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ABSTRACT 

 

Dissimilar metal welds (DMW) are widely employed to meet various fabrication 

requirements in the integrated structures. In advanced heavy water reactors (AHWR), 

main heat transport (MHT) piping system is made of austenitic stainless steels (SS) and 

the later part of the piping is often made of carbon steels mainly to reduce the overall cost 

of the structure. These two metals (austenitic and carbon steels) are joined by DMW 

using SS 308 electrode. The operating temperature of this structure varies from 25-285 

°C. This fluctuation in temperature causes thermally induced elastic-plastic strain 

reversals. 

In the present investigation an attempt has been made to study the low cycle fatigue 

(LCF) behaviour of AISI 308 stainless steel weld metal. All LCF tests were conducted at 

ambient condition following the ASTM standard E-606[1]. These tests were conducted at 

strain amplitudes of 0.5%, 0.7%, 1.0%, 1.2% and 1.5% under fully reversed cycles      

(R=-1). 

Various approaches such as (i) strain, (ii) energy, (iii) cyclic stress-strain curve (CSSC) 

and (iv) master curve have been employed in this investigation[2]. Walker and Smith 

Watson Topper (SWT) life estimation models have also been attempted in the present 

study[3]. The experimental results indicate pronounced Bauschinger effect, softening 

during lower strain amplitudes and Non Masing behaviour. Comparison of cyclic stress-

strain curve (CSSC) and monotonic stress strain curve (MSSC) shows complex 

hardening-softening behaviour. It is also known that plastic strain (Δεp) is the 

predominant cause of energy dissipation during low cycle fatigue[4]. The plastic strain 

energy calculated from the experimental data and estimated using constitutive equation 

follows linear relationship with strain amplitude. This however remains constant when 

plotted as a function of number of cycles to failure. The observations exhibit that Walker 

and SWT fatigue life prediction models hold well in predicting fatigue life of the present 

material. 

 

Key words: Dissimilar metal weld, Plastic strain energy, Low cycle fatigue, Weld SS308, 
Cyclic stress strain curve 
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Chapter 1 

Introduction 

 
 
 
1.1 Introduction 
 

Nuclear energy is a clean, safe, reliable and competitive source of energy and can satisfy 

the needs of industrial civilization, aspirations of the developing nations and replace a 

significant part of the fossil fuels responsible for greenhouse gases. At present, nuclear 

power plants provide about 6% of the world's energy and only 1% of energy requirements 

of this nation [5]. The various advantages of nuclear energy often overshadowed by 

concerns related to design and safety of nuclear power plants. Therefore structural 

integrity of the encompassing components especially containing complex designs and 

joining processes are always a cause of concern for the designers. Dissimilar Metal 

Welding (DMW) is widely used joining process in these reactors. In nuclear power plants 

such welds are necessary for connecting austenitic stainless steel pipes to ferritic or plain 

carbon steel components [6]. These are used in safety class systems of all Pressurized 

Water Reactor (PWR) and Advanced Heavy Water Reactor (AHWR) plants [6]. 

Austenitic stainless steels are often employed in these conditions because of their good 

high temperature mechanical properties whereas plain carbon steels are used mainly for 

the purpose of cost reduction. Many structural components in nuclear power plants 

experience cyclic plasticity due to thermal reversals during startup and shut down 

operations. These welds are exposed to temperatures ranging from room temperature to as 

high as 823 K and pressure up to 100 MPa. The weld zone of these structures are often 

considered as the weakest link and cyclic deformation/ fracture behaviour of these 

structures are influenced by their presence [7]. The importance of cyclic plastic 

deformation and fracture has attracted extensive research in last two decades [8][9][10]. 

In their resent studies Pavethan et al. studied high cycle fatigue behaviour of medium 

carbon and austenitic stainless steel welds and reported S-N curves of the materials [8]. 

Sivaprasad et al. investigated the low cycle fatigue and crack growth behaviour of 
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austenitic stainless steel and plain carbon steel weld and reported Coffin Mansion plot 

and Paris law parameters for the materials [10]. However, energy based approach, 

Masing/ non Masing behaviour, comparison of cyclic stress-strain curve (CSSC) and 

monotonic stress strain curve (MSSC) for SS 308 weld metal are not available in 

literature. The present investigation is dedicated to characterize the low cycle fatigue 

behaviour of SS 308 weld metal and study its above mentioned behaviour. 

  

 

1.2 Objective of the present work 
The main objective of the present investigation is to study and investigate the low 

cycle fatigue characterization of AISI 308 weld metal.  

 

1.3 Scope of the work  
 

The major scope of the work can be broadly summarized as:  

(I) To characterize microstructures and to determine mechanical properties of 

the weld zone SS 308 stainless steel: 

This part consists of (a) chemical composition analysis of the investigated material, 

(b) microstructural examination and measurement of grain size, and (c) determination 

of their hardness and tensile properties.  

  

(II) To study the Low cycle fatigue behaviour of weld metal SS 308. 

The major experiments to fulfil this objective are (a) strain controlled low cycle 

fatigue experiments are conducted at various strain amplitudes (b) examination of the 

micro mechanisms for fatigue damage using various fatigue analysis approaches. 

  

(III) Fractographic examinations on fractured samples using scanning electron 

microscopy. 

Fractographic examination of fracture surface using SEM to study the various features 

and to understand the mechanism involved in the fatigue failure of this metal.  
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1.4 Layout of the thesis 

This thesis consists of five chapters. The requirement of related experiments along 

with significance of the problem is described in Chapter-1. Literature background 

related to fatigue behaviour of metal with special attention to DMW is presented in 

Chapter-2. The present study has been inspired by the achievements of the previous 

investigations and available gaps in this field. Details of various experimental 

procedures related to chemical composition analysis, microstructure analysis, 

hardness, tensile and low cycle fatigue are discussed in Chapter 3. The results 

obtained from the investigation along with detailed discussion are discussed in 

Chapter 4. Conclusions drawn from this work are summarized in Chapter-5 together 

with some proposed future work related to this area. All references cited throughout 

are compiled at the end of thesis in reference section. 
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Chapter 2 

Literature review 

 
 
 
2.1 Introduction 
 
It is by now well perceived that research related to low cycle fatigue behaviour of DMW 

materials is of adequate academic as well as practical importance. Investigations related 

to mechanical behaviour of DMW materials has been accelerated in the last decade of the 

past century. This chapter deals with reported work on fatigue behaviour including low 

cycle fatigue of various metals and dissimilar metal welds. However literature related to 

fatigue behaviour of weldment is limited. It is therefore seemed prerequisite to do a 

survey of work done so far and material systems studied under fatigue behaviour of 

DMW. A brief review of earlier work is incorporated in different sections of this chapter 

to enhance the basic understanding of the topic. Different materials in service of nuclear 

and other pressure vessel piping’s are discussed in section 2.2. Brief introduction to 

DMW, their applications, its failure mechanism and prevention are reported in section 

2.3. Cyclic deformation behaviour of metallic materials, different approaches towards 

them and various phenomena involved are discussed in section 2.4. A summary of the 

topics discussed in this chapter is presented in section 2.5 along with the design of the 

current research problem on the basis of previously reported literature. 

 

2.2 Nuclear reactor and pressure vessel piping materials  

 
The ever expanding demands of energy have increased our dependence on various 

nuclear, thermal and other types of power generation systems. These advanced power 

generation systems create more stringent service conditions (high temperature and 

pressure) which triggers the quest for higher and more energy efficient material with 

better thermal, mechanical and anti-corrosive properties. The vast fraternity of materials 

is available for selection but economic constraint and fabricability issues put further 

limitations on design engineers. Steel is widely used as piping material in various 
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pressure vessel systems due to its relative low cost and vast experience which has been 

acquired from its extensive use over time. For example, stainless steels like austenitic, 

ferritic, martensitic and duplex; special structural steels like SA 508, SA533 steels; 

different micro alloyed steels like Mn-Mo-Ni alloy steel, Mn-V-Ni alloy steel, Cr-Mo 

alloy steel etc. are in use as per the ASME Pressure Vessel and Boiler Code[11]. 

