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ABSTRACT 

Pulse compression is a signal processing technique used in radar systems to achieve long range 

target detection capability, which is a characteristic of long duration pulse, without 

compromising the high range resolution capability, which is characteristic of a short duration 

pulse. For this, the received signal at the receiver is compressed by a matched filter to produce a 

compressed version of the signal for better resolution. As the range resolution is inversely 

proportional to the bandwidth, high range resolution is ensured by using a transmitted pulse of 

greater bandwidth. LFM pulse is better used than a constant frequency pulse because of its larger 

bandwidth. The bandwidth of a signal can further be increased by taking a train of pulses with 

the center frequency of consecutive pulses stepped by some frequency step ∆f. A train of pulses 

with each pulse of duration T, separated by time Tr  gives rise to grating lobes in its 

autocorrelation function (ACF), when T∆f>1. ACF of a single LFM pulse has also sidelobes of 

its own. Grating lobes and sidelobes may act individually or together to mask smaller targets in  

close vicinity of a larger target, hence are needed to be reduced. 

In the first part of the work, two optimization algorithms called Clonal Particle Swarm 

Optimization and Differential Evolution has been used to find out specific windows that shape an 

LFM pulse to reduce the ACF sidelobes to their optimal minima. Temporal windows has been 

found out using three coefficient window expressions and four coefficient window expressions. 

Resulting windows have been found to reduce sidelobes to an extent which was not possible by 

the classical windows. Grating lobes in a train of pulses can be lowered by the use of LFM 

pulses instead of fixed frequency pulses. Nullification of the ACF grating lobes is possible when 

T, ∆f, and B satisfy a special relationship that puts the ACF  nulls due to a single LFM  pulse 

exactly at the positions of grating lobes. The scheme is valid if and only if  Tr/T>2, which 

restricts the extent of increase in bandwidth by limiting the number of frequency steps for a 

signal of particular time duration. In the second part of the work presented in this thesis, a 

scheme has been proposed that allows to accommodate more bandwidth by taking Tr/T=1. It 

allows more number of pulses within the same signal time, and hence more number of frequency 

stepping to result a larger total bandwidth. 



0 | P a g e  
 

 

 
 

 

 

 

 

 

 

1 . INTRODUCTION 
 

  



1 | P a g e  
 

adar stands for “Radio Detection And Ranging”. The name itself explains the basic 

task of this instrument - detecting a target and finding its range. However the 

functions of radar has far exceeded to finding its velocity, shape, size and trajectory 

of the target. It basically transmits some electromagnetic signal and receives the echoes from the 

target to extract information about it. Angle and direction of the target are determined by the 

angle of reception of  echo at the antenna and tracking system of the radar. The range of the 

target is a function of delay in the received signal and velocity of the target is a function of 

signal‟s doppler shift. Waveform design is an important area of work in the development of radar 

systems. Two important factors that are determined by the waveform of a radar system are range 

resolution and maximum range of detection. The range resolution of a radar is the closest 

distance of separation between two targets to be detected by the radar as two distinct objects. 

Range resolution is inversely proportional to the bandwidth of the signal which means that a 

larger bandwidth signal can give a better range resolution. The range resolution    is given by 

                                                    
 

  
       1.1 

where c is the speed of light, and B is the bandwidth of the signal. Whereas for an unmodulated 

pulse of duration T, the bandwidth    
 

 
 , the range resolution can be enhanced by 

implementing some modulation techniques that accommodates more bandwidth into the pulse. 

A signal gets attenuated while traversing through a channel. So for long range detection, 

the transmitted pulse should have high energy so that its echo from the target has sufficient 

energy to get detected at the receiver. Energy content of the transmitted pulse is given by the 

product of  peak power and pulse duration of the pulse. Hence as shown in Figure 1-1, a high 

energy signal can be a pulse with high peak power and short pulse duration, or a longer duration  
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Figure 1-1 Pulses of different pulse duration but same energy 

pulse of lesser pulse duration. Radar works at microwave frequencies, so transmitting a high 

peak power pulse is not practical, as it makes the radar equipment costlier and bulkier.So we are 

only left to use pulses with limited peak power and a longer pulse duration. A long duration 

pulse has got a very poor range resolution, this is why the technique of pulse compression must 

be used at the receiver. 

1.1 Pulse Compression 

With radar systems, longer pulses of limited peak power are to be used to ensure a large 

maximum range detection. But we must have a narrow signal with high peak power at the output 

of receiver in order to get a good range resolution. This problem is solved by pulse compression 

techniques  which make it possible to avail the long range detection benefits of a long duration 

pulse without trading off  the high range resolution benefits. In pulse compression, some 

modulation technique like frequency modulation or phase modulation is used to accommodate a 

larger bandwidth so as to get a higher range resolution. A long duration  pulse of low peak power 

is frequency or phase modulated before transmission and the received signal is passed through a 

matched filter which accumulates the energy of signal to a narrow duration of time 1/B. The 
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scale of compression relative to an uncompressed pulse is given by Pulse Compression Ratio 

PCR 

                 
                                    

                                   
    1.2 

The compression ratio which gives a figure of merit for pulse compression is equal to the Time-

Bandwidth product TB of the pulse. 

1.2 Matched Filter 

The pulse compression filter of a radar receiver is an implementation of matched filter [1]. 

The SNR of the received signal is of great importance in radar systems, because the probability 

of detecting the signal depends on the SNR rather than the exact shape of the signal. Hence it is 

more important to maximize the SNR rather than preserving the waveform of the signal. The 

output of a matched filter has the maximum signal to noise ratio (SNR) when the signal to which 

the filter is matched, plus the Additive White Gaussian Noise (AWGN) is passed through it. A 

matched filter is always a specific linear filter whose impulse response is a function of the  

specific signal to which that filter is matched. We can have a brief idea about the matched filter 

from the block diagram below in Figure1-2. 

 

 

 

Figure1-2 Block diagram of matched filter 

 

s(t) 
Matched  

Filter 

h(t), H(ω) 

s0(t)+n0(t) 
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 The matched filter is fed with the signal s(t) and AWGN noise of power spectral density 

N0/2. Now the aim is to find the impulse response h(t) or transfer function H(ω) that will cause a 

maximum output SNR at a predetermined delay t0. In short we need to maximize the function 

(
 

 
)
 

 
|      |

 

  
     ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅        1.3 

The impulse response of a matched filter is determined only by the specific waveform s(t) and 

the predetermined delay t0. If the Fourier transform of  s(t) is S (ω), then the output signal at t0 is 

given by 

            
 

  
∫     

 

  
                                1.4

  

The mean square value of noise which is independent of  t is given by  

   
    ̅̅ ̅̅ ̅̅ ̅̅  

  

  
∫ |    | 

 

  
             1.5 

Now substituting the values of (1.4) and (1.5) into (1.3) gives 

 (
 

 
)
 

 
|∫     

 

  
                |

 

   ∫ |    | 
 

  
  

      1.6 

Schwarz‟s inequality says that for any two complex signals A(ω) and B(ω),  they saitisfy the 

following inequality : 

 |∫         
 

  
  |

 
 ∫ |    | 

 

  
  ∫ |    | 

 

  
      1.7 

Using Schwarz‟s inequality in (1.6) , it was found that 
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)
 

 
 

   
∫ |    |   

 

  
 

  

  
       1.8 

Where E is the energy of the finite time signal  

   ∫    

  
      

 

  
∫    

  
           1.9 
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It was found from Schwarz‟s  inequality condition that the SNR is maximized only when  

                             1.10 

The above is thus the frequency response of the matched filter. The impulse response of the 

matched filter can be found out by just taking the inverse Fourier transform of (1.10) 

                        1.11 

It shows that the impulse response of a matched filter is a delayed complex conjugate of  time 

inverse of the signal.  

