Hello message of vj before Tout. vj cannot report

to vi due to at least one of the following reasons: 1) the communication subsystem

of vj may be faulty, 2) vj may be damaged, 3) battery of vj may be drained out,

4) vj may be no more in the transmission range of vi. For the reason 4, vi will

mark vj as hard faulty, which may not be correct. Final decision regarding vj

(hard faulty or fault-free) is taken by the cluster heads as discussed Chapter 3.
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Algorithm 5 MCDFD

1: Embed the result set {TRi} to Hello message and broadcast the Hello message.
2: Set timer Tout.
3: Construct the neighbor table N(vi)

t using the received Hello messages as
shown in Figure 6.2.

4: Determine {NTR}, the set of one-hop neighbors report identical result set
{TR}.

5: if Tout = true then
6: Declare unreported nodes as possibly hard faulty.
7: end if
8: if ({TRi} = {TR} and |{NTR}| < θ) or ({TRi} 	= {TR} and |{NTR}| ≥ θ)

then
9: Fstatei ← Possibly soft faulty.
10: else
11: Fstatei ← Fault-free.
12: end if
13: Broadcast the Fstatei , TRi, and own node ID.
14: Node identified as possibly soft faulty checks for a node vk ∈ N(vi)

t such that
Fstatek is fault-free. If such vk exists, {TRi} = {TRk} and vk ∈ {NTR} then
set Fstatei as fault-free or else faulty and broadcast Fstatei .

15: Perform clustering of the network.
16: Construct cluster level local view.
17: Construct the cluster head backbone.
18: Disseminate the cluster level local views using cluster head backbone.

The Clustering Algorithm MAEECU

In this section, the clustering algorithm intended to achieve the longest cluster

lifetime is proposed. Before proceeding with the presentation of the various steps

of the algorithm, the major feature of the algorithm is presented: 1) it produces

clusters of unequal sizes to address the hot spot problem where clusters closer

to the base station have smaller cluster sizes, 2) a new cluster head does not

force an existing valid cluster to reconstruct, 3) the cluster head lifetime lasts

until all of its affiliated cluster members have moved away and/or cluster head

is detected as faulty and/or the remaining battery lifetime (RBL) drops below

certain threshold, 4) a non-cluster-head enters in to re-clustering phase if it has

moved away from transmission range of its affiliating cluster head or its affiliating

cluster head is detected as faulty, 5) it attempts to maximize the cluster lifetime

at cluster construction by choosing the most stable nodes in mobility perspective
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to become the cluster heads and 6) the nodes near the base station (i.e., distance

to the base station is smaller than a distance threshold) send the forwarding data

directly to the base station. The algorithm for each sensor node at the cluster

head selecting stage is given in Algorithm 6.

Algorithm 6 MAEECU Algorithm

1: if vi.status =head and vi.member =NULL
or vi.status =head and vi.RBL ≤ θ4
or vi.status =member and vi.head =NULL
or vi.status =member and vi.head =faulty then

2: For all vj ∈ N(vi)
3: VCH ← {vj |vj.status 	= member, vj /∈ fault set, D(vi, vj) <

max(Ri, Rj)} ∪ {vi}
4: V ′

CH ← {vj|vj ∈ VCH , E[TN ]ij ≥ E[Tavg ]}
5: E ← {vj.energy|vj ∈ V ′

CH}
6: v ← {vj|vj ∈ V ′

CH , vj.energy = max〈E〉}
7: if vi = v then
8: vi.status← head
9: else
10: vi.status← member
11: vi.head← v
12: end if
13: end if

In EECU algorithm, several tentative cluster heads are randomly selected

to compete for final cluster heads. In contrary, in MAEECU algorithm all the

sensor nodes are tentative cluster heads and compete for final cluster heads. Each

tentative cluster head vi has a competition range Ri. Like EECU algorithm,

different competition ranges are used to produce clusters of unequal sizes. Only

one final cluster head is allowed in each competition range. To mitigate the hot

spot problem, clusters closer to the base station should be smaller cluster sizes,

and more clusters need to be produced closer to the base station. Alternatively,

competition range of the tentative cluster heads should decrease with its distance

to the base station. Like EECU algorithm, we select R0 as the predefined

maximum competition range. The minimum competition range is set to (1−c)R0,

where c is a constant coefficient between 0 and 1. Sensor node vi’s competition

range Ri can be expressed as a linear function of its distance to the base station
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[90]:

Ri =

(
1− c

Dmax −D(vi, BS)

Dmax −Dmin

)
R0 (6.1)

where Dmax and Dmin denote the maximum and minimum distance between

network boundaries and the base station. For instance, Dmax for a network shown

in Figure 6.3 is
√

(l +Dmin)2 + (b/2)2. D(vi, BS) denotes the distance between

vi and the base station.

Figure 6.3: An overview of Dmax and Dmin.

In this approach, every node periodically checks if it needs re-clustering. A

cluster head starts re-clustering if it does not receive Hello messages from any of

its member nodes and/or the remaining battery lifetime (RBL) dropped below θ4.

A cluster member starts re-clustering if it does not receive Hello message from

its affiliating cluster head or the affiliating cluster head is detected as faulty. The

remaining battery lifetime of the cluster head is the normalized remaining battery

energy of the cluster head at moment tm. In the processing of the WSN, the energy

is consumed when the sensor receives or sends a message. Thus, the normalized

remaining battery life time can be calculated as

RBL(vi) =

Ei −
tm∑
t=1

ETx(t) + ERx(t)

Ei
(6.2)

where ETx(t) and ERx(t) are propositional to the number of bits it processes and

forwards at time t. Ei is the initial energy of node vi. The value for θ4 is the
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remaining life time (RNL) of the WSN which is dynamically calculated at each

round. The remaining lifetime of the WSN can be calculated as [111]

RNL =
n∑

i=1

wiRE(vi) (6.3)

where wi is the weight associated with each node based on its distance from the

base station and is given by

wi = c
1

D(vi, BS)2
(6.4)

Before a node attempts to join a cluster, it must gather a list of its tentative

cluster head competitors to determine the most suitable node to cluster with or

to act as cluster head. In this approach, the set of tentative cluster heads is

determined by using the received Hello messages. Node vi adds itself to this

set from which the cluster head will be selected. Tentative head vj is an adjacent

node of vi if vj is in vi’s competition diameter or vi is in vj ’s competition diameter.

Each sensor node constructs a set of eligible adjacent tentative nodes ({VCH}) in
line 3 of Algorithm 6. In this process; it excludes any node that has become

a cluster member or detected as faulty by the detection algorithm, as it cannot

take the cluster head status. In line 4, the algorithm subsequently removes the

tentative cluster heads those do not satisfy the expected neighbor time threshold

and constructs a set {VCH}′ ⊆ {VCH}. The neighbor time threshold E[Tavg ] is

given by

E[Tavg ] =

∑
|VCH |

E[TN ]ij

|VCH| (6.5)

In this approach, a decision to elect the sensor node vi as cluster head depends on

the nodes in vi.VCH only, i.e., the algorithm is localized. The node vj ∈ {VCH}′
will be selected as optimal cluster head, if it has highest residual energy among

the nodes in {VCH}′. Thus, the tradeoff between selecting a high-stability node

and selecting a high-energy node is addressed. If vi satisfies the aforementioned

conditions, then it becomes a cluster head. Otherwise, vi registers its membership

with vj . At this point, four possibilities may arise: 1) if vj is an existing

cluster head, vi is registered with vj, 2) if vj settles as cluster member, vj rejects

registration of vi and vi repeats the clustering algorithm excluding vj from {VCH}′
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and 3) if vj is under clustering processes and has not yet made its decision, vi

waits until vj has made its decision.

Inter-cluster multi-hop routing

Before selecting the next hop node, each cluster head broadcasts a short beacon

message across the WSN at a fixed power which consists of its node ID, residual

energy, position information, speed, and direction. Distance from the base station

and the distance between the cluster heads are calculated from the position

information obtained from the GPS system. Similar to UCR protocol we use

a threshold TD MAX in the multi-hop routing protocol. If a node’s distance

to the base station is smaller than TD MAX, it transmits its data to the base

station directly. Otherwise, it finds a relay node which can forward its data to the

base station. The value of TD MAX is always smaller than the actual maximum

transmission range of a sensor node. In this approach, the multi-hop forwarding

algorithm considers nodes in the forward direction, i.e., closer to the base station

only. Cluster head vi constructs a neighboring set of cluster heads {RCH} from

which the most eligible one-hop relay cluster head is selected. This is defined as

vi.RCH = {vj|D(vi, vj) ≤ XRi, D(vj, BS) < D(vi, BS), E[TN ]ij > θ5} (6.6)

where X is the minimum integer that lets vi.RCH to contain at least one neighbor

cluster head. For cluster heads, if such an X does not exist, i.e., vi.RCH = NULL,

vi will send its own data together with forwarding data directly to the base station.