Traditionally, austenitic stainless steels have been used in the higher temperature regions 

of piping systems due to their good creep strength, thermal expansion coefficients, ease of 

fabrication and their excellent oxidation and corrosion resistance due to higher chromium 

contents which stabilize the austenite phase field and also combine with oxygen to form a 

protective oxide layer on the surface. Table 2.1 reports the typical materials (structural 

and stainless steels grades) present in service,   

Table2. 1 Typical nuclear materials in service [6] 

Material   Part used  Operating conditions Standard 
SA 508 Cl. 2 Nozzle materials 350*C, 15 MPa ASME 
SA 508 Cl 3  Nozzle materials 285*C, 15 MPa ASME 
SS 304 Piping material  350*C, 15 MPa ASME 
SS 304 LN Piping material 350*C, 15 MPa ASME 
SS 316 Piping material 350*C, 15 MPa ASME 
SS 316 L Piping material 350*C, 15 MPa ASME 
SA 333 Piping material 350*C, 15 MPa ASME 
SS 309 Filler material 350*C, 15 MPa ASME 
SS 308 Filler material 350*C, 15 MPa ASME 
  
2.3 Dissimilar metal weld  
 
Welding is a most common phenomenon for joining of metals. DMW is a kind of process 

used to join different materials. This approach is used when transition in mechanical 

properties or other performance related parameters are required. In general joining of 

different materials is more difficult because it requires adequate knowledge of physical, 

chemical, mechanical and other performance parameters of all the included materials. 

Furthermore the choice of filler materials is more difficult due to its compatibility issues 

with base materials. [6][12]. 

 
2.3.1 Types of DMW 

Various types of DMW are described in this section. 

1. Two different materials joined together directly. 
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2. Two materials joined after buttering one of these with a layer of suitable material. 

3. Two materials are joined by placing a transition piece between them. 

4. Cladding of two materials (One material is coated by another material for a 
particular property enhancement purpose).[12] 
 

2.3.2 Applications of DMW 

DMW joints are extensively used in nuclear power plants, thermal power plants and other 

pressure vessel piping due to their cost effectiveness, enhanced anti corrosive and 

elevated temperature properties. Figure 2.1(a) shows main heat transport piping system 

(MHTP) of advanced heavy water reactor (AHWR) and 2.1(b) describes a typical DMW 

joint between ASS and plain carbon steel. Main steam pipes and heavy water carrying 

pipes of AHWR contains DMW joint between ASS and low alloy steel. Frequently, ASS 

piping is often used to contain high-temperature steam in power generation plants, but 

below a certain temperature and pressure, low alloy steels can be applied for the 

purpose[12]. 

       

Figure 2. 1 Figure showing (a) MHTP of AHWR (b) DMW joint in AHWR. [10] 

 

2.3.3 Mechanism of DMW joint failure 

Integrity of DMW joints are always a cause of concern for engineers. Most of the 

literature regarding failure analysis of DMW corresponds to austenitic-feritic and ferritic-
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Ni welds. There is no particular cause or mechanism which can be made responsible for 

failure of these joints. However, three main features of failures can be categorized as. 

1. Formation of an oxide notch. 

Many of the austenitic-ferritic weld joints failed because of an oxide notch formed at the 

interface of weld and ferritic material. The reasons for this notch formation are different 

in different literatures. Klueh and King attributed this to loss of chromium of chromium 

carbide precipitation from ferritic matrix[13]. Vishwanathan and Diner pointed out that 

stress concentration due to change in strength at interfaces is a probable cause of oxide 

notch formation[13]. 

2. Cracking of prior austenite grain boundaries. 

In case of stainless steel fillers creep cavitation in carbides may occur at prior austenite 

grain boundaries. This mode may associate with carbon depletion zone and differences in 

the thermal expansion coefficients. 

3. Cracking of weld interface 

In case of Ni based fillers, service conditions may generate carbides along the fusion line 

and cracking may occur in this zone. This may happen because of decarburized zone in 

ferrite region[13]. 

Apart from above mentioned mechanisms, a few other notable mechanisms of weld 

failures are hot cracking and weld decay of ASS weld joints, stress relief cracking, 

lamellar tearing in steels, delayed cracking by hydrogen and local brittle zone[14].  

 

2.3.4 Precautions to minimize failure of DMW 

Although there is no known method reported in the literature which can ensure integrity 

of DMW zone completely due to its complex nature, still apart from safe design 

consideration, reduction in carbon migration using buttering of suitable materials and 

reduction in thermal stresses by using materials with comparable thermal expansion 

coefficients may reduce the risk of failure up to certain extent. Table 2.2 reports the some 

important literature available in published domain regarding mechanical behavior of 

DMW majority of them are related to several grades of ASS, HSLA and other structural 

steels. 
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Table2. 2 Review of published literature correlating different microstructural properties 
with different welding parameters 

Ref 

No.  Author Year System Major findings 

[15] Kuwabara K 
et al. 

1992 ASS-ferritic 
stainless steel 

Fatigue strength decreases due to strain non 
uniformity caused by difference in cyclic plastic 
deformation across the weld. 

[16] Nelson T et 
a.l 

1999 ASS-ferritic 
stainless steel 

Microstructure of base and weld significantly 
influences the nature and evaluation of fusion 
boundary at elevated temperatures. 

[17] Celik A et al. 1999 ASS-ferritic 
stainless steel 

Steep increase in hardness was observed in HAZ of 
DMW weld in comparison to all ASS weld. Failure 
takes place at interface of ASS and weld metal 
interface and was trans granular ductile in nature. 

[18] Laha K et al.  2001 2.25Cr-
1Mo/Alloy 
800 DMW 

Both the similar and dissimilar weld joints showed 
lower creep rupture life than base metal. The 
differences in the rupture lives between the base 
metal and the weld joint increased with a decrease 
in applied stress. 

[19] Bhandhari S 
et al. 

2001 ASS-ferritic 
stainless steel 

DMW of (ferritic/austenitic), subjected to an 
accidental transient and simulate using SYSTUS 
and shows simulation and experimental result 
within 5 % window. 

[20] Faidy C et al. 2003 Low alloy steel 
-ASS 

Residual stresses are measured using neutron 
diffraction technique and shows higher amount in 
HAZ of SA 508. 

[21] Kusko CS et 

al. 

2004 ASS 316L and 
AL6XN 
austenitic 

Large grain sizes in both the weld metal and base 
metal produce a rough fracture surface that leads to 
improved fatigue resistance. 

[22] Keehan A et 

al. 

2004 Steels Strength increases were attributed to the formation 
of greater amounts of Martensite within the 
microstructure. 

[23] Kaskar R et 

al.  

2004 Martensitic –
Austenitic SS 

Although, the pitting corrosion resistance of the all 
weld metal and weldment which was obtained with 
E308L-16 filler metal slightly better than weld 
made with E2209-17 filler metal due to higher 
level of austenite and reduced chromium nitride 
precipitationl. 

[24] Ravi S et al.  2004 HSLA 1 The fatigue crack growth behaviour and fatigue 
life of the welded joints is influenced by mismatch 
ratio.  

2 Mismatch ratio is inversely proportional 
relationship with fatigue crack growth exponent 
(m) and directly proportional relationship with 
threshold stress intensity factor (ΔKth) and critical 
stress intensity factor (ΔKcr).

[25] Lee DG et al. 2004 Heat resistant 
steel STR and 
STS 

The effect of notch position was investigated and 
the results were as follows: the nearer welds 
interface, the higher fatigue lives. 
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[26] Shireesha M 
et al. 

2005 ASS-ferritic 
stainless steel 

Precipitation at the weld metal/ferritic steel 
interface occurs after 5000 hours of aging at 898 K 
but not for shorter durations. No decarburized zone 
was observed on the ferritic steel side even after 
5000 hours of exposure. 

[27] Cui Y et al 2005 ASS weld Microfissures greatly decrease the fatigue 
properties of 316L austenitic stainless steel weld 
metals. 

[28] Satyanarayan 
V V et al. 

2005 ASS-ferritic 
stainless steel 

The toughness and strength properties of dissimilar 
metal welds are better than ferritic stainless steel 
parent metal. 

[29] Reddy G M et 
al. 

2005 ASS-ferritic 
stainless steel 

1. The strength of dissimilar metal friction welds is 
intermediate to electron beam welds and gas 
tungsten arc welds, while the friction welds 
exhibited the highest toughness among all the 
dissimilar welds.  

2. ASS-ASS electron beam welds exhibited the 
highest strength and toughness due to fine 
solidification structure. 

3. Hardness and residual stresses are maximum on 
the ferritic stainless steel side of the interface in 
dissimilar metal fusion welds.  

4 Hardness and residual stress are maximum on the 
austenitic stainless steel side of the interface for 
dissimilar metal friction welds. 

[30] DuPont JN et 
al. 

2007 ASS-ferritic 
stainless steel 

Ferritic-to-austenitic DMW made with Ni-based 
filler metals will exhibit a steeper concentration 
gradient in the partially mixed zone (PMZ) 
compared to Fe-based austenitic alloys. 