 When the filter is matched to the transmitted signal, the output SNR at t=t0 for received 

signal corrupted with AWGN noise is the attainable maximum, which is SNR=2E/N0.  It is to be 

observed that the maximum SNR is only a function of the energy of the signal and not the shape 

of the waveform. In essence, the matched filter results in a correlation of the received signal with 

the delayed version of transmitted signal.  

1.3 Ambiguity Function 

There may be two targets very close to each other while varying in their radial velocity. 

Therefor the radar receivers create filters matched not only to the transmitted signal but also to 

the various doppler shifted versions of it. Here it is now important to have a very narrow 

response in doppler too, so that two objects with different radial velocity can be uniquely 

identified. For the two targets case, each one will cause a peak at different doppler shifted 

matched filter. This requires the study of matched filter output in two different dimensions: delay 

(τ) and doppler (ν) . The ambiguity function (AF) represents the time response of a filter matched 

to a given finite energy signal when the signal is received with a delay τ and a doppler shift ν 

relative to the nominal values expected by the filter. Ambiguity function expression is given by   
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  |      |  |∫            
 

  
             |          1.12  

Where u is the complex envelope of the signal, τ is the delay and υ is the doppler shift. A 

positive delay τ  means that the target is farther from radar with respect to reference τ=0. A 

positive  υ means that the target is approaching towards the radar whereas a negative υ implies a 

receding target. Figure 1-3 shows the ambiguity function plot of the most basic signal, which is a  

 

 

Figure 1-3 Ambiguity function of an unmodulated pulse 
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unmodulated pulse of  duration T. The delay axis is normalized with T,  whereas the doppler axis 

is normalized with 1/T.  

1.3.1 Properties Of Ambiguity Function 

The ambiguity function of signal satisfies the following properties : 

1.  The AF is maximum at its origin, where its energy  is generally normalized to unity 

 |      |  |      |           1.13 

2.  Irrespective of the type of signal, the total volume inside the normalized ambiguity surface is 

equal to unity. 

 ∫ ∫ |      |     
 

  
   

 

  
       1.14 

3. The ambiguity plot of a signal is symmetric about its origin, hence it is sufficient to study the 

plot only in any two adjacent quadrants. 

                         |      |  |        |                 1.15 

4. If the complex enevelope of a signal u(t) has its AF= |      |, then the quadratic phase 

modulation or linear frequency modulation of that pulse has the following effect: 

             |      |               1.16 

        Then,                 |         |           1.17 

 

1.4 Radar Signals 

 A fixed frequency continuous wave signal of time duration T is not suitable due to its 

inability to resolve range for its narrow spectrum bandwidth B=1/T. Frequency and phase 

modulation techniques are generally used in order to broaden the spectrum of the signals, so that 
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they provide a higher range resolution. After the signals are modulated to contain a bandwidth B, 

the signals can then be pulse compressed using matched filter to a duration 1/B. 

1.4.1 Phase Modulated Pulse 

 

Figure 1-4 Binary phase coded pulse and its ACF 

 Phase coding is one of the earliest methods of pulse compression. A pulse of duration T is 

divided into M bits of identical duration tb=T/M, and each of the bits is coded with a different 

phase value. The complex envelope of a phase coded pulse is thus given as 

     
 

√ 
∑   

 
       *

         

  
+       1.18 

where um =exp(jπφm) and φm={φ1,φ2, φ3, φ4, … φM} represent the phase code for u(t). Although 

the possible number of phase codes that can be generated is large, the basic engineering task is to 

select the optimal codes for various applications. Resolution properties of the waveform, 

frequency spectrum, and the ease of implementation are the factors which play a key role to 

select a particular phase code. One can understand pulse compression by phase coding by simply 

considering binary phase shift keying technique. In this modulation scheme the code is made of 

m chips which are either in phase, 0
˚ 
positive, or out of phase, 180

 ˚ 
negative, with a reference 
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signal. Figure 1-4 shows the matched filter output of a binary phase coded pulse of 10 bits 

having the sequence [1 -1 1 -1 1 -1 -1 1 1 -1 ]. The dotted ACF plot corresponds to the 

unmodulated pulse and solid one is the ACF of phase coded pulse. It is observed that the ACF 

corresponding to phase coded pulse has a reduced width of mainlobe but suffers from sidelobes. 

Special cases of these binary codes are the Barker codes where the peak of the autocorrelation 

function is N (for a code of length N) and the magnitude of the maximum peak sidelobe is 1. The 

problem with the barker codes is that none with lengths greater than 13 have been found. 

1.4.2 Frequency Modulated Pulse 

The top-left plot of Figure 1-5 shows the unmodulated constant frequency pulse, and its 

ACF is shown on its right. It has a very poor range resolution due its narrow bandwidth. 

Frequency modulation is another alternative by which the spectrum of the transmitted pulse can 

be widened.  Along this approach Linear Frequency Modulation (LFM) is a popular method, in 

which the instantaneous frequency of the pulse sweeps linearly through a predetermined 

bandwidth B during its pulse duration T .The complex envelope of an LFM pulse having unit 

energy can be expressed as 

     
 

√ 
    (

 

 
)                         ;    

 

 
    1.19 

where  k is the frequency slope of the pulse, „+‟ denoting positive frequency slope and „−‟ 

denoting negative frequency slope. The instantaneous phase of the pulse is given by 

     
  

 
              1.20 

The instantaneous frequency of the pulse can be found out by differentiating the phase with 

respect to time t. 

     
 

  
               1.21 
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Hence we find that the frequency of the pulse is a linear function of time and so it is called 

Linear Frequency Modulation. 

 

 

Figure 1-5 Unmodulated pulse and its ACF, Bottom: LFM pulse of T=5 μs, B=8 MHz and its 

ACF 

As can be observed from the bottom plot of Figure 1-5, the matched filter output of an LFM 

pulse definitely gives a high range resolution due to its narrow mainlobe but it also contains 

ambiguous sidelobes. These sidelobes can cause problems for the detection of weaker targets. 

