
Optimization of Test Data for

Basis Path Testing using

Artificial Intelligence Techniques

Meghansh Sharma

Department of Computer Science and Engineering

National Institute of Technology Rourkela

Rourkela-769 008, Odisha, India

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ethesis@nitr

https://core.ac.uk/display/53189944?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Optimization of Test Data for

Basis Path Testing using

Artificial Intelligence Techniques

Thesis submitted in partial fulfillment of the requirements for the degree of

Master of Technology

in

Computer Science and Engineering
(Specialization: Software Engineering)

by

Meghansh Sharma
(Roll 211CS3300)

under the supervision of

Prof. S. K. Rath

Department of Computer Science and Engineering

National Institute of Technology Rourkela

Rourkela, Odisha, 769 008, India

June 2013

Dedicated to my parents...

Department of Computer Science and Engineering
National Institute of Technology Rourkela
Rourkela-769 008, Odisha, India.

Certificate

This is to certify that the work in the thesis entitled Optimization of Test

Data for Basis Path Testing using Artificial Intelligence Techniques

by Meghansh Sharma is a record of an original research work carried out by

him under my supervision and guidance in partial fulfillment of the requirements

for the award of the degree of Master of Technology with the specialization of

Software Engineering in the department of Computer Science and Engineering,

National Institute of Technology Rourkela. Neither this thesis nor any part of it

has been submitted for any degree or academic award elsewhere.

Place: NIT Rourkela (Prof. S. K. Rath)
Date: June 3, 2013 Professor, CSE Department

NIT Rourkela, Odisha

Acknowledgment

I am grateful to numerous local and global peers who have contributed towards

shaping this thesis. At the outset, I would like to express my sincere thanks

to Prof. S. K. Rath for his advice during my thesis work. As my supervisor,

he has constantly encouraged me to remain focused on achieving my goal. His

observations and comments helped me to establish the overall direction of the

research and to move forward with investigation in depth. He has helped me

greatly and been a source of knowledge.

I extend my thanks to our HOD, Prof. A. K. Turuk for his valuable advices and

encouragement.

I am really thankful to my all friends, especially my ‘puzzle’ group of best friends.

I would also like to thank all the Ph.D. scholars and separately to Ph.D. scholar

Yeresime Suresh for helping me and giving advise. My sincere thanks to everyone

who has provided me with kind words, a welcome ear, new ideas, useful criticism,

or their invaluable time, I am truly indebted.

I must acknowledge the academic resources that I have got from NIT Rourkela. I

would like to thank administrative and technical staff members of the Department

who have been kind enough to advise and help in their respective roles.

Last, but not the least, I would like to dedicate this thesis to my family, for their

love, patience, and understanding.

Meghansh Sharma

Roll: 211CS3300

Abstract

Software testing is a process carried out with the intent of finding errors. This

helps in analyzing the stability and quality of a software. Stability and quality can

be achieved by suitable test data. Test data can be generated either manually or by

automated process. Manual generation of test data is a difficult task. It involves

lot of effort due to presence of huge number of predicate nodes in a module. In this

report, an automated process is proposed for test data generation in traditional

methodology for the automatically constructed control flow graph.

Code Coverage is a measure used in software testing process and is one of the

key indicators of software quality. It helps the tester in evaluating the effective-

ness of testing. It is achieved by automatically generating test data for various

functions. Code coverage is not a method or a test; it is a measure which helps

in improving software reliability. Effort has been made to gather code coverage

information either by source code or by the requirements specified by the cus-

tomer. But less attention has been paid to achieve better coverage. This report

also emphasizes on code coverage, achieved through the test data generated, using

some soft computing techniques.

Here, three soft computing techniques such as Genetic algorithm, Particle

swarm optimization and the Clonal selection algorithm techniques have been de-

ployed for automatic test data generation. This test data was in turn used for

code coverage analysis. Experimental results show that the test data generated

using Clonal selection algorithm was much more effective in achieving better code

coverage over Genetic algorithm and Particle swarm optimization.

