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Abstract 

 

 

Ever since its discovery in 1948, the use of ductile iron is increasing continuously, this is due to 

the combination of its various excellent mechanical properties of the material. Extensive research 

is being carried out to develop even better properties. Austempered ductile iron is the most recent 

development in the area of ductile iron or S.G. iron. This is formed by an isothermal heat 

treatment of the ductile iron. The newly developed austempered ductile iron is now replacing 

steel in many fields so it is becoming very important to study various aspects of this material. In 

the present work the effect of Copper and Nickel as alloying element along with the process 

variables (austempering temperature and austempering time) on the properties (Hardness, 

Tensile strength and Elongation) and microstructure of ductile iron has been studied. With 

increasing austempering time hardness, tensile strength and elongation are increasing but with 

increasing austempering temperature hardness and tensile strength are decreasing and elongation 

increasing. Austempered ductile iron with alloying element (Cu or Ni) is showing some higher 

strength, hardness and lower elongation than the unalloyed austempered ductile iron. In 

microstructure ferrite is increasing with increasing austempering time and austenite is increasing 

with increasing austempering temperature in all the Cu alloyed, Ni alloyed and unalloyed grades. 

 

Key words: S.G. Iron, Austempering, austempered ductile iron, austempering time and 

temperature, austenite and ferrite  
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CHAPTER 1 Introduction 
 

In recent years, there has been a significant importance in energy saving which has led to the 

advancement of light weight, durable and cost effective materials. For these purpose, there is a 

requirement to continually formulate new materials and checkout those already in account. One 

such material is ductile iron. Research efforts on this material, have mainly, focused on possible 

improvements of mechanical properties by subjecting to appropriate heat treatment and by 

alloying elements.  
A ductile iron which subjected to a special isothermal heat treatment process austempering is 

known as austempered ductile iron (ADI). The properties of Austempered ductile iron is 

produced by the particular heat treatment essential for austempered ductile iron. 

Ductile Cast Iron undergoes a remarkable transformation when subjected to the austempering 

heat process.The resulting microstructure, known as "Ausferrite", which consist of fine acicular 

ferrite with carbon enriched stabilized austenite [1] and gives ADI its special attributes. The new 

microstructure (ADI) results with capability superior to many traditional, high performance, 

ferrous and aluminum alloys. Ausferrite exhibits twice the strength for a given level of ductility 

compared to the pearlitic, ferritic or martensitic structures formed by conventional heat 

treatments. 

The mechanical properties of the austempered ductile iron depend on the ausferrite 

microstructure. The austempered matrix is responsible for significantly better tensile strength to 

ductility ratio than is possible with any other grade of ductile iron [2]. 

An unusual combination of properties is obtained in austempered ductile iron because of the 

ausferrite microstructure. These properties mainly depend on the heat treatment conditions and 

alloying elements. Alloy additions may be made to austempered ductile iron with a view to 

control the matrix structure. This mode of solidification is obtained by adding a very small, but 

specific amount of Mg or Ce or both to molten metal of a proper composition. 

The base iron is severely restricted in the allowable contents of certain minor elements that can 

interfere with the graphite spheroid formation. The added Mg reacts with S and O in the molten 



NIT Rourkela Page 4 
 

iron & changes the way the graphite is formed. Austempered ductile iron (ADI) is considered to 

be an important engineering material because of its attractive properties such as good ductility at 

high strength, good wear resistance and fatigue strength and fracture toughness. Because of these 

combinations of properties, ADI is now used extensively in many structural applications in 

automotive industry, defense and earth moving machineries. The optimum mechanical properties 

of ADI i.e., the adequate combination of strength, toughness, fatigue strength, and wear 

resistance could be achieved if the microstructure consists of retained carbon-enriched stable 

austenite (enables ductility), together with one of two bainitic morphologies, namely, carbide-

free bainitic ferrite or bainitic ferrite, in which carbides are distributed in the ferrite (affects 

strength)[3,4 ]. 

The mechanical properties of ADI depend on the microstructure, which in turn depends on the 

austempering variables, i.e. austempering temperature and the time of holding. In conventional 

ductile iron the mechanical properties can be attributed to the pearlite and the ferrite present in 

the matrix but the superiority in the mechanical properties of the ADI are due to the acicular 

ferrite and carbon enriched stabilized austenite present in the matrix[4]. The proportion in which 

these two phases are present depends on the austempering variables.  

 
The base iron chemistry and the alloy additions in ductile iron, plays important role in ADI 

technology. Most of the ADI needs to be alloyed for satisfactory austemperability and 

subsequent improvement in properties. Now-a-days many researches for ADI are done to study 

the effect of the alloying elements on the microstructure, mechanical properties. As an alloying 

element, copper widens the austenite zone of the phase diagram increasing the transformation 

rate during austenitising process and the carbon content in the matrix. On the other side, during 

the austempering process, copper may subdue carbide formation[5].  

 
In present research work, the effect of copper alloying as well as the effect of heat treatment 

parameters like austempering time and austempering temperature on microstructure and 

properties of the ductile iron were studied. 
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CHAPTER 2 Literature review 
 

Cast irons are basically alloys of iron and carbon like steels but contain greater amount of 

carbon. Cast irons contain between 2 and 6.67% of carbon. High carbon content tends to make 

the cast iron very brittle and most commercially manufactured types are in the of 2.5 to 4% 

carbon. The ductility of cast iron is very low. They melt readily and can be cast into complicated 

shapes. Since casting is the only suitable process applied these alloys, they are known as cast 

irons. By proper alloying, good foundry control and appropriate heat treatment, the properties of 

any type of cast iron may be varied over a wide range. The physical properties of the cast iron 

will greatly influenced by the shape distribution of the free carbon particles. The common cast 

irons are brittle, have lower strength properties and can be cast more rapidly than most steels. 

White cast iron, malleable cast iron, gray cast iron, nodular cast iron and alloyed cast iron are 

different type of cast irons [6].  

2.1. Ductile iron 

If coke had not been used for melting iron and if high purity ores had been used then ductile iron 

would have been accepted as normal form of iron [7].Ductile iron is also known as nodular iron, 

spheroidal graphite iron and spherulitic iron in which graphite is present in tiny balls or 

spheroids[6]. Because of the graphite is in the form of roughly spherical, which gives these 

materials their name and ductility significantly improved so alternative name is ductile cast iron. 

The castability, corrosion resistance, machinability and abrasive resistance are similar to the 

flake graphite grades but tensile elongation as high as 17% [7]. Ductile iron, also referred to as 

nodular or spheroidal graphite cast iron constitutes a family of cast irons in which the graphite is 

present in a nodular or spheroidal form. Ductile iron derives its name from the fact that, in the as-

cast form, it exhibits measurable ductility. By contrast, neither white cast iron nor grey cast iron 

exhibits significant ductility in a standard tensile specimen.  

 

 



NIT Rourkela Page 7 
 

2.1.1. Back ground 

The first announcement of SG cast iron was made on 7
th

 May, 1948 at the American Foundry 

men‟s association meeting in Philadelphia, Pennsylvania.This was culmination of an exciting 

period of research and initiated an era of one of the most dramatic commercial developments in 

the metals world. 

           The metallurgists then began seriously to study the effects of variations in composition, 

melting procedures, solidification characteristics, cooling rates and many other parameters. 

Effects were being made to correlate strength to size,amount,shape,distribution of graphite‟s& 

methods of influencing these factors were being developed.However,the technical literature at 

that time was completely silent regards to i) a cast iron having it‟s graphite in the spheroidal 

form in the as cast condition or ii) a high carbon of any type exhibiting ductility in the as cast 

condition. 

      One of the materials to be born in this era and which was being promoted in the 1930‟s was 

an abrasion resistant white cast iron with high hardness which results from a martensite-carbide 

matrix promoted by Ni & Cr contents nominally of 4.5 & 1.5 % respectively. These materials are 

still produced in large quantities all over the world for grinding mill balls,plates,rolls and many 

applications requiring outstanding abrasion resistance. It is well known in Australia and very 

likely will enjoy a sizable growth in view of the huge mining potential.After 2
nd

 world war, Cr 

appeared to be one of the elements that would become scarce and without it;white cast would be 

of lessercarbide,considerably softer and hence lacking in the desired abrasion resistance. 

      To meet the eventuality, research laboratories all over the world seek a substitute element of 

Cr as a carbide former in martensite white cast iron.Necessarily,the element has to satisfy all the 

three conditions,i.e., be plentiful, non-critical to the war effort and be required in small amount. 

All the metallic and semi metallic elements which were known to combine chemically with 

carbon to form carbide were tested. Among these was Mg. Further, it was believed by the 

investigators that the solubility of Mg in ferrous materials was exceedingly low.The main 

purpose of addition of Mg was deoxidation, evidently with no desire or hope of retaining in the 

iron. The addition of Mg to the base iron exhibited unusual toughness by resisting fracture where 
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as other broke in usual brittle manner. It was later learnt an analytical method to determine Mg in 

cast iron. It is known that Mg is retained in iron & in instances to more than 1%. 

The next step, obviously to investigate the effect of Mg on plain grey iron cast iron and such a 

research programme was started early in 1943.The grey cast iron was treated with various 

amount of Mg added as 80% Ni-20% Mg alloy up to a minimum of 0.3%. An examination of 

microstructure showed that refinement of flake graphite hadoccurred.The obvious next step was 

larger addition of Mg.There was excitement in the laboratory when the heats were tested, for the 

results lead to the realization that it was not merely an improvement in cast iron that had been 

achieved,but rather creation of a completely new product.The tensile strength has increased to 

unexpected level. An immediate examination under microscope revealed that the graphite was 

not present as flake but as well as dispersed spheroids.With a small, but effective amount of Mg 

produced high strength spheroidal graphite cast iron as well with good mechanical properties. 

Ductile cast irons represent a triumph of 20
th

century metallurgical research. These ironswere 

developed independently in approximately1948 at the International Nickel Company(INCO) in 

the United States and at the BritishCast Iron Research Association (BCIRA) inEngland. Both 

groups discovered that by keeping the sulfur and phosphorus levels low andadding very small 

amounts of a key chemicalelement, the shape of the graphite could bechanged from the 

interconnected flakes of grayirons into isolated spheres (usually called spheroids) of graphite. 

The INCO team showed that the effect was produced by the addition of only 0.02 to0.1% Mg, 

and the BCIRA team by the additionof only 0.02 to 0.04% Ce (the rare earth metalof atomic 

number 58)[8]. 

2.1.2 Birth of Ductile Iron 

In spite of the progress achieved during the first half of 20
th

 century in the development of grey 

and malleable irons, foundry men continued to search for the ideal cast iron-an as-cast “grey 

iron” with mechanical properties equal or superior to malleable iron. J.W.Bolton, speaking at the 

1943 convention of the American Foundry men‟s Society (AFS), made the following statements.  
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“Your indulgence is requested to permit the posing of one question. Will real control of graphite 

shape is realized in grey iron? Visualize a material, possessing (as-cast) graphite flakes or 

groupings resembling those of malleable iron instead of elongated flakes”.  

 A few weeks later, in the International Nickel Company Research Laboratory ,Keith Dwight 

Millis made a laddle addition of magnesium (as a copper magnesium alloy) to cast iron and 

justified Bolton‟s optimism-the solidified castings contained not flakes, but nearly perfect 

spheres of graphite. Ductile Iron was born!  

Five years later, at the 1948 AFS Convention, HentonMorrogh of the British Cast Iron Research 

Association announced the successful production of spherical graphite in hypereutectic gray iron 

by the addition of small amounts of Cerium.  

At the time of Morrogh‟s presentation, the International Nickel Company revealed their 

development, starting with Milli‟s discovery in 1943, of magnesium as a graphite spherodizer. 

On October 25, 1949, patent 2,486,760 was granted to the International Nickel Company, 

assigned to Keith D. Millis, Albert P.Gegnebinand Norman B.Pilling. This was the official birth 

of ductile iron, the beginning of 40 years of continual growth worldwide, in spite of recessions 

and changes in materials technology and usage.  

The US transport industry faced three major challenges: reduce emission, improve fuel economy 

and lower cost. One method of improving fuel economy is to reduce vehicle weight. In 1970‟s, 

the automotive industry reduced vehicle weight by reducing the thickness of the steel sheet 

(driving the development of high-strength low- alloy steels and corrosion resistant coatings). In 

the 1980‟s and the early 1990‟s, vehicle weight was further reduced by substituting aluminum 

for cast iron and steel (primarily in cylinder heads, engine blocks and wheels). Currently the 

substitution of aluminum for cast iron and steel, and magnesium is continuing. The use of 

aluminum, however, results in higher vehicle costs, which are passed on to the consumer. To 

provide the transport industry with a means of weight reduction at little or no cost penalty, the 

cast iron and Steel industries have undertaken major product improvement programs e.g. thin 

wall iron casting technology and light weight steel body technology. Recent research (Javaid, 

1999; Javaid, 2000; Labreccque, 2000) has shown the feasibility of producing thin-wall iron 

castings. Commercially viable, light weight cast iron technology is being developed by TWIG 
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(Thin-wall Iron Group) through a co-operative program with major US foundry companies, 

foundry suppliers, the Big three automakers, the University of Alabama, and U.S. Department of 

Energy Albany Research center. TWIG has launched programs specifically focused on control of 

microstructure, solidification modeling, process variability, and dimensional capability in thin 

section castings, generation of useful mechanical data. The worldwide growth of ductile 

production from 1950 to 200 is given in figure 2.1.  

 

Fig. 2.1 Worldwide growth of ductile iron production, 1950-2000, BTM Consult, March-

2000. 