The sidelobe having the highest magnitude in the ACF is called as the peak sidelobe. The lower 

the peak sidelobe, the better is a pulse compression technique which produced the respective 

ACF. Peak Sidelobe Ratio (PSR) is the term used to quantify the sidelobe performance of a pulse 

compression technique and is expressed as 

             
                   

               
         1.22 
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PSR is a ratio and hence better expressed in dB. So in the same terms, we need to design pulse 

compression systems which has the lowest PSR performance. 

1.4.3 Costas Frequency Coding 

LFM Pulse discussed earlier is the most basic frequency modulated signal that can be 

used in radar systems. Another type of frequency modulation scheme called Costas Frequency 

Coding has a rather random-like frequency evolution. It was originally proposed by John P. 

Costas [2] as a discrete and non-linear frequency coding technique. It is quite opposite to that of 

LFM law and the difference can be well demonstrated by the binary matrix shown in Figure 1-6. 

The M contiguous time slices each of duration tb are represented by the colums and the rows 

represent the M distinct frequencies separated by a frequency ∆f. Both the matrices shown in the 

figure contain a single „1‟ in each row and each column. This is to show that only a unique 

frequency is transmitted at any time slice, each of the frequencies being used only once. 

Although there can be M ! possible ways of transmitting a frequency only once in a time slice, 

the frequency jump order affects the ambiguity function (AF) of the signal very strongly. For a 

rough prediction of the AF, one can overlay the matrix over itself and shift it to desired delay 

(horizontal shifts) and doppler (vertical shifts). If particular shifts in delay and doppler causes N 

number of coincidences, then it is to be predicted that there will be a peak of N/M at that delay-

doppler shift. In case of LFM, coincidence will result only for equal number of delay and doppler 

shifts. Say for example, mtb delay and m∆f doppler shifts will result into N=M−m coincidences. 

Costas frequency jump sequence is unique in that, the number of coincidences can no more than 

one for any delay-doppler shifts except for zero shift case, when it has the maximum N=M 

coincidences. This points to an ideal AF in which there is a narrow peak at the origin and there 

are very small sidelobes, AF getting better with increasing length of Costas sequence. Frequency 
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Figure 1-6 Coincidence matrix for LFM (left) and Costas Frequency coding(right) 4 7 1 6 5 2 3 

 

Figure 1-7 Frequency evolution and ACF for Costas code sequence 4 7 1 6 5 2 3 

 

evolution plot for a Costas sequence [4 7 1 6 5 2 3] and its ACF is shown in Figure 1-7. At an 

earlier stage many construction algorithms were given by Golomb and Taylor [3] but those 

algorithms work only for codes of certain small length only. So for longer length Costas codes, 

an exhaustive search into all possible frequency jump sequences of any dimension M must be 

made. A recent publications [4] - [5]enumerates Costas arrays of order 28, the enumeration been 
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performed on numerous computer clusters and required an equivalent of 70 years of single CPU 

time. So at present there are two domains of work related to Costas codes, one being the design 

of more efficient and faster algorithms to search down the Costas codes of higher orders, and 

secondly to use the existing arrays to design waveforms using various modified modulation 

schemes to get improved characteristics of AF. One such publication of later type is [6] which 

proposes to overlay a orthogonal set of N-phase codes on the modified costas pulses [7] for an 

improved performance. 

 

Figure 1-8 Ambiguity function of Stepped frequency train of unmodulated pulses, Tr/T=5 

1.5 Conclusion 

LFM pulse was the most basic frequency modulated pulse with its ambiguity function 

shown in Figure 1-3. It had a very poor range and doppler resolution, as was clear from the very 
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broad mainlobe, both in range and doppler axis. The linearly stepped frequency train of pulses 

has a better ambiguity function as shown in  Figure 1-8. It  has a narrower mainlobe width in 

 

Figure 1-9 Ambiguity function of Costas hopping sequence [4 7 1 6 5 2 3], Tr/T=5 

 

delay due to its greater bandwidth content, while the lobes are still high. With the use 

Costas coding sequence with its ambiguity function shown in Figure 1-9, it gave a narrow 

mainlobe both in delay and doppler, and even very low sidelobes in both the axes. Again 

the height of the sidelobes with respect to the main lobe, or the PSR in Costas coding is 

inversely proportional to the length of the Costas sequence. The sidelobes were no more 

than 1/7
th

 of the mainlobe height. Hence of all the unmodulated pulse waveforms discussed 

in this chapter, the ambiguity function of the Costas hopping sequence is most close to an 

ideal ambiguity function. 
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FM pulses are used because it increases the bandwidth and thus the range resolution 

of the signal by a factor equal to time-bandwidth product TB. However for LFM 

pulse, the output of the matched filter suffers from very high range sidelobes as high 

as −13 dB. In radar applications, where there may be weak targets very close to a stronger target, 

the ACF sidelobes at the matched filter output due to echoes from the stronger target may mask 

the mainlobe of a weak targets. Moreover the sidelobes themselves may falsely be detected as 

weak targets. We know that fourier transform of ACF gives the power spectral density of a 

signal. Hence the ACF sidelobes can be reduced by shaping the spectrum. Spectral shaping can 

be done either by amplitude weighting or by frequency weighting [1]. Amplitude weighting is 

the approach taken here for shaping the spectrum of LFM pulses. Spectral shaping through 

amplitude weighting is based on the linear relation of the frequency with time in an LFM pulse. 

At any given instant of time, a particular frequency is transmitted. Therefore by shaping the 

amplitude of the pulse along time automatically shapes the power spectral density along 

frequency. Kaiser window [8] and Hamming window [9] have been used in the past for 

amplitude weighting in order to reduce the range sidelobes. In case of the Kaiser window 

appropriate β parameter had to be selected to control the sidelobe level and width of the main 

lobe. In this paper, new windows have been found out for minimum range sidelobe performance 

quantified by Peak Sidelobe Ratio (PSR). The temporal shaping-windows are expressed here as a 

finite sum of weighted cosines [10] over a time duration, and the weighting coefficients of the 

windows have been optimized by Clonal Particle Swarm Optimization [11] and Differential 

Evolution [12] to give minimal PSR. 

L 
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2.1 Characterization of LFM chirp and weighting window: 

The frequency of an LFM pulse evolve linearly in its pulse duration T to cover a 

bandwidth B. Its complex envelope can be expressed as 

     (
 

√ 
)              ;        

 

 
             2.1 

                                

 
 

 
   

 

 
 

and by differentiating the argument of the above exponential term gives the instantaneous 

frequency f(t) of the chirp  

     
 

  

 (    )

  
           2.2 

 

Figure 2-1 Frequency Evolution of  LFM chirp T=8μs, B=10MHz 

When LFM chirp is compressed by a matched filter at the receiver, we get range sidelobes 

occurring along with the main lobe which are often unacceptable. They can be countered by 

amplitude weighing the time domain signals. Amplitude weighing is implemented by various 
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pulse shaping window functions. This paper characterizes the window functions as a weighted 

sum of cosines [10]. These windows are completely characterised by the number of cosine terms 

and the coefficients used as the weight of cosines in the expression. The temporal weight 

windows used here are of the form: 

     
 

 
∑               

      | |           2.3 

where {  } 
   are real constants. Weighting is symmetric about t=0 and it is normalized 

according to : 
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Figure 2-2 Matched weighting (top) and Mismatched weighting(bottom) 

This is the general equation for realizing a temporal window, from which all the standard 

windows like Hanning window, Hamming window, Blackman window and others can be 

realised by assigning appropriate values to    coefficients. The shaping is done in time domain, 

by multiplying the signal to be shaped with appropriate weight window. It can be done in either 

in the matched filtering way or in the mismatched filtering way. In matched filtering, weight is 

split between the transmitter and receiver i.e. the amplitude at each end is shaped by a square 

root of the window. The problem with this technique is that it requires a linear power amplifier 

causing inefficiency. Alternatively in mismatched filtering, the entire window is implemented at 
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the receiver end, having to compromise with resulting loss in Signal to Noise Ratio (SNR) due to 

mismatched filtering.  