Keywords: affinity; antibody; antigen; basis path; clone; code coverage; con-

trol flow graph; cyclomatic complexity; fitness function; test data

Contents

Certificate ii

Acknowledgment iii

Abstract iv

List of Figures vii

List of Tables viii

1 Introduction 2

1.1 Introduction . 2

1.2 Test Data Generation and Optimization 3

1.2.1 Need for test data generation 4

1.2.2 Why to optimize . 4

1.3 Motivation . 5

1.4 Organization of thesis . 5

2 Basic Concepts 7

2.1 Testing . 7

2.1.1 Types of testing . 8

2.1.2 Test data generation . 9

2.1.3 Code coverage . 10

2.2 Basis Path Testing . 11

2.2.1 Control flow graph . 11

2.2.2 Cyclomatic complexity . 12

2.2.3 Steps for basis path testing 13

2.3 Artificial intelligence techniques . 13

2.3.1 Genetic Algorithm . 14

v

2.3.2 Particle Swarm Optimization 16

2.3.3 Clonal Selection Algorithm 18

3 Literature Review 21

4 Proposed Work 24

4.1 Generation of Control Flow Graph (CFG) 25

4.2 Test Data Generation and Optimization 29

4.2.1 Generating optimal test data using GA based on fitness

function . 29

4.2.2 Generating optimal test data using PSO based on fitness

function . 32

4.2.3 Generating optimal test data using CSA based on affinity

function . 33

4.3 Experimental Settings and Results 34

4.3.1 Test data comparison . 35

4.3.2 Code coverage analysis . 36

5 Conclusion and Future Work 39

Bibliography 40

Dissemination of Work 46

List of Figures

2.1 Basic Graphical Notations . 12

2.2 Working Principle of PSO . 18

4.1 Flow Chart for Proposed Work . 25

4.2 Snapshot of Parsed Adjacency List for Bubble Sort 26

4.3 CFG for Bubble Sort . 26

4.4 Sequence diagram for ATM withdrawal 27

4.5 CFG for ATM withdrawal . 28

4.6 CFG for a sample code block . 31

4.7 Basic flow of test data generation using GA 32

4.8 Basic flow of test data generation using PSO 33

4.9 Comparison of fitness values vs % of Test Data 36

4.10 Comparison of fitness values of unique test data generated using

GA, PSO and CSA . 37

vii

List of Tables

3.1 Test Data Generation using GA . 21

3.2 Test Data Generation using PSO 22

3.3 Test Data Generation using CSA 22

3.4 Literature Survey on Code Coverage 22

4.1 Alphabetical representation of nodes in CFG for Figure-4.5 29

4.2 Relation between F and Operator 30

4.3 Experimental Setup . 34

4.4 Class of test data having maximum fitness value in GA 35

4.5 Class of test data having maximum fitness value in PSO 35

4.6 Class of test data having maximum fitness value in CSA 36

4.7 Code coverage analysis . 36

viii

Introduction

Chapter 1

Introduction

1.1 Introduction

Software quality is the best indicator about product reliability and customer’s

satisfaction. A thorough testing ensures the quality of the software. The pro-

cess of testing consists of number of activities and hence consumes much of the

testing resources which account for almost 40 to 50 percent of the total software

development cost [1, 2].

Software testing is generally divided into white box testing and black box testing.

White box testing is also known as structural testing and basis path testing is

one among them in structural testing. The emphasis is on finding specific input

data. Today, researchers as well as practitioners use more common methods such

as notion to perform, random method and heuristic approaches for test data gen-

eration [3]. These methods have some pitfalls in generating test data for larger

and complicated programs. So other intelligence techniques have been very much

used.

The process of automatic generation of test data plays a major role in software

testing. Test data generation in program testing, is the process of identifying a

set of test data which satisfies given testing criterion [4]. A test data generator is

a tool which helps a tester in generation of test data for a given program. Most

of the existing test data generators have been classified into three types viz., path

wise test data generators [5, 6], data specification generators [7, 8] and random

test data generators [9]. However, practically these techniques require complex

2

1.2 Test Data Generation and Optimization

algebraic computations. Hence artificial intelligence (AI) based approaches need

to be used for reducing testing efforts.

A systematic process of development measures are taken to complete testing and

goodness to establish test completion criteria [10]. Exhaustive testing of a program

in general is not possible and code coverage is one such criterion (or a measure) to

achieve completeness in testing. Code coverage is used as a measuring parameter

to check software quality and the probability of defects. Coverage based testing

measures the percentage of the software that is exercised in the process of test-

ing. Code coverage analysis is a structural testing technique, where the tester

apparently checks the behavior of a program with respect to the source code.