The network life time can be extended by either choosing the relay node with

more residual energy or by decreasing the energy cost per packet. Similar to

UCR protocol, we propose a greedy geographic forwarding algorithm that aims to

minimize the energy cost per packet. For simplicity, similar to UCR protocol we

assume a free space propagation channel model. Suppose vi chooses vj as its relay

node. Since a localized algorithm is desirable, presence of a virtual hop between vj

and the base station is assumed. To deliver a l-length packet to the base station,

the total energy cost of the path vi → vj → BS is [90]

Erelay(vi, vj) = D2(vi, vj) +D2(vj , BS) (6.7)
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In this approach, vi first chooses k eligible neighbor nodes from vi.RCH , denoted

as the set Veligible [90]:

vi.Veligible = {vj|vj ∈ vi.RCH , Erelay(vi, vj)is the k smallest}. (6.8)

To reduce inefficiencies of energy consumption, to increase the inter-cluster path

life time a tradeoff should be made between residual energy, link cost Erelay, and

expected neighbor time. In our approach, vi first calculates the average of residual

energies (REavg) of all vj ∈ vi.Veligible. It chooses as its relay node the neighbor in

vi.Veligible that has the biggest neighbor time and has residual energy greater than

REavg .

Dissemination of Local Diagnostics

The local diagnostic views are disseminated using the spanning tree of cluster

heads constructed by the MAUCR protocol. The leaf cluster heads start this

dissemination by appending its cluster level local diagnostic view to its data

packet. A cluster head receives data packets from tree descendants first compares

cluster level local diagnostics of their descendants and takes a decision about hard

faults. Similar to CDFD algorithm the final decision regarding a node detected

as hard faulty is based on a consensus made at each level. At the end of local

dissemination, the base station generates the global view and broadcasts it. This

ensures that each fault-free node correctly diagnose the state of all the sensor

nodes in WSN.

Implementation of MCDFD Algorithm

In this section, we discuss the design details for practical deployment of MCDFD

algorithm. As shown in Figure 6.4, MCDFD algorithm includes six time triggers:

(1) neighborhood tracking and fault detection (collecting local diagnostic views)

trigger (T1), (2) cluster head selection trigger (T2), (3) cluster set-up trigger (T3),

(4) intra-cluster communication for routine data triggers (T4), (5) inter-cluster

communication and dissemination of local diagnostics trigger (T5), and (6) global

dissemination and network synchronization triggers (T6).
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Figure 6.4: Time line showing MAUCR and MCDFD operation.

First, we describe the MAC mechanism together with the duty cycles schedule

in various phases of the MCDFD. T1 triggers the neighborhood tracking and

fault detection. Each node sends Hello message to communicate the state of

its mobility to its neighbors in order to assist them in tracking it and make

more accurate forwarding decisions. The Hello message carries sender’s unique

identification number, position information, residual energy and the result set.

The Hello messages are exchanged using the carrier-sense multiple access (CSMA)

MAC protocol. Upon receiving the Hello messages a node generates its neighbor

table as shown in Figure 6.2. Each node exchange their decisions regarding its

fault state using the CSMA MAC protocol. Nodes detected as possibly soft faulty

takes the final decision by considering the test result of a one-hop neighbor node

detected as fault-free. This updated decision is exchanged using the CSMA MAC

protocol.

A node checks whether it requires re-clustering, if so, at time T2 the clustering

process is triggered. After vi has determined its clustering status, if its status

is a cluster member, at T3 it sends the join request using CSMA to the cluster

head it has decided to join and obtains its TDMA slot. If its status is a cluster

head, it obtains the direct-sequence spread spectrum (DSSS) code from the sink

node. In this approach, to reduce inter-cluster interference, a transmitter-based

code assignment scheme is used. A node communicates with its cluster head and

neighbors inside the cluster by using the DSSS. Each cluster is assigned a unique

spreading code, which is used by all nodes in the cluster. Spreading codes are

assigned to cluster heads on a first-in, first-served basis, starting with the first

cluster head to announce its position, followed by subsequent cluster heads. T4
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triggers intra-cluster data communication. Cluster members turn off their radio

at all times except during their transmit time. A cluster head turns off its radio

once the cluster’s TDMA time slots run out. At T5 all cluster heads wake up and

transmit control messages and data packets using CSMA.

In each phase, an appropriate time interval should be chosen to let MCDFD

algorithm and MAUCR algorithm run correctly. The time interval depends on the

network size and wireless channel quality. The waiting time between T1 and T2

depends on Tout, where Tout is an upper bound to the time needed to propagate a

message and process the received message. The time duration between T2 and T3

depends on the clustering algorithm which needs several message exchange steps

to finish. This can be explained as follows. If vi satisfies the condition of line 6 of

Algorithm 6, its status is finalized in one round of executing this algorithm. If vi

selects vj , and vj is determined to be a cluster head, its status is finalized in one

round of executing this algorithm. If vi selects vj, and vj is determined to be a

cluster member, vi repeats the algorithm until it finds vj ∈ vj .RCH determined to

be cluster head. In the worst case, it ends up with itself and takes |vj.RCH | rounds.
Cluster join message and TDMA schedules are exchanged using CSMA between

T3 and T4. During T4 to T5 nodes send the routine data in their time slots. At

T5, all cluster heads wake up, and the inter-cluster communication is triggered.

Cluster heads transmit control messages and data packets using CSMA. Similar

to CDFD algorithm, the local diagnostics and the routine data are aggregated

through the spanning tree up to the sink. Thus, at T6, the sink has the global

fault state view of the WSN. Synchronization is important for the operation of

MAUCR and MCDFD algorithms. This work assumes that all sensor nodes are

synchronized and start MCDFD algorithm phases at the same time. This could

be achieved by having the sink periodically broadcast synchronization pulses. In

this work at T6, the sink node broadcasts the synchronization message along with

the global view such that all nodes in the WSN will receive this message.
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Figure 6.5: MPR2400 Block Diagram.

Diagnosis
Information

RMemoryRMicro RSensor

Figure 6.6: Information contents of diagnosis field of Hello message.

6.3.2 Analysis of the Algorithm

The Test Pattern

We describe the selection of the test pattern considering MICAZ mote with a

temperature sensor. However, the same description can be extended for other

motes and sensors. The functional block diagram of MPR2400 [112] is shown in

Figure 6.5. The test pattern will be executed on different functional blocks of a

sensor node to obtain the test result set. A node is hard faulty when the blocks

namely IEEE 802.15.4 RF transceiver and battery are not functioning and thus do

not require any explicit test. To test the sensing device, two successive readings

are taken in a small interval Δt, i.e., at t and t+Δt. The test result for a sensing

device is defined as

RSensor =

⎧⎨
⎩ 0 if |Tempt − Tempt+Δt| < σ2

1 otherwise
(6.9)

where σ2 is function of node velocity v, i.e., σ2 = f(v).

To test the processing and memory block, micro-controller fetches the

predefined data stored in the memory and then manipulates the data. The

predefined data and the kind of manipulating operations performed on the data are

the same for all the nodes, which ensure a uniform test pattern. The fetched data

RMemory, the manipulated data RMicro and RSensor are embedded in the diagnosis
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information field of theHello message (see Figure 6.6).

Expected Neighbor Time

The performance of the clustering algorithm is mostly affected by the expected

neighbor time E[TN ], which is the expected time period within which any neighbor

node vj stays within the transmission range of a reference node vi. The expected

neighbor time can be calculated by using the latest mobility information (speed,

direction, position) of the nodes. The expected neighbor time can be calculated

with aid of Figure 6.7(a) and 6.7(b). As shown in Figure 6.7(a), node vi moves

with a random velocity U1 and node vj moves with a random velocity U2. Figure

6.7(b) shows the relative velocity UR for direction difference φ.

(a) (b)

Figure 6.7: (a) Analytical model for neighborhood interval. (b) Relative velocity
VR of nodes S and U .