2.2 Clonal Particle Swarm Optimization (CPSO) : 

Particle Swarm Optimisation (PSO) [13] is basically a stochastic optimization technique 

inspired by the coordinated and collective behavior of birds in a flock. The search space is an n-

dimensional space where the n dimensions comprise of those independent variables on which the 

solution of the problem depends. A bunch of candidate solutions termed as particles are 

randomly initialized in the search space and are let to explore for the best solution of the 

problem. These randomly initialised particles in the search space are collectively called as a 

swarm. Each particle updates both its position and velocity  iteratively according to its personal 

best position found so far, and the current best position out of all the particles achieved as yet. 

The particles search for the optimal solution by iteratively evolving themselves while their 

fitness value is evaluated at every evolution by the fitness function. As according to the Standard 

Particle Swarm Optimization (SPSO), given by James Kennedy and Russell Eberhart [13], the 

update formula for velocity and position is given by the following equations: 

                     (              )      (              )            2.5

   

                                       2.6 

where i=1, 2,…, n is the particle count in the swarm and, d=1, 2,3,…, D is the dimension of the 

solution space.      is the i
th

 particle‟s best d-dimension as achieved yet, whereas      is the 

achieved d-dimension of the global best particle in the swarm. Constants c1, c2 are non-negative 

learning factors, and r1, r2 are the random numbers from a uniform distribution [0 1]. The 

parameter w Є [0 1] is the inertia weight factor, w being large is appropriate for global search 

whereas a small w is good for local search.  
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Standard Particle Swarm Optimisation guides the swarm to converge to a single optima 

with the help of particles having the best known positions in the search space. But in the 

problems where there are multiple optima, choosing the best fit particle to guide the swarm is a 

critical issue. A wrong choice of best-fit particle may mislead the swarm to a local optimum and 

get stuck there. Here is when the Clonal Particle Swarm Optimization (CPSO) [14] comes to 

rescue and guides the SPSO to escape from local minima while searching for the global optima 

efficiently. The introduction of clonal expansion process in SPSO strengthens the interaction 

between the particles in the swarm and enhances global convergence performance. Global best 

particle of each SPSO generation is kept in memory to act as mother particles. A new step called 

cloning operation is allowed where a mother particle is cloned up to N identical particles in the 

search space, which are then used to generate N new particles through clonal mutation. During 

the mutation stage, random variations are done around each of the N similar cloned particles. 

This is like making a deliberate more extensive search around the most promising particles 

through generations. It accelerates the evolution process for better optimization and a faster 

convergence. 

2.2.1 PSO Algorithm To Find Specific Window Coefficients For 

Optimal PSR 

Here, the CPSO technique has been used to find windows for specific time-bandwidth 

products TB, which can result in amplitude weighing of the LFM pulse to give the least PSR at 

the matched filter output. The K coefficients of the cosine-based window expression given by 

(2.3) vary along the corresponding K axes of the search space. The coefficients take values in the 

search space only after satistfying the constraints provided for the them in (2.4). Hence each of 

the particles in the swarm represent a window used for amplitude weighing of pulse. The 
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particles in the swarm are to search for the position causing the minimal PSR. The step trasition 

in a CPSO algorithm can be represented as follows: 

 

Figure 2-3 State transition for CPSO 

Step 1 Initialization: The initial number of swarm particles are initialized. To start with, the 

particles are randomly positioned in the search space against the K dimensions, essentialy 

satisfying the constraints defined in (2.4). 

Step 2 Pulse shaping and compression: The defined LFM pulse of duration T and bandwidth B is 

shaped by the windows as represented by the particles in the swarm and is compressed as per 

requirement, by either matched filtering or mismatched filtering. The corresponding ACF, and 

hence PSR is a function of position of the particles, i.e. the window coefficients. PSR 

corresponding to each of the particles acts as the fitness function for this optimization problem. 

Step 3 SPSO stage: The particles are let to update their position and velocity according to (2.5) 

and (2.6) iteratively for M number of generations. Particle with a set of window coefficients 

causing a lower PSR competes ahead to decide for particle‟s personal best and the spot for global 

best particle in the swarm. 

Step 4: The global best particle at the end of each generation is stored in memory as mother-

particles for use in the subsequent cloning phase. 
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Step 5: After the completion of M SPSO generations, the window coefficients corresponding to 

the last registered global best particle and its resulting sidelobe level is recorded out separately.  

Step 6 Cloning: The particles in memory as mother-particles which acted as a global best particle 

for at least one generation are cloned into several particles. 

Step 7 Mutations: Each of the cloned particles is mutated in all dimensions by some random 

disturbance, Gaussian noise in this case of zero mean and unity variance. Mutation can hence be 

represented as: 

                          2.7 

Where s is the scale of mutation and Vmax is the maximum velocity of mutation. 

Table 1 PSO optimised window coefficients at specific time-bandwidth for minimum PSR; left: 

three coefficient window; right: four coefficient window 

PSO 

Filter 
a0 a1 a2 PSR TB a0 a1 a2 a3 PSR 

MMF 0.5067 0.4877 0.0056 -28.7481 20 0.5047 0.4632 0.0122 0.0199 -29.1383 

MF 0.3961 0.4996 0.1043 -54.9359 20 0.3459 0.4836 0.1542 0.0163 -62.5264 

           

MMF 0.5074 0.4786 0.0140 -34.6375 40 0.4983 0.4869 0.0054 0.0094 -34.9262 

MF 0.4005 0.4994 0.1001 -57.0215 40 0.3433 0.4821 0.1567 0.0179 -69.6731 

           

MMF 0.5080 0.4808 0.0112 -38.2162 60 0.4905 0.4874 0.0161 0.0060 -38.2852 

MF 0.4059 0.4999 0.0942 -60.7442 60 0.3478 0.4851 0.1522 0.0149 -78.5579 

           

MMF 0.4935 0.4868 0.0197 -40.664 80 0.4988 0.4803 0.0151 0.0058 -40.7781 

MF 0.4139 0.4993 0.0868 -62.1501 80 0.3610 0.4900 0.1390 0.0100 -78.0703 

           

MMF 0.4859 0.4891 0.0250 -42.5462 100 0.4740 0.4941 0.0314 0.0032 -42.5492 

MF 0.4111 0.4994 0.0895 -64.5113 100 0.3611 0.4897 0.1389 0.0103 -80.1701 
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Step 8:  Now these mutated particles form the particles of a new swarm which undergoes step-2 

to step-8 for some S-1 number of cycles. 