[31] Kim JS et al. 2007 Low alloy steel 
-ASS 

SA508 base metals have higher yield strength and 
ultimate strength than alloy 82/182 weld and 
TP316 while the ultimate strengths of alloy 82/182 
welds are similar as those of SA508 and SS316 
base metals. 

[32] Jang C et al. 2008 Low alloy steel 
-ASS 

The dendritic structures are well developed in 
Inconel 82/182 weld. Within the area between the 
dendrites, significant segregation and secondary 
phase precipitations are observed. 

[33] Kim J W et al. 2009 ASS-ferritic 

stainless steel 

Significant gradients of the YS and UTS were 
observed within the HAZ of SA508 Gr.1a. This 
was attributed to the different microstructures with 
in the HAZ resulting from the phase transformation 
during welding. However, the welding effect 
dominated the YS rather than UTS in the HAZ 

[34] Krishnaprasad 
K et al.  

2009 ASS-Low 
alloy steel 

Weld metal exhibited lower crack growth rate at 
intermediate ΔK region and CS region showed the 
highest rate. 

[35] Abadhi M M 
H et al. 

2010 ASS-Low 
alloy steel 

In dissimilar RSWs of low carbon steel and ASS, 
microstructure and hardness of the fusion zone 
which are controlled by dilution and fusion zone 
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size of low carbon steel side mainly govern the 
failure mode 

[8] Pavethan R et 
al. 

2011 Medium 
carbon steel- 
ASS 

1 The formation of intermetallics such as Cr23C6 
and Cr7 C3 at the weld interface are responsible for 
higher hardness and lower tensile, impact and 
fatigue strength of the friction welded MCS–ASS 
dissimilar joints. 

2 Fatigue strength of friction welded dissimilar 
joints of medium carbon steel and austenitic 
stainless is lower compared to the base metals. 

[36] Samal M K et 
al. 

2011 ASS-ferritic 
stainless steel 

The fracture resistance value of the joint with the 
crack located at the buttering–weld interface is the 
lowest because of the presence of the heat affected 
region at the edge of the welding region. 

[9] Cao J et al. 2012 ASS-
martensitic 
stainless steel 

1 The weak toughness of weld metal is attributed 
to its coarse dendritic austenitic structure. 

2, The part of the joints with relatively weak tensile 
strength was T92 CGHAZ, while the part of the 
joints which revealed relatively weak toughness 
was weld metal. 

  

2.4 Fatigue in metallic materials  

Majority of engineering failures are caused due to fatigue. Study of fatigue properties in 

engineering structures is an area of interest for many scientist and researchers from the 

last century itself due to its catastrophic nature [37]. This section includes a brief 

overview of basic terminology, theories and various aspects of fatigue failures.  

2.4.1. Cyclic loading in materials 

Materials’ behaviour under different loading conditions especially when it is subjected to 

continuously repeating loading-unloading cycles is always an important factor for design 

consideration. Various loading conditions may consist of stress levels starting from well 

below yield strength of material and goes up to ultimate tensile strength of material. The 

process of failure under these conditions is known as fatigue failures. Fatigue failures 

always occur at stress levels significantly lower than their monotonic fracture strength 

values [2][38]. In the present scenario, the basic understanding of metal fatigue holds a 

high relevance especially in the areas of automotive, aerospace, nuclear or hydrothermal 

power plants etc.; where parts like aircraft engines, turbines, rotors and compressors are 
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continuously subjected to vibration and fluctuating stresses. Fatigue failure may be 

catastrophic in nature but process of failure is progressive and consists of several stages. 

These stages and underlying failure mechanisms along with nomenclature and types of 

cyclic loading are discussed in section 2.4.1.1. Section 2.4.1.2 includes a brief discussion 

over major classification of fatigue on the basis of fatigue life of material like low cycle 

fatigue, high cycle fatigue and ratcheting.  

Apart from repeated loads several other factors like temperature, environmental factors, 

geometry, sudden overloading, microstructure of material, residual stresses, and stress 

concentration may significantly influence the life of the material. These factors are 

discussed in more detail in section 2.4.1.3. 

 

2.4.1.1. Mechanism of fatigue failure 

The fatigue crack initiation process generally starts from free surface due to higher stresses 

and probable presence of defects like scratches, corrosive pits etc. It is also observed that 

fatigue cracks initiate even at highly polished defect free surfaces. The process of fatigue 

failure initiates with the formation of mature cracks that may grow during component’s 

service life. Various microscopic changes that lead to change in crystalline structure of metals 

may occur under these conditions. These small scale changes increase the formation of small 

cracks. These small cracks further develop into larger cracks which grow continuously till the 

stresses become unsustainable and then catastrophic failure occurs. The process of fatigue 

failure can therefore be sub divided into three major stages (a) initiation of numerous small 

fatigue cracks, (b) growth of smaller number of small cracks into the larger ones and (c) final 

failure which is caused by a single through crack which propagates though the complete cross 

section of the components[37].  

The formation of the cracks can be well described by following W A Wood’s mechanism 

according to which the cracks originate due to repeated micro plastic deformations which 

result in the formation of “intrusion” and “extrusion” on specimen surface. These intrusions 

can act as notches which incorporate local stress concentration sites and favor formation of 

micro cracks. Formation of cracks and their initiation can be further divided into two steps as 

represented in Figure 2.2. (a) Crack grows initially in crystallographic manner and later on (b) 

in stage two when striation formation begins.  
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Figure 2. 2 Schematic representation of striation formation during fatigue crack growth 
[2,38]. 

Propagation of fatigue crack occurs through repeated crack tip blunting and sharpening 

effects. After a prolonged period of time this micro-plastic deformation mechanisms 

operating at the crack tip may cause characteristic markings which are called “beach 

markings” or “clamshell markings”. These markings are macroscopic in nature and can be 

visualized through a naked eye. On the other hand, there are extremely fine parallel markings, 

at intervals of the order of 0.1 μm called “striations”, which represent the crack growth or 

crack front due to each individual loading cycles and can see at higher magnifications using 

electron microscopes.  

It has been observed that limited number of alternative slip planes occurred during crack tip 

plasticity. The resultant movement of dislocations is also limited to certain number of planes. 

Increasing number of dislocations near the crack tip cause pile up and result in localized work 

hardening. Resultant work hardening eases crack growth on slip plane by embritlling the 

material. Fig. 2.3 represents the various stages of fatigue crack growth. Further growth of 

crack activates new slip planes and the process repeats itself. The formation of zigzag paths 

and sharp ridges on failure surface by propagating crack can be attributed to the alternating 
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slip planes. Upon loading, the initially sharp crack will blunt due to plastic deformation and 

thus the lengths of small cracks increase due to blunting.  

 

Figure 2. 3 Schematic representations of the various stages of fatigue crack growth [2] 

When the crack is unloaded, the elastic stress field around the plastically relaxed crack tip 

will cause the crack to resharpen. The further reloading of the crack, blunting is again, 

leave a ripple on the surface. Further on, in Stage III, static fracture modes are 

superimposed on the growth mechanism, till finally it fails catastrophically by shear at an 

angle to the direction of growth.  

Different nomenclature to describe test parameters 

Different nomenclature is there in fatigue literature which can be enlisted as follows: 

 

2.4.1.2. Types of cyclic loading 
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As can be seen from Fig 2.4, cyclic loading may be of different types. These are: [Dieter 

1998] completely reversed cycle: In this type of cyclic loading, maximum and minimum 

stresses are equal. It can also be referred as symmetric loading (σm = 0). Tensile stress is 

considered positive and compressive stress is negative (Fig 2.4(a)).  

 

Figure 2. 4 (a) completely reversed stress cycle (b) asymmetric stress cycle (c) Random 
stress cycle.[37] 

Asymmetric loading: repeated stress cycle in which the maximum stress σmax and σmin are 

not equal. Both are in tension, but sometimes it may be tension and compression both. 

This is known as asymmetric loading (σm ≠ 0, Fig 2.4(b)). Random stress cycle: this type 

of stress cycle generated in a part such as an aircraft wing which is subjected to periodic 

unpredictable load due to gusts (Fig 2.4(c))[37]. 

2.4.1.3. Factors affecting fatigue life 

Various parameters which play significant role in materials’ fatigue life are enlisted in 

Table 2.3 

 

Table2. 3 Factors affecting fatigue life 

 

S.No. Parameter Role and Key Features 

1 Microstructure In general at ambient temperature, grain size is inversely proportional 

to fatigue life. Precipitate, grain boundaries, dislocation substructure 

and density along with phase transformation also influences fatigue 
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life. 