2.1.3 Modern Trends 

During the first 20 years of SG iron production; there have been many significant changes in 

foundry equipment, materials &practices. The development & growth of many of these related 

directly to improve the process of producing SG iron and now the production of good quality SG 

iron is a routine affair. All are more familiar with these changes which include the development 

of basic cupola, the water cooled cupola, the commercial development of shell molding, alloys 

and devices for treating the iron, to a new fame. In Europe, induction furnace melting gained 

popularity because of the more precise control it afforded for composition and temperature plus 

the fact that a wide variety of charge materials could be used. In the early 1960s interest in 

electric arc furnace melting spread to other parts of the world. It facilitated a finer degree of 

quality control in meeting the various requirments.  



NIT Rourkela Page 11 
 

 

Designer Engineers can now optimize casting shape and performance with increased speed and 

confidence. Recent development in CAD/CAM, solid modeling and finite element analysis 

(FEA) techniques permits highly accurate analysis of stress distributions and component 

deflections under simulated operating conditions, In addition to enhancing functional design, the 

analytical capabilities of CAD/CAM have enabled foundry engineers to maximum casting 

integrity and reduce production costs through the optimization of solidification behavior. 

 

Castings offer cost advantages over fabrications and forgings over a wide range of production 

rates, component size and design complexity. The mechanization and automation of castings 

process have substantially reduced the cost of high volume castings, while new and innovative 

techniques such as the use of Styrofoam patterns and CAD/CAM pattern production have 

dramatically reduced both development times and costs for prototype and short-run castings. As 

confidence in FEA techniques increases, the importance of prototype, often in the form of 

fabrications which “compromise” the final design, will decrease and more new components will 

go directly from the design stage to the production castings.  

Nowadays the automotive, wind power and agricultural implements industries are major users of 

ductile iron castings. Automotive castings requirements represent approximately 55 percent of 

the total worldwide ductile iron casting production. The rapid growth of ductile iron industries 

and the high annual utilization of ductile iron castings are testimonials to the out standings 

mechanical properties, quality and economics of ductile iron castings. The fact that ductile iron 

castings are used for such critical automotive applications as crankshafts, front wheel spindle 

supports, and connecting rods is a further testimonial to the high reliability and process 

economics associated with ductile iron castings. 

2.1.4 Its Development & Future 

The year 1959 marked the start of rapid growth in the demand for casting and the ensuing annual 

increases in production were almost phenomenal. Various attempts were made to determine the 

industrial distribution of spheroidal graphite iron castings. Difficulties arise from the fact that the 



NIT Rourkela Page 12 
 

utilization of the materials varies in different parts of the world. For example, pipes account for 

about 26% of the production in US, in Japan on the other hand, it accounts for about 70% of the 

production. In US, three industries consume the major share of the production. Automotive 

applications take about 40%, pipes 26% and agricultural implements something in excess of 5%. 

This is probably similar to the situation existing in the rest of the world. However, someone 

would be very hard pressed to find an industry which did not make use of some spheroidal 

graphite cast iron, either directly or indirectly. The first stainless steel was patented in the year 

1914, but there were no production figures available for years prior to 1929. It is evident thatafter 

16 years, the patent was issued. The production of stainless steel was low as compared to the 

production of SG cast iron was patented. In fact, it took stainless steel 47 years to reach the level 

that SG cast iron reached in sixteen years.  

The advantages of ductile iron which have led to its success are numerous, but they can be 

summarized easily – versatility and higher performance at lower cost. Other members of the 

ferrous castings family may have individual properties which might make them the material of 

choice in some applications, but none have the versatility of ductile iron, which often provides 

the designer with the best combination of overall properties. This versatility is especially evident 

in the area of mechanical properties where ductile iron offers the designer the option of choosing 

high ductility, with grades guaranteeing more than 18% elongation, or high strength with tensile 

strength exceeding 825Mpa.  

2.1.5 Design Flexibility 

The design flexibility offered by the casting process far exceeds that of any other process used 

for the production of engineering components. This flexibility enables the design engineer to 

match the design of the component of its function. Metal can be placed where it is required to 

optimize the load carrying capacity of the part, and can be removed from unstressed areas to 

reduce weight. Changes in cross-section can be streamlined to reduce stress concentrations. The 

result is that both initial and lifecycle costs are reduced through material and energy conservation 

and increased component performance.  

A recent study by the National Center for Manufacturing Sciences (NCMS) has shown that in 

certain machine tool applications, the replacement of fabricated structures by Ductile Iron 
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castings could result in cost savings of 39-50%. Commenting on the NCMS study, Mr. Gary 

Lunger, president of Erie Press Inc. stated:  

“We make huge presses and we have relatively clear specifications for what goes into each press. 

We have been able to use Ductile Iron as a substitute material primarily for cylinders and other 

parts at a significant cost saving over cast or fabricated steel”. The sudden arrival of SG cast iron 

on the material science more than 20 years ego provided a cast iron with spectacularly better 

properties than grey cast iron and better castability than steel. In times, engineers realized that it 

was not a single material with one set of properties, rather available at will and capable of 

serving a wide variety of engineering equipment.  

A more interesting area for improved ductile iron lies in the possibility of property improvements 

of sufficient magnitude to permit a redesign that would result in net reduction in cost for a part, 

increase life of a part to a degree that the alloy cost would be offset or substantially improve 

operating economy of mechanical equipment through the ability to operate under much more 

severe conditions.   

The ductile iron castings have served the automotive industry well in many applications since its 

inception. In recent years there has been an increasing trend towards use of castings. The modern 

V-8 engine, in which castings are now used for each of the major components, is an example of 

this trend. In any central foundry project to develop a new casting application, there are two 

design objects: First- develop functional characteristics in the castings which are superior to the 

parts to be replaced. Second- employ the combination of the parts principle offered by the 

casting process. The integral ductile iron steering knuckle development met both of the 

objectives. For the integral ductile iron steering knuckle, the designer has been free to 

incorporate the requirements of ductile ironas well as combining the casting process.  

2.1.6 Production of SG Iron 

SG Irons are produced directly by the solidification of amelt containing sufficient silicon to 

ensure graphite formation, after careful removal of sulphur and oxygen. Magnesium additions to 

the bath tie up sulphur and oxygen and radically change the graphite growth morphology. 

Magnesium reacts with the oxygen to form highly stable MgO, which floats to the surface and 
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can be skimmed off. The oxygen content is reduced from typical levels of 90-135ppm to 

about15-35ppm. Magnesium also reacts with the sulphur to produceMgS which again floats to 

the bath surface, but less stable than the oxide. Since magnesium has low solubility in the metal 

and is volatile, the reactions can become reversible if losses are too great. Silicon in the form of 

ferro silicon is generally added to provide additional deoxidation. Other elements from groups 

1A, 11A and 111A can also be employed to tie up oxygen and sulphur. In particular cerium 

forms highly stable oxides and sulphides and less volatile than magnesium, with which it is used 

in combination. Some of the inclusions formed by the inoculants act as nuclei for the graphite 

and are found at the center of the nodules. The simplest explanation of the spherodising effect of 

inoculants such as magnesium is that oxygen and sulphur are absorbed preferentially on the 

hexagonal planes of graphite, leading to the lamellar morphology. The removal of sulphur and 

oxygen by the inoculants allows more isotropic growth. A careful choice of alloying additions is 

used to appropriately adjust the deoxidation, graphitizing and nucleation effects. The process of 

G. F. Fisher method for production of ductile iron is given in figure 1.2 [7]. 

 

Fig.1.2 G.F. Fisher Method for production of ductile iron [7]. 
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2.1.7 Unique Properties of S.G. Iron 

This member of family of cast iron has several interesting properties as:  

High strength (In some cases even greater than steel)  

Adequate Ductility. 

Superior castability (Foundry men friendly)  

Excellent machinability (As compared to steel)  

Lower density then that of steel   

Superior surface lubrication properties   

Better damping characteristics (As compared to the steel)   

 

2.1.8 Chemical composition 

For common cast iron, the main elements of the chemical composition are carbonand silicon. 

High carbon content increases the amount of graphite or Fe3C. Highcarbon and silicon contents 

increase the graphitization potential of the iron aswell as its castability.The manganese content 

varies as a function of the desired matrix. Typically, itcan be as low as 0.1% for ferrule irons and 

as high as 1.2% for pearlitic irons,because manganese is a strong pearlite promoter.From the 

minor elements, phosphorus and sulfur are the most common and arealways present in the 

composition. They can be as high as 0.15% for low-qualityiron and are considerably less for 

high-quality iron, such as ductile iron or compacted graphite iron [9]. 

 

The main effect of chemical composition in nodular (ductile) iron is on graphite morphology. 

Thecarbon equivalent has only a mild influence on the properties and structure ofductile iron, 

because it affects graphite shape considerably less than in the caseof gray iron. Nevertheless, to 

prevent excessive shrinkage, high chilling tendency,graphite flotation or a high impact transition 

temperature, optimum amounts ofcarbon and silicon must be selected. Minor elements can 

significantly alter thestructure in terms of graphite morphology, chilling tendency, and 

matrixstructure. Minor elements can promote the spheroidization of graphite or canhave an 

adverse effect on graphite shape [9]. 
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2.1.9 Structure 

 The main difference between ductile iron and grey iron is the morphology of graphite particles 

which take on a nodular or almost spherical form after suitable treatments are made to the melt. 

The major micro structural constituents of ductile iron are: the chemical and morphological 

forms taken by carbon, and the continuous metal matrix in which the carbon and/or carbide are 

dispersed. The following important microstructural components are found in ductile iron [10]. 

Fig 2.3 shows Mirostructure of ductile iron (a) unethed (b) nital etched. 

  

 

(a)                                                          (b) 

Fig 2.3.Mirostructure of ductile iron (a) unethed (b) nital etched :100X [22]. 

 

2.1.9.1. Graphite  

This is the stable form of pure carbon in cast iron. Its important physical properties are low 

density, low hardness and high thermal conductivity and lubricity.  Graphite shape, which can 

range from flake to spherical, plays a significant role in determining the mechanical properties of 

ductile irons. Ductile iron is characterized by having all of its graphite occurs in microscopic 

spheroids. Although this graphite constitutes about 10% by volume of ductile iron, its compact 

spherical shape minimizes the effect on mechanical properties [11]. 

 

2.1.9.2. Ferrite   

This is the purest iron phase in a cast iron. In conventional Ductile Iron ferrite produces lower 

strength and hardness, but high ductility and toughness. In Austempered Ductile Iron (ADI), 

extremely fine grained acicular ferrite provides an exceptional combination of high strength with 

good ductility and toughness. The strength properties of ferritic ductile iron are generally 
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increased by the elements, which go in to the solution. With the exception of carbon, all the 

elements increase tensile strength and hardness. An example of the extent to which ferrite is 

affected by solid solution strengthening is illustrated for the elements silicon and nickel [11]. 

2.1.9.3. Pearlite  

Pearlite, produced by a eutectoid reaction, is an intimate mixture of lamellar cementite in a 

matrix of ferrite. A common constituent of cast irons; pearlite provides a combination of higher 

strength and with a corresponding reduction in ductility which meets the requirements of many 

engineering applications [11]. 

2.1.9.4. Martensite  

Martensite is a supersaturated solid solution of carbon in iron produced by rapid cooling. In the 

un-tempered condition it is very hard and brittle. Martensite is normally “tempered”-heat treated 

to reduce its carbon content by the precipitation of carbides-to provide a controlled combination 

of high strength wear resistance and ductility [11]. 

2.1.9.5. Austenite  

Normally a high temperature phase consisting of carbon dissolved in iron, it can exist at room 

temperature in austenitic and austempered cast iron. In austenitic irons, austenite is stabilized by 

nickel in the range of 18-36% [31]. In austempered irons, austenite is produced by a combination 

of rapid cooling which suppress the formation of pearlite and the supersaturation of carbon 

during austempering, which depress the start of the austenite-to-martensite transformation far 

below room temperature. In austenitic irons, the austenite matrix provides ductility and 

toughness at all temperatures, corrosion resistance and good high temperature properties, 

especially under thermal cycling conditions. In austempered ductile iron stabilized 

austenite,volume fractions up to 40% of lower strength grades, improves toughness and ductility 

and response to surface treatments such as fillet rolling [11]. 

 

2.1.9.6. Bainite 

Bainite is a mixture of ferrite and carbide, which is produced by alloying or heat treatment [11]. 
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2.1.10Types of ductile iron  

With a high percentage of graphite nodules present in the structure, mechanical properties are 

determined by the ductile iron matrix. The importance of matrix incontrolling mechanical 

properties is emphasized by the use of matrix names to designate the following types of Ductile 

Iron [10, 11].  

2.1.10.1. Ferritic Ductile Iron  

Graphite spheroids in a matrix of ferrite provide an iron with good ductility and impact 

resistance and with a tensile and yield strength equivalent to low carbon steel. Ferrite ductile iron 

can be produced as-cast but may be given an annealing heat treatment to assure maximum 

ductility and low temperature toughness [10, 11].  

2.1.10.2. Ferrito- Pearlitic Ductile Iron  

These are the most common grade of ductile iron and are normally produced in the as-cast 

condition. The graphite spheroids are in a matrix containing both ferrite and pearlite. Properties 

are intermediate between ferritic and pearlitic grades, with good machinability and low 

production costs [10, 11].  

2.1.10.3. Pearlitic Ductile Iron  

Graphite spheroids in a matrix of pearlite result in an iron with high strength, good wear 

resistance, and moderate ductility and impact resistant. Machinability is also superior to steels of 

comparable physical properties.  

The preceding three types of Ductile Iron are the most common and are usually used in the as-

cast condition, but ductile iron can also be  alloyed/or heat treated to provide the following 

grades for a wide variety of additional applications [10, 11].  

 

2.1.10.4. Martensitic Ductile iron  

Using sufficient alloy additions to prevent pearlite formation, and a quench-and-temper heat 

treatment produces this type of ductile iron. The resultant tempered martensite matrix develops 

very high strength and wear resistance but with lower levels of ductility and toughness [10, 11].  
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2.1.10.5. Austenitic Ductile Iron  

Alloyed to produce an austenitic matrix, this ductile iron offers good corrosion and oxidation 

resistance, and good strength and dimensional stability at elevated temperatures [10, 11].  