Step 9 Termination: Step 8 continues for S-1 cycles, and the algorithm stops at the S
th  

cycle‟s  

step-5. Out of all the results accumulated in step 5 during the cycles, the window coefficients 

corresponding to lowest PSR is recorded for the optimal window parameters. 

2.3 Differential Evolution (DE) : 

Differential Evolution [15] is a search and optimization method  which came as a result of 

the keen observation of the researchers into the underlying relation between optimization and the 

biological evolution process. Direct search methods are chosen whenever the cost function to be 

minimized is of non-linear and non-differentiable nature. DE is a powerful direct search 

stochastic optimization algorithm. In this a fitness function or objective function is designed to 

measure the extent of performance in the optimization problem. The aim is to find out a set of 

parameters which makes the system to perform at its best under certain conditions. The set of 

parameters governing the fitness function and hence performance of the system is represented by 

a parameter vector.  Like any other direct search method the central strategy of DE is to generate 

variation of the parameter vectors and then to put them under check if or not to accept the new 

parameters. If the new parameter vector gives a lower value of the fitness function than its parent 

parameter vector, it replaces the parent parameter vector. Parallelizability of DE helps it to cope 

up with computation intensive fitness functions and also safeguards it from converging to a local 

minimum. Several vectors run simultaneously, therefore a better performing parameter vector 

can rescue the algorithm form being trapped into a local minimum. DE is an easy to use 

algorithm using a few control variables to steer the minimization procedure. It is also self-

organizing in nature using the existing vectors to find differences between them to create new 
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parameter vectors with the help of control variables. DE replaces an existing vector with a new 

one in the next generation, if it performs better for the fitness function. 

2.3.1 DE Algorithm To Find Specific Window Coefficients For 

Optimal PSR 

DE algorithm searches a D-dimensional parameter space for the global minimum. For the 

present problem D-dimensions are the variations in K coefficients in cosine based window 

expression given in (2.3). The fitness function to minimize here is the PSR at the matched filter 

output, that amplitude weighing of the LFM pulse by a particular window can attain. 

Optimization of this problem through DE works through iterative stage cycles as shown in the 

Figure 2-4: 

 

 

 

Figure 2-4 Stages of Differential Evolution 

 

Step 1 Initialization of parameter vectors: A population of  NP≥4 number of  D-dimensional 

parameter vectors is randomly initiated to cover the parameter space uniformly.  Each parameter 

vector represents a cosine based window function that acts as a candidate solution for the PSR 

minimization problem, so we will term it as a window vector. The i
th

 window vector of the 

population is represented as: 

                                    2.8 

where G is the generation number. 

Initialization 

of vectors 

Mutation Crossover Selection 
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Step 2 Mutation: Mutant window  vector is generated by taking each vector of the population as 

a target vector    . A weighted difference of two population vectors is added to a third one to get 

the mutant vector. 

               (           )       2.9 

The indices i, r1, r2, r3 Є {1, 2, 3,…, NP } are mutually different and F>0. FЄ  [0  2] controls the 

amplification of the difference vector. 

Step 3 Crossover: The mutant vector is then mixed with the target vector to get the trial vector 

according to the law: 

        {
                                       

                                      
}     2.10 

j=1, 2, 3,…D 

In the above equation rand(j) is the j
th 

uniform random number evaluation, CR is crossover 

constant Є [0 1] determined by the user and randbr(i) is a randomly chosen index from 

1,2,3,…,D. 

Step 4 Selection: If the trial vector produces a lower PSR value than the target vector, it replaces 

the target vector in further generations. This operation is called as selection. Each population 

vector must once act as a target vector so that there are NP competitions, each vector getting its 

chance to evolve through mutation, crossover and selection in a generation. 

Step 5 Termination: Each of the NP vectors getting a chance as trial vector, and  each reaching  

the selection stage once, completes a single generation of DE. After the completion of a 

generation, the next generation puts the algorithm back to the mutation stage. Meanwhile a 

record-keeper function keeps updating itself with the window vectors with better fitness function 
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value generation after generation and trial after trial. Termination is made after a sufficiently 

large number of generations wave passed such that the PSR saturates around some minimum 

value recorded by the record-keeper function. 

2.4 Results and discussion: 

It is very difficult to obtain low sidelobes for time-bandwidth product TB less than 100 due 

to the amplitude ripple of LFM chirp signal. It was found by Milewski, Sedek, Gawor [9] that 

smaller the TB, larger the amplitude ripple becomes and the greater there is sidelobe degradation. 

Table 2 DE optimised window coefficients at specific time-bandwidth for minimum PSR; left: 

three coefficient window; right: four coefficient window 

DE 

Filter 
a0 a1 a2 PSR TB a0 a1 a2 a3 PSR 

MMF 0.4985 0.4958 0.0057 -28.7640 20 0.5047 0.4632 0.0122 0.0199 -29.1383 

MF 0.3963 0.4996 0.1041 -54.9130 20 0.3472 0.4845 0.1528 0.0155 -63.2136 

           

MMF 0.5062 0.4849 0.0089 -34.7105 40 0.5006 0.4814 0.0075 0.0105 -34.9000 

MF 0.4042 0.4996 0.0962 -60.3298 40 0.3520 0.4865 0.1480 0.0135 -70.1264 

           

MMF 0.4906 0.4904 0.0190 -38.1974 60 0.5043 0.4795 0.0099 0.0063 -38.3357 

MF 0.4075 0.4996 0.0929 -62.4224 60 0.3480 0.4843 0.1520 0.0157 -75.6938 

           

MMF 0.4961 0.4856 0.0183 -40.6640 80 0.5130 0.4665 0.0156 0.0049 -40.6590 

MF 0.4094 0.4995 0.0911 -63.7180 80 0.3387 0.4814 0.1613 0.0186 -79.0505 

           

MMF 0.5120 0.4752 0.0128 -42.5719 100 0.4913 0.4836 0.0206 0.0045 -42.6343 

MF 0.4111 0.4994 0.0895 -64.5113 100 0.3434 0.4834 0.1566 0.0166 -84.6514 

           

CPSO algorithm and DE as described above were used to find out minimal PSR producing 

windows of the form (2.3) for typical TB values. Optimal windows giving a minimum PSR 

performance were obtained both for matched filtering and mismatched filtering modes. Table 1 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Sedek,%20E..QT.&searchWithin=p_Author_Ids:37266397500&newsearch=true
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presents the Clonal PSO-optimized matched filter and mismatched filter PSR, along with 

respective window coefficients. Window coefficients were obtained for both three coefficient 

window and four coefficient windows. Table 2 presents results obtained through DE 

optimization with the same objective as was for Table 1. 