2 Processing type Rolling, forging extrusion etc. produces directional properties. Fatigue 

life increases in longitudinal direction and decreases in transverse 

direction. Other processes like Heat treatment, case hardening induces 

residual stresses. Compressive residual stresses increases while tensile 

residual stresses decreases fatigue life. 

3 Type of 

loading  

Multiaxial loading reduces fatigue life more rapidly than uniaxial 

loading except pure torsional case. 

Alternating stress/strain has inverse relation with fatigue life. 

4 Environmental 

condition 

Corrosive atmosphere can have a detrimental effect on fatigue life. 

5 Geometrical 

factors 

Rough surfaces, notches, scratches, holes, joints decreases fatigue life 

by increases stress concentration. 

6 Temperature High temperatures T>0.5Tm fatigue life of material decreases. Grain 

boundary triple points increases resulting high stress concentration 

with increasing no. of grain boundary voids and wedge cracks.  

 

2.4.2. Materials response to cyclic deformation 

Any material when subjected to cyclic loading it’s deformation behaviour varies 

according to the various applied stress/strain parameters which are described in 

subsequent sections. 

 

2.4.2.1 Bauschinger effect (Stress strain anisotropy) 

 

According to a standard definition, the Bauschinger effect is the phenomenon by which 

plastic deformation increases yield strength in the direction of plastic flow and decreases 

it in other direction” [39]. The Bauschinger effect is schematically described in Fig 2.5 by 

using an idealized material under uniaxial loading. Mechanism of Bauschinger effect can 

be put forward using three model theories. First one “internal stress theory” states the 

non-uniformity of stresses during plastic deformation. These non-uniform stresses result 

in residual stresses which lowers the yield upon load reversal. Second “composite model 

theory” emphasizes materials behaviour as composite consisting of two phases on load 

reversal. Residual stresses in softer field causes premature yield[39]. 
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Figure 2. 5 Schematic representation of Bauschinger effect [39] 

Finally “dislocation theory” which put forward the role of grain boundaries as barrier to 

dislocation motion. As a result, the back stresses produced by dislocation piled up and 

assist motion in the reverse direction by lowering yield. [39]. 

2.4.2.2 Hardening softening behaviour 

Cyclic hardening/softening refers to response of a material subjected to repeated loading. 

In most of the cases under fully reversed strain-controlled loading with controlled strain 

amplitude, a material is cited to display cyclic hardening/softening when the stress 

amplitude increases/decreases. 

Certain materials, such as the stainless steels and pure copper, annealed steel, exhibit very 

significant cyclic hardening while some other materials display less significant hardening 

or softening [40]. In simple words hard material cyclically softens and a soft material 

cyclically hardens. Schematic diagrams are illustrated in Fig 2.6 for cyclic hardening and 

softening materials respectively. Many engineering materials usually exhibit cyclic 

hardening/softening to some extent in cyclic plastic deformation process.  



Page | 19  

 

 

Figure 2.6 Schematic response to various cyclic input variables [37] 

In general practice, the details about cyclic hardening/softening from a large number of 

published literatures is more or less qualitative in nature. However Shang 1996 and Ye 

Duyi 2006 [41][42], introduced the concept of cyclic hardening factor (or softening 

factor); with this single factor cyclic hardening of both strain and stress controlled fatigue 

cannot be represented. For strain controlled fatigue it is the ratio of stress amplitude at 

any cycle to stress amplitude at first cycle, For strain controlled experiments hardening 

factor (He) [41]can be expressed as  

 

 

wheres =  stress amplitude at saturated cycle and 1 = stress amplitude at first cycle 

  He, HS > 0 for cyclic hardening materials       

 He, HS < 0 for cyclic softening materials  

Another approach for quantitative measurement of hardening/softening is loop shape 

parameter (LSP), VH. The evolution of this parameter throughout the cyclic loading test 

indicates the occurrence of persistent slip bands at the surface of the specimen [43]. The 

VH parameter is given by the following equation 
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Where, W is the hysteresis loop area, εap is the plastic strain amplitude and σa is the stress 

amplitude. During initial cyclic hardening and the development of the vein dislocation 

structure, VH decreases. However, localization of plastic strain in persistent slip bands 

(PSB’s) is accompanied by a significant increase in VH. This increase is especially 

pronounced in single crystals, though it has also been observed in polycrystals [44]. After 

the stress amplitude of the specimen cyclically saturates, VH either reaches a plateau or 

decreases slightly. 

 

2.4.2.3. Mean stress relaxation 

Relaxation of mean stress happens when we do an unsymmetrical strain experiment, as 

shown in Fig 2.6. For unsymmetrical strain experiment, a mean strain is introduced. Mean 

strain cause mean stress. So at the initial cycle a mean stress is introduced during 

unsymmetrical strain experiment. But as the cycling proceeds mean stress will relax and 

tends to zero.  

 

2.4.2.4. Ratcheting 

Ratcheting is the event of progressive accumulation of permanent deformation when any 

component is subjected to cyclic loads in the elastic plastic strain range under stress 

controlled fatigue with non-zero mean stresses. Due to accumulation of plastic strain 

material will finally lead to a shakedown, or a constant rate of ratcheting or very large 

ratcheting strains ultimate to failure of the material [45]. Ratcheting is important in 

designing and life evaluation of the structural components endured in cyclic loading. 

Ratcheting strain is a secondary strain produced under asymmetrical cyclic stressing, and 

has a great dependence on loading conditions and loading history 

2.4.3 Loop analysis 

2.4.3.1 Cyclic stress strain curve (CSSC) 

As is shown in Fig. 2.7, the stress range,    and the strain range 

can be analogously be represented as. . The corresponding 

amplitudes of stress and strain are half the ranges. The plastic strain range Δεpl is equal to 
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the distance between the points of intersection of the hysteresis loop and the strain axis, as 

is shown in Fig. 2.8. Depending on the material, a more-or-less pronounced back 

deformation may occur during unloading, which gives rise to a difference between Δεpl          

and  . This difference sometimes attributed to a “reversible plastic strain,” 

an expression that itself seems contradictory. When constructing a strain-time history 

from stress-time  data  hysteresis  loop  have  to  be constructed  using  the  cyclic stress-

strain  curve (CSSC). One key step is to determine when the line begins to bend as we 

move from tension to compression and vice versa. This is handled by using Masing’s 

hypothesis, which assumes that the line describing a stress-strain hysteresis loop is 

geometrically similar to the CSSC but numerically twice its size[2]. Consequently, the 

equation of the curve can be directly derived from the equation of CSSC. In order to 

distinguish the parameters representing monotonic and cyclic ones, a prime symbol is 

used for cyclic parameters. Corresponding to any point () on CSSC, we have,  

 

Where, K′ is called the cyclic strength coefficient and n′ is called the cyclic strain 

hardening exponent. From Masing’s hypothesis, the same point can be located on the 

hysteresis loop curve and it will have coordinates (Δ,Δε) where:  

 

Substituting into the equation for CSSC, we have  

 

Which in general case reduces to  

 

Thus we can establish the relationship between the cyclic stress-strain curve and 

hysteresis loop shape. Proceeding on the similar grounds, we have  
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The cyclic stress-strain curve reflects the resistance of a material to cyclic deformation 

and can be different from monotonic stress-strain curve. 

  

 

 

Transient cyclic deformation behavior such as cyclic hardening or cyclic softening refers 

to a continuous change in the cyclic strength that may occur throughout a test or at least 

in the first stage of cyclic deformation. Schematic examples of cyclic hardening and 

cyclic softening in are shown in Fig. 2.9 show the stress change and hysteresis loop 

shape. Cyclic hardening leads to an increase in the stress amplitude, and consequently the 

hysteresis loop becomes larger. Cyclic softening has the opposite effect a decrease of   

and a reduction of the size of the hysteresis loop. The type of transient behavior is 

mainly determined by the pretreatment of the material tested. It is plausible that, for 

instance, heavy cold working prior to cyclic loading could cause subsequent cyclic 

softening, whereas a recrystallization treatment could give rise to cyclic hardening. 

Furthermore, deformation induced micro-structural changes may also be the reason for 

transient deformation behavior.[37] 

 

 

Figure 2. 8 Comparison of CSSC and MSSC 
curve illustrating cyclic hardening and cyclic 
softening respectively [57].  

Figure 2. 7 Primary quantities of a 
hysteresis loop. [2] 
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Figure 2. 9 Schematic representation of transient cyclic deformation processes [57]. 