 

2.1.10.6. Austempered Ductile iron (ADI)  

ADI, the most recent addition to the ductile iron family, is a sub-group of ductile iron produced 

by giving conventional ductile iron a special austempering heat treatment. Nearly twice as strong 

as pearlitic ductile iron, ADI still retains high elongation and toughness. This combination 

provides a material with superior wear resistance and fatigue strength [10, 11]. 

 

Austempering is the heat treatment process in which austenite transforms isothermally to lower 

bainite and thus is used objectively to reduce distortion and cracks. In austempering the steel is 

heated to the austenitic range and then the steel is quenched in molten salt bath held at a 

temperature above Ms and the austenite at this temperature is let to transform to lower bainite.   

The detailed process of transformation is shown in TTT diagram (figure 2.4). 

 

 

Fig. 2.4 Diagram for austempering superimposed on TTT diagram 
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The steel to be austempered should have adequate hardenability so as to avoid pearlitic 

transformation when the steel is quenched from the austenitic range into a heated molten bath 

maintained at a temperature above Ms. Moreover the bainitic bay should not be long, else 

bainitic transformation will be incomplete. The major processing advantage of austempering is 

that is does not require tempering. 

 

Austempering results in enhanced ductility, enhanced toughness, higher hardness and lesser 

distortion and quench cracks than that observed after tempering of hardened specimen. 

 

Combination of attractive properties such as good ductility at high strength, good wear resistance 

and fatigue strength and fracture toughness can be obtained for ADI[3]. The desired mechanical 

properties of ADI i.e., the adequate combination of strength, toughness, fatigue strength and 

wear resistance could be achieved by varying the austempering variables, i.e. the temperature at 

which austempering is done and the time of holding. 

 

The attractive properties of ADI are due to the uniqueness in its microstructure which consists of 

ferrite (α) and high carbon austenite (ϒHC). This is different from the austempered steels where 

the microstructure consists of ferrite and carbide. The product of austempering reaction in ductile 

iron is often referred to as ausferrite rather than bainite[3]. The high silicon content of the ductile 

iron suppresses the precipitation of carbide during austempering reaction and retains substantial 

amount of stable high carbon austenite (ϒHC)[3, 4]. During austempering, the bainitic ferrite 

forms by rejection of carbon into the residual austenite. As austempering progresses, more of 

bainitic transformation occurs accompanied by rejection of more carbon into the surrounding 

austenite resulting in the increase in the amount of austenite and the amount of carbon in the 

austenite. In earlier stages, the carbon content of austenite is insufficient to make it stable, and 

therefore, it transforms to martensite. However, at longer times austenite is enriched to the extent 

that it can become thermally stable to well below room temperature [5]. 

 

The bainitic transformation in the austempered ductile iron can be described as a two stage phase 

transformation reaction. The initial transformation is of primary austenite (ϒ) decomposing to 
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ferrite (α) and high carbon-enriched stable austenite (ϒHC). This transformation is commonly 

known as the stage I reaction [4].  

 

Stage I: ϒ-------------------------------------------> α + ϒHC 
 

If the casting is held at the austempering temperature for too long time, then a second reaction 

(stage II) sets in, where high-carbon austenite further decomposes into ferrite and carbide[4]. 

 

Stage II: ϒHC--------------------------------->α + Carbide 

 
 

Stage II reaction is undesirable since it causes the embrittlement of structure and degrades the 

mechanical properties of ADI [4]. The carbide formed is ε carbide which makes the steel 

brittle[3]. Since, ε carbide is a detrimental phase constituent, hence this reaction during 

austempering process must be prevented. 

 

2.1.11 Different grades of ductile iron 

 

Table2.1. Different grades of ductile iron [12]. 

Grade and 

heat treatment 

Tensile 

strength 

(MPa) 

Yield strength 

minimum 

(MPa) 

Percentage of 

elongation 

Brinell 

hardness 

Matrix 

microstructure 

60-40-18 (1) 414 276 18 149-187 Ferrite 

65-45-12 (2) 448 310 12 170-207 Ferrite + Pearlite 

80-55-06 (3) 552 379 6 197-255 Pearlite + ferrite  

100-70-03 (4) 690 483 3 217-269 Pearlite  

120-90-02 (5) 828 621 2 240-300 Tempered 

martensite 
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2.1.12.Microstructure of different grades of ductile iron 

 

The microstructure of various grades of ductile iron such as: pearlitic ductile iron, Pearlitic-

ferritic ductile iron and Ferritic–pearlitic ductile iron is given below figure 2.5 to 2.7. Nodularity 

is clearly observed in every microstructure. 

 

 

 

 

 

 

 

 

 

Fig. 2.6Pearlitic-ferritic matrix of a ductile iron after etching with 4% Nital[47]. 

 

Fig. 2.5 Representative pearlitic ductile iron microstructure [46]. 
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Fig. 2.7Ferritic–pearlitic ductile iron microstructure (Nital 3 %) [48]. 

 

2.1.13. Factors that affect the properties of the ductile iron 

Ductile iron is a special kind of material which exhibits a good combination of strength with 

ductility ensuring its huge application in heavy engineering industries. This is due to very typical 

microstructure owing to its chemical composition, heat treatment practice and processing 

variables. Some lists of important constituents which are responsible for its typical mechanical 

properties are discussed below. 

2.1.13.1. Effect of graphite shape 

As would be expected from the dramatic differences in mechanical properties between Gray and 

Ductile Irons, that modularity plays a significant role in determining properties within the 

Ductile Iron family. The relationship between modularity and Dynamic Elastic Modulus not only 

emphasizes the strong influence of modularity on DEM, but also indicates that DEM values 

obtained by sonic testing can be used to measure modularity (graphite volume and nodule count 

should be relatively constant). 



NIT Rourkela Page 24 
 

Nodularity, and the morphology of the non-spherical particles produced as modularity decreases, 

exerts a strong influence on the yield and tensile strengths of Ductile Iron.  The relationships 

between strength and nodularity for ferritic irons in which modularity has been changed by two 

methods: through magnesium control, or through lead control. When nodularity is decreased by 

reducing the amount of residual magnesium (the most common spheroidizing agent used in 

commercial Ductile Iron) the nodules become elongated, but do not become sharp or "spiky". 

The result is a 10% decrease in yield strength and a 15% decrease in tensile strength when 

modularity is reduced to 30%. Small additions of lead reduce modularity by producing 

intergranular networks of "spiky" or plate-like graphite which result in dramatic reductions in 

tensile properties [52]. Fig 2.8 shows microstructure of gray and ductile iron. 

 

 

Fig. 2.8 microstructure of gray and ductile iron[53] 

The effect of nodularity on pearlitic Ductile Irons can be determined by comparing the tensile 

properties, at constant carbide levels, of irons with nodularities of 90, 70 and 40%. Compared to 

the Mg-controlled loss of nodularity for the ferritic iron, the pearlitic iron is much more sensitive 

to reduced nodularity. Second, at low carbide levels typical of good quality Ductile Iron, there is 

relatively little loss of strength as the nodularity decreases to 70% but as nodularity deteriorates 

further, strength decreases more rapidly. 
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The effect of nodularity on elongation can be inferred by considering the influence of nodularity 

on the difference between the yield and tensile strengths, which is proportional to elongation. 

Both Mg- and Pb-controlled losses in nodularity reduce the difference between the yield and 

tensile stresses, indicating that loss of nodularity results in reduced elongation. The dramatic 

decrease in tensile strength produced by lead control indicates that the formation of spiky, 

intercellular graphite can severely embrittle ductile Iron. 

Designers can virtually eliminate the effect of nodularity on tensile properties by specifying that 

the nodularity should exceed 80-85% and that there should be no intercellular flake graphite. 

These criteria can be met easily by good production practices which ensure good nodularity 

through Mg control and prevent flake or spiky graphite by a combination of controlling flake-

producing elements and eliminating their effects through the use of small additions of cerium 

[11]. 

2.1.13.2. Effect of Nodule Count 

Nodule Count, expressed as the number of graphite nodules/mm
2
, also influences the mechanical 

properties of Ductile Iron, although not as strongly and directly as graphite shape. Generally, 

high nodule count indicates good metallurgical quality, but there is an optimum range of nodule 

count for each section size of casting, and nodule counts in excess of this range may result in a 

degradation of properties. Nodule count per se does not strongly affect tensile properties, but it 

has the following effects on microstructure, which can significantly influence properties, 

 Nodule count influences the pearlite content of as-cast Ductile Iron. Increasing the nodule 

count decreases the pearlite content, decreasing strength and increasing elongation. 

 Nodule count affects carbide content. Increasing the nodule count improves tensile 

strength, ductility and machinability by reducing the volume fractions of chill carbides, 

segregation carbides, and carbides associated with "inverse chill". 

 Matrix homogeneity is influenced by nodule count. Increasing the nodule count produces 

a finer and more homogeneous microstructure. This refinement of the matrix structure 

reduces the segregation of harmful elements which might produce intercellular carbides, 

pearlite or degenerate graphite. 
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 Nodule count affects graphite size and shape. Increasing nodule count results in a 

decrease in nodule size which improves tensile, fatigue and fracture properties. 

Inoculation practices used to improve nodule count often make the nodules more 

spherical. Thus, high nodule count is generally associated with improved nodularity [11]. 

 

2.1.13.3. Effect of Matrix 

In Ductile Irons with consistent nodularity and nodule count and low porosity and carbide 

content, mechanical properties are determined primarily by the matrix constituents and their 

hardness. For the most common grades of Ductile Iron, the matrix consists of ferrite and/or 

pearlite. Ferrite is the purest iron phase in Ductile Iron. It has low strength and hardness, but high 

ductility and toughness and good machinability. Pearlite is an intimate mixture of lamellar 

cementite in a matrix of ferrite. Compared to ferrite, pearlite provides a combination of higher 

strength and hardness and lower ductility. The mechanical properties of ferritic/pearlitic Ductile 

Irons are, therefore, determined by the ratio of ferrite to pearlite in the matrix. This ratio 

iscontrolled in the as-cast condition by controlling the composition of the iron, taking into 

account the cooling rate of the casting. It can also be controlled by an annealing heat treatment to 

produce a fully ferritic casting, or by normalizing to maximize the pearlite content [11]. 

 

2.1.13.4. Effect of silicon  

Silicon enhances the performance of Ductile Iron at elevated temperatures by stabilizing the 

ferritic matrix and forming a silicon-rich surface layer which inhibits oxidation. Stabilization of 

the ferrite phase reduces high temperature growth in two ways. First, silicon raises the critical 

temperature at which ferrite transforms to austenite. The critical temperature is considered to be 

the upper limit of the useful temperature range for ferritic Ductile Irons. Above this temperature 

the expansion and contraction associated with the transformation of ferrite to austenite can cause 

distortion of the casting and cracking of the surface oxide layer, reducing oxidation resistance. 

Second, the strong ferrite formation tendency of silicon stabilizes the matrix against the 
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formation of carbides and pearlite, thus reducing the growth associated with the decomposition 

of these phases at high temperature.Theoxidation protection offered by silicon increases with 

increasing silicon content. Silicon levels above 4% are sufficient to prevent any significant 

weight gain after the formation of an initial oxide layer [13]. 

 

2.1.13.5. Effect of molybdenum 

Molybdenum, whose beneficial effect on the creep and stress-rupture properties of steels is well 

known, also has a similar influence on Ductile Irons. The addition of 0.5 % molybdenum to 

ferritic Ductile Iron produces significant increases in creep and stress rupture strengths, resulting 

in high temperature properties that are comparable to those of ascast steel containing 0.2 % 

carbon and 0.6 % manganese [13]. 

 

2.1.13.6. Effect of Manganese   

The decomposition of austenite to ferrite plus graphite or to pearlite in spheroidal graphite (SG) 

cast iron is known to depend on a number of factors among which are the nodule count, the 

cooling rate, and the alloying additions (Si, Mn, Cu, etc.).The detrimental effect of Mn on the 

growth kinetics of ferrite during the decomposition of austenite in the stable system is explained 

in terms of the driving force for diffusion of carbon through the ferrite ring around the graphite 

nodules. Finally, it is found that copper can have a pearlite promoter role only when combined 

with a low addition of manganese. As it is a mild pearlite promoter, with some required 

properties like proof stress and hardness to a small extent, Mn retards the onset of the eutectoid 

transformation, decreases the rate of diffusion of C in ferrite and stabilizes cementite (Fe3C), but 

the problem here is the embrittlement caused by it, so the limiting range would be 0.18-0.5%. 

[11-13]. 

 

2.1.13.7. Effect of Copper 

 The effect of various additions of copper and the cooling rate on the temperature of the onset of 

the stable and metastable eutectoid reactions describes the conditions for the growth of ferrite 

and of pearlite.  These reactions can develop only when the temperature of the alloy is below the 

lower boundary of the ferrite/austenite/graphite or ferrite/austenite/cementite related three-phase 
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field. Copper is a strong pearlite promoter. It increases the proof stress with also the tensile 

strength and hardness with no embrittlement in matrix. So in the pearlitic grade of the ductileiron 

the copper is kept between 0.4-0.8percent and is a contaminant in the ferritic grade [11-13]. 

 

2.1.13.8. Effect of Nickel  

It helps in increasing the U.T.S without affecting the impact values .So it can be used in the 

range of 0.4-2.0%. It strengthens ferrite, but has much less effect than Silicon in reducing 

ductility. As a Mild pearlite promoter, increases proof stress but little effect on tensile strength, 

but there is the danger of embrittlement with the large additions, in excess of 2%. Due to the high 

cost it is generally present as traces in the matrix. The irons treated with nickel have nodular 

graphite in a matrix of austenite with rather more carbide than the untreated irons [11-13]. Fig 2.9 

shows Microstructures of ductile cast iron with the addition of nickel. 