The magnitude of UR is given by

UR =
√
u2
1 + u2

2 − 2v1u2cosφ (6.10)

where u1 and u2 are the magnitude of U1 and U2 respectively. The mean value of

UR is computed as

E[UR] =
1

π(umax − umin)2

∫ umax

umin

∫ umax

umin

∫ π

0

URdφdu1du2 (6.11)

There is no closed-form solution for the integral in (6.11). We use the numerical

approximation where the integration range of each variable is divided into h

fragments and summing the integration results over all the fragments. Solution

122



Chapter 6 Hard and Soft Fault Diagnosis in WSNs with Mobile Sensor Nodes

for (6.11) can be computed as

E[UR] ≈ 1

π(umax − umin)2

∑
φ,u1,u2

UR

(π
h

)(umax − umin

h

)2

=
1

h3

∑
φ,u1,u2

UR (6.12)

The value of h should be determined such that the error introduced in the

approximation is very small. In order to choose a proper value of h, we calculate

the approximation for h with step size of h where h = 1, 2, 3, · · · . We suggest

using h for which the difference between two consecutive approximations with

step size h tends to zero, i.e., the difference is negligible small. In this approach,

we have used h = 2000. Assuming uniform node distribution and the direction

of movement of each node distributed uniformly over [0, 2π] from [113] the mean

value of TN is computed as

E[TN ] =
πA

E[UR]L
(6.13)

where A is the area of the transmission range and L is the perimeter of this area.

Determination of θ5

In the worst case, the clustering algorithm ends with n number of cluster heads

in a n-node WSN. In the worst case, the height of the cluster head backbone or

the spanning tree constructed is n − 1. Thus, the worst-case time taken to reach

a message from the leaf cluster head to the sink node is (n − 1)(Tp + γ). Where

Tp is an upper bound to the time needed to propagate a message and γ is the

processing time at each cluster head. Thus, the value for θ5 is (n− 1)(Tp + γ).

Effect of Mobility

This section elaborates the effect of mobility on the performance of the proposed

work. The performance in detecting both hard and soft faults is not affected by

the node mobility. This can be well-explained using the example network shown in

Figure 6.8. Let a fault-free node-23 is at location in cluster-B at time t0, the time a

node initiates its diagnosis round by sending a Hello message. The node migrates

to a new location in the cluster-A at time t1. Node-23 receives Hello messages

from the neighbors at new location, and a decision about soft faults is taken
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by comparing its own test result set with the test result sets of new neighbors.

Similarly, let node-16 be at a position as shown in Figure 6.8 during diagnosis

round i and has moved to a new location in the cluster-D in diagnosis round i+1.

Let the node become hard faulty between these two successive diagnosis rounds.

Figure 6.8: Example network to demonstrate effect of node mobility.

In the (i + 1)th diagnosis round the nodes 1, 4, 9, 7 and 11 will not receive the

Hello message from node-16 as it has migrated away from their transmission range.

Thus, node-16 is marked as hard faulty by these nodes. In addition, the nodes

neighbor to node-16 in the new location in the cluster-D are unaware of it as it

became hard faulty during its transition and cannot communicate. Therefore, the

presence of hard faults is correctly detected. In summary, the proposed scheme is

not affected by the node mobility in building local diagnostic views.

Obtaining a correct set of faults, i.e., the global view is negligibly affected by

node mobility as dissemination of local views is carried out by a spanning tree of

relatively stable cluster heads. In summary, we can claim that the proposed work

is robust from mobility perspective.

Adaptive TDMA Schedule Creation

Upon receiving join request from nodes the cluster head creates a number of

TDMA time slots based upon the number of nodes. The cluster head first

calculates the expected neighbor time and allocates the time slot in an ascending

order. A member node with lowest expected neighbor time with the cluster head
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is assigned the first-time slot, and the member node with highest neighbor time

is assigned the last time slot within the TDMA frame. This enables a node with

lowest neighbor time with the cluster head to send data packets successfully before

detached from the cluster head. In this approach, at T3 a cluster head first checks

for member nodes those have left it and sensor nodes from which it has received

the join request messages. It first allocates vacant time slots, if present, to the

nodes, those have sent join request messages. If such slots are not available, it

appends their time slots based on neighbor time and communicate them. It then

sorts the list in ascending order and informs the affiliated nodes regarding their

new time slots during data request. The affiliated nodes follow this new TDMA

schedule in the consecutive data rounds.

(a) Migration of mobile nodes.

(b) TDMA Scheduling.

Figure 6.9: Example of adaptive TDMA schedule creation.

The adaptive schedule creation can be well explained through an example

shown in Figure 6.9(a). As shown in the Figure 6.9(a), in round-i, nodes with IDs

29, 7, 15, 32 and 6 are affiliated with the cluster head “A” and the time slots are

allotted based on expected neighbor time of these nodes with cluster head. At

125



Chapter 6 Hard and Soft Fault Diagnosis in WSNs with Mobile Sensor Nodes

round-i + 1 nodes with IDs 29 and 6 have left the cluster and nodes with IDs 3,

11 and 22 have sent their joining request to cluster head “A”. Let’s say that the

expected neighbor times of these newly joined nodes is in the ascending order 11,

3 and 22. As shown in Figure 6.9(b), the cluster head assigns the empty time slots

to nodes 11 and 3 and appends node 22. These allotted time slots are informed

to these newly joined nodes. Next, the cluster head sort the new list in ascending

order and inform the affiliated nodes about the new assigned slots when it sends

the data request message following old schedule. The affiliated nodes follow the

new schedule in round-i+2. This new schedule will be followed in the subsequent

rounds by the cluster “A” until there is no change in its structure.

6.4 Simulation Experiments

The performance of the proposed scheme through simulations is presented in this

section. This work uses Castalia-2.3b [52], a state-of-art WSN simulator based

on the OMNET++ [53] platform. For the simulation purpose, a communication

scenario has been generated with simulation parameters as summarized in Table

6.2. To represent different mobility scenarios, we specify five mobility patterns by

tuning the node moving speed and pause time (Table 6.2). The Hello interval is

set to 100 sec.

Table 6.2: Mobility Pattern.
Pattern τ (min.) [vmin, vmax] (m/sec.)
MP1 10 [1,2]
MP2 8 [1,4]
MP3 6 [1,6]
MP4 4 [1,8]
MP5 2 [1,10]

In this simulation we consider the following performance parameters—

• Mean cluster lifetime. It is the time duration before which all the cluster

members leave the cluster head or the residual energy falls below the

threshold.

• Mean inter-cluster lifetime. It is the time duration before which link between
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cluster heads break.

• Packet delivery ratio. It is the ratio between total received packets to the

total generated packets.

In addition to these performance parameters, this chapter also considers the

parameters discussed in earlier chapters like DA, FAR, network lifetime, message

complexity and detection latency.

6.4.1 Experiment 1: Parameter Tuning

There are several parameters in MAUCR protocol, namely R0, c, TD MAX ,

and k. In this experiment, we tune these parameters with regard to the network

lifetime, mean cluster lifetime, mean inter-cluster link lifetime, and packet delivery

ratio. In this experiment, we have deployed 100 faulty nodes (p = 0.1) randomly.

All the simulations are conducted considering the mobility pattern MP5. For

better analysis, we consider only soft faults. As suggested in [90], we set k to 2.

As discussed in section 6.3.1 and shown in Figure 6.10, for a fixed value of c,

the number of clusters decreases for an increase in R0 and for a fixed value of R0,

the number of cluster increases with c. The reason is that the competition range

(Ri) decreases either by increasing c while keeping R0 constant or by decreasing

R0 while keeping c constant.
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Figure 6.10: The number of clusters.

Figure 6.11(a), depicts the network lifetime for different settings of R0 and c.

It is observed that there is a tradeoff between R0, c, and the network lifetime.
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Figure 6.11: Parameter tuning: (a) The network lifetime. (b) Mean cluster
lifetime. (c) Mean inter-cluster link lifetime. (d) Packet delivery ratio.

The mean cluster lifetime for different settings of R0 and c is shown in Figure

6.11(b) where a tradeoff between R0, c, and the mean cluster lifetime is observed.