2.4.3.2. Masing vs. non Masing behavior 

As discussed earlier, Masing described the cyclic stress strain behaviour of polycrystals in 

a model [2], where it was assumed that a number of elementary volumes can be 

considered to represent grains of different orientations and the deformation behaviour of 

each element was considered to be ideally elastic plastic. The model also attributed each 

such element individual yield strength and it was assumed that similar elements (same 

orientation) are strained in parallel. The distribution of the elements was chosen in such a 

way as to represent the actual variations in local yield stress within the microstructure. An 

implicit assumption in Masing’s consideration is that a microstructural change does not 

occur during loading, which means the same microstructure and deformation mechanisms 

prevail at all plastic strain amplitudes applied. So it can be implied that the stress-strain 

path after load reversal would follow a unique curve regardless of the amplitude of 

loading. When a material exhibits this kind of behaviour, it is said to be a Masing 

material. Any deviation from this behaviour characterizes the material as non-Masing 

material. For this purpose the compressive tips of the stable hysteresis loops of different 

strain amplitudes are brought to a common origin by translation method and checked if 

they form a common envelope curve or not[46]. Fig.2.10 (a) and 2.10 (b) represent 

Masing behaviour (form a common envelope) and non-Masing behaviour (does not form 
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a common envelope) of the material. However, the extent of deviation from Masing 

behaviour varies with strain amplitudes. 

 

 

 

 

2.4.3.3 Master curve 

 

From the engineering point of view, a mathematical description of the branches of the 

hysteresis loop is required so that properties such as hysteretic energy (plastic strain 

energy) and proportionality limit can be calculated with strain range variation to measure 

the extent of deviation from Masing behaviour. Master curves are constructed by 

matching the loading branches of stable hysteresis loops of different strain ranges, by 

translating each loop along the linear elastic portions. By translating the loops along the 

elastic slope from the origin, it was possible to accurately match all the upper branches, as 

shown in Fig.2.11. The lower tips lay along the linear elastic line. The common envelope 

curve with respect to the new origin translated to the compressive tip of the smallest 

strain range hysteresis loop forms the master curve. The equation for the master curve 

corresponding to the hysteresis loop with minimum strain range (i.e., with respect to the 

translated axis) can be written as [2] 

 

 
Figure 2. 10 Schematic representation of (a) Masing behaviour (b) non Masing 
behaviour [46, 40]. 
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Where asterisk superscript indicates that the quantity is measured with respect to the 

translated co-ordinate system. The values of K* and n* are found by fitting above equation 

to the experimental data.  

2.4.3.4 Plastic strain energy 

During cyclic loading, energy is dissipated because of plastic deformation. The plastic 

strain energy, ∆Wp, absorbed in a cycle is the area of the hysteresis loop, i.e., the area 

enclosed under the cyclic stress versus cyclic strain in a closed loop per cycle as shown in 

Fig 2.12. For a Masing material, this is given by: 

 

where ∆εp is the plastic strain range, ∆ is the stress range, and n is the cyclic strain 

hardening exponent. If δ0 denotes the proportional stress limit [4], then the plastic strain 

energy for a Masing material is given as: 

 

where n* is the strain hardening exponent of the master curve. Following similar grounds, 

the plastic strain energy of the hysteresis loop for a material exhibiting non Masing 

behaviour is given by: 
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Figure 2. 11 Typical master curve [2] 
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Above equation can be rewritten in the following form as: 

  

The increase in the proportional stress limit δ0, which describes the cyclic hardening or 

softening, can be easily obtained when the cyclic and master curve equation are known.  

  

 

 

 

 

 

 

 

 

 

 

 

2.4.4. Different approaches for predicting fatigue life 

Fatigue life prediction through various approaches is discussed in this section. 

 

2.4.4.1. Stress based approach  

This approach is suitable when the applied stress is nominally within the elastic range of 

the material and the number of cycles to failure is large. Hence, this approach is best 

suited to the problems that fall into the category known as high-cycle fatigue (HCF). 

In HCF, the life is usually characterized as a function of the stress range applied, and the 

components fail after large numbers (Usually higher than 106 cycles) of cycles at a 

relatively low stress (Usually less than 30% of yield stress), and the deformation 

experienced is primarily elastic. High cycle fatigue must be consider during design of 

 Figure 2. 12 Plastic strain energy calculation (a) Masing material (right) (b) Non 
Masing material (left) [2]. 
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automobiles, aircrafts, compressors, pumps, turbines, etc where vibration occur. HCF test 

is done at frequency always greater than 1 KHz. The stress-cycles to failure in high cycle 

region is sometimes described by the Basquin equation as shown in Fig. 2.13. 

 

Figure 2. 73 Schematic representation of S N curve [37] 
and is given by a established power law description of fatigue life: 

     

Where σf is the fatigue strength coefficient and b is the fatigue strength exponent, these 

parameters are the fatigue properties of materials. Fatigue strength coefficient is equal to 

fracture stress at the time of monotonic tension. Fatigue strength exponent b varies from 

0.05 to -0.15 for most metals [2] b is also related to cyclic strain hardening exponent as 

follows 

     
 
The mean stress effect can be accounted, then Basquin relation takes the following shape:   

    
Where, σm is the mean stress.  

 

2.4.4.2. Strain based approach  

This approach was introduced, initially, for thermal and low cycle fatigue. Here life is 

nominally characterized as a function of the strain range and the component fails after a 

small number of cycles at a high stress, and the deformation is largely plastic. Strain 

controlled cyclic loading is found in thermal cycling, where component expands and 
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contracts in response to fluctuations in the operating temperature. Low cycle fatigue must 

be considered during design of nuclear pressure vessels, steam turbines and other types of 

power machineries. Low cycle fatigue test is done at frequency less than 1 Hz. The usual 

way of presenting low-cycle fatigue test results is to plot the plastic strain range Δεp 

against Nf. The behaviour of low cycle fatigue is described by Coffin-Manson relation, 

represented in Fig 2.14 

 

Figure 2. 14 Schematic representation of Coffin Mansion plot.[37] 

 

Where,  Δεp/2 = plastic strain amplitude                

´f = fatigue ductility coefficient defined by strain intercept at 2N = 1             

2N      = number of strain reversals to failure                  

c       = fatigue ductility exponent, which varies between -0.5 to -0.7 for many metals. 

´f correlates very well with the true strain to fracture in a monotonic test, and c varies 

between approximately -0.5 and -0.7 for most metals [[2]]. The fatigue ductility exponent 

can also be computed form this relation 

 

 



Page | 29  

 

2.4.4.3. Energy based approach 

On the microscopic level, the irreversible nature of micro plastic deformation caused by 

each cycle of loading is associated with the dissipation of strain energy density. The 

dissipation strain energy density per cycle may be regarded as a contributor to the fatigue 

damage process per cycle. This approach can be broadly classified into two sub-

categories as follows:1. Hysterisis based approach 2. Total energy approach 

Hysterisis based approach: discussed earlier 

Total strain energy approach:  

The area enclosed in the cyclic stress-strain loop is representative of the hysteresis 

energy. This is represented in Fig 2.15. A major part of it is dissipated into heat and 

vibration and the remaining part causes damage in the form of slip along crystallographic 

planes and movement of the dislocations [2]. As is evident, the total strain energy is the 

sum of hysteresis energy and elastic energy, and is given as: 

   

The elastic strain energy density, per cycle is computed as follows: 

 

 

 

Coupling above two equations get 

 

Using equations Basquin, Coffin Mansion and Proportional limit equation, we can write 

  

where kt>0 and αt<0. When thus 

  

 

The constant is the elastic strain energy of the material fatigue (endurance) limit. The 

other two material constants, kt and αt, may be determined from the best fit to 

experimental data. 
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2.4.5 Fatigue life estimation models 

In the design and development of engineering components fatigue life predictions takes 

important role. Various methods that can be used for predicting fatigue life are .Basquin, 

Coffin Mansion, Smith Watson Topper (SWT) and Walker equation etc. Basquin’s 

equation and Coffin Mansion equation are already discussed in earlier sections so 

remaining methods (SWT and Walker) are discussed in this section.  

2.4.5.1. Walker parameter 
 
Walker proposed [3] a model in which quantity γ is a fitting constant that may be 

considered to be a materials property.  

 
 
 

 

 

 

 

2.4.5.2. SWT lifing equation  

Smith, Watson, and Topper [3] proposed a method that assumes that the amount of 

fatigue damage in a cycle is determined by max a, where max is the maximum tensile 

stress and a the strain amplitude. Also, SWT parameter is simply a statement that a a, 

for a fully reversed test is equal to max a, for a mean stress test.‟  
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Figure 2.15 Total strain energy approach [2] 
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Where σmax is the maximum stress in a hysteresis loop.  