Comparison  with other standard windows: Table 3 shows the sidelobe reduction performance of 

some standard windows namely Hamming window, Hanning window and Kaiser window along  

with the new windows those were obtained after optimization through CPSO and DE. It is 

observed in the mismatched filtering case, that some conventional windows perform closely as 

good as those found out by clonal PSO and DE. While Hamming windows are inconsistently 

close to the optimum sidelobe level of mismatched filtering, Kaiser window reduces the 

sidelobes close around optimum quite consistently. So for the mismatched filtering case, it is fair 

enough to generalize that the Kaiser window with β=6 provides the best sidelobe reduction 

avoiding any requirement of sidelobe reduction through optimization techniques. When there is 

an option to choose from  matched filtering and mismatched filtering, the latter one definitely 

does remarkably well in sidelobe reduction for any chosen window. By the use of matched 

filtering, it also avoids SNR loss due to mismatch. Of all the conventional windows taken, the 

Kaiser window with β=6 gives the minimum sidelobe. For matched filtering, the CPSO and DE 

windows do exceptionally well to reduce the sidelobe levels as compared to the conventional 

windows. Taking for example the second case of  Table 3 where time-bandwidth product is 40, 

the Kaiser window gives a sidelobe level of -41.2929 dB, whereas optimization results through 

DE for four coefficients gives a reduction up to -70.1264 dB as depicted in Figure 2-5. It is clear 

from Table 3 that, it is fair enough to generalize that the CPSO  
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Figure 2-5 Sidelobe comparision of Kaiser window and 4-coeff-DE-window, TB=40 

and DE windows for matched filtering are the best option, when sidelobe reduction is the 

foremost priority. 

 

Effect of increasing window coefficients: Windows of the form (2.3) can be well-designed with 

k>=2. The greater the number of ak coefficients, the more precise spectral shaping is possible. In 

case of mismatched filtering, there is hardly any improvement in the sidelobe reduction in 

moving from three-coefficients to four coefficients. At the same time, in matched filtering, we 

can see a noticeable reduction in the PSR in moving from three coefficients to four coefficients.  
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As shown in Figure 2-6, when we move from three coefficient DE optimized window to four 

coefficient DE optimized window for TB=100, the PSR goes down remarkably from −64.5113 

dB to −84.6514 dB. So it shows that increasing the window coefficients improves the pulse 

shaping of the LFM pulse for a better sidelobe minimization. 

 

 

Figure 2-6 Sidelobes for 3-coefficient and 4-coefficient DE windows 
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Table 3 Comparative PSR levels of classical windows versus CPSO and DE optimised windows 

TBW Filter Hamming Hanning 
Kaiser 

(β=6) 

PSO 

(3coef) 

PSO 

(4coef) 

DE 

(3coef) 

DE 

(4coef) 

20 MMF -28.5377 -28.6761 -28.7271 -28.7481 -29.1383 -28.7640 -29.1383 

20 MF -33.5784 -29.8352 -37.4059 -54.9359 -62.5264 -54.9130 -63.2136 

         

40 MMF -34.5555 -31.0930 -34.8108 -34.6375 -34.9262 -34.7105 -34.9000 

40 MF -37.7184 -30.9123 -41.2929 -57.0215 -69.6731 -60.3298 -70.1264 

         

60 MMF -38.0559 -31.3692 -38.3879 -38.2162 -38.2852 -38.1974 -38.3357 

60 MF -39.7027 -31.1989 -42.4288 -60.7442 -78.5579 -62.4224 -75.6938 

         

80 MMF -39.8446 -31.4298 -40.8536 -40.664 -40.7781 -40.6640 -40.6590 

80 MF -40.6627 -31.3114 -42.9069 -62.1501 -78.0703 -63.7180 -79.0505 

         

100 MMF -40.6143 -31.4495 -42.7749 -42.5462 -42.5492 -42.5719 -42.6343 

100 MF -41.2127 -31.3658 -43.1547 -64.5113 -80.1701 -64.5113 -84.6514 

2.5 Conclusion: 

Shaping of the signals by weighting windows has been one of the ways to reduce the range 

sidelobes in LFM signals. CPSO and DE technique have been used to find out those optimum 

windows for signals of specific time-bandwidth products in both matched and mismatched 

filtering modes. Sidelobe degradation is worst for TB less than 100, especially where the 

matched filter with optimized windows can come to a great rescue to suppress the sidelobes. In 

addition to the advantage of no SNR loss due to mismatch in the matched filtering, the CPSO 

and DE optimized windows reduce the PSR far below the levels that could be achieved by 

conventional windows. The only trade off being the broadening of the main lobe which degrades 

the vertical resolution of the radar signal.  
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idening the spectrum of the transmitted radar pulse is necessary for an 

enhanced range resolution. A step ahead in this direction is to use a train of 

pulses with Tr being the pulse repetition time, with a frequency step ∆f 

between consecutive pulses [16]. It also has an advantage of providing a large total bandwidth 

while the instantaneous bandwidth is quite narrow. The duration between the pulses can be used 

by the radar components to prepare for the narrow band frequency step of the next pulse. A large 

∆f  between pulses ensures a larger total bandwidth. But when the product of frequency step ∆f 

and pulse duration T becomes greater than 1 (T∆f>1), the autocorrelation function ACF of the 

stepped frequency train of pulses suffers from ambiguous peaks which are called as grating lobes 

[16]. It has been observed that using Linear Frequency Modulated LFM instead of fixed 

frequency pulses in the train of pulses, with their centre frequencies stepped by ∆f  has an effect 

of reducing the grating lobes. This phenomena has been exemplified by the plots in Figure 

3-1and Figure 3-2, which shows that the use of LFM pulses has a reducing effect on the grating 

lobes. ACF of a single LFM pulse has sidelobes and nulls, whereas a train of pulses causes 

grating lobes due to the frequency steps. From the Ambiguity Function AF expression of the 

train of pulses, a relationship between T, B and ∆f can be derived to place the nulls of LFM-ACF 

exactly at the position of grating lobes, hence nullifying the grating lobes. 

3.1 Ambiguity Function For Stepped Frequency Train Of LFM 

Pulses 

The complex envelope of a single LFM pulse having unit energy is given by u(t)in (1.18). 

Applying  (1.18) to the general eqation for AF of a signal given in (1.11), the AF of a single 

LFM pulse can be expressed as  

|      |  |(  
| |

 
)     *       (  

| |

 
)+|     3.1 

For our requirement we have a train of N such LFM pulses with a pulse repetition time Tr>2T.  

W 
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Figure 3-1 Amplitude (top), frequency evolution (middle) and ACF(bottom) of stepped 

frequency train of six pulses 
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Figure 3-2 Amplitude (top), frequency evolution (middle) and ACF(bottom) of stepped 

frequency train of six pulses 
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√ 
∑         

   
          3.2 

Unit energy is maintained by dividing by the expression √ . For delay τ less than pulse duration 

T, the ambiguity function of a train of pulses is related to the ambiguity function of a single pulse 

according to 

 |       |  |      | |
          

          
| ; τ≤T     3.3 

Now adding LFM to the train of pulses for frequency stepping through a new slope ks,  gives the  

expression for stepped frequency train of LFM pulses. 