Similarly, Figure 6.11(c) explains the tradeoff between R0, c, and the mean

inter-cluster link lifetime. It is observed that, R0 is the dominant factor that

impacts this three lifetime metrics. The reason is that the number of clusters

in a given network size and mobility pattern is mainly determined by R0. This

is because the competition range increases with R0 for constant c. This in turn

increases the number of affiliated cluster members under a cluster head and thus

decreases the probability that a cluster head will be detached from all its members.

However, the energy overhead of the cluster head increases with affiliated members

and the cluster head depletes energy faster, and will need faster re-clustering. In

addition for large value of R0, the distance between two cluster heads is more.

Thus, the probability of communication link failure is more since a small movement
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of cluster heads will move them away from their transmission ranges. It is observed

that for R0 = 70m, all these lifetimes are prolonged furthest.

When c = 0, MAUCR protocol performs as an equal clustering approach. The

energy consumption gradually balanced among cluster heads with an increase of

c, therefore, the network lifetime increases. However, the lifetime decreases when

c is too large. This is because the number of clusters produced closer to the

base station will be more, and each of them will transmit their data to the base

station directly, which causes a waste of energy. It is observed that the cluster

lifetime and inter-cluster link lifetime increases with c. However, it decreases for

large value of c. The reason is that for a fixed value of R0, the competition

range decreases for large value of c (see (6.1)) which in turn increases number of

clusters (see Figure 6.10). The number of affiliated members under each cluster

head will be less if the number of clusters in a given network scale is more. This

in turn increase the probability that all its cluster members will move away in

high-mobility environment, and the cluster head initiates re-clustering and thus

impacting the cluster lifetime and inter-cluster link lifetime. Both the network

lifetime and the mean inter-cluster link lifetime are comparably high for c = 0.3

and comparably high value for the mean cluster lifetime is obtained for c = 0.25.

Therefore, there exists an optimal value of c for R0 = 70m that could best extend

these lifetimes. To further tune c we conducted a set of simulation experiments to

find the impact of c on the packet delivery ratio. Figure 6.11(d) shows the packet

delivery ratio for different values of c and R0 = 70m. It is observed that the WSN

achieves the highest packet delivery ratio for c = 0.27 which is approximately the

optimal value of c for R0 = 70m.

Next, we investigate the impact of TD MAX on the network lifetime.

TD MAX decides the area where cluster heads should directly send their data

to the base station. In order to save and balance the energy consumption the size

of this area should be properly tuned. If TD MAX becomes larger, a larger group

of cluster heads communicates directly with the base station, resulting in a waste

of energy. In contrary, for smaller TD MAX, the energy hole problem may not be

addressed since the average load of cluster heads in this direct communication area

is too high. Therefore, there exists an optimal value of TD MAX that could best
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Figure 6.12: Parameter tuning: Network lifetime.

extend the network lifetime. Figure 6.12 depicts the network lifetime for different

settings TD MAX. As shown in Figure 6.12, the optimal value of TD MAX for

R0 = 70m is 120m.

6.4.2 Experiment 2: Robustness with regard to node

mobility

In this experiment, the performance parameters namely DA and FAR are

evaluated with regard to node mobility. These two performance parameters are

compared with the state-of-art schemes namely Mobile-DSDP [57] and Chessa et

al. scheme [37]. We consider the aforementioned example network where all nodes

are moving by following the mobility patterns as shown in Table 6.2. 100 faulty

nodes are randomly deployed. To show the effectiveness, we consider an equal

number of hard and soft faults.
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Figure 6.13: DA and FAR at varying mobility patterns.
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As shown in Figure 6.13(a), the detection accuracy of the proposed diagnosis

algorithm remains very close to 1 in the low-mobility patterns (i.e., MP1, MP2

and MP3). However, manageable performance degradation in regard to DA is

reported in the high-mobility patterns (i.e., MP4 and MP5). The reason is that

the local diagnostic view is not affected by node mobility. In addition, a soft

faulty node wrongly detected as fault-free only when it has more than 0.5(N − 1)

faulty neighbors, and all of them produce same result set {TR}. The probability

of mentioned neighbors producing {TR} is very small. Dissemination of local

diagnostics to obtain the global diagnostic view is negligibly affected by high

node mobility patterns because dissemination is carried out through relatively

stable cluster heads. Mobile-DSDP shows a comparable result to our model at low

mobility patterns. However, it suffers in high-mobility patterns because a node

may not get a chance to initiate its diagnosis session and thus remains undiagnosed.

The reason is that in Mobile-DSDP, a mobile node that receives a test request or

a test response for the first time will discover that a diagnosis session has been

initiated. Mobile-DSDP adopts a flooding-based dissemination strategy. Though

flooding-based technique ensures dissemination of diagnostic information, it fails

in high node mobility. The model proposed by Chessa et al. is worse affected for a

high-mobility pattern as hard-faulty nodes cannot be distinguished from fault-free

nodes that migrated out of the testing node’s transmitting range. In addition, the

assumption made in detecting soft faulty nodes is hard to quantify unless some

restrictions on the mobility of the nodes are imposed.

The FAR for different mobility patterns is reported in Figure 6.13(b). In WSNs,

the FAR is important as high FAR isolates fault-free nodes from the WSN, thus

reducing available resources and impacting reliability. To clarify the reason for not

achieving a better FAR in Mobile-DSDP and Chessa et al scheme, we considered

the following scenario where a fault-free node before responding to the test request

has migrated out of all the testing nodes transmitting range. These two schemes

will mark this fault-free node as faulty. This becomes even worse for sparse WSNs

as well for high-dynamic WSNs. In contrary, in the proposed detection algorithm,

a fault-free node fails to pass the threshold test is later diagnosed as fault-free

by the fault-free neighbor(s). In addition, as discussed in Chapter 3, the use of

131



Chapter 6 Hard and Soft Fault Diagnosis in WSNs with Mobile Sensor Nodes

optimal threshold makes the algorithm to perform better in sparse WSNs.
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Figure 6.14: Per-node message overhead and diagnosis latency: Pcerr = 1× 10−3.

6.4.3 Experiment 3: Time and message efficiency

Figures 6.14(a) and 6.14(b) compare the performance parameters namely average

per-node message overhead and diagnostic latency with mobile-DSDP and Chessa

et al. scheme. The average values are obtained by repeating this simulation over

100 random topologies. Figure 6.14(a) shows the per node message overhead and

the advantage that proposed algorithm presents over mobile-DSDP and Chessa et

al. scheme. Figure 6.14(b) shows the diagnostic latency with regard to various

mobility patterns. When a node moves in a dynamic WSN, it may be attached to

different clusters at different times, which results in a frequent path rediscoveries

each time it changes the point of attachment. Thus, as expected, the diagnostic

latency of the proposed scheme is manageably high as compare to mobile-DSDP

and Chessa et al. scheme.

If these results are put into context, it is observed that the proposed scheme

outperforms both Mobile-DSDP and Chessa et al. model from message complexity

perspective. Since the proposed schemes will be used in WSNs, where some or

all the nodes may rely on batteries or other exhaustible means for their energy, it

would be preferable for a proposed scheme to be energy efficient. Thus, a diagnosis

scheme should be communication-efficient contrary to time-efficient.
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6.4.4 Experiment 4: Efficiency with regard to packet
delivery ratio

In this experiment, we evaluate the performance of MCDFD algorithm in regard

to the packet delivery ratio. We compare MACUCR with sate-of-art clustering

protocols namely CBR [114] and LEACH-Mobile protocol [115]. The performance

of these clustering protocols with and without integrating the proposed diagnosis

algorithm is evaluated. We consider the afore mentioned example network where,

sensor nodes are assumed to be faulty with probabilities of 0.10, 0.20, 0.30

respectively. All nodes are moving by following the aforementioned mobility

patterns. To show the effectiveness, we consider an equal number of hard and

soft faults. The average values are obtained by repeating this simulation over

100 random topologies. First, we implement the protocols without considering

the diagnosis algorithm. Figures 6.15(a), 6.15(b) and 6.15(c) depict the packet

delivery ratio for different mobility patterns and fault rates without considering

the fault detection. It is observed that the MAUCR protocol outperforms both

LEACH-Mobile and CBR protocol. This is because MAUCR protocol considers

the neighbor time as a primary parameter while constructing the clusters and

considers both residual energy and neighbor time while constructing the cluster

head backbone. The cluster head backbone is used for data delivery to the sink. In

contrary, nodes in LEACH-Mobile and CBR choose the cluster head according to

received signal strength and do not consider the node mobility. It is observed that

the packet delivery ratio in MAUCR, CBR and LEACH-Mobile protocols decreases

for an increase in node velocity. The reason is that nodes will keep changing their

affiliating clusters more frequently and faster with node velocity. This results in

many disconnection periods which in turn causes high packet loss. The percentage

of successfully received packets suffers more when the disconnection periods are

more frequent and extended for long time. However, it is observed that MAUCR

protocol is less affected by an increase in node velocity. This is because of the

stable link between the sensor nodes and their affiliating cluster heads, and the

stable links between relay cluster heads created by MAUCR protocol.