 

2.5 Summary 

The present chapter summarizes the published work of earlier researchers related to 

mechanical behavior of DMW and brief overview of the cyclic deformation behavior of 

materials. Although much work has been done in this regard but the lack of systematic 

study of weld zone in DMW joints which can examine the material with the help of 

various fatigue approaches forms the basis of present investigation.  

The present study aims to investigate the low cycle fatigue behavior of AISI 308 SS weld 

metal with help of strain based and energy based approaches. Fatigue life prediction 

through various models (SWT and Walker) also been performed to quantify fatigue life of 

the material. 
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Chapter 3 

Materials and Methods 

 
 
3.1 Introduction 

A brief introduction to the weld metal (material under investigation), the dimensional 

details of the low cycle fatigue specimen and basic material characterizations are 

described in this chapter. The study of low cycle fatigue is the objective of present 

investigation. The details of the low cycle fatigue test procedures are also presented in the 

chapter.  

3.2 Experimentation 

3.2.1 Materials  

The dissimilar welded stainless steel pipes were received in as welded condition from 

Bhabha Atomic Research Center, Mumbai, India. Following are the dimensional details 

of the as received material (in the form of DMW pipe): 

Outer diameter: 325 mm and Wall thickness: 25 mm.  

Weld zone of SS308 is cut through the supplied welded pipes after precise identification 

of weld zone as shown in Fig. 3.1. 

 

Figure 3. 1 Schematic representation of welded block 
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3.2.2 Chemical composition  

The chemical composition of the weld metal materials was examined using spark optical 

emission spectrometer (model: Q6 columbus, Bruker corporation limited, USA).  

3.2.3 Microscopic examinations and image analysis 

Metallographic specimens of approximately 10 mm  10 mm cross-section or of 10 mm 

diameter with 8-10 mm thickness were cut from weld zone of as-received pipes using a 

slow speed diamond cutter. The polished specimens were etched with Murakami’s 

reagent (10 g KOH, 10 g K3[Fe(CN)6] and 100 ml H2O). Microstructures of the 

specimens in all three LR, RC and LC orientations were examined under an optical 

microscope (Leica, model: DM 2500 M) and representative photographs were recorded. 

The microstructures were also image analysed with the help of Lieca image manager IM 

50 software. The ferrite number was measured using Magne Gage as per recomm-

endations of American welding society (AWS) for ferrite number 2-28. The volume 

fraction of different phases were measured (repeated over 50 random images) using 

Clemex Image Analyzer version PE 3.5. 

 

3.2.4 Hardness measurement 

Hardness values of weld SS308 were measured using Vickers hardness testing machine 

maintaining indentation load of 30 kgf and dwell time of 5 s (Leco Model, LV 700, MI 

USA). Minimum 5 readings were taken for each specimen to obtain the average value. 

Tests were performed as per ASTM standard E384[47]. The Vickers hardness was 

calculated using the expression: 

2

1.854 P
v

avg

H
D


   

Where, 

P = indentation load.  

1 2

2avg
d dD 

 , in which d1 and d2 are the lengths of two indentation diagonals. 

3.2.5 Tensile test 

Uniaxial tensile testing of weld zone was performed using flat tensile sub-size specimens 

fabricated as per ASTM E8M -2011[1]. Specimens were made from blank using a cut 

through pipe as shown in Fig. 3.2 (a) and (b). Specimens are made from pure weld zone, 
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as mentioned earlier in the thesis study has been carried out for pure weld zone further the 

nomenclature LR, LC, and RC represent Longitudinal-Radial (LR), Longitudinal-

Circumferential (LC) and Radial-Circumferential (RC) respectively, and can be 

represented during the time of presentation. Furthermore, Fig 3.2 represent plan for 

specimen preparation while Fig 4.1 represents microstructure characterisation of different 

orientations. Dimensions of sub-size specimen are presented in Fig. 3.3. All tests were 

performed at strain rate of 10-3 /sec and data acquisition rate 5 Hz with the help of 

universal testing machine (Instron 8862) in ambient environment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The measurements of strain during the tensile tests were made using an extensometer. At 

least three tensile tests were carried out to estimate the average tensile properties. The 

load-displacement data were recorded during the tests using the Wave Matrix software 

package. 

 

Side view 

Top view 

 

 Figure 3. 2 Orientation and specimen preparation plan through pipe (a) Side view 
(b) Top view 

Figure 3. 3  Flat tensile subsize weld specimen. All dimensions are in ‘mm’ 
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3.2.6. Low cycle fatigue test 

Specimen geometry 

Flat tensile sub-size specimen of 8 mm gauge length and 5 mm thickness (as shown in 

Fig. 3.4) were fabricated from weld zone maintaining loading axis of the specimen 

parallel to the longitudinal dimension of the pipe.  

All dimensions are in mm 

 

 

 

 

Test Methodology 

All the low cycle fatigue experiments were carried out at room temperature using a 100kN 

servo-electric testing system (Instron-8862) supported by Wave Matrix software. The system 

was attached to a computer to control the tests as well as for data acquisition. All tests were 

conducted in strain control mode till fracture using triangular waveform as per ASTM E 606 

[48](as shown in Fig. 3.5) at a constant strain rate of 10-3s-1. The frequency and data 

acquisition rate are measured with the help of strain rate and strain amplitude. Resultant set of 

hysteresis loops are represented in (Fig. 3.6). 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. 4 Schematic diagram depicting flat sub size room temperature fatigue specimen 

Figure 3. 5  Typical Wave form used for low cycle fatigue test. 
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Figure 3. 6 Typical hysteresis loops as generated during experiment 

The following parameters were maintained during LCF test:  

Frequency = [strain rate / (4 x strain amplitude)] cycles/ s.  

Data acquisition rate = Total data points per cycle x frequency           

Strain amplitudes = ±0.5%, ±0.7%, ±1.0%, ±1.2% and ±1.5%  

Each test was repeated for its conformity. Total 200 data points were collected during each 

cycle or stored hysteresis loop. Details of these tests are summarized in Table 3.1. 

Table 3. 1 Summary of low cycle fatigue tests 

Strain 
amplitude Nf 

Frequency 
(hertz) (ep)  (%) 

± 0.5 % 2534 0.0500 0.20631 

± 0.7 % 1024 0.0357 0.4392 

± 1.0 % 455 0.0250 0.71089 

± 1.2 % 402 0.0208 0.89053 

± 1.5 % 98  0.0167 1.1501 
 

3.2.7 Fractography 

Fracture surfaces of tensile and LCF specimens of various strain amplitudes were 

examined using Scanning Electron Microscope (FEG SEM Nova Nano SEM 430). 
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Chapter 4 

 Results and discussions 
 

4.1 Introduction 
 

The chemical composition, microstructural analysis and hardness of weld metal are 

reported in section 4.2. Tensile behaviour of the material are presented and discussed in 

section 4.3. The results of the LCF test are presented in section 4.4. The generated data 

are analysed and discussed for Bauschinger effect, hardening/ softening behaviour, 

Masing / non Masing character, plastic strain energy and fatigue life estimation models.   

4.2 Basic characterization of material 
 
4.2.1. Chemical composition   

AISI 308 SS is an austenitic grade stainless steel containing 12-27% chromium, 7-25% 

nickel and very low amount of carbon. However, weld composition often depends on 

process parameters. The chemical composition of weld zone (SS 308) are presented in 

Table 4.1 (all in wt. %). 

 

Table 4. 1 Chemical composition of the material 

Material Elements (wt. %) 
  C Si Mn P S Cr Mo Ni Co Cu V N Fe 
Weld SS 
308 0.026 0.456 1.045 0.026 0.011 20.797 0.085 9.463 0.046 0.247 0.065 0.073 Rest 

 
4.2.2. Microstructural evaluation 
 
Representative microstructures of weld metal in different orientations are presented in Fig 

4.1. The microstructures exhibited the presence of dendrites of delta ferrite dispersed in 

austenitic matrix. Dendrite size of weld SS 308 were measured using Magne gage and the 

ferrite number was found in the range of 8-12. The volume fraction of different phases in 

weld SS 308 evaluated with the help of Clemex image analyser and the estimated values 

are reported in Table 4.2. Results show presence of nearly same amount of dendrite phase 
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in different orientations. It may be noted that the presence of 10-15 volume % of dendritic 

delta ferrite phase helps to avoid hot cracking of austenitic matrix at high temperatures 

[49]. 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 

Table 4.2 Volume fraction of different phases in weld zone 
Table 4. 2  Ferrite volume fraction in weld SS 

 
 
 
 
 
 
 
 
 
 
4.2.3. Hardness behaviour of material 

The average Vickers hardness values in different orientations of weld zone is tabulated in 

Table 4.3. The higher value of hardness in RL orientation of weld zone may attribute to 

the variation in the microstructure. 