This thesis also consists of a systematic review of the approaches used by various

researchers for achieving code coverage. This thesis emphasizes on the application

of three algorithms, chosen on their capability to obtain global optimal solution in

automatic generation of test data. Test data was generated and optimized using

Genetic Algorithm (GA), Particle Swarm Optimization (PSO) and Clonal Selec-

tion Algorithm (CSA) for code coverage to indicate their efficiency in achieving

better code coverage.

1.2 Test Data Generation and Optimization

Software testing is a very resource consuming task, and automating this process

is one of the best way to decrease the time and cost. Automation of the testing

process includes a number of steps, such as test data generation, test case execution

and analysis of test results. Software testing is defined as a process, or a series of

processes, designed to make sure the code does what it was designed to do and

that it does not do anything unintended [11].

The main goal of software testing is to prove that the product meets all the pre-

established requirements to ensure better functionality. There are two components

of this objective. The first component is to prove that the requirements specifica-

tion from which the software was designed is correct. The second component, is

to prove that the design and coding correctly respond to the requirements [12].

3

1.2 Test Data Generation and Optimization

1.2.1 Need for test data generation

Manual process of test data generation is a laborious work, which is expensive,

time consuming, prone to errors, and not exhaustive. Manual test data generation

is a difficult task due to the presence of huge number of predicate nodes in the

module. So, this would lead towards a problem of NP-hard [13]. In reality, only

human effort is not sufficient to generate a suitable amount of test data which

would test the software successfully. The approach that can minimize the human

effort is automation of test data generation process. But unfortunately, all the

available automated test data generation process are very rarely used because

of their inefficiency in achieving adequate coverage by the generated test data.

Therefore, some intelligence-based search algorithms need to be used to generate

test data.

Automatic generation of test data helps in reduction of:

i. Test case execution time.

ii. Cost of developing test cases.

iii. Manual effort in discovering errors.

1.2.2 Why to optimize

Testing a software thoroughly requires huge set of test data. Random generators

do generate huge amount of test data. But testing with this random data involves

lot of human effort, cost and time.

So a tester needs to employ a method where he can choose suitable test data.

To check the correct execution of a software, in order to satisfy the customer

requirements elicited, a tester needs to optimize the test data set by applying

optimization techniques such as GA, PSO and CSA.

These AI techniques help a tester to select suitable test data from huge data set

based on the fitness value of individual test data. When there is a huge data set,

these optimization techniques are the best indicators for a tester to select optimal

test data. Hence optimization of test data is one of the essential criteria in the

field of testing.

4

1.4 Organization of thesis

1.3 Motivation

The major motivation of the work includes:

� For a large project, large numbers of test cases are required. Generating

optimal test data reduces that testing set.

� Generating reduced set of optimal test data reduces the time and cost in-

volved in testing.

� Automating test data generation process minimizes the labour involved in

manual testing.

� Many researchers have generated new technologies and methodologies to

generate test data, but they never suggest which technology is better. The

work focuses on comparing three artificial intelligence techniques, to deter-

mine which technique better suites for the case study taken.

1.4 Organization of thesis

The rest of the thesis is organized as follows: Chapter-2 discusses about the

basic concepts which are used in this thesis. Chapter-3 describes the literature

survey done for the three Artificial Intelligence Techniques and for the code cov-

erage. In Chapter-4, proposed work has been discussed and the techniques have

been compared on the basis of test data comparison and code coverage. Finally,

Chapter-5 concludes with the summary of work done and future work.

5

Basic Concepts

Chapter 2

Basic Concepts

The area of test data generation and optimization has been initiated almost two

decades ago and still a lot of research work is going on in this field as it’s a very

challenging area. Manual testing is a very laborious work hence automating the

generation process is needed.

This chapter provides the meaning and definitions of different terms, approaches

and basic concepts used in the subsequent chapters. Section 2.1 contains some

of the common terms related to software testing which are needed to understand

the concept of software testing. It also discusses the two types of software testing.

Section 2.2 discusses about control flow graph (CFG) and the terms used in it.

And the last section 2.3 describes the definitions and the general terms used in

artificial intelligence (AI) techniques. It also describes about the three different

AI techniques used, viz. Genetic algorithm (GA), Particle swarm optimization

(PSO) and Clonal selection Algorithm (CSA).

2.1 Testing

According to different practitioners and researchers, software testing has been

defined as given below:

Testing is the process of executing a program with the intent of finding errors.