 

 

 

Fig. 2.9 Microstructures of ductile cast iron with the addition of nickel [14]. 

 

2.2. Quality Index of S.G. Iron 

Quality Index for ductile iron was developed in a statistical study of mechanicalproperties of a 

large no of Ductile Iron samples by Siefer and Orths who identified a   relationship between 

tensile strength and Elongation in the form: 
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(Tensile Strength)
2
 x (Elongation) = Q 

 

Where, Q is a constant and was later referred to as a Quality Index for Ductile Iron. A larger 

value of Q indicates a combination of higher Tensile Strength and / or Elongation or both and is 

therefore indicative of a higher level of material performance.High Q value irons have been 

shown to result from high nodularity, high nodule count, structures with an absence of 

intercellular degenerate graphite, free from carbides, low phosphorus (< 0.03 %) and free from 

porosity. Fig 2.10 shows Quality index. Foundries seeking to optimize the fatigue strength of 

ductile iron castings need to produce high Q value material by taking actions to ensure:  

 

 

Fig. 2.10 Quality index [14]. 

 Achieving maximum pearlite and matrix hardness.   

 Achieving high nodularity, high nodule count and small size of nodule.   

 Achieving inclusion free casting.  

 Eliminating shrinkage porosity.  

 Low levels of tramp and residual elements.  

 Minimum carbide content.  
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 Free from dross defect [14]. 

 

2.3. Ductile and Brittle Behavior of S.G. Iron:  

All ferrous materials, with the exception of the austenitic grades shows a transition from ductile 

to brittle behavior when tested above and below a certain temperature known as transition 

temperature. A comprehensive treatment of the subject by Barton has been used to identify and 

discuss some of the factors affecting Ductile and Brittle behavior as follows.  

 

Ductile failure is accompanied by considerable general or local plastic deformation, usually 

shown by visible distortion of a failed component and by slow crack extension or tearing. A 

ductile fracture appears black in a fully ferritic ductile iron and gray in pearlitic irons. Ductile 

fractures occur by tearing from the sites of graphite nodules along grain boundaries. So, the 

fracture contains numerous graphite nodules. 

 

Brittle failure, by contrast, generally occurs without deformation, and very rapid crack 

propagation is involved. Brittle fractures in ductile irons are not associated with graphite sites 

and occur by cleavage of the metallic grains, usually before significant deformation has 

occurred. The separation through the grains very rapid and such fractures appears bright because 

the cleavage facets of the grains reflect light, a brittle fracture characteristically passes through 

the grains and very few, if any, graphite nodules are present along the fracture path. The 

transition temperature of a material is raised if loading speeds are high or if a notch is present. 

For this reason, brittle fractures are more commonly observed during impact testing then there 

during normal tensile testing. It is important to appreciate, however, that brittle failure can occur 

under normal tensile loading if the conditions favors this mode of failure. A simplified 

explanation for this ductile – to – brittle transition behavior is shown in figure 2.11, at higher 

temperatures, the stress required to cause plastic deformation is relatively low and failure occurs 

in a ductile manner, with considerable deformation, before the stress to trigger brittle failure by 

cleavage is exceeded. The stress required to cause plastic yielding increases rapidly as the 

temperature is decreased, and the stress required to produce brittle fracture may then be exceeded 

before plastic yielding can take place [15, 16]. 
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Fig.2.11 Ductile to Brittle transition occurs as temperature increases [16]. 

 

2.4. Austempered ductile iron 

 

2.4.1. Austempering 

The austempering process was first developed in the early 1930‟sas a result of work that Bain, et 

al, was conducting on the isothermal transformation of steel.  In the early 1940‟s Flinn applied 

this heat treatment to cast iron, namely gray iron. In the 1950‟s, both the material, ductile iron, 

and the austempering process had been developed [17]. Fig 2.12 shows Austempering process. 
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Process 

1) Heat castings in a molten salt bath to austenitising temperature (815-927
O
C) 

 

 

Fig.2.12 Austempering process [17]. 

 

   2) Hold at austenitizing temperature to saturate the austenite with carbon.  

   3) Quench quickly to avoid pearlite to the austempering temperature in the range of 232-400
O
C           

(This temperature is above the martensite start temperature (Ms) for the material). 

  4) Hold at austempering temperature (232-400
0
C) in molten salt bath for isothermal  

transformation to ausferrite [18].    

Consistent control of times and temperatures throughout the entire process 

1) Initial austenitising times and temperatures (1550° to 1700° F.) are controlled to ensure 

formation of fine grain austenite and uniform carbon content in the matrix. The precise 

temperature is grade dependant. 

 



NIT Rourkela Page 33 
 

 

 

                                Fig.2.13 Control of time and temperature on the process [18]. 

 

2) Quench time must be controlled within a few seconds, to avoid formation of pearlite 

around the carbon nodules, which would reduce mechanical properties. Quench 

temperatures (450° to 750° F.) must stay above the point of martensite formation. 

 

3) In the austempering step which follows austenitising, the temperature of the final salt 

bath must also be closely controlled. The austempering step is also precisely time-

controlled, to avoid over- or under-processing. By the end of this step, the desired ADI 

ausferrite structure will be developed [18]. Fig 2.12 shows Control of time and 

temperature on the process. 

2.4.1.1. Austenitising 

The austenitising temperature controls the carbon content of the austenite which, in turn, affects 

the structure and properties of the austempered casting. High austenitising temperatures increase 

the carbon content of the austenite, increasing its hardenability, but at the same time make the 

transformation during austempering more problematic and worsen different mechanical 

properties after austempering. (The higher carbon austenite requires a longer time to transform to 

ausferrite). Reduced austempering temperatures generally produce ADI with the best properties 
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but this requires close control of the silicon content, which has a significant effect on the upper 

critical temperature of the Ductile Iron.Austenitising time should be the minimum required to 

heat the entire part to the desired austenitising temperature and to saturate the austenite with the 

equilibrium level of carbon, (typically about 1.1-1.3%). In addition to the casting section size and 

type, the austenitising time is affected by the chemical composition, the austenitisingtemperature 

and the nodule count [19]. 

2.4.1.2. Austempering 

Austempering is fully effective only when the cooling rate of the quenching apparatus is 

sufficient for the section size and hardenability of the component. The minimum rate of cooling 

is that required to avoid the formation of pearlite in the part during quenching to the 

austempering temperature. The critical characteristics are as follows: 

 

 Transfer time from the austenitising environment to the austempering environment 

 The quench severity of the austempering bath 

 The maximum section size and type of casting being quenched 

 The hardenability of the castings 

 The mass of the load relative to the quench bath. 

 

The use of a correctly designed austempering system with a suitably high quench severity, and 

the correct loading of castings, can minimize hardenability requirements of the casting resulting 

in significant savings in alloy costs [19]. 

To produce ADI with lower strength and hardness but higher elongation and fracture toughness, 

a higher austempering temperature 350-400
O
C should be selected to produce a coarse ausferrite 

matrix with higher amounts of carbon stabilized austenite(20-40%). 

Once the austempering temperature has been selected,the austempering time must be chosen to 

optimize properties through the formation of a stable structure of ausferrite. At short 
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austempering times, there is insufficient diffusion of carbon to the austenite to stabilize it, and 

martensite may form during cooling to room temperature.The resultant microstructure would 

have a higher hardness but lower ductility and fracture toughness. Excessive austempering times 

can result in the decomposition of ausferrite into ferrite and carbide (bainite) which will exhibit 

lower strength, ductility and fracture toughness. At the highest austempering temperature 400
O
c 

as little as 30 minutes may be required to produce ausferrite. At 230
O
C as much as four hour may 

be required to produce the optimum properties. 

At temperatures below that range the hardness may increase but the strength may decrease due to 

the presence of martensite mixed in with the ausferritematrix. 

2.4.2. Austempered ductile iron 

Austempered ductile iron is the most recent addition of the ductile iron family. It is produced by 

giving conventional ductile iron toaustempering heat treatment [19]. Unlike conventional “as-

cast” irons, its properties are achieved by heat treatment, not by specific addition. Therefore the 

only prerequisite for a good ADI is a quality ductile iron [21]. 

Austempered Ductile Iron (ADI) offers the best combination of low cost, design flexibility, good 

machinability, high strength-to-weight ratio and good toughness, wear resistance and fatigue 

strength properties. Because it can be cast like any other member of the Ductile Iron family it 

offers all the production advantages of a conventional Ductile Iron casting. Subsequently it is 

subjected to the austempering process to produce mechanical properties that are superior to 

conventional ductile iron, cast and forged aluminum and many cast and forged steels [23]. 

The mechanical properties of the ductile iron and austempered ductile iron are primarily 

determined by the metal matrix. The matrix in conventional ductile iron is controlled by mixture 

of pearlite and ferrite. The properties of austempered ductile iron is due to its unique matrix of 

acicular ferrite and carbon stabilized austenite, is called ausferrite. The austempering process has 

been utilized since the 1930 on cast and wrought steels but this process first commercially 

applied to ductile iron in 1972 [20]. 
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2.4.2.1. Microstructure 

Ductile Cast Iron undergoes a remarkable transformation when subjected to the austempering 

heat process. A new microstructure (ADI) results with capability superior to many traditional, 

high performance, ferrous and aluminum alloys. 

To optimize ADI properties for a particular application the austempering parameters must be 

carefully selected and controlled. Castings are first austenitised to dissolve carbon, then 

quenched rapidly to the austempering temperature to avoid the formation of deleterious pearlite 

or martensite. 

While the casting is held at the austempering temperature nucleation and growth of acicular 

ferrite occurs, accompanied by rejection of carbon into the austenite. The resulting 

microstructure, known as "Ausferrite", gives ADI its special attributes. Ausferrite exhibits twice 

the strength for a given level of ductility compared to the pearlitic, ferritic or martensitic 

structures formed by conventional heat treatments. 

Because the carbon rich austenite phase is stable in Austempered Ductile Iron it enhances the 

bulk properties. Furthermore, while the austenite is thermodynamically stable, it can undergo a 

strain-induced transformation when locally stressed, producing islands of hard martensite that 

enhance wear properties. This behavior contrasts with that of the metastable austenite retained in 

steels, which can transform to brittle martensite (as shown in figure 2.14) [24]. 

 

Fig. 2.14 Microstructure of austempered ductile iron [24] 
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2.4.2.2. Composition  

In many cases, the composition of an ADI casting differs little from that of a conventional 

Ductile Iron casting. When selecting the composition, and hence the raw materials, for both 

conventional Ductile Iron and ADI, consideration should be given first to limiting elements 

which adversely affect casting quality through the production of non-spheroidal graphite, or the 

formation of carbides and inclusions, or the promotion of shrinkage. The second consideration is 

the control of carbon, silicon and the major alloying elements that control the hardenability of the 

iron and the properties of the transformed microstructure. When determining the alloying 

requirements both the section size and type and the severity (or speed) of the austempering 

quench must be considered [19]. 

For a typical salt quench with agitation section sizes up to about 3/8 inch (10 mm) can be 

successfully through hardened without pearlite with even unalloyed Ductile Iron. For a highly 

agitated austempered quench with water saturation section sizes of up to ¾ inch (20 mm) can be 

through hardened with no additional alloying. For castings of heavier section size selective 

alloying is required to through harden the parts and avoid pearlite in the heat treated 

microstructure [19]. 

2.4.2.3. Different grades of austempered ductile iron 

Table2.2 Grades of austempered ductile iron [22]. 

Ref. Grade 
# 

ASTM A897 
Grade 

Tensile 
Strength 

Yield 
Strengths 

Elongation 
Brinell 

Hardness 

1 130-90-09 130,000 p.s.i. 90,000 p.s.i. 9 % 269-341 

2 150-110-07 150,000 p.s.i 110,000 p.s.i 7 % 302-375 

3 175-125-04 175,000 p.s.i. 125,000 p.s.i. 4 % 341-444 

4 200-155-02 200,000 p.s.i 155,000 p.s.i. 2 % 388-477 

5 230-185-1 230,000 p.s.i. 185,000 p.s.i. 1 % 402-512 
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2.4.2.4. Effect of alloying elements  

2.4.2.4.1. Carbon 

Increasing carbon in the range 3 to 4% increases the tensile strength but has negligible effect on 

elongation and hardness. Carbon should be controlled within the range 3.6-3.8% except when 

deviations are required to provide a defect-free casting [19, 20]. 

2.4.2.4.2. Manganese 

Manganese can be both a beneficial and a harmful element. It strongly increases hardenability, 

but during solidification it segregates to cell boundaries where it forms carbides and retards the 

austempering reaction. As a result, for castings with either low nodule counts or section sizes 

greater than 3.4 in. (19mm), manganese segregation at cell boundaries can be sufficiently high to 

produce shrinkage, carbides and unstable austenite. These microstructural defects and 

inhomogeneities decrease machinability and reduce mechanical properties. To improve 

properties and reduce the sensitivity of the ADI to section size and nodule count, it is advisable 

to restrict the manganese level in ADI to less than 0.3%. The use of high purity pig iron in the 

ADI charge offers the twin advantages of diluting the manganese in the steel scrap to desirable 

levels and controlling undesirable trace elements [19, 20]. 

2.4.2.4.3. Silicon  

Silicon is one of the most important elements in ADI because it promotes graphite formation, 

decreases the solubility of carbon in austenite, increases the eutectoid temperature, and inhibits 

the formation of bainitic carbide. Increasing the silicon content increases the impact strength of 

ADI and lowers the ductile-brittle transition temperature. Silicon should be controlled closely 

within the range 2.4-2.8% [13, 17]. 
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2.4.2.4.4. Nickel  

Up to 2% nickel may be used to increase the hardenability of ADI. For austempering 

temperatures below 675
o
F (350

o
C) nickel reduces tensile strength slightly but increases ductility 

and fracture toughness [19, 20]. 