 

  
Vol fraction of 
Austenite 

Vol fraction of 
Dendrites of δ Ferrite 

Weld SS 
308 (LC) 87.975 12.025 

Weld SS 
308 (CR) 84.97 15.03 

Weld SS 
308 (LR) 85.63 14.37 

Figure 4. 1 Weld zone microstructure in different orientation (a) RC, (b) LC, (c) LR 

(a) (b) 

(c) 
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Table 4. 3 Average hardness values in weld zone 

Weld SS 308 RL LC RC 
HV value 224 210 209 
 
4.3 Tensile deformation behaviour of weld SS 308 
 
4.3.1 Engineering stress strain behaviour of weld SS308 
 
Tensile sub-size specimens were used to investigate tensile properties of the material. Fig 

4.2 represents engineering stress strain curve of the material. The 0.2% offset yield 

strength (YS), ultimate tensile strength (UTS), percentage uniform elongation (%εu) and 

percentage total elongation (%εt) are tabulated in Table 4.4.  

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Table 4. 4 Tensile properties of weld SS 308 

Material YS 
(MPa) 

UTS 
(MPa) ɛu % ɛt % 

Weld SS308 408 596 48 52 
 
4.3.2 True stress strain behaviour of weld SS 308 
 
The true stress (σ) vs. true strain (ε) curve of the investigated material is presented in Fig. 

4.3. The corresponding values of strain hardening exponent n and strength coefficient K 

were calculated using Hollomon equation σ = Kεn. The obtained results are plotted as      
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Figure 4. 2 Engineering stress strain curve for weld SS 308 
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ln (true stress) vs. ln (true strain) in the pcslastic domain which results into straight lines 

as shown in Fig. 4.3. The values of n was estimated from the slope of the plot and the 

strength coefficient, K values was obtained from the intercept of this plot to the stress axis 

at ε = 1. 
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Figure 4. 3 True stress strain curve for weld SS 308 
 

4.3.3. Fractographic analysis of tensile specimens 

The fractographs of tensile specimens of weld metal are presented in Fig 4.4. The figure 

shows presence of dimples and micro voids which indicates the ductile mode of fracture. 

 

 

Figure 4. 4 Fractograph of post tensile weld SS 308 specimen 



Page | 43  

 

-2 -1 0 1 2 3

-500

0

500

 

 

Strain Amplitude 1.2% Sample 10
Bauschinger effect parameter p= p= 0.8476


r
= 168.934   

r
= 0.232136

Bauschinger  Stress l= p-r/p= 0.663

Bauschinger  Stress  r/ p = 0.8947

St
re

ss
  M

Pa

Strain %

The micromechanism of ductile fracture consists of initiation of voids, their growth and 

coalescence.These voids initiate from inclusions, precipitates, second phase particles, etc., 

in the metallic matrix and grow further under the influence of hydrostatic stress and 

plastic strain [50]. 

 

4.4 Cyclic deformation behaviour of weld SS 308 

This section provides us insight of materials inelastic behaviour by studying certain 

aspects of cyclic deformation behaviour such as Bauschinger effect, cyclic 

hardening/softening, cyclic stress strain curve and Masing-nonMasing behaviour etc.. 

4.4.1 Bauschinger effect  

 

A material under uniaxial loading unloading regime in plastic region shows substantial 

decrement in reversed yield stress [51]. Therefore, the material may yield at lower stress 

levels during reloading in reverse direction (compression) [39]. Fig 4.5 shows typical 

diagram depicting Bauschinger effect. In the present investigation two established 

parameters i.e., Bauschinger strain and Bauschinger stress are evaluated to quantify this 

effect. The stress parameter (βσ1) to represent Bauschinger effect can be expressed as  

lpyrp


Where, p is the maximum stress and yr is the yield stress in reverse direction.  

Bauschinger strain can be defined as the plastic strain on stress reversal at 75% of the 

maximum tensile stress in the forward direction.  

 

 

 

 

 

 

 

 

Figure 4. 5 Schematic diagram depicting Bauschinger effect 
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The variation of strain parameter with corresponding strain amplitude is represented in 

Fig 4.6.  

 

 

 

 

 

 

 

      

 

It can be observed that Baushinger strain is directly proportional to strain amplitude. As 

reported, this is due to the presence of second phase particles (precipitates of carbide in 

this alloy) [52] Similar trend is also observed for AISI 304 LN and SA 333 by Paul S K, 

2011[40]. The variation of Bauschinger stress with strain amplitude is represented in Fig 

4.7. This shows increase in stress parameter l with reducing strain amplitude.  

 

 

 

 

 

 

 

 

Figure 4. 7 Bauchinger stress 

Figure 4. 6 Bauchinger strain 
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The mechanism involved in the process can be well explained on the basis of composite 

model (Masing) and internal stress theory (Heyn). The composite model states the 

premature yielding in soft phase in a dual phase materials. However, the internal stress 

theory asserts that the residual stresses developed during cyclic loading reduce yield 

strength of the material in opposite direction[39]  

4.4.2. Cyclic hardening softening behaviour     

The application of fully reversed cyclic loading exhibits certain changes in its stress strain 

response. Under strain controlled cyclic condition, material may exhibit hardening or 

softening depending upon the history of a material. Under these conditions increase or 

decrease in stress amplitude is observed during fatigue cycling of material. In general, 

hard material (cold worked) shows cyclic softening due to dislocation annihilation and 

soft material (annealed) exhibits cyclic hardening due to dislocation multiplication. Other 

variables such as nature and direction of loading, volume fraction of the phases, number 

of slip systems available, second phase particles etc. also play significant role in materials 

hardening-softening behaviour. Fig 4.8 shows different combination of initial hardening 

followed by softening of the metal. This may be attributed to the development of internal 

stresses due to non-equilibrium cooling during welding process and formation of complex 

microstructure consisting dendrites of delta ferrite dispersed in a matrix of austenite. 
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Figure 4. 8 Cyclic hardening softening behaviour 
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It is worth to notice that the extent of initial hardening varies with strain amplitudes. 

The initial hardening is moderate for strain amplitudes range 0.5%- 1.0% on the other 

hand, sharp initial hardening is observed in the strain amplitudes range 1.2% -1.5%. 

The material in all cases exhibited softening on subsequent cycling. Various 

researchers attributed the subsequent softening to the re-arrangement of the 

dislocation network and formation of stable microstructure [40]. Fig. 4.9 reports the 

degree of hardening/ softening  with respect to strain amplitude [42]. The results 

indicate softening when subjected to cycling loading up to strain amplitude of 1.2 % 

however hardening at strain amplitude 1.5%. Similar trends are also reported in 

literature [42] 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.4.3 Variation of Loop shape parameter 

Loop shape parameter, VH is defined as the ratio of loop area to area of parallelogram 

with base 2p and height 2a [43]. VH is presented as a function of number of strain cycles 

in Fig. 4.10. In this case VH varies during fatigue cycling which corresponds to the 

formation of microstructures with persistent slip bands [53] It is evident that the increase 

in strain amplitude above 0.5% increases VH and has a tendency to approach to 1. This 

Figure 4. 9 Degree of Hardening 
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indicates increase in brittleness with increasing strain amplitude during strain controlled 

cycling. 

 

 

 

 

 

 

 

 

 

   

4.4.4. Stability in cyclic stress-strain 

Calculation of stable loop from the stress-strain hysteresis data is one of the important 

aspects of LCF analysis. In half loop cycle approach the loop formed at the half life cycle 

is taken as stable loop, in case stability is not achieved throughout the test. 

The other approach is based on derivative, d/dN. This derivative is plotted as a function 

of strain cycle and illustrated in Fig 4.11. This plot can also be used to identify the stable 

loop formation. The first point in stable platue is taken as the stable cycle (loop). This 

approach is more appropriate as it is linked with the stability in the d/dN.  The 

calculated stable loop for various strain amplitudes are tabulated in Table 4.5. This further 

indicates that early stability occurs with increasing magnitude of strain amplitude.  

Table 4. 5 Stable loop for different strain amplitudes 

Strain 
amplitude Nf 

Stable 
loop no. 