An improvement in the packet delivery ratio is observed when the proposed
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Figure 6.15: Packet delivery ratio: (a)(b)(c) Without fault diagnosis. (d) With
fault diagnosis.

diagnosis algorithm is embedded in the clustering protocols. This is shown in

Figure 6.15(d). The reason of this improvement can be explained as follows—(i) A

faulty node elected as cluster head may drop some or all the packets routed through

it. (ii) If the detection algorithm is executed before clustering, the nodes detected

as faulty will not be allowed to participate in cluster head selection process.

6.4.5 Experiment 5: Network lifetime

In this experiment, we evaluate the energy efficiency of MAUCR protocol. First,

we compare the network lifetime with CBR [114] and LEACH-Mobile [115] without

considering the fault diagnosis. We consider the example network of Experiment

4 where, sensor nodes are assumed to be faulty with probabilities of 0.1. A node is

considered dead if it has lost 99 percent of its initial energy. As expected and shown

in Figure 6.16(a) MAUCR protocol outperforms both CBR and LEACH-Mobile.
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The reason is that MAUCR protocol addresses the hot spot problem by creating

unequal clusters. In addition relatively stable nodes are elected as cluster heads.

The proposed greedy geographic routing protocol ensures a stable cluster head

backbone for inter-cluster communication. Frequent re-clustering is avoided in

MAUCR protocol since a sable link is created between non-cluster-head nodes

and cluster head nodes. This in turn saves energy and prolongs the network

lifetime.
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Figure 6.16: Network lifetime: (a) Without fault diagnosis: p = 0.2. (b) With
fault diagnosis: p = 0.2.

An improvement in a network lifetime is observed when the proposed diagnosis

algorithm works in conjunction with the clustering protocols. This is shown in

Figure 6.16(b). If faulty nodes are allowed to send their data, then relay nodes

dissipate energy in forwarding this erroneous data to the sink node. This becomes

even worse for multimedia sensor networks where the amount of data generated

by each node is large. In this approach since the erroneous data generated by the

faulty nodes are discarded, wastage of energy in relaying these erroneous data is

avoided. This in turn increases the network lifetime. In cluster-based routing if

the non-cluster-head nodes are unaware of the failure at the head sensor node,

they send meaningless data and therefore, waste energy. As discussed earlier, the

non-cluster-head nodes are informed about the fault state of their cluster heads

at each data-gathering round.
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6.5 Summary

We have extended the unequal cluster based routing protocol [90] for WSNs by

integrating mobility and node fault detection. Neighbor time is considered to

elect relatively stable nodes as cluster heads. Greedy geographic routing protocol

is proposed, which constructs a stable cluster head backbone for inter-cluster

data communication and dissemination of local diagnostics. The adaptive TDMA

scheduling and the integrated fault diagnosis algorithm ensures a better packet

delivery ratio (> 0.8) in highly dynamic WSN with fault rate as high as 0.3. The

efficiency of proposed MCDFD is substantiated by the network lifetime which is

greater than 900 data-gathering rounds in highly dynamic WSN with fault rate

as high as 0.2. In general, it is observed that the proposed algorithm outperforms

the existing state-of-art algorithms.
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Conclusions and Future Work

Large-scale deployment of low-cost sensor nodes in uncontrolled, harsh or hostile

environments is the inherent property of WSNs. It is common for the sensor nodes

in WSNs to become faulty and unreliable. The normal operation of a WSN suffers

from faulty data since it decreases the judgment accuracy of the base station, it

increases the traffic in the WSNs, and it wastes a considerable amount of energy

from a sensor node’s limited energy. In addition, the sensors are often used to

compute control actions, where sensor faults can cause catastrophic events. For

the last one decade, researchers across the globe have been working to efficiently

diagnose faults in WSNs and quite significant volumes of literature are available

in this area. Owing to the ill-posed nature of WSNs, the problem is still open and

needs substantial research.

In this thesis, algorithms have been proposed to diagnose faults in WSNs

and evaluations are made analytically as well as through simulations using

Castalia-2.3b, a state-of-art WSN simulator based on the OMNET++ platform.

The proposed algorithm CDFD exploits the spatial correlation between sensor

measurements and works in conjunction with the UCR protocol. CDFD is

lightweight since it imposes a negligible extra cost in the WSNs. The diagnostic

messages are sent as the output of the routine tasks of the WSNs. To obtain

the diagnostic global view, CDFD uses the cluster head backbone constructed

by the UCR protocol and thereby reducing the overheads. An optimal value

for the threshold is derived, which ensures the algorithm to perform better in

sparse WSNs or WSNs with sparse areas. The high detection accuracy and low
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false alarm rate make the algorithm efficient from network lifetime perspective.

The message complexity of CDFD is O(n) and the number of bits exchanged

to diagnose the WSN are O(n log2 n). Comparative analysis demonstrates the

efficacy of the CDFD algorithm.

The diagnosis of intermittent faults in WSNs is modeled as a multiobjective

optimization problem. The two objectives such as detection latency and energy

overhead are taken into consideration while considering detection error as a

constraint. The two-lbests-based multiobjective particle swarm optimization

(2LB-MOPSO) algorithm is used as a tool to find trade-offs accounting for the

relative importance of detection accuracy, diagnosis latency and energy overhead.

A fuzzy-based mechanism is used to find out the best compromised solution on the

optimal Pareto front. The tuned detection parameters were used by the detection

algorithm. The performance difference between 2LB-MOPSO and NSGA-II based

parameter tuning was observed and 2LB-MOPSO based approach was found more

suitable for the proposed application. A high level (> 0.95) of DA is achieved while

keeping the FAR low (< 0.01) for sparse WSNs. The proposed CDIFD algorithm

effectively tolerates faults in communication channels. CDIFD algorithm is energy

efficient since the normalized total energy consumption is very less.

A count and threshold-based mechanism is used to discriminate transient from

intermittent or permanent faults. The detection parameters namely inter-test

interval, reward counter, and penalty counter were tuned to effectively discriminate

the persistence of faults. The diagnosis algorithm details the recovery phase of a

sensor node as an integral part of the diagnostic process.

A mobility aware fault diagnosis algorithm to diagnose permanent faults has

been presented. A mobility and energy aware clustering technique is proposed,

where the neighbor time, residual energy, and fault state are considered to elect

relatively stable nodes as cluster heads. A greedy geographic routing protocol

is proposed which constructs a stable cluster head backbone for inter-cluster

data communication. The proposed topology adaptive TDMA scheduling and

the integrated fault diagnosis algorithm ensure a better data delivery (> 0.8) in

highly dynamic WSNs with a fault rate as high as 0.3. The proposed MCDFD

algorithm is energy efficient. The network lifetime is reported as greater than 900
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data-gathering rounds in highly dynamic WSNs with a fault rate as high as 0.2.

All the functional blocks of a sensor node are checked for error by the suggested

test pattern. The robustness of the proposed algorithm to mobility is compared

with the state-of-art fault diagnosis schemes.

The research findings made out of this thesis have opened several auxiliary

research directions, which can be further investigated. The proposed MCDFD

algorithm can be extended to discriminate persistence of faults in WSNs with

mobile nodes. Since an event also causes abnormal data to be sensed by the

nearby sensor nodes, the proposed schemes can naturally be extended to cope

with the fault-event disambiguation problem. In this thesis, we consider only

static faults, i.e., the state of a node is not allowed to change during diagnosis

round. Another promising research direction to pursue is to bring robustness of

the fault diagnosis algorithm to attacks of malicious nodes. A malicious node alone

can hardly affect the decision-making process of the proposed diagnosis schemes

simply by sending incorrect sensing data or incorrect decision. However, malicious

sensor nodes cooperating may isolate fault-free sensor nodes in such a way that

they diagnose incorrectly themselves to be faulty.
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and K. Frampton, “Sensor network-based countersniper system,” in Proceedings of

the 2nd international conference on Embedded networked sensor systems. ACM,

2004, pp. 1–12.