2.4.2.4.5. Molybdenum  

Molybdenum is the most potent hardenability agent in ADI, and may be required in heavy 

section castings to prevent the formation of pearlite. However, both tensile strength and ductility 

decrease as the molybdenum content is increased beyond that required for hardenability. This 

deterioration in properties is probably caused by the segregation of molybdenum to cell 

boundaries and the formation of carbides. The level of molybdenum should be restricted to not 

more than 0.2% in heavy section castings [19, 20]. 

2.4.2.5. Advantages of Austempered Ductile Iron: 

ADI provides high strength, good fatigueproperties, superior wear qualities, excellent toughness, 

and cost-effectiveness. 

2.4.2.5.1. Tensile and Yield Strength: 

ADI's tensile and yield strengths are at least twice those of standard ductile irons. 

 

2.4.2.5.2. Fatigue Strength: 

ADI's fatigue strength is typically 50% higher than that of standard ductile irons. It can be further 

increased by shot peening or fillet rolling. The lower hardness grades of ADI work well in 

structural applications.The fatigue strength of ADI compared to other materials are shown in 

figure 2.15. 



NIT Rourkela Page 40 
 

 

Fig. 2.15Fatigue strength compared to other materials [20]. 

2.4.2.5.3. Toughness: 

ADI's excellent impact and fracture-toughness propertiesmake it ideal for applications such as 

ground-engaging tools. 

2.4.2.5.4. Less weight  

ADI weighs only 2.4 times more than aluminum and is 2.3 times stiffer. ADI is also 10% less 

dense than steel. Therefore, when you compare the relative weight per unit of yield strength of 

ADI with that of various aluminum alloys and steels, it is easy to see the engineering and design 

advantages inherent in ADI. The weights of ADI compared to other steels are shown in figure 

2.16. 
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Fig. 2.16Less weight compared to the other steels [20]. 

 

2.4.2.5.5. Wear Characteristics: 

The higher hardness grades of ADI are excellent for wear applications. Unlike case-hardened 

materials, typically the ADI is uniformly hardened throughout the part. Also, ADI work-hardens 

when stressed. This produces a thin surface of very hard martensite where wear resistance is 

most needed. 

2.4.2.5.6. Cost-effectiveness: 

ADI is usually 15% to 20% less costly than steel forgings or castings. It is the most economical 

way of obtaining tensile, yield, or fatigue strength. ADI often competes favorably with heat-

treated and alloy steels for heavy-duty applications where reliability is crucial. It is a useful 

upgrade from standard grades of ductile iron. In some cases it replaces manganese steel and 

nickel-chrome iron. Because of ADI's high strength-to-weight ratio, it has even replaced 

aluminum where the design allows reduced section sizes (shown in figure 2.17) [20]. 
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Fig. 2.17Relative cost per unit of yield strength [20] 

2.4.2.6. Properties of ADI Compared to Steel: 

 ADI is much easier to cast than steel                          

 ADI is approximately 9% lighter than steel                              

 ADI has minimal draft requirements compare with steel forgings 

 ADI loses less of its toughness than steel at sub-zero temperatures 

 ADI work hardens when stressed 

 ADI has more damping capacity than steel[25]. Fig 2.18 shows Properties of ductile iron 

compared steels. 

 

 

Fig. 2.18Properties of ductile iron compared steels [25]. 
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2.4.2.7. Disadvantages of ductile iron 

Materials specifiers should look beyond limited mechanical property data when replacing steel 

parts with ADI.  For example, welding is not recommended for ADI parts.  In some instances, 

the stiffness of the design must be increased to compensate for ductile iron's lower modulus of 

elasticity.  Also, larger fillet radii are required than for steel to avoid stress concentrations.  To 

take maximum advantage of ADI when substituting for forgings, some designs should be 

modified.  Another desirable property of ADI is its work-hardening, which provides better 

rolling and sliding wear properties.  However, because of this characteristic, consideration must 

be given to the sequence of operations when machining is required.  The lower hardness grades 

can be machined after heat-treatment, but the higher hardness grades must be machined before 

heat treatment [27]. 

 

2.4.2.8. Applications of austempered ductile iron 

The development and commercialization of Austempered Ductile Iron (ADI) has provided the 

design engineer with a new group of cast ferrous materials which offer the exceptional 

combination of mechanical properties equivalent to cast and forged steels and production costs 

similar to those of conventional Ductile Iron. In addition to this attractive performance: cost 

ratio, ADI also provides the designer with a wide range of properties, all produced by varying the 

heat treatment of the same castings, ranging from 10-15% elongation with 125 Ksi (870 MPa) 

tensile strength, to 250 ksi (1750 MPa) tensile strength with 1-3% elongation. Although initially 

hindered by lack of information on properties and successful applications, ADI has become an 

established alternative in many applications that were previously the exclusive domain of steel 

castings, forgings, weldments, powdered metals and aluminum forgings and castings [28]. 

The ADI market represents nearly all segments of manufacturing. Bellow fig shows the 

approximate break down of the ADI market. Fig 2.19 shows ADI market distribution. 
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Fig. 2.19 ADI market distribution [24]. 

 

 Heavy Truck and Bus Components 

Economic growth drives the need to haul heavier loads over longer distances, resulting in more 

time between vehicle maintenance and some difficult engineering challenges. The Heavy Truck 

industry recognized the potential benefits of Austempering solutions many years ago. 

Manufacturers took advantage of the versatility of ADI to introduce innovative light weight, high 

performance parts.Diesel Engine Timing Gears, Hypoid Ring and Pinion Gears,Jack Stand 

Gears, Wheel Hubs, Suspension Brackets these are some components which are manufactured by 

using austempering ductile iron [24-28]. 

 Railway  

The Railway industry is constantly looking to improve its products and the safety and efficiency 

of rail transport.The railroad industry uses ADI for suspension housings, top caps and friction 

wedges, track plates, repair vehicle wheels, nipper hooks, and car wheels [24-28]. 
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Construction Equipment 

Heavy duty and hardworking, construction equipment can benefit greatly from the use of tough, 

wear resistant Austempered Irons and Steels. Whether for ground engaging components such as 

bucket teeth or engine and powertrain parts, ADI and other Austempered materials can improve 

the performance of your equipment [24-28]. 

Light Vehicle 

The automotive industry is constantly looking to increase performance, and reduce the cost and 

weight of the vehicles they produce.Austempered materials have a proven track record of 

providing strength and dependability for safety components, suspension systems, and drivetrain 

applications [24-28]. 

Miscellaneous Industrial 

Miscellaneous industrial applications include brackets, lever arms, knuckles, shafts, cams, sway 

bars, sleeves, clevises, conveyor components, jack components, bushings, rollers, molding line 

components, fixtures, gears, sprockets, deck plates, and all sorts of power transmission and 

structural components [24-28]. 

Agricultural 

Farming and agricultural applications for ADI include plow points, till points, trash cutters, seed 

boots, ammonia knives, gears, sprockets, knotter gears, ripper points, tractor wheel hubs, rasp 

bars, disk parts, bell cranks, lifting arms, and a great variety of parts for planters, plows, sprayers 

and harvesters [28]. 

Sporting Goods 

Even the sports goods industry has adopted ADI for its high strength to weight and superior wear 

resistance.Bobsleigh runners, Sword blades, Gun components are manufacturing by using 

austempered ductile iron [24]. 



NIT Rourkela Page 46 
 

Defense 

The defense industry has been relatively slow to adopt ADI, however some of the applications 

include track links, armor, ordnance and various hardware for trucks and armored vehicles [28]. 

Gears/Shafts/Powertrain 

For high performance gear and power train manufacturers, Austempered materials offer greater 

wear resistance, reduced noise, improved bending and contact fatigue, as well as increased 

strength and durability. Diesel Engine Timing Gears, Hypoid Ring and Pinion Gears, Off-

Highway Drive Axles, Ring Gears, Gear Housings, Sprockets, CV Joints, Differential Housings, 

Wheel Hubs etc. are prepared by using austempered ductile iron [24]. 
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CHAPTER 3 A brief discussion on previous work 

 

Form the available literatures, it is quite evident that many attempts were made to understand and 

predict the behaviors of austempered ductile iron that includes the study of ausferrite matrix 

structure and the response of matrix structure to heat treatment, structure and properties 

correlation, and its mechanical properties with different variablesand possible applications. A 

brief review of some literatures in theseareas is presented hereunder. 

Olivera Eric, DraganRajnovic, Slavica, LeposavaSidjanin, T.Jovanovic have studied on the 

macrostructure and fracture of two types of austempered  ductile iron, one is alloyed with copper 

and another one is alloyed with copper and nickel and observed the effect of copper and copper 

plus nickel on the microstructure and impact properties of the two types ofaustempered ductile 

irons. They told that addition of copper plus nickel delays the transformation kinetics of the 

residual austenite resulting in a shift of the maximum of volume fraction of retained austenite to 

3 hours of austempering, compared to 2 hours in austempered ductile iron alloyed with copper. 

In the same time, they observed higher maximum value of the volume fraction of retained 

austenite in austempered ductile iron alloyed with copper plus nickel. In the same austempered 

ductile iron a substantial plastic deformation at the peak of impact energy is associated with the 

highest volume fraction of retained austenite. So they have been demonstrated that the volume 

fraction of retained austenite strongly effects impact energy of both irons, i.e. with content 

retained austenite up to  maximum value impact energy increases, then a decrease occurs with 

the decrease of retained austenite [29]. 

J. Zimba, D.J. Simbi, E. Navara have studied the abrasive wear and mechanical  properties of the 

austempered ductile iron and compared these properties with the quenched and tempered steel. In 

this work they have taken one type of ductile iron sample and two types of steel samples and 

austempered the ductile iron sample at different temperatures and times, and steel samples were 

quenched & tempered at different temperatures. They observed that as the austempering 

temperature is increased so does the ferrite lath spacing and the volume fraction of retained 

austenite.The tensile strength and hardness decrease with austempering temperature while the 

elongation and impact toughness indicate significant increase as the austempering temperature is 
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raised. The good wear resistance exhibited by austempered ductile iron despite the low initial 

hardness can be attributed to the surface transformation of retained austenite to martensite during 

abrasion, i.e. during abrasion; there is a surface transformation of retained austenite to 

martensite.  Due to this the surface hardness and wear resistance of austempered ductile iron 

increase [30].  

 

Z.K.Fan and R.E.Smallman have studied the fracture behavior of the austempered aluminum 

spheroidal graphite iron. For that  they have taken the specimens of   Aluminum spheroidal 

graphite iron containing, 3.2%C, 2.2%A1, 0.3%Si by weight by weight were austenitised at 

950°C for 2 hours and then austempered at 300°C or 400°C for times up to 6 hours, polished and 

were squeezed to fracture. From the observations they demonstrated that Cracks always originate 

from graphite nodules in austempered ductile iron.  The easiest propagation path of a crack in 

austempered ductile iron is along the austenite ferrite interfaces and the propagation path of a 

crack depends on the orientation relationship of bainitic ferrite laths with the applied load 

direction, and also on whether there is carbide precipitation in the bainitic ferrite laths or at the 

ferrite austenite interfaces. Carbides precipitated in bainitic ferrite laths promote the passage of 

cracks through the ferrite laths, but do not significantly influence the fracture mode and Carbides 

precipitated at the ferrite austenite interfaces clearly promote crack propagation along the 

interfaces and change the fracture mode from ductile to cleavage in austempered ductile iron. In 

the absence of carbide precipitation in the matrix, the fracture mode of austempered ductile iron 

is typically ductile.  Cracks often propagate along the interfaces which lie approximately normal 

to the applied load direction, but cut through the bainitic ferrite laths which lie parallel to the 

applied load direction [31]. 

 

Uma Batra, S.Ray and S.R.Prabhakar studied on the variation in the austempered microstructure, 

the volume fraction of retained austenite, the average carbon content of retained austenite, their 

productand the size of bainitic ferrite needles with austempering temperature for 0.6% Cu 

alloyed ductile iron. In this work they have taken copper alloyed ductile iron specimens and 

austempered at different temperatures and times.  From their work they observed that increasing 

austempering temperature changes the bainite Morphology from lower bainitic to upper bainite. 

The average volume fraction of austenite, its carbon content, and the size of bainitic ferrite also 
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increase with increasing austempering temperature. Increasing the austempering time initially 

Increases the amount of retained austenite and its carbon content, both of which then reach a 

plateau. The plateau extends over a period of stability of retained austenite, after which there is a 

decrease of both[32]. 

 

F.Y. Hung, L.H. Chen, T.S. Lui studied the particle erosion of upper bainitic austempered ductile 

iron. In this work they have taken aductile iron sample and austempered at 420
0
C and at different 

times. Then these upper bainitic austempered ductile iron (ADI) specimens were eroded by 

Al2O3 particles of 275µm grit size under the average particle velocity of 73ms
−1

. They observed 

that the austempered specimen of lower austempering time which contains largest amount of 

retained austenite and no austempered carbide is more erosion resistance than other ADI 

specimens and the same cast iron of other common matrix structures.  If austempering time is 

increased then brittle cracks will induce at normal impact and shift the impact angle of maximum 

erosion rate to a higher one. They also demonstrated that € carbide will form upon the particle 

impingement and retained austenite is not only phase to transformed during the erosion process 

but also may be possible for  the bainitic ferrite because its carbon concentration is higher than 

equilibrium[33]. 

 

Uma Batra, Subrata Ray, and S.R. Prabhakar studied the effect of alloying elements on the 

austempering process, austempered microstructure, and structural parameters of two 

austempered ductile irons (ADI) containing 0.6% Cu and 0.6% Cu +1.0% Ni as the main 

alloying elements. They used optical metallography and x-ray diffraction to study the changes in 

the austempered structure. They studied effect of alloying additions on the austempering kinetics 

using the Avrami equation. They observed significantly more upper bainite in the austempered 

Cu-Ni alloyed ADI than in Cu alloyed ADI. The volume fraction of retained austenite, the 

carbon level in the retained austenite, and the product of retained austenite and carbon content in 

an austempered structure of Cu-alloyed ADI are higher than in Cu-Ni-alloyed ADI. The 

austempering Kinetics is slowed down by the addition of Ni[34]. 