± 0.5 % 2534 690 
± 0.7 % 1024 266 
± 1.0 % 455 295 
± 1.2 % 402 145 
± 1.5 % 98 52 

Figure 4. 10 Effect of loop shape parameter on fatigue life. 
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Figure 4. 11 Cyclic stability curve 
4.4.5. Coffin Mansion plot 

The Coffin Mansion plot i.e., plastic strain amplitude vs. number of cycles to failure plot 

is presented in Fig. 4.12 [37]. The estimated value of fatigue ductility coefficient (f′) and 

fatigue ductility exponent (c) from the figure are 1.29786 and -0.51532 respectively. 

These results are in line with the reported work [37]. 

 

 

 

 

 

 

 

 

 
Figure 4. 12 Coffin Mansion plot 
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4.4.6 Variation of total energy with strain amplitude 

The total energy of stable loops was calculated by simple integration. The total energy of 

stable loops versus strain amplitude is presented in Fig 4.13. The figure shows that the 

energy associated with the stable loop increases with the strain amplitude. It is worth to 

mention that fatigue life decreases with increasing strain amplitude. 

 

 

 

 

 

 

 

 

 

 

 

4.4.7. Cyclic stress strain curve 

Determination of cyclic stress strain curve and its comparison with monotonic stress 

strain curve provide quantitative assessment of the cyclically induced changes and 

damage in the material[37]. This plot for the material is presented in Fig. 4.14. Cyclic 

parameters such as cyclic strength coefficient (K´) and cyclic strain hardening exponent 

(n´) are found to be 902 MPa and 0.2046 respectively.                                          

                                                                                                  [37] 
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Figure 4. 13 Variation of energy absorption with fatigue life 
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Figure 4. 14 Cyclic stress strain curve 

 

4.4.8. Comparison of MSSC and CSSC  

 

The cyclic stress strain curve (CSSC) and monotonic stress strain curve (MSSC) are 

illustrated in Fig 4.15. The comparison of CSSC to MSSC indicates complex hardening/ 

softening behaviour, softening at lower strain amplitude and hardening at higher strain 

amplitude. This is an indication of variation in hardening-softening behaviour with 

varying strain amplitudes. In the present material softening is dominant upto strain 

amplitude of 1.2 % whereas hardening occurs on application of high strain amplitude. 

Similar behaviour is also observed by Hussain K 1993[54] in high strength steel. It is 

argued that dual phase materials exhibit complex behaviour.  
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4.4.9. Non Masing behaviour 

 

As discussed in Chapter 2, a material is said to be Masing-type when the hysteresis loop 

branches (ascending-descending ones), can be described by the cyclic stress-strain curve 

magnified by a factor of 2 for this type of material when the compressive tips of stable 

hysteresis loops of various strain amplitudes are transferred to a common origin-the 

maximum compressive stress-the upper branch would form a unique curve. From 

microscopic point of view Masing behaviour is associated with stable microstructural 

condition and dislocation substructure against fatigue cycles. Most steels do not shown 

Masing behaviour [55] Some engineering materials show Masing behaviour under certain 

testing conditions [55][56]. In the present investigation as shown in Fig.4.16, where the 

upper branches of hysteresis loops of the investigated material are displayed and does not 

form an unique curve. The behaviour is also depends on the amplitude of plastic strain 

ap. Therefore, the figure shows non Massing character in present metal under the 

attempted loading conditions. The non-massing behaviour are observed in those metals in 

which cyclic deformation is controlled by the matrix properties and dislocation cells form 

at relatively low strain ranges typical of high stacking fault energy alloys[2].  
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Figure 4. 16 Non Masing behaviour of material 

4.4.10. Master curve 

Master curves are constructed for weld SS 308 Fig 4.17 (a). Such curves are obtained by 

matching the loading branches of stable hysteresis loops of different strain amplitudes, by 

translating each loop along the linear elastic portions. The equation for the master curve 

corresponding to the hysteresis loop with minimum strain range (i.e., with respect to the 

translated axis) can be written as  

  


E  + 2 





2K
1/n*

 

Where asterisk superscript indicates that the quantity is measured with respect to the 

translated co-ordinate system. The values of K* and n* are found by fitting above equation 

to the experimental data. The modified cyclic coefficients n* and K* are calculated from 

Fig 17 (b) and found to be 0.1549 and 907 MPa respectively. The deviation from Masing 

behaviour due to cyclic expansion of proportional limit is expressed by the proportional 

stress limit,and expressed as follows,   

    - 
 - 2K*





p

2

n*
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The proportionality limitwas calculated using the above equation. It may be noted 

here that is a measure of deviation from Masing behaviour and found to be 286 MPa. 

 

 

 

 

 

 

Figure 4. 17 (a) Master curve for weld SS 308 and (b) calculation of parameters from 
master curve 

 
4.4.11. Variation of Plastic energy with strain amplitude 

The major portion of the fatigue damage is generally caused by the plastic strain. It is 

therefore important to calculate the plastic strain energy (PSE) experimentally as well as 

with the help of the constitutive equation, following Ellyin’s approach [4]. It is well 

understood that PSE varies from cycle to cycle. Fig 4.18 (a) shows both calculated plastic 

strain energy (CPSE) and experimentally determined plastic strain energy (EPSE) are in 

good agreement with each other. Fig 14.18 (b) suggests that at lower strain amplitude 
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EPSE and CPSE are nearly same however with increasing strain amplitude the value 

of EPSE increases more rapidly than CPSE. 

 
4.4.12 Fatigue life estimation 
 
4.4.12.1. Walker model 
 
As discussed in Chapter 2, Walker [3]suggest that life of the material can be predicted 

using equation given below,  

 
Where γ is constant and considered to be the materials property and for the present alloy 

(as in case of steels) it is taken equal to 0.65[3]. The equivalent stress amplitude versus 

cycles to fail is presented in Fig 4.19. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4. 19 Walker model for predicting life 

4.4.12.2. Smith Watson Topper (SWT) model 

Smith et al .suggested the following equation for calculation of equivalent stress 

amplitude. 
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Fig 4.20 shows variation of equivalent stress amplitude with respect to fatigue life of the 

material. In absence of mean stress, SWT model predicts fatigue life of the material with 

sufficiently high accuracy. It is also worth to note that the Walker parameter reduces to 

the SWT parameter if the exponent γ is 0.5. Although in the present investigation both 

walker and SWT (discussed below) holds good in predicting life of the material 

 

 
 

 

 

 

 

 

 

 

 

Table 4.6 Comparison of walker and SWT equivalent stress. 

SA Cycle Actual 
stress  

Walker eq 
stress % error SWT eq 

stress % error 

0.5 2534 341 350.11 2.63 348.46 2.18 
0.7 1024 374 363.95 2.68 363.5 2.8 

1 455 406 449.35 10.5 412.5 1.47 
1.2 402 411 414.05 0.98 414.5 0.85 
1.5 98 474 466.54 1.57 468.93 1.06 

 

4.4.13 Fractography 

Fracture surfaces of the fatigue tested specimens were studied using scanning electron 

microscope. For this investigation, a set of representative fatigue specimens which failed 

during cyclic loading were carefully cut and the fracture surface were examined. 

Fractographs of specimens tested at various strain amplitudes are presented in Fig. 4.21. 

The presence of striations indicates the occurrence of fracture under fatigue. Fig 4.21 (f) 

shows a crack initiated from the surface. 
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Figure 4. 20 SWT model for fatigue life prediction 
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Figure 4. 21 Fractographs of fracture surfaces at various strain amplitudes 

(e SA ±1.5 (f) 
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Chapter 5 

 5.0 Conclusions and Suggestions for future work 

 5.1 Conclusions         
 5.2 Suggestion for future work   
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Chapter 5 

Conclusions and 
Suggestions for future 

work 
 

5.1 Conclusions 
 

Present investigation leads to following conclusions: 

 Significant directionality of strain hardening is observed in the present metal under 

applied strain controlled cycling indicating pronounced Bauschinger effect. 

 The initial hardening and subsequent softening during strain cycling is observed in 

the metal. 

 Hardening factor and Loop shape parameter indicate that material exhibits softening 

up to strain amplitude of 1.2 % and followed by hardening at higher strain 

amplitudes. 

 Comparison of cyclic and monotonic stress strain curve conforms initial softening 

and subsequent hardening in the material. 

 Material exhibits non Masing behaviour under present conditions. 

 Calculated and experimentally determined plastic stain energy are in good agreement 

with each other. 

  Both SWT and Walker models holds good for predicting fatigue life of the material 

 

5.2 Scope for future work 
 
 Low cycle fatigue behaviour of weld zone at elevated temperature of 285◦C 

 Optical and transmission electron microscopic studies may be useful to enhance the 

understanding of involved micro mechanisms. 
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