[9] K. Casey, A. Lim, and G. Dozier, “A sensor network architecture for tsunami

detection and response,” International Journal of Distributed Sensor Networks,

vol. 4, pp. 28–43, 2008.

[10] I. Vasilescu, K. Kotay, D. Rus, M. Dunbabin, and P. Corke, “Data collection,

storage, and retrieval with an underwater sensor network,” in Proceedings of the

140



Bibliography

3rd international conference on Embedded networked sensor systems. ACM, 2005,

pp. 154–165.

[11] D.-J. Kim and B. Prabhakaran, “Motion fault detection and isolation in body

sensor networks,” Pervasive and Mobile Computing, vol. 7, no. 6, pp. 727–745,

2011.

[12] R. Szewczyk, E. Osterweil, J. Polastre, M. Hamilton, A. Mainwaring, and

D. Estrin, “Habitat monitoring with sensor networks,” Communication ACM,

vol. 47, pp. 34–40, 2004.

[13] K. Tan, S. Huang, Y. Zhang, and T. Lee, “Distributed fault detection in industrial

system based on sensor wireless network,” Computer Standards & Interfaces,

vol. 31, no. 3, pp. 573–578, 2009.

[14] D. Sudharsan, J. Adinarayana, A. K. Tripathy, M. H. S. Ninomiya, T. Kiura, U. B.

Desai, S. N. Merchant, D. R. Reddy, and G. Sreenivas, “Geosense: A multimode

information and communication system,” ISRN Sensor Networks, vol. 2012, pp.

40–52, 2012.

[15] M. Yu, H. Mokhtar, and M. Merabti, “Fault management in wireless sensor

networks,” IEEE Wireless Communications, vol. 14, no. 6, pp. 13–19, 2007.

[16] F. Koushanfar, M. Potkonjak, and A. Sangiovanni-Vincentell, “Fault tolerance

techniques for wireless ad hoc sensor networks,” in Proceedings of IEEE Sensors,

vol. 2, 2002, pp. 1491–1496.

[17] K. Ni, N. Ramanathan, M. N. H. Chehade, L. Balzano, S. Nair, S. Zahedi,

E. Kohler, G. Pottie, M. Hansen, and M. Srivastava, “Sensor network data fault

types,” ACM Transaction on Sensor Networks, vol. 5, pp. 1–29, 2009.

[18] P. Jalote, Fault tolerance in distributed systems. Pentice Hall, April 1994.

[19] S. Chessa, “Self-diagnosis of grid-interconnected systems, with application to

self-test of vlsi wafers,” Tech. Rep., 1999.

[20] M. Elhadef, A. Boukerche, and H. Elkadiki, “A distributed fault identification

protocol for wireless and mobile ad hoc networks,” Journal of Parallel and

Distributed Computing, vol. 68, no. 3, pp. 321–335, 2008.

[21] D. P. Siewiorek and R. S. Swmlz, Reliable Computer System Design and

Evaluation. Digital Press, 1992.

[22] A. Bondavalli, S. Chiaradonna, F. Di Giandomenico, and F. Grandoni,

“Threshold-based mechanisms to discriminate transient from intermittent faults,”

IEEE Transaction on Computers, vol. 49, no. 3, pp. 230–245, 2000.

141



Bibliography

[23] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic concepts and

taxonomy of dependable and secure computing,” IEEE Transaction on Dependable

Secure Computing, vol. 1, pp. 11–33, 2004.

[24] C. P. Fuhrman, “Comparison-based diagnosis in fault-tolerant, multiprocessor

systems,” Ph.D. dissertation, Swiss Federal Institute of Technology in Lausanne,

1996.

[25] H. Wang, N. Agoulmine, M. Ma, and Y. Jin, “Network lifetime optimization in

wireless sensor networks,” IEEE Journal on Selected Areas in Communications,

vol. 28, no. 7, pp. 1127 –1137, 2010.

[26] F. P. Preparata, G. Metze, and R. T. Chien, “On the connection assignment

problem of diagnosable systems,” IEEE Transactions on Electronic Computers,

vol. EC-16, no. 6, pp. 848–854, 1967.

[27] E. P. Duarte, Jr., R. P. Ziwich, and L. C. Albini, “A survey of comparison-based

system-level diagnosis,” ACM Computing Survey, vol. 43, pp. 1–56, 2011.

[28] M. Malek, “A comparison connection assignment for diagnosis of multiprocessor

systems,” in Proceedings of the 7th annual symposium on Computer Architecture.

ACM, 1980, pp. 31–36.

[29] M. C. Vuran, zgr B. Akan, and I. F. Akyildiz, “Spatio-temporal correlation: theory

and applications for wireless sensor networks,” Computer Networks, vol. 45, no. 3,

pp. 245–259, 2004.

[30] S. Hakimi and A. Amin, “Characterization of connection assignment of

diagnosable systems,” IEEE Transactions on Computers, vol. C-23, no. 1, pp.

86–88, 1974.

[31] J. Chen, S. Kher, and A. Somani, “Distributed fault detection of wireless sensor

networks,” in Workshop on Dependability issues in wireless ad hoc networks and

sensor networks. ACM, 2006, pp. 65–72.

[32] G. Jian-Liang, X. Yong-Jun, and L. Xiao-Wei1, “Weighted-median based

distributed fault detection for wireless sensor networks,” Journal of Software,

vol. 18, no. 5, pp. 1208–1217, 2007.

[33] M.-H. Lee and Y.-H. Choi, “Fault detection of wireless sensor networks,” Computer

Communications, vol. 31, no. 14, pp. 3469–3475, 2008.

[34] P. Jiang, “A new method for node fault detection in wireless sensor networks,”

Sensors, vol. 9, no. 2, pp. 1282–1294, 2009.

[35] J.-Y. Choi, S.-J. Yim, Y. J. Huh, and Y.-H. Choi, “A distributed adaptive

scheme for detecting faults in wireless sensor networks,” WSEAS Transactions

on Communications, vol. 8, pp. 269–278, 2009.

142



Bibliography

[36] X. Miao, K. Liu, Y. He, Y. Liu, and D. Papadias, “Agnostic diagnosis: Discovering

silent failures in wireless sensor networks,” in INFOCOM, 2011, pp. 1548–1556.

[37] S. Chessa and P. Santi, “Comparison-based system-level fault diagnosis in ad hoc

networks,” in 20th IEEE Symposium on Reliable Distributed Systems, 2001, pp.

257–266.

[38] ——, “Crash faults identification in wireless sensor networks,” Computer

Communications, vol. 25, no. 14, pp. 1273–1282, 2002.

[39] C. Hajiyev, F. Caliskan, and C. Hajiyev, Fault Diagnosis And Reconfiguration In

Flight Control Systems. Springer, October 2003.

[40] S. Gobriel, S. Khattab, D. Mosse, J. Brustoloni, and R. Melhem, “Ridesharing:

Fault tolerant aggregation in sensor networks using corrective actions,” in 3rd

Annual IEEE Communications Society on Sensor and Ad Hoc Communications

and Networks, 2006, pp. 595–604.

[41] J. Zhao and R. Govindan, “Understanding packet delivery performance in dense

wireless sensor networks,” in Proceedings of the 1st international conference on

Embedded networked sensor systems. ACM, 2003, pp. 1–13.

[42] R. Szewczyk, J. Polastre, A. Mainwaring, and D. Culler, “Lessons from a sensor

network expedition,” inWireless Sensor Networks, ser. Lecture Notes in Computer

Science. Springer Berlin / Heidelberg, 2004, pp. 307–322.

[43] H. Li, M. Price, J. Stott, and I. Marshall, “The development of a wireless

sensor network sensing node utilising adaptive self-diagnostics,” in Self-Organizing

Systems, 2007, pp. 30–43.

[44] E. Elnahrawy and B. Nath, “Cleaning and querying noisy sensors,” in Proceedings

of the 2nd ACM international conference on Wireless sensor networks and

applications. ACM, 2003, pp. 78–87.

[45] N. Ramanathan, L. Balzano, M. Burt, D. Estrin, T. Harmon, C. Harvey,

J. Jay, E. Kohler, S. Rothenberg, and M. Srivastava, “Rapid deployment with

confidence: Calibration and fault detection in environmental sensor networks,”

Center for Embedded Networked Sensing, UCLA and Department of Civil and

Environmental Engineering, MIT, Tech. Rep., 2006.