[11]

A successful test is one that uncovers an as-yet-undiscovered error. [11]

Testing can show the presence of bugs but never their absence. [14]

7

2.1 Testing

Software testing is an empirical investigation conducted to provide stakeholders

with information about the quality of the product or service under test, with respect

to the context in which it is intended to operate. [15]

From the above definitions, this can be concluded that the software testing is done

to enhance the quality of the software under test. The software must perform as

per the requirements; in addition to that, it should be free from bugs. Thus

software testing can be defined as,

Software testing is a process that detects important bugs with the objective of

having better quality. [16]

2.1.1 Types of testing

Testing mainly consists of static testing and dynamic testing. Static testing largely

maps to verification and dynamic testing to validation. Static testing is performed

without executing the code, and dynamic testing is performed with the execution

of code. Dynamic testing is further divided into two categories, namely, black box

or functional testing and white box or structural testing.

Black box testing

Black box testing is one of the major techniques in dynamic testing. This technique

considers only the functional requirements of the software or module, therefore,

it’s also known as functional testing. In this testing, the structure or logic is not

considered. Input test data is given to the system, and results are checked against

the expected outputs after executing the software.

White box testing

On the other hand, white box testing is another effective technique in dynamic

testing. In this technique, the whole structure, design and code is tested. There-

fore, it is also known as structural testing. Structure here means the logic of the

program; hence the intention is to find the bug in the logic ensuring the internal

parts are adequately tested.

8

2.1 Testing

Logic coverage criteria: The main goal of structural testing is to

cover the whole logic. So here are some of the basic forms of logic

coverage.

Statement Coverage: The assumption taken is that if all the state-

ments of a software module are executed once, then every bug or error

will be noticed. However, it’s not a good criterion as it can execute

each statement but can’t check both outcome of a condition of the exe-

cuted statement. Thus, it’s a necessary but not the sufficient criterion

for logic coverage.

Decision or Branch Coverage: It assumes that each decision must

be executed for all possible outcomes i.e., True or False at least once.

In other words, each decision or branch direction must be traversed at

least once.

Condition Coverage: It states that each condition in a decision

should takes on all possible outcomes at least once. But it doesn’t mean

that a decision has been covered as there might be a decision where

two conditions are separated with an AND operator. If both conditions

take opposite values from true or false then the overall outcome will

always be false. The true portion is not covered of the decision in spite

of covering both true and false outcomes for both conditions of that

decision. [11]

2.1.2 Test data generation

A test data is a set of test cases and test data generation is one of the major

phases of software testing process. Test data are used in both black-box as well

as white-box testing. In black-box testing, test data are supplied to the black box

and get expected output. On the other hand, test data are also needed in white

box testing to cover all paths.

9

2.1 Testing

2.1.3 Code coverage

Code coverage dates back to 1963, when Miller and Maloney first explained that if

a section of a program is not executed by at least one test, the development team

has no way of knowing whether that section of code executes correctly or not.

Miller and Maloney describe code coverage indirectly by indicating that, “there

should be no possibility that an unusual combination of input data or conditions

may bring to light an unexpected mistake in the program” [17].

Coverage-based testing gives the measures to what extent the software is exercised

in the process of testing. Coverage can be applied during any stage of testing,

whether it is unit testing, integration testing or system testing. Test coverage

can be based on functional specification (black-box testing) or on internal pro-

gram structure (white-box testing). Structure-based coverage is more commonly

used [1]. Such testing can measure coverage at various granularities, including

statements, lines, blocks, conditions, methods and classes. It provides a way to

quantify the degree of thoroughness of White-box testing. It describes the degree

to which the source code of a program has been tested. Code coverage was among

the first methods invented for systematic software testing. The first published

reference was by Miller and Maloney in Communications of the ACM in 1963 [17].

While exhaustive testing is not possible to attain the best possible code coverage,

code coverage of 60% to 70% is often considered as an acceptable level. Difficulty

in increasing the coverage past 70% is due to presence of huge number of predicate

nodes in a basis path of a module. Hence, providing a higher percentage of code

coverage is the only effective way to measure the quality of software.

Code coverage analysis consists of [18]:

i. Finding areas of a program that were not exercised by a set of test case,

ii. Generating additional test case to increase the code coverage efficiency, and

iii. Determining a quantitative measure of code coverage, which is an indirect

measure of quality.

Code coverage has the following merits:-

10

2.2 Basis Path Testing

i. First, reliability increases with increase in test coverage percentage [19].

ii. Second, it provides quantification of coverage related progress [20].

iii. Third, based on observational results, increase in the percentage of code cov-

erage is one of the motivating factors for improving tests.