 

O. Eric, M. Jovanovic, L. Šidjanin and D. Rajnovic studied on the microstructure and mechanical 

properties of the austempered ductile iron which is alloyed with copper, Nickel and 
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molybdenum. In this work they austenitised the samples at 860
0
C for one hour and then 

austempered at 320
O
C and 400

0
C in varying the time from 0.5 to 5 hours. They observed from 

their work is that the Austempering at 320
o
C in the range between 2 and 5h produces a typical 

austempered ductile iron microstructure consisting of free bainitic ferrite and a stable, highly 

carbon enriched retained austenite. The maximum value of impact energy (133 J) corresponds to 

the maximum volume fraction of retained austenite (40vol%) which was reached after 2.5h. The 

whole range of austempering time at 400
o
C is distinguished by the presence of blocky austenite 

in which martensite was formed during subsequent cooling to the room temperature. During 

austempering at 400
o
C yield strength, tensile strength and ductility are twice as lower than at 

320
o
C. The low values of tensile properties coincide with the appearance of martensite in the 

microstructure[35]. 

 

J. Aranzabal, I. Gutierrez, J.M. Rodriguez-I-babe, and J.J. UrcolaR have studied on the influence 

of the amount and morphology of austenite phase on the mechanical properties (proof stress, 

ultimate tensile strength (UTS), elongation and toughness) at different austempering conditions. 

They concluded from their work that the short time treatmentslead to deteriorated mechanical 

properties in accordance with the presence of un-tempered martensite. The combination of long 

times and high temperatures of austempering produces a similar trend associated, in this case, 

with the decomposition of the austenite, into ferrite plus coarse carbides, that takes place during 

the heat treatment. At the lowest temperature, the austenite is plastically stable due to the higher 

carbon content and to thefiner distribution of this phase in the microstructure. The bainitic ferrite 

and the austenite contribute in this case to the proof stress of the material, and the increase of the 

austenite volume fraction has beneficial effect on the toughness. The increase of the austenite 

volume fraction as the treatment temperature increases has two different effects on the material 

properties: a decrease of the carbon content and a coarser morphology of this phase. After 300
o
C 

isothermal treatments at intermediate times, the austenite is plastically stable at room 

temperature and contributes, together with the bainitic ferrite, to the proof stress and the 

toughness of the material. For austenite volume fractions higher than 25 %, the proof stress is 

controlled by this phase and the toughness depends mainly on the stability of austenite. In these 

conditions (370
0
C and 410

0
C treatments), the present material exhibits a transformation-induced 

plasticity effect, which leads to an improvement in ductility. It is shown that the strain level 
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necessary to initiate the martensitic transformation induced by deformation depends on the 

carbon content of the austenite. The martensite formed under TRIP conditions can be of two 

different types: „„austempered‟‟ plate martensite, which forms at room temperature from an 

austenite with a quasi-coherent epsilon carbide precipitation, and lath martensite nucleated at 

twin boundaries and twin intersections [36]. 

 

A.S.M.A. Haseeb, Md. Aminul Islam, Md. Mohar Ali Bepari studied the behavior of ductile iron 

heat treated by two different procedures, quenching &tempering and austempering to identical 

matrix hardness. For that they have taken samples of ductile iron, heat treated (austempered and 

quenching & tempering) and carried out wear tests using a pin-on-disc type apparatus under dry 

sliding conditions. They have observed that under all test conditions austempered ductile iron 

exhibits a better wear resistance than quenched & tempered ductile iron, although both have an 

identical chemical composition and matrix hardness. The relative superiority of austempered 

ductile iron becomes even more pronounced at higher load and longer sliding distance. Micro 

hardness measurement below wear scar reveals that the hardness of austempered ductile iron 

increases while that of quenched and tempered iron decreases during the wear process[37]. 

 

Srinivasamurthydaber, K.S.Ravishankar, P.PrasadRao have studied the influence of austenitising 

temperature on the formation of strain-induced martensite in austempered ductile iron. For that 

they have taken Ductile iron containing 1.5 wt.% nickel, 0.3 wt.% molybdenum and 0.5 wt.% 

copper was subjected to austempering treatments which consisted of three austenitising 

temperatures, namely 850, 900 and 950
o
 C, and three austempering temperatures, namely 300, 

350 and 400
0
 C. They were carried out tensile tests under all the heat-treatment conditions and 

strain-hardening behavior was studied by applying Hollomon equation. Microstructures were 

studied by optical microscopy and X-ray diffraction. They observed that the retained austenite 

can transform to martensite through a TRIP like phenomenon. The propensity to transform to 

martensite under strain depends to a large extent on the austenitising temperature. As the 

austenitising temperature is increased the tendency to transform to martensite increases at all the 

austempering temperatures. High austenitising temperature together with high austempering 

temperature forms retained austenite with low stability, and therefore greater tendency to form 

martensite under strain [38]. 
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M.NiliAhmadabadi, H. M.Ghasemi and M.Osia havestudied the effect of austemperingprocess 

on the wear behavior of austempered ductile iron ADI. For that they have taken a 0.75 wt.% Mn 

ductile iron with different nodule counts was austempered by conventional and successive 

austempering processes at 315 and 375
0
C for different periods.  They are concluded from their 

sliding wear tests on specimens with optimum mechanical properties austempered by different 

processes is that the delamination mechanism as a dominant wear mechanism.From the 

mechanical and wear test resultsthey told that successive austempering process improves both 

mechanicalproperties and wear resistance of ADI in comparisonwith conventional austempering 

process.The specimens with lower nodule count longer solidification time have lower wear rate 

than specimens withhigher nodule count shorter solidification time. High carbon content retained 

austenite along with goodmechanical properties is supposedly the main reason for improvement 

of wear resistance of HLAT specimens [39]. 

 

Uma Batra, S.Ray and S.R.Prabhakar studied  The effect of austempering temperature and time  

on tensile properties such as 0.2% proof stress, ultimate tensile strength (UTS), percentage of 

elongation, and quality index and these properties have  correlated with the structural parameters 

of the austempered ductile iron microstructure. For that they have a ductile iron containing 0.6% 

copper as the main alloying element was austenitized at 850°C for 120 min and was 

subsequently austempered for 60 min at austempering temperatures of 270, 330, and 380 °C. The 

samples were also austempered at 330°C for austempering times of 30-150 min. They concluded 

from there is that, In Cu-alloyed ADI, when the austempering temperature increases from 270-

380 °C, the proof stress and UTS decreasedue to the change in morphology of the bainitic ferrite. 

However, the percentage of elongation and the QI increase monotonically. The proof stress, 

UTS, and the percentage of elongation, as well as the QI, are relatively low at short tAs, andthese 

values increase as the austempering process progresses.The proof stress may decrease at longer 

tAs, while the UTSremains, more or less, constant. Austempering the Cu-alloyedductile iron for 

60 min at 270, 330, or 380 °C resulted in anADI close to the 1200/4, 1050/7, and 850/10 grades 

of ASTMA 897.The UTS and the percentage of elongation of this ADI alloy that was 

austempered at 330 °C fall below those specified in the ASTM standard for tAs less than 30 min; 

however, these properties improve for tAs of 60-150 min [40]. 
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A.Kutsov, Y.Taran, K.Uzlov, A.Krimmel and M.Evsyukov studied the kinetics of kinetics of 

bainite transformation under isothermal conditions in Ni-Mn-Cu-Mo alloyed ductile iron. They 

studied the formation of upper and lower bainite in the ductile iron described by different C-

shaped curves.They concluded from their work is that morphology of the bainite changes 

accordingly: theupper bainite has a feathery-like morphology and thelower bainite has a plate-

like one. These facts are,probably, a result of different crystallographic shears during the 

formation of the upper and lower bainite. A comparison of the dilatometrical data with the X-ray 

results shows that the bainite transformation ceases once the carbon concentration in low carbon 

austenite reaches a certain value. It is suggested that this concentration corresponds to curve and 

the composition of high carbon austenite is increasing. It seems to be that the increase of the 

bainitic a-phase volume fraction results in an increase of the volume fraction of high carbon 

austenite [41]. 

 

U. Batrawas studied the fracture behavior of copper-alloyed austempered ductile iron using 

metallography and fractography. She investigated the effect of austempering temperature on the 

microstructure, mechanical properties, fracture behavior under tensile and impact loading, and 

fracture mechanism. She concluded from their work is that when the austempering temperature is 

increased from 270 to 380°C, the volume fraction of retained austenite, the carbon content of the 

austenite, and the size of the bainitic ferrite needleincreased. The morphology of the bainitic 

ferrite changes from lower to upper.The hardness, 0.2% proof stress, and UTS of the ADI 

decrease, but the impact energy increases with the increase in austempering temperature from 

270 to 380°C. The percent elongation increases with the increase in austempering temperature 

from 270 to 330°C but decreases on further increase in temperature to 380°C.In ADI 

austempered at 270°C, thedeformation is limited to near thenodule only. However, it spreads 

intothe matrix for ADIs austempered at thehigher austempering temperatures of 330 and 380°C. 

The crack generallyinitiates from the graphite nodulesurface and propagates through thematrix of 

bainitic ferrite and retainedaustenite. It normally propagatesthrough bainitic 

ferrite/austeniteinterfaces when ferrite makes an anglegreater than 45°C with the applied loadbut 

it cuts through bainitic ferrite whenthe cluster of bainitic ferrite makes anangle less than 45°C 
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with the appliedload. Intercellular segregation andnonmetallic inclusions are the other probable 

locations for crack growth [42]. 

 

C.HakanGür, VolkanKilicli, Mehmet Erdogan have studied the mechanical properties of  

austempered ductile ironachieved through the heat treatment is conducted in a restricted time and 

temperature frame called the “processing window”.In this study they have investigated MBN 

response and variations in microstructure and mechanical properties of austempered ductile iron. 

MBN measurements are sensitive to the fine evolutions of the austempering stages of 

austempered ductile iron. Martensite volume fraction gradually decreases and finally disappears 

with increasing the austempering time while the transformed austenite content decreases and 

acicular ferrite contents increases. By measuring the MBN parameters such as, the height and the 

position of MBN peak, the changes in the microstructure and corresponding variations in yield 

and tensile strengths, and total elongation can be estimated non-destructively [43].   

 

C.Valdes, M.J. Perez Lopez, M. Figueroa, and L.E. Ramirezhave studied Microstructural 

features and mechanical properties of austempered ductile iron with duplex matrix unalloyed and 

alloyed with 1Ni-0.24 Mo by optical microscopy, tensile and impact test. For that they heated the 

ductile iron specimens to the austenitising temperature in the range of 780 to 830
o
C for 90 

minutes and then austempered at 375
0
C for 60 minutes. From their work, they observed that as-

cast microstructure was constituted by a ferrite-pearlite mixture of the bull-eye type with an 

average of graphite nodularity of 93% UTS, elongation and impact strength strongly depend 

onamounts of pro-eutectoid ferrite and ausferrite presentafter heat treatment.Unalloyed and 1Ni-

0.24Mo ductile iron treated in the inter-critical region between 800–830
o
C, exhibited the 

highestimpact strength from 140 to 145 J and from 100 to 130 J,respectively, due to presence of 

duplex matrix structure [44]. 

 

C.Z. Wu, Y.J. Chen andT.S. Shih have studied the phase transformation of austempered ductile 

iron by micro jet impact. For that they have austempered the ductile iron specimens at 320
0
C and 

360
0
C with ultrasonic vibration treatment. They found from their work is that the content and 

morphology of retained austenite have a fundamental influence on the mechanical properties of 

ADI. Good ductility is exhibit within the matrix microstructure where a large volumefraction of 
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austenite has been retained and uniformly distributed overthe matrix, as in the case developed 

from Ni- andCu-alloyed ADI.After subjecting to ultrasonic treatment, someisland-like austenite 

is found to undergo a phasetransformation of austenite to martensite induced byshear stresses 

from impact of micro-jets and shockwaves, while some stringer-type austenite is found 

toprecipitate carbides.After the process, micro-hardness values areenhanced along with an 

increased cumulative treatment time. The values obtained in intercellularregions are much higher 

due to Mn segregation.The stress-induced transformed martensiteanalyzed by EPMA is found to 

have a higher content of Mn for island-like austenite, which appearswithout microcracks, and 

that having a lower content of Mn usually shows microcracks after ultrasonic treatment.The 

elastic strain-energy density estimated froma microjet impact on the surface of ADI varied from 

5.1×10
3
 to 9.2 × 10

4
 J/m

3
. In the homogeneous nucleation of a martensite nucleus, the elastic 

strain energy density is about 8.6×10
7
J/m3. Apparently,this estimated elastic strain-energy 

density is fewer than the energy necessary for homogeneousnucleation of martensite [45, 46]. 

 

Yoon-Jun Kim, Hocheol Shin, Hyounsoo Park and Jong DaeLimhve studied how the mechanical 

properties of the  austempered ductile cast iron varying with the austempering temperature. For 

that they have austenitized the samples alloyed with copper and molybdenum at 910
o
C for one 

hour and austempered at 350 and 410
0
C temperatures. From their work they concluded thatCu 

and Mo alloyed iron blocks were cast and heat treated. Inorder to see the effect of austempering 

temperature onmechanical properties, blocks were austenitized at 910 °C for90 min, then 

quenched and held at 350, 370, 390 and 410 °Cfor 90 min. It was found that the higher 

austemperingtemperature, the higher ductility. The highest ductility wasobtained from410 °C 

austempered samples. However,tensilestrength was highest for 350 °C austempered cast 

iron.Based upon mechanical property investigations, ADIsproduced at higher isothermal 

tempering temperatures such as 390 °C and 410 °C can be categorized as an ASTM grade1. 