[46] D. M. Blough and H. W. Brown, “The broadcast comparison model for on-line

fault diagnosis in multicomputer systems: Theory and implementation,” IEEE

Transactions on Computers, vol. 48, no. 5, pp. 470–493, 1999.

[47] X. Yang, G. M. Megson, and D. J. Evans, “A comparison-based diagnosis

algorithm tailored for crossed cube multiprocessor systems,” Microprocessors and

Microsystems, vol. 29, no. 4, pp. 169–175, 2005.

143



Bibliography

[48] X. Yang and Y. Y. Tang, “Efficient fault identification of diagnosable systems

under the comparison model,” IEEE Transactions on computers, vol. 56, no. 12,

pp. 1612–1618, 2007.

[49] S.-Y. Hsieh and Y.-S. Chen, “Strongly diagnosable product networks under the

comparison diagnosis model,” IEEE Transactions on Computers, vol. 57, no. 6,

pp. 721–732, 2008.

[50] G.-Y. Chang, “(t, k)-diagnosability for regular networks,” IEEE Transactions on

Computers, vol. 59, no. 9, pp. 1153–1157, 2010.

[51] B. Krishnamachari and S. Iyengar, “Distributed bayesian algorithms for

fault-tolerant event region detection in wireless sensor networks,” IEEE

Transactions on Computers, vol. 53, no. 3, pp. 241–250, 2004.

[52] A. Boulis, Castalia: A simulator for wireless sensor networks and body area

networks, National ICT Australia Ltd, Australia, 2009.

[53] A. Varga and R. Hornig, “An overview of the OMNET++ simulation

environment,” in Proceedings of the 1st international conference on Simulation

tools and techniques for communications, networks and systems & workshops,

2008, pp. 1–10.

[54] M. Yu, H. Mokhtar, and M. Merabti, “Fault management in wireless sensor

networks,” IEEE Wireless Communications, vol. 14, no. 6, pp. 13–19, 2007.

[55] A. Weber, A. R. Kutzke, and S. Chessa, “Diagnosability evaluation for

a system-level diagnosis algorithm for wireless sensor networks,” in IEEE

Symposium on Computers and Communications, 2010, pp. 241–244.

[56] A. Weber, A. Kutzke, and S. Chessa, “Energy-aware test connection assignment

for the self-diagnosis of a wireless sensor network,” Journal of the Brazilian

Computer Society, pp. 1–9, 2012.

[57] M. Elhadef, A. Boukerche, and H. Elkadiki, “Diagnosing mobile ad-hoc networks:

two distributed comparison-based self-diagnosis protocols,” in Proceedings of the

4th ACM international workshop on Mobility management and wireless access.

ACM, 2006, pp. 18–27.

[58] C. Hsin and M. Liu, “Self-monitoring of wireless sensor networks,” Computer

Communications, vol. 29, no. 4, pp. 462–476, 2006.

[59] X. Luo, M. Dong, and Y. Huang, “On distributed fault-tolerant detection in

wireless sensor networks,” IEEE Transactions on Computers, vol. 55, no. 1, pp.

58–70, 2006.

[60] S.-J. Yim and Y.-H. Choi, “An adaptive fault-tolerant event detection scheme for

wireless sensor networks,” Sensors, vol. 10, no. 3, pp. 2332–2347, 2010.

144



Bibliography

[61] X.-Y. Xiao, W.-C. Peng, C.-C. Hung, and W.-C. Lee, “Using sensorranks for

in-network detection of faulty readings in wireless sensor networks,” in Proceedings

of the 6th ACM international workshop on Data engineering for wireless and

mobile access. ACM, 2007, pp. 1–8.

[62] S. Guo, Z. Zhong, and T. He, “Find: faulty node detection for wireless sensor

networks,” in Proceedings of the 7th ACM Conference on Embedded Networked

Sensor Systems. ACM, 2009, pp. 253–266.

[63] S. Rost and H. Balakrishnan, “Memento: A health monitoring system for wireless

sensor networks,” in 3rd Annual IEEE Communications Society on Sensor and

Ad Hoc Communications and Networks, vol. 2, 2006, pp. 575–584.

[64] L. Gheorghe, R. Rughini, R. Deaconescu, and N. pu, Adaptive Trust Management

Protocol Based on Fault Detection for Wireless Sensor Networks, 2010, pp.

216–221.

[65] A. Abdul-Rahman and S. Hailes, “Supporting trust in virtual communities,” in

33rd Annual Hawaii International Conference on System Sciences, 2000, pp. 1–9.

[66] S. Harte, A. Rahman, and K. Razeeb, “Fault tolerance in sensor networks using

self-diagnosing sensor nodes,” in The IEE International Workshop on Intelligent

Environments, 2005, pp. 7–12.

[67] D. Rakhmatov and S. Vrudhula, “Time-to-failure estimation for batteries

in portable electronic systems,” in International Symposium on Low Power

Electronics and Design, 2001, pp. 88–91.

[68] L. Benini, G. Castelli, A. Macii, E. Macii, M. Poncino, and R. Scarsi, “A

discrete-time battery model for high-level power estimation,” in Proceedings of the

conference on Design, automation and test in Europe. ACM, 2000, pp. 35–41.

[69] G. Gupta and M. Younis, “Fault-tolerant clustering of wireless sensor networks,”

in IEEE Wireless Communications and Networking, vol. 3, 2003, pp. 1579–1584.

[70] C. Jaikaeo, C. Srisathapornphat, and C.-C. Shen, “Diagnosis of sensor networks,”

in IEEE International Conference on Communications, vol. 5, 2001, pp.

1627–1632.

[71] A. Tai, K. Tso, and W. Sanders, “Cluster-based failure detection service for

large-scale ad hoc wireless network applications,” in International Conference on

Dependable Systems and Networks, 2004, pp. 805–814.

[72] O. Younis, S. Fahmy, and P. Santi, “An architecture for robust sensor network

communications,” International Journal of Distributed Sensor Networks, vol. 1,

no. 3–4, 2005.

145



Bibliography

[73] P. Wang, J. Zheng, and C. Li, “An agreement-based fault detection mechanism for

under water sensor networks,” in IEEE Global Telecommunications Conference,

2007, pp. 1195–1200.

[74] G. Venkataraman, S. Emmanuel, and S. Thambipillai, “Energy-efficient

cluster-based scheme for failure management in sensor networks,” IET

Communications, vol. 2, no. 4, pp. 528–537, 2008.

[75] M. Asim, H. Mokhtar, and M. Merabti, “A fault management architecture for

wireless sensor network,” in Wireless Communications and Mobile Computing.

IEEE, 2008, pp. 779–785.

[76] W. Wang, B. Wang, Z. Liu, and L. Guo, “A cluster-based real-time fault diagnosis

aggregation algorithm for wireless sensor networks,” Information Technology

Journal, vol. 10, no. 1, pp. 80–88, 2011.

[77] K. Sakib, “Asynchronous failed sensor node detection method for sensor

networks,” International Journal of Network Management, vol. 22, no. 1, pp.

27–49, 2011.

[78] Z. Ji, W. Bing-shu, M. Yong-guang, Z. Rong-hua, and D. Jian, “Fault diagnosis

of sensor network using information fusion defined on different reference sets,” in

International Conference on Radar, 2006, pp. 1–5.

[79] A. Jabbari, R. Jedermann, and W. Lang, “Application of computational

intelligence for sensor fault detection and isolation,” in World Academy of Science,

Engineering and Technology, 2007, pp. 265–270.

[80] A. Moustapha and R. Selmic, “Wireless sensor network modeling using modified

recurrent neural networks: Application to fault detection,” IEEE Transactions on

Instrumentation and Measurement, vol. 57, no. 5, pp. 981–988, 2008.

[81] J. Barron, A. Moustapha, and R. Selmic, “Real-time implementation of fault

detection in wireless sensor networks using neural networks,” in Fifth International

Conference on Information Technology: New Generations, 2008, pp. 378–383.

[82] S. Marti, T. J. Giuli, K. Lai, and M. Baker, “Mitigating routing misbehavior in

mobile ad hoc networks,” in Proceedings of the 6th annual international conference

on Mobile computing and networking. ACM, 2000, pp. 255–265.