                       
   =   

 

√ 
          

  ∑         
   
     3.4 

where       
  

  
 ,  ∆f > 0 

„+‟ sign representing a positive frequency step and „−‟ sign representing a negative frequency 

step. Putting LFM frequency step modifies the ambiguity function of the signal as 

 |       |  |           |        3.5 

Putting (3.3) in (3.5) we get 

 |       |  |          | |
                

                
|      3.6 

Combining (3.1) and (3.6), we get the ambiguity function of stepped frequency train of LFM 

pulses  

|        |  |(  
| |

 
)     *            (  

| |

 
)+| |

                

                
|; |τ| ≤T 3.7 

Hence we find that the slope ks for frequency step adds up to the slope of  LFM chirp in a single 

pulse, so the ultimate bandwidth of the signal becomes 

                   3.8 

Ambiguity function expression in (3.7) can be further simplified to  

|        |  |(  
| |

 
)     * (  
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|;     |τ| ≤T 3.9 
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3.2 Nullifying Grating Lobes 

The ACF of stepped frequency train of LFM pulses can be obtained by putting ν=0 in (3.9) 

producing  

|    |  |(  
| |

 
)     *  (  

| |

 
)+| |

          

          
| ;   |τ| ≤T    3.10 

 

Figure 3-3 Tr/T=2, TB=0, T∆f=5, Top: R1(τ) in solid, R2(τ) in dashed ; Bottom: ACF 

The expression in equation (3.10) is made up of two terms 

|     |  |(  
| |

 
)     *  (  

| |

 
)+|      3.11 

 |     |  |
          

          
|                  3.12  
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The first term|R1(τ)| is due to a single LFM pulse of increasing slope, whereas the second term 

|R2(τ)| represents the grating lobes [17] that is due to the frequency stepping of the consecutive 

pulses. |R2(τ)| exhibits its peaks (mainlobe and sidelobes ) at  

        
 

  
  , g= 0, ±1, ±2, ±3,…└T∆f┘       3.13 

 

 

Figure 3-4 Tr/T=2, TB=12.5, T∆f=5, Top: R1(τ) in solid, R2(τ) in dashed; Bottom: ACF 

Nullifying the grating lobes requires placing the grating lobes of R2(τ) exactly at the nulls of 

R1(τ). The approach for this involves making the coincidence of first two grating lobes with the 

nulls of R1(τ). In some cases the fulfillment of this requirement nullifies all the grating lobes. For 

example, requiring that R1(τ) will exhibit it‟s 2nd and 3rd nulls exactly at the first two gratings 

lobes, namely at T=1/∆f and T=2/∆f respectively, yields the following two relationships: T∆f=5 

and TB=12.5. The resulting nullification of grating lobes can be seen by comparing the plots in 

Figure 3-3 and Figure 3-4. The five grating lobes corresponding to T∆f=5  present with the use 

of fixed frequency pulses can be prominently seen in the Figure 3-3. The plots in Figure 3-4 
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shows that the use of LFM pulses with appropriate T∆f and TB values results in nulls exactly at 

the positions where the grating lobe peaks were present. So the final ACF function (Figure 3-4 

bottom) is completely free from all the grating lobes. 

3.3 T∆f-TB Conditions For Grating-Lobe Nullification 

 Conditions for nullification of grating lobes can be found out by deriving the condition in 

which the m
th

 and n
th

 nulls of R1(τ) fall at the q
th

 and r
th

 grating lobes at τ=q/∆f and τ=r/∆f . 

Applying this to (2.11) gives the following two relations : 

   
 

  
(  

 

   
)            3.14 

   
 

  
(  

 

   
)            3.15 

The requirement of nullifying the first two grating lobes ,namely for q=1, r=1 and solving for 

T∆f and TB yields 

     
    

    
          3.16 

    
       

       
          3.17 

3.4 Conclusion 

A good range resolution required a wide bandwidth, which we see that can be attained 

easily by stepped frequency train of pulses. Even the grating lobes can be nullified with the 

use of LFM pulses with proper choice of TB and T∆f  from (3.16) and (3.17). This scheme 

originally described in publication [16] had a overall bandwidth of B+(N−1)∆f . The 

bandwidth can be increased further by making Tr=T, which will basically increase the 

number of pulses in the train by making the pulses contiguous. The next chapter discusses 

the problem arising from using contiguous pulses, and a new scheme has been proposed to 

solve the problem. 
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ullification of the grating lobes with the scheme described in the previous chapter  

is valid if and only if Tr/T>2. It restricts the extent of increase of bandwidth by 

limiting the number of frequency steps for a signal of particular time. Here in this 

chapter ,a new scheme has been proposed that allows to accommodate more bandwidth by taking 

Tr/T=1, which means that contiguous pulses make up the pulse train .By this way, the number of 

frequency stepping can be made maximum for the same interval of signal, hence can 

accommodate more bandwidth. This will further increase the range resolution of the signal. But 

while doing the same, some of the grating lobes that were nullified with the use of LFM with 

suitable T∆f, TB pair are no more identically zero.  

4.1 Effect Of Contiguously Aligned Pulses On The ACF 

 

Figure 4-1 Alignment of received pulses with reference pulses to show ACF contribution 

Converting the train of separated pulses into contiguous subpulses (Tr = T) changes the ACF. 

Let the complex envelope of the different pulses be represented by up(t) ,where p denotes the 

pulse number. Then the ACF of the train of pulses in the delay region |τ|<T can be expressed as 

      ∑      
    

    ∑        
    

         4.1 

N 
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So the ACF of the signal consists of the correlation terms of the delayed pulse with its 

corresponding reference pulse,  and crosscorrelation terms of the delayed pulse with the adjacent 

reference pulse. This can be explained from Figure 4-1 in which reference pulse u2 has 

correlation with a part of identical delayed pulse u2  and cross-correlation with u1. The first sum 

of (4.1) is the dominant term in the ACF which is exactly the same when the pulses were 

separated  and is expressed by (3.10). This first sum may exhibit grating lobes for fixed 

frequency pulses or may be nullified with the use of proper LFM. It does not depend on the slope 

polarity of the individual LFM pulses. The changes in the ACF over |τ|<T (where the grating 

lobes are found) are due to the second sum of (4.1) which is due to the cross correlation between 

adjacent pulses. The second sum does depend on the LFM slope polarity of  the individual 

pulses. At higher delays  of τ<T, only the cross terms are found in the ACF. The cross terms 

involving adjacent pulses, with slope polarity of  LFM pulses remaining same has been found to 

be 

|       
   |  |

   *  ((       )    
   

 
)
 

 
+

  ((       )    
   