While those austempered at lower temperatures such as350 °C and 370 °C can be grouped as 

ASTM grade 2.Copper and molybdenum addition plays effective role in theformation of 

ausferrite structure as well as increment ofmechanical properties such as tensile strength and 

hardenability [47]. 
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DongCherngWEN and TienShouLEI have studied the mechanical properties and microstructure 

of low alloyed ductile iron in the upper ausferrite region. For that they have taken the samples of 

ductile iron alloyed with 0.77% copper and 0.5% nickel and austenitized at 900
o
C and 

austempered at 400
o
C.they found from their work is that themartensite content of ADI had a 

significantinfluence on Its mechanicalproperties. As martensitecontent Increased, ductility and 

toughness decreasedobviously. Theeffect of martensite on reducing mechanical properties could 

be eliminated after tempering at 200
0
 C.Ductility and toughness could be increasedwithout 

decreasing the previous strength, and the strengthening effects were particularly evident at 3-50 

% martensite content. Tempering at 200
0
C could shorten the austempering time in getting the 

samelevelas the peak valuesof mechanical properties of ADI treated with singleaustempering, 

and could extend the effective range ofaustempering time.Fromthe observation of mechanical 

propertiesand microstructure changes, itwasevident that the useof processing window defined by 

resistivity curve inselecting the isothermal holding time in austempering was effective and direct. 

When ductile iron wasaustempered within this processing window the mechanicalproperties 

satisfied the standard requirementwere obtained. 
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CHAPTER 4 Materials and Methods 

 

4.1 Materials 

Three grades of ductile iron samples have used in the experiment which were produced in a 

commercial foundry known as L&T Kansbhal. The difference between these three grades is: first 

one is unalloyed, second one is Copper alloyed and third one is Nickel alloyed. Chemical 

composition of the three grades of ductile iron samples are given below in the table 4.1. 

Table 4.1Chemistry of the S.G. iron 

Sample C Si Mn Cr Ni Mg Cu S P 

Unalloyed  3.57 2.22 0.23 0.03 0.12 0.045 0.001 0.011 0.026 

With copper 3.55 2.1 0.18 0.03 0.22 0.038 0.49 0.009 0.024 

With Nickel 3.56 2.14 0.18 0.02 0.45 0.042 0.002 0.008 0.023 

4.2 Test Specimen Preparation 

For tensile  test  the  solid  block  of  ductile  iron  was  cut  to “Dog Bone  Shape”,  which  were  

machined  to  6 mm  gauge diameter and 30 mm gauge length. Fig 4.1 shows Test Specimen for 

tensile strength .  
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30mm 

Section to be machined for                                  

hardness testing 

 

Fig. 4.1 Test Specimen 



NIT Rourkela Page 60 
 

4.3 Heat Treatment (Austempering) 

 

Number of  samples of each grade have taken and heated to 900
o
C for one hour (austenisation) 

and then transferred quickly to a salt bath ( salt combination was 50 wt % NaNO3 and 50 wt % 

KNO3) maintained at different temperatures(250
o
C,300

o
C,350

o
C) for 30 min, 60 min, 90 min 

and 120 min. Fig 4.2 shows Dog bone shaped ductile iron before and after austempering 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Before Austempering After Austempering 

Fig. 4.2 Dog bone shaped ductile iron before and after austempering 



NIT Rourkela Page 61 
 

4.4Hardness Measurement 

 

The heat treated samples of dimension 8×8×3 mm were polished in emery papers(or SiC papers) 

of different grades for hardness measurement. Rockwell Hardness test was performed at room 

temperature to measure the macro hardness of the ductile iron specimens in A scale. The load 

was applied through the square shaped diamond indenter for few seconds during testing of all the 

treated and untreated samples. Four measurements for each sample were taken covering the 

whole surface of the specimen and averaged to get final hardness results. A load of 60 kg was 

applied to the specimen for 30 seconds. Then the depth of indentation was automatically 

recorded on a dial gauge in terms of arbitrary hardness numbers. Then these values were 

converted to in terms of required hardness numbers (as Brielle‟s or Vickers hardness numbers).  

 

4.5 Tensile Testing 

Tensile test were carried out according to ASTM (A 370-2002). A specimen of “Dog Bone 

Shape” shown in figure 4.1 was prepared for tensile test, which were machined to 6mm gauge 

diameter and 30 mm gauge length. Test was conducted by using universal testing machine 

(UTES 100) as per ASTM standard.  Fig. 4.3 shows Specimen used for tensile properties  

                            

 

 

                                         Fig. 4.3 Specimen used for tensile properties  

 

 

Advanced materials are used in a wide variety of environments and at differenttemperature and 

pressure. It is necessary to know the elastic and plastic behavior of these materials under such 

conditions. Such properties as tensile strength, creep strength, fatigue strength, fracture strength, 
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fracture toughness, and hardness characterize that behavior. These properties can be measured by 

mechanical tests. In this investigation we have measured tensile strength, elongation, yield 

strength and hardness.  Fig. 4.4 shows Fuel Instruments & Engineers Pvt Ltd UTM (Model: 

UTES-100) 

 

 

 

 

Fig. 4.4Fuel Instruments & Engineers Pvt Ltd UTM (Model: UTES-100) 

 

4.6 Scanning Electron Microscopy 

 

4.6.1. Micro-structural observations 

 The samples were prepared for micro structural analysis. Fromeach specimen a slice of 4 mm is 

cut to determine the microstructure. These slices are firstlymounted by using Bakelite powder 
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then polished in SiC paper of different grades (or emery papers) then in 1 μm cloth coated with 

diamond paste. The samples were etched using 2% Nital (2% conc. Nitric acid in methanol 

solution). Then the microstructures were taken for differentheat treated specimen by using JEOL 

JSM-6480LV Scanning Electron Microscopy (SEM). Fig. 4.5 shows JEOL JSM-6480LV 

scanning electron microscope. 

 

 

Fig. 4.5 JEOL JSM-6480LV scanning electron microscope 

 

 

4.6.2.Fractoraography 

Fracture surface or surface morphology of the samples which fractures in different 

manners(ductile, Brittle and mixed mode fracture) after tensile test for treated and untreated 

conditions are analyzed by using Scanning Electron microscopy (SEM).For this samples were 

cleaned withAcetone to remove any dust or impurity on the surface of specimens before SEM. 



NIT Rourkela Page 64 
 

 

4.7 X-Ray Diffraction studies 

The X-Raydiffraction (XRD) analysis was performed for few selected samples.Thistechnique 

was used to estimate the volume fractions of retained austenite and ferrite inthe material after 

treatment. XRD was performed 30 KV and 20 mA using a Cu- Kα targetdiffractometer. 

Scanning was done in angular range 2θ from 30° to 80° at ascanning speed of 2°/min. The 

profile was analyzed on computer by using X‟ Pert High ScoreSoftware to obtain the peak 

position and integrated intensities of the austenite and ferrite.  Fig. 4.6 shows Philips X-pert 

MPD X-ray diffractometer. 

  

 

 

 

Fig. 4.6 Philips X-pert MPD X-ray diffractometer. 
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CHAPTER 5 Results and discussion 

 

In the present research work effect of different variables like austempering time, austempering 

temperature and alloying of Copper and Nickel on properties and microstructure of ductile iron 

have been studied. 

 

5.1. The mechanical properties 

The mechanical properties (tensile strength, yield strength, elongation & hardness) of the 

unalloyed,Copper alloyedand Nickel alloyed samples for various austempering time and 

temperature are summarized in Table 5.1, 5.2 and 5.3, respectively. Stress-Strain curves of 

unalloyed ADI austempered at 250 °C for 30 min, Cu-alloyed ADI austempered at 300 °C for 60 

min and Ni-alloyed ADI austempered at 350 °C for 90 min are given in fig 5.1, 5.2 and 5.3, 

respectively. 
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Figure 5.1 Stress-strain curve of unalloyed ADI austempered at 250 °C for 30 min. 

 

 

Figure 5.2 Stress-strain curve of Cu-alloyed ADI austempered at 300 °C for 60 min. 
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Figure 5.3 Stress-strain curve of Ni-alloyed ADI austempered at 350 °C for 90 min. 

Table 5.1Tensile strength, yield strength and elongation of Unalloyed ADI (without alloying Ni 

or Cu). 

Austempering 

Temperature (
o
C) 

Time 

(min) 

Unalloyed ADI 
Tensile 

strength, 

σ
UTS

(MPa) 

0.2%  Yield 

strength, 

σ 
YS

 (MPa) 

Elongation (%) 

Hardness 

(RA) 

250 

30 997 795 1.9 75 

60 1139 957 2.4 80 

90 1124 927 2.8 79 

120 1116 906 2.8 78 

300 

30 831 693 3.7 69 

60 983 806 4.2 73 

90 965 759 4.8 71 

120 976 788 4.7 72 

350 

30 724 539 5.9 65 

60 871 691 6.7 69 

90 849 673 7.2 68 

120 861 687 7.1 67 
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Table 5.2 Tensile strength, yield strength and elongation of Copper alloyed ADI. 

Austempering 

Temperature (
o
C) 

Time 

(min) 

Copper alloyed ADI 
Tensile 

strength, 

σ
UTS

(MPa) 

0.2%  Yield 

strength, 

σ 
YS

 (MPa) 

Elongation (%) 

Hardness 

(RA) 

250 

30 1039 834 1.5 76 

60 1181 995 2.1 82 

90 1162 967 2.4 80 

120 1168 978 2.3 79 

300 

30 873 685 3.1 71 

60 1017 825 3.5 74 

90 1034 858 3.7 72 

120 1030 851 3.8 73 

350 

30 778 591 5.2 68 

60 928 735 5.8 72 

90 921 733 5.9 70 

120 907 716 6 69 

 

Table 5.3Tensile strength, yield strength and elongation of Nickel alloyed ADI. 
  

 

5.1.1. Effect of austempering time on UTS 

Austempering 

Temperature (
o
C) 

Time 

(min) 

Nickel alloyed ADI 
Tensile 

strength, 

σ
UTS

(MPa) 

0.2%  Yield 

strength, 

σ 
YS

 (MPa) 

Elongation (%) 

Hardness 

(RA) 

250 

30 1010 815 1.7 75.5 

60 1156 985 2.2 81 

90 1160 945 2.6 79.5 

120 1121 942 2.6 79 

300 

30 852 667 3.5 69.5 

60 1003 822 3.9 73.5 

90 1018 828 4.3 71.5 

120 997 805 4.4 72.5 

350 

30 757 565 5.5 67 

60 905 711 6.5 71 

90 889 698 6.9 69 

120 898 702 6.6 68 
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Fig. 5.4Effect of austempering time on UTS, austempered at 250 ˚C 

Fig 5.4 is showing the variation of tensile strength with respect to the austempering time at 

temperature 250
o
C.Tensile strength is increasing from 30 min time to 60 min in the all samples 

but from 60 min to 90 min it is decreasing in un alloyed, Cu alloyed and increasing in Ni alloyed 

sample and from 90 min to 120 min increased in unalloyed iron, Cu alloyed whereas in Ni 

alloyed iron it is decreased. 
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Fig. 5.5 Effect of austempering time on UTS, austempered at 300 ˚C 

Fig 5.5 is showing the variation of tensile strength with respect to the austempering time at 

temperature 300
o
C. Tensile strength is increasing from 30 min time to 60 min in the all samples 

but from 60 min to 90 min it is decreasing in un alloyed and increasing in alloyed samples (Cu, 
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Ni) and from 90 min to 120 min increased in unalloyed iron, Cu alloyed whereas in Ni alloyed 

iron it is decreased. 
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Fig. 5.6Effect of austempering time on UTS, austempered at 350 ˚C 

Fig 5.6 is showing the variation of tensile strength with respect to the austempering time at 

temperature 300
o
C. Tensile strength is increasing from 30 min time to 60 min but from 60 min to 

90 min it is decreasing in the all samples. from 90 min to 120 min TS increased unalloyed and Ni 

alloyed but decreased in Cu alloyed. 

Three types of samples are almost showing same type of behavior with respect to the 

austempering time. Tensile strength is increasing from 30 min austempering time to 60 min, 

from 60 min to 90 min it is decreasing and from 90 min to 120 min sometimes increasing and 

sometimes decreasing. Overall it is observed that tensile strength is increasing from 30 min to 60 

min and after that for 60 min, 90 min and 120 min tensile strength almost same i.e. not showing 

significance difference for both the grades.  Austempered ductile iron alloyed with cooper is 

showing little bit higher strengths than the unalloyed austempered ductile iron. 

5.1.2. Effect of austempering time on elongation 
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Fig. 5.7Effect of austempering time on elongation, austempered at250 ˚C 

Fig5.7 is showing the variation of elongation with respect to the austempering time at 

temperature 250
o
C. Elongation is increasing from 30 min austempering time to 90 minutes, and 

from 90 min to 120 min decreased in all the grades. 

20 40 60 80 100 120

3.0

3.2

3.4

3.6

3.8

4.0

4.2

4.4

4.6

4.8

P
e
rc

e
n

ta
g

e
 o

f 
E

lo
n

g
a
ti

o
n

Austempering Time (min)

 Unalloyed

 Cu Alloyed

 Ni Alloyed

 

Fig. 5.8Effect of austempering time on elongation, austempered at 300 ˚C 
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Fig5.8 is showing the variation of elongation with respect to the austempering time at 

temperature 300
o
C. Elongation is increasing from 30 min austempering time to 90 minutes, and 

from 90 min to 120 min increased in Cu, Ni alloyed and decreased in unalloyed ductile iron. 
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Fig. 5.9Effect of austempering time on elongation, austempered at 350 ˚C 

Fig5.9 is showing the variation of elongation with respect to the austempering time at 

temperature 350
o
C. Elongation is increasing from 30 min austempering time to 90 minutes, and 

from 90 min to 120 min increased in Cualloyed and decreased in Ni alloyed and unalloyed 

ductile iron. 