[83] A. Patcha and A. Mishra, “Collaborative security architecture for black hole attack

prevention in mobile ad hoc networks,” in Radio and Wireless Conference, 2003,

pp. 75–78.

[84] T. Instruments, MSP430x13x, MSP430x14x Mixed Signal Microcontroller,

Datasheet,, 2001.

[85] C. AS, CC1000 Single Chip Very Low Power RF Transceiver Data Sheet, 2004.

146



Bibliography

[86] E. N. Gilbert, “Capacity of a burst-noise channel,” Bell System Technical Journal,

pp. 1253–1265, 1960.

[87] E. O. Elliott, “Estimates of error rates for codes on burst error channels,” Bell

System Technical Journal, vol. 42, pp. 1977–1997, 1963.

[88] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “An application-specific

protocol architecture for wireless microsensor networks,” IEEE Transactions on

Wireless Communications, vol. 1, no. 4, pp. 660–670, 2002.

[89] T. S. Rappaport, Introduction to wireless communication systems. Prentice Hall,

2002.

[90] G. Chen, C. Li, M. Ye, and J. Wu, “An unequal cluster-based routing protocol in

wireless sensor networks,” Wireless Networks, vol. 15, pp. 193–207, 2009.

[91] L. Hu, “Distributed code assignments for cdma packet radio networks,”

IEEE/ACM Transactions on Networking, vol. 1, no. 6, pp. 668–677, 1993.

[92] R. Horst, D. Jewett, and D. Lenoski, “The risk of data corruption in

microprocessor-based systems,” in The Twenty-Third International Symposium

on Fault-Tolerant Computing, 1993, pp. 576–585.

[93] D. P. Siewiorek and R. S. Swmlz, The Theory and Practice of Reliable System

Design. Digital Equipment Corporation,, 1982.

[94] S. Z. Zhao and P. N. Suganthan, “Two-lbests based multi-objective particle swarm

optimizer,” Engineering Optimization, vol. 43, no. 1, pp. 1–17, 2011.

[95] J. S. Dhillon, S. C. Parti, and D. P. Kothari, “Stochastic economic emission load

dispatch,” Electric Power Systems Research, vol. 26, no. 3, pp. 179–186, 1993.

[96] M. Breuer, “Testing for intermittent faults in digital circuits,” IEEE Transactions

on Computers, vol. C-22, no. 3, pp. 241–246, 1973.

[97] R. E. Barlow and F. Prochan, Mathematical Theory of Reliability. John Wiley

& Sons, 1965.

[98] K. Deb, Multi-objective optimization using evolutionary algorithms. Wiley, 2001.

[99] A. Zhou, B.-Y. Qu, H. Li, S.-Z. Zhao, P. N. Suganthan, and Q. Zhang,

“Multiobjective evolutionary algorithms: A survey of the state of the art,” Swarm

and Evolutionary Computation, vol. 1, no. 1, pp. 32–49, 2011.

[100] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist

multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on Evolutionary

Computation, vol. 6, no. 2, pp. 182–197, 2002.

[101] E. Zitzler, “Evolutionary algorithms for multiobjective optimization: Methods and

applications,,” Ph.D. dissertation, Swiss Federal Institute of Technology, 1999.

147



Bibliography

[102] J. Schott, “Fault tolerant design using single and multi-criteria genetic

algorithms,” Master’s thesis, Massachusetts Institute of Technology, 1995.

[103] H. Wu and A. A. Abouzeid, “Error resilient image transport in wireless sensor

networks,” Computer Networks, vol. 50, no. 15, pp. 2873–2887, 2006.

[104] M. Serafini, A. Bondavalli, and N. Suri, “On-line diagnosis and recovery: On the

choice and impact of tuning parameters,” IEEE Transactions on Dependable and

Secure Computing, vol. 4, no. 4, pp. 295–312, 2007.

[105] K. Xu and M. Gerla, “A heterogeneous routing protocol based on a new stable

clustering scheme,” in MILCOM, vol. 2, 2002, pp. 838–843.

[106] R. Ghosh and S. Basagni, “Limiting the impact of mobility on ad hoc clustering,”

in Proceedings of the 2nd ACM international workshop on Performance evaluation

of wireless ad hoc, sensor, and ubiquitous networks. ACM, 2005, pp. 197–204.

[107] D.-S. Kim and Y.-J. Chung, “Self-organization routing protocol supporting mobile

nodes for wireless sensor network,” in First International Multi-Symposiums on

Computer and Computational Sciences, 2006, pp. 622–626.

[108] S. A. B. Awwad, C. K. Ng, N. K. Noordin, and M. F. A. Rasid, “Cluster based

routing protocol for mobile nodes in wireless sensor network,” in International

Symposium on Collaborative Technologies and Systems, 2009, pp. 233–241.

[109] P. S. Kumar, S. Ramachandram, and C. R. Rao, “Impact of node mobility

and network size on the performance of zone routing protocol in mobile ad hoc

networks,” in OBCOM, 2006, pp. 170–175.

[110] Y. Xu and W. Wang, “Topology stability analysis and its application

in hierarchical mobile ad hoc networks,” IEEE Transactions on Vehicular

Technology, vol. 58, no. 3, pp. 1546–1560, 2009.

[111] K. Sha and W. Shi, “Modeling the lifetime of wireless sensor networks,” Sensor

Letters, vol. 3, pp. 1–10, 2005.

[112] MicaZ Mote data sheet, www.openautomation.net/uploadsproductos/micaz\
datasheet.pdf.

[113] H. Xu and J. Garcia-Luna-Aceves, “Neighborhood tracking for mobile ad hoc

networks,” Computer Networks, vol. 53, no. 10, pp. 1683–1696, 2009.

[114] S. Awwad, C. Ng, N. Noordin, and M. Rasid, “Cluster based routing protocol

for mobile nodes in wireless sensor network,” Wireless Personal Communications,

vol. 61, pp. 251–281, 2011.

[115] G. Santhosh Kumar, M. Vinu Paul, and K. Poulose Jacob, “Mobility metric based

leach-mobile protocol,” in 16th International Conference on Advanced Computing

and Communications, 2008, pp. 248–253.

148



Dissemination

Journals

1. Arunanshu Mahapatro and Pabitra Mohan Khilar. Fault Diagnosis in Wireless

Sensor Networks: A Survey. Accepted for Publication in IEEE Communications

Surveys and Tutorials, IEEE.

2. Arunanshu Mahapatro and Pabitra Mohan Khilar. Online Distributed Fault

Diagnosis in Wireless Sensor Networks. Wireless Personal Communication,

Springer, Vol. 71, no. 3, pp 1931-1960, 2013.

3. Arunanshu Mahapatro and Pabitra Mohan Khilar. An Energy-Efficient

Distributed Approach for Clustering-Based Fault Detection and Diagnosis in

Image Sensor Networks. IET Wireless Sensor Systems, IET, Vol. 3, no. 1,

2013.

4. Arunanshu Mahapatro and Pabitra Mohan Khilar. An Adaptive Approach to

Discriminate the Persistence of Faults in Wireless Sensor Networks. ISRN Sensor

Networks, Hindawi Publishing Corporation, 2012. doi:10.5402/2012/342461.

5. Arunanshu Mahapatro and Pabitra Mohan Khilar. Detection and Diagnosis

of Node failure in Wireless Sensor Networks: A Multiobjective Optimization

Approach. Accepted for Publication in Swarm and Evolutionary Computation,

Elsevier.

6. Arunanshu Mahapatro and Pabitra Mohan Khilar. Mobility Aware Distributed

Diagnosis of Mobile Ad Hoc Sensor Networks. Networking Science, Springer, Vol.

2, no. 1-2, pp 52-65 2013.

Conferences

1. Arunanshu Mahapatro and Pabitra Mohan Khilar. Mobility and Energy Aware

Distributed Clustering Protocol for Ad Hoc Sensor Networks. In International

Conference on Engineering Sustainable Solutions (INDICON), IEEE, India, 2011.

2. Arunanshu Mahapatro and Pabitra Mohan Khilar. SDDP: Scalable Distributed

Diagnosis Protocol for Wireless Sensor Networks. In International Conference on

Contemporary Computing (IC3), Springer, India, 2011.

149



Publications

3. Arunanshu Mahapatro and Pabitra Mohan Khilar. newblock On distributed

self fault diagnosis for wireless multimedia sensor networks In International

Conference on Communication, Computing and Security (ICCCS), ACM, India,

2011.

150
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