 
)

| ;0 ≤τ ≤ T    4.2 

Here, kp is an interger so that kp∆f  denotes carrier frequency of the p
th  

pulse. So in order to check 

if the nullifying holds we should be interested in the value of cross correlation terms(4.2) at the 

position of the grating lobes, namely at τ = g/∆f where g  is an integer smaller than T∆f. 

 |       
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)|  |
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  )+

  ((       )    
 

   
  )

| ;   0 ≤τ ≤ T    4.3 

The numerator of (4.3) is zero only when the argument of sine function is an intergral multiple of 

π. Substituting the T∆f  and TB values from (3.16) and (3.17) gives the argument of the sine after 

dividing by π as         
       

 
 , which is always an integer for r(r-1) is always even. The 

numerator of (4.3) will be zero, whenever the T∆f and TB pair nullify the original grating lobes. 
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The only time when cross terms do not become zero is when the denominator also becomes zero 

making it into a 
      

 
  form. For this case of situation we loose the nullification at the point of 

grating lobes, which was earlier done by a suitable pair of T∆f and TB values. It does not mean 

that the grating lobe is restored at the point. It only implies that the ACF at the point is no more 

identically zero and may be objectionable at times. 

Table 4 Location of peak sidelobe on delay axis for various  T∆f and TB 

Tp∆f TpB B/∆f  Sidelobe  position 

on delay axis (τ/Tb) 

dB 

2 4 2 1.507 -9.4432 

3 4.5 1.5 0.67 -5.0786 

3 9 3 1.667 -7.0396 

5 12.5 2.5 0.8 -3.5156 

3 13.5 4.5 2.667 -9.5420 

4 16 4 1.751 -6.0146 

3 18 6 3.667 -13.0538 

 

Table 4 shows the various T∆f & TB pairs with their respective highest recorded sidelobe level 

and its position on delay axis. We can see that the cancellation of grating lobes has failed for two 

of the cases namely, case-I: T∆f=5 & TB=12.5 and case II: T∆f =3 & TB=4.5 when Tr/T=1 was 

implemented. In these two of the cases, a significant lobe is observed within the delay τ<T, due 

to the above mentioned reason of failure in cancellation of grating lobes. Figure 4-2 shows the 

frequency evolution and corresponding ACF of stepped frequency train of six contiguous LFM 

pulses with T∆f =3 & TB=4.5, which is one of cases of failure in nullification of grating lobe 

mentioned above. We observe a prominent lobe which is as high as -5.0786 dB at the position of 
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the second grating lobe, which failed to be nullified after we made the pulses contiguous. Since 

this high lobe is within a delay less than the pulse duration, it may mask other targets or itself 

falsely act a target. It is undesirable and needs to be suppressed by some means. 

 

Figure 4-2 Frequency evolution and ACF of contiguous constant slope LFM pulses Tr/T=1,  

T∆f =3 & TB=4.5 

4.2 Proposed Solution 

Since the high ACF lobe at the position of grating lobes is grossly due to the cross-

correlation between adjacent pulses, it can be reduced if the adjacent pulses in the stepped 

frequency train of pulses are spectraly isolated by some extent. One way of doing the same can 

be the use alternating LFM slopes for the contiguous pulses as the adjacent pulses do have some 

extent of overlap in bandwidth parameterized by the B/∆f ratio. The effect of B/∆f ratio on the 

grating lobes of stepped frequency pulses has been well described in publication [18]. The 

spectral overlap between the adjacent frequencies is maximum and by alternating the slopes of 

adjacent pulses the frequency isolation between them is increased. In contrast to the plots of 

Figure 4-2, the plots in Figure 4-3 shows the frequency evolution of stepped-frequency train of  
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Figure 4-3 Frequency evolution and ACF of contiguous alternating slope LFM pulses Tr/T=1, 

T∆f =3 & TB=4.5 

 

alternating slope LFM pulses with its corresponding ACF. It clearly shows the reduced lobe level 

at the position of second grating lobe which is now around -20 dB. So it is now possible to 

transmit contiguous train of pulses without loss of grating lobes nullification. It has a added 

benefit to the maximum range of detection of the radar waveform. Since for the same signal time 

it is now possible to accommodate more number of pulses, so the total energy content of the 

waveform also increases. A waveform having more energy can travel more distance hence 

increasing the maximum range of the radar system. 

4.3 Conclusion 

Maintaining one of the several possible relationships between the frequencyspacing ∆f, 

pulse duration T and the LFM bandwidth B, along with the use of alternate slope polarity for 

adjacent frequencies can reduce the high ACF lobes at the positions of grating lobes in the 

stepped frequency train of contiguous pulses. Distribution of ACF lobes become more uniform to 

ultimately reduce the spikes. This makes possible for the use of Tr/T=1, which ultimately 
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increases range resolution and maximum range of the radar. Say for example, if TB=12.5, T∆f 

=5, Tr/T=3, and Ttotal=7T, results in grating lobes cancellation, and provides a pulse compression 

ratio = TB = 157.5. At similar conditions, but when contiguous pulses are used, TB becomes 

297.5. Hence there is a remarkable increase in pulse compression ratio and so the resolution, by 

the use of the new proposed scheme. In addition to it, more number of pulses can now be 

transmitted during the same signal time, enhancing the energy content of the signal. This 

increases the maximum range of detection of the radar signal. 
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5.1 Conclusion 

Pulse compression is a very necessary technique that has to be used in radar signal 

processing to assure a good range resolution along with a high range detection capability. 

Implementing various pulse compression techniques result into sidelobes, grating lobes and 

recurrent lobes at the matched filter output of the receiver. In this thesis, an effort has been made 

to improve the resolution and detection capacity of radar waveforms while keeping the peak 

sidelobe ratio PSR to the possible minimum. The first part of the work in this thesis produced 

optimum amplitude weighing windows that reduced the PSR of ACF due to a LFM pulse to the 

lower levels that was not possible to attain through classical windows.  

In the second part of the work, the limitation on the stepped frequency train of pulses to 

have a pulse repeatation time greater than the twice of the pulse duration time was succesfuly 

removed. This made it possible to transmit a signal of greater bandwidth in the same signal time, 

which increased the range resolution of the signal. It also implied an increase in the maximum 

range of detection because maximum number of  pulses can now be transmitted, carrying more 

energy than before. So contiguous pulses enhances both range resolution as well as maximum 

range of detection 
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5.2 Future work 

In my future work, I want to work on a special breed of frequency coded pulses known as 

Costas Pulses that I have already mentioned briefly in the article 1.4.3 of chapter one. Costas 

coded pulses follow a frequency hopping sequence, that result in sidelobe levels which is 1/N of 

the mainlobe peak for any delay and Doppler shift. Hence greater reduction in sidelobes can be 

obtained by increasing the order of the Costas code. But the generation of Costas codes after 

N=30 is hard to get, and based on rigorous computer search as they are very unevenly 

distributed. Hence my work will be to design the pulses using Costas Hoping sequences and 

finding Costas sequences of higher orders by developing and implementing efficient search 

algorithms specific for the purpose.  
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