 Overall it is observed that Elongation is increasing from 30 min to 90 minand from 90 min to 

120 min sometimes increasing and sometimes increasing in all the grades. Austempered ductile 

iron alloyed with cooper is showing little bit lower elongation thanthe unalloyed austempered 

ductile iron while ductile iron alloyed with nickel is showing intermediate value.  
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 5.1.3. Effect of austempering time on hardness 
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Fig. 5.10 Effect of austempering time on hardness, austempered at 250 ˚C 

Figure 5.10 is showing the variation of hardness with respect to the austempering time at 

temperature 250
o
C. Hardness is increasing from 30 min time to 60 min but from 60 min to 90 

min and from 90 min to 120 min decreased in the all samples.  
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Fig. 5.11 Effect of austempering time on hardness, austempered at 300 ˚C 
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Figure 5.11 is showing the variation of hardness with respect to the austempering time at 

temperature 250
o
C. Hardness is increasing from 30 min time to 60 min but from 60 min to 90 

min and from 90 min to 120 min decreased in the all samples.  
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Fig. 5.12 Effect of austempering time on hardness, austempered at 350 ˚C 

 

Fig 5.12is showing the variation of hardness with respect to the austempering time at 

temperature 350
o
C for all the grades. Hardness is increasing from 30 min austempering time to 

60 min time, from 60 min to 90 min it is decreasing and from 90 min to 120 min sometimes 

increasing and sometimes increasing. 

 Overall it is observed that hardness is increasing from half an hour to one hour and for one hour, 

one and half an hour and two hours tensile strength almost same i.e. not showing significance 

difference for both the grades.  Austempered ductile iron alloyed with cooper is showing little bit 

higher hardness thanthe unalloyed austempered ductile iron. 

 

5.1.4. Effect of austempering temperature on UTS 
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Fig. 5.13 Effect of austempering temperature on UTS for 30 min  

Fig 5.13 is showing the variation of tensile strength with respect to the austempering temperature 

for 30 min. Tensile strength is decreasing with increasing austempering temperature in all the 

grades and Cu alloyed ductile iron showing high tensile strength and unalloyed one showing 

lower strength. 
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Fig. 5.14Effect of austempering temperature on UTS for 60 min 

Fig 5.14 is showing the variation of tensile strength with respect to the austempering temperature 

for 60 min. Tensile strength is decreasing with increasing austempering temperature in all the 
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grades and Cu, Ni alloyed ductile iron grades  showing almost same tensile strength and un 

alloyed one showing lower strength. 
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Fig. 5.15 Effect of austempering temperature on UTS for 90 min 

 

Fig 5.15 is showing the variation of tensile strength with respect to the austempering temperature 

for 60 min. Tensile strength is decreasing with increasing austempering temperature in all the 

grades andCu alloyed ductile iron showing high tensile strength and un alloyed one showing 

lower strength. 
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Fig. 5.16 Effect of austempering temperature on UTS for 120 min 

Fig 5.16 is showing the variation of tensile strength with respect to the austempering temperature 

for 60 min. Tensile strength is decreasing with increasing austempering temperature in all the 
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grades and Cu alloyed ductile iron showing high tensile strength and un alloyed and Ni alloyed 

ductile iron are showing lower strength. 

5.1.5. Effect of austempering temperature on elongation 
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Fig. 5.17 Effect of austempering temperature on Elongation for 30 min 

Figure 5.17is showing the variation of elongation with respect to the austempering temperature 

for 30 min. Elongation is increasing with respect to the austempering temperature in all the 

grades and un alloyed one showing higher ductility and Cu alloyed showing lower ductility. 
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Fig. 5.18 Effect of austempering temperature on Elongation for 60 min 

Figure 5.18 is showing the variation of elongation with respect to the austempering temperature 

for 60 min. Elongation is increasing with respect to the austempering temperature in all the 

grades and Cu,Ni alloyed ductile iron almost showing same ductility at lower temperature and at 

higher temperature Cu alloyed showing lower ductility .  
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Fig. 5.19 Effect of austempering temperature on Elongation for 90 min 

Figure 5.19 is showing the variation of elongation with respect to the austempering temperature 

for 90 min. Elongation is increasing with respect to the austempering temperature in all the 

grades and un alloyed one showing higher ductility and Cu alloyed showing lower ductility. 
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Fig. 5.20 Effect of austempering temperature on Elongation for 120 min 

Figure 5.20 is showing the variation of elongation with respect to the austempering temperature 

for 120 min. Elongation is increasing with respect to the austempering temperature in all the 

grades and un alloyed one showing higher ductility and Cu alloyed showing lower ductility. 

5.1.6. Effect of austempering temperature on hardness 
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Fig. 5.21 Effect of temperature on hardness for 30 min 

Fig. 5.21is showing the variation of hardness with respect to the austempering temperature for 30 

minutes. . Hardness is decreasing with respect to the austempering temperature in all the grades. 

Cu alloyed showing higher hardness and un alloyed ductile iron showing lower hardness. 
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Fig. 5.22 Effect of temperature on hardness for 60 min 

Fig. 5.22 is showing the variation of hardness with respect to the austempering temperature for 

60 minutes. . Hardness is decreasing with respect to the austempering temperature in all the 

grades. Cu alloyed showing higher hardness and unalloyed ductile iron showing lower hardness. 
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Fig. 5.23 Effect of temperature on hardness for 90 min 

Fig. 5.23 is showing the variation of hardness with respect to the austempering temperature for 

90 minutes. . Hardness is decreasing with respect to the austempering temperature in all the 

grades. Cu alloyed showing higher hardness and un alloyed ductile iron showing lower hardness. 

The difference in hardness among the grades is more at lower temperatures and high at higher 

temperatures. 
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Fig.5.24 Effect of temperature on hardness for 120 min 

 

Fig. 5.24 is showing the variation of hardness with respect to the austempering temperature for 

120 minutes. . Hardness is decreasing with respect to the austempering temperature in all the 
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grades. At lower temperatures Ni,Cu alloyed irons showing same hardness at lower temperature 

and Cu alloyed higher than the Ni alloyed.  

 

 

5.2. X-ray diffraction analysis 

5.2.1. Austempered ductile iron (Unalloyed) 

The XRD patterns of austempered ductile iron (unalloyed), austempered at different 

temperatures and different timesare shown belowfigures. 
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Fig.5.25 XRD patterns of ductile ironsample austempered at 250
o
C for (a) 60 min and (b) for 90 

min. 
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Fig.5.26 XRD patterns of ductile iron austempered (a) at 250
o
C for 120 min and (b) at 300

0
C for 

60 min.  
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Fig.5.27 XRD pattern of ductile iron austempered at 350
o
C for 60 min. 

 

In the XRD pattern it is observed that the austenite (111) lines and ferrite (110) are identified 

nearly in all cases. The maximum intensity of the austenite (111) line is increasing with 

increasing temperature but ferrite (110) line is increasing with increasing austempering time and 

decreasing with increasing temperature. 
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5.2.2. Austempered ductile iron with copper  
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Fig.5.28 XRD patterns of alloyed ductile iron austempered at 250
o
C for 60 min and 120min.  
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Fig.5.29XRD patterns of alloyed ductile iron austempered at 250
o
C for 30 min and 350

o
C for 60 

min. 
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 Fig.5.30 XRD pattern of alloyed ductile iron austempered at 300
o
C for 60 min. 

 

In the XRD pattern it is observed that the austenite (111) lines and ferrite (110) are identified 

nearly in all cases. The maximum intensity of the austenite (111) line is increasing with 

increasing temperature but ferrite (110) line is increasing with increasing austempering time and 

decreasing with increasing temperature. 

 

 

5.3. Scanning electron microscopy 

5.3.1. Microstructure  

The microstructures of unalloyed and alloyed ductile iron samples were observed under the 

scanning electron microscope and are shown in following figures. 
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Fig. 5.31 Microstructure of the austempered ductile iron (unalloyed) austempered at (a) 250
o
C 

for 30 min (b) 350
o
C for 60 min (c) 300

o
C for 60 min 
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Fig.5.32 Microstructure of the austempered ductile iron (Copper alloyed) austempered at (a) 

250
o
C for 60 min (b) 300

o
C for 60 min (c) 350

o
C for 60 min 
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b 
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In the above microstructure it is observed that the samples which are austempered at higher 

temperatures having upper bainitic structure and the samples which are austempered at lower 

temperatures are having lower bainitic structure. When the austempering temperature increasing 

the morphology of bainite also changing from acicular to plate like. The amount of retained 

austenite is increasing at higher temperature.At lower austempering temperatures the strength is 

higher. There is no significance difference between copper alloyed ductile iron and ductile iron 

without copper. 

 

 

 

 

c 

Fig.5.33 Microstructure of the austempered ductile iron (Nickel alloyed) austempered at 

(a) 250
o
C for 60 min (b) 300

o
C for 60 min (c) 350

o
C for 60 min 
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5.3.2. Fracrography 

The morphology of fracture surfaces are analyzed by scanning electron microscopy and pictures 

are given bellow. 

 

Fig. 5.34 Fracture surfaces of the copper alloyed ductile iron which is austempered at 250
o
C for 

(a) 30 min (b) 60 min (c) 60 min (d) 120 min 

 

 

Fig.5.35 Fracture surfaces of theaustempered ductile (Unalloyed) which austempered at 250
o
C 

for (a) 30 min (b) 60 min, (c) 90 min and (d) 120 min 

 

In the above pictures it is observed that, at lower treatment times, the fracture pattern (in both the 

grades) shows a mixed mode of fracture (ductile and brittle), because of the presence of retained 
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austenite and some amount of martensite. But as austempering time is increased, the fracture 

bears a dimple type appearance because of the disappearance of martensite phase.It is observed 

that the dimple size increases but the number of dimples decreases with increasing austempering 

temperature. Dimple size increased with increasing austempering temperature, which indicates 

improvement in ductility. 
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CHAPTER 7 Conclusions  

 

The general trends, observed by analysing the results are that for constant austempering time, 

strength (both UTS and YS) and hardness decreases with the increase in temperature and 

ductility (which is represented by % elongation) increases with temperature.The effect of 

austempering parameters are pronounced on Y.S. rather than U.T.S. 

 

The increase in ductility with the increase in austempering temperature is also supported by the 

study of microstructure and analysis of fractured surface as we find more amounts of austenite 

for the specimen‟s austempered at higher temperature. The percentage of ductile dimple in the 

fractured surface also increases with the increase in austempering time and temperature. These 

observations are true for all the grades of SG iron. 

 

If we consider the effect of austempering time then we can see that for a constant temperature 

initially there is an increase in strength and hardness but after one hour (60 minutes) of 

austempering, both hardness and strength becomes constant or there may be  a slight decrease in 

the value. As far as ductility is concerned, the property is improved with the austempering time 

however it becomes almost constant after a period of one and half hours (90 minutes). This is 

also true for all the grades. 

 

However it has been observed that Cu and Ni have an effect on the rate of change in the values 

of the properties. From the results it is obvious that there is a sharp rise in strength when the 

austempering time is increased from 30 minutes to 60 minutes and this has happened for all the 

three temperatures used in the experiment but the percentage of increase in both UTS and YS is 

significantly higher for unalloyed one.  

 

 

So by analysing the results we may draw the following conclusions. 

 For a constant period of austempering, strength (both UTS & YS) and hardness 

decrease and ductility increases with the increase in temperature. 
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 For a particular austempering temperature, initially there is a sharp rise in the values of 

both strength and hardness with the increase in austempering time. After one hour of 

austempering, there is no significant increase in the values of these properties and there 

may be a slight decrease in strength. As far as ductility is concerned, the property is 

improved with time for a constant austempering temperature but it reaches a saturation 

point after a period of around 90 minutes (one and half hours). 

 The increase in ductility with the time of austempering can be noticed in both 

microstructure and fractograph. The specimen‟s austempered at higher temperatures 

exhibit more amount of austenite in microstructure and increased percentage of ductile 

dimples in fractographs. 

 Both Copper and Nickel play a significant role in the property development of 

austempered ductile iron (ADI). Both retard the rate of increase in strength and 

accelerate the rate of increase in ductility (% of elongation) to a considerable extent.The 

effect on ductility is more pronounced in case of Nickel. 

 The alloying elements have a significant effect on the austempering process. Both of 

them retard the rate of decrease in strength with increasing  temperature and accelerate 

the rate of increase in ductility(with austempering temperature) 

 The effect of Copper appears to be more in case of strength. For examplethe decrease in 

the Y.S. for unalloyed S.G. iron is 32.20% when the austempering temperature is 

increased from 250
0
C to 350

0
 C keeping the time ofaustempering constant at 30 

minutes. The decrease in Y.S. under similar conditions is 28.06% in case of Copper 

alloyed S.G. iron and 30.67% in case of Nickel alloyed ones. 

 Both Copper and Nickel enhance the rate of increase in ductility due to austempering. 

In the present work the maximum increase in percentage of elongation for the unalloyed 

specimens has been found to be around 280% but for the alloyed ones it has been found 

to be more than 300%. In this regard the effect of Copper and Nickel are almost equal.  

 Significantly more upper bainite was observed in the Ni-alloyed ADI than Cu-alloyed 

ADI. 
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Future scope of the work 

Austempered ductile iron has found enormous applications in recent years due to the excellent 

combination of strength; ductility and wear resistance .It has started to replace steel in some 

structural applications.Engineering applications of ductile iron in as cast and different heat 

treated conditions are growing day by day.  More research may be carried out for further 

improvement of the mechanical properties.In this regard the effect of both heat treatment process 

and alloying of elements have to be studied. 
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