Code coverage acts as a report in an on-going testing process. As code coverage

is one of the quantitative measures, goals for coverage can be determined, and

its application in different phases of testing can also be determined. It also has

some pitfalls, such as, firstly there is no underlying theory that predicts how the

quality factor improves with coverage and secondly, also there is no parameter to

correlate the coverage level and testing effort required.

2.2 Basis Path Testing

It is one of the oldest structural testing techniques [16]. This technique is based

on the control structure of the program. On the basis of that control structure, a

flow graph is developed and it is assumed that all possible paths can be covered

at least once during testing. Here, modified version of path coverage criterion is

used which is the most general criterion when compared to other logic coverage

criteria. The problem with the path coverage is that program that contains loops

can have an infinite number of possible paths and it’s impractical to test all those

paths.

Basis path testing is the testing technique of selecting the paths providing a basis

set of execution paths through the program.

2.2.1 Control flow graph

The control flow graph (CFG) is a graphical representation of the control structure

of a program. These can be prepared as a directed graph. It consists of a set of

vertices V and a set of edges E that are ordered pairs of elements of V.

11

2.2 Basis Path Testing

Following notations are used for a control flow graph:

Node: It represents one or more procedural statements. The nodes are denoted

by circles and are either numbered or labeled.

Edges or links: An edge is represented by an arrow, and it must terminate at a

node. It represents the flow of control in a program.

Decision node: A node with more than one arrow leaving from it is called a

decision node.

Junction node: A node with more than one arrow entering into it is called a

junction node.

Region: The area bounded by some edges and nodes is called region.

As a control flow graph is drawn on the basis of the control structure of a pro-

gram, Figure-2.1 shows some of the fundamental graphical notations for basic

programming constructs.

Figure 2.1: Basic Graphical Notations

2.2.2 Cyclomatic complexity

McCabe [21] introduced the concept of measuring the logical complexity of a

program by considering its control flow graph . The cyclomatic complexity [22]

also known as structural complexity calculates the number of independent paths

through a program. It provides the upper bound of the number of test cases that

12

2.3 Artificial intelligence techniques

must be designed, in order to ensure that all statements have been executed at

least once and all conditions have been tested. McCabe’s cyclomatic metric is very

useful in finding the total number of independent paths present in any program.

Cyclomatic complexity can be calculated as shown below:

V (G) = e− n+ 2p (2.1)

where,

V(G) is the cyclomatic complexity,

p is the number of graphs,

e is the number of edges in the whole graph, and

n is the number of nodes in the whole graph.

2.2.3 Steps for basis path testing

Following are the steps that should be followed for designing test cases using basis

path testing:

� Draw the CFG using the code for which test cases have to be generated.

� Determine the cyclomatic complexity of the graph.

� Cyclomatic complexity provides the number of independent paths. Find a

basis set of independent paths through the program control structure.

� The basis set is the base for generating the test cases. Based on every

independent path, choose the data such that this path is executed.

2.3 Artificial intelligence techniques

Artificial Intelligence (AI) or Soft computing techniques are the science, and engi-

neering of making intelligent machines, especially intelligent computer programs.

These techniques have the ability of computer, software and firmware to do those

things that we, as humans, recognize as intelligent behavior [23]. A brief de-

scription of the three AI techniques deployed for generating optimal test data is

presented in the following sub-sections.

13

2.3 Artificial intelligence techniques

2.3.1 Genetic Algorithm

Genetic algorithms are acknowledged as good solvers for tough problems. GA is

a family of computational models inspired by evolution. Genetic algorithms are a

population-based search method and was introduced by Holland [24]. Candidate

solutions are represented as chromosomes, with the solution represented as genes in

the chromosomes. A search space has been formed using possible chromosomes.

These are associated with a fitness function representing the value of solutions

encoded in the chromosome. The search proceeds by evaluating the fitness of each

of a population of chromosomes, and afterwards performing point mutations and

recombination of the successful chromosomes. GA can defeat random search in

finding solutions to complex problems. GA has been successfully used to automate

the generation of test data. The execution of GA begins with a set of random initial

population sampled for a particular problem domain. The process of selection,

crossover and mutation are applied on the initial population to get a new and

fitter generation.

Outline of the basic Genetic Algorithm:

1. [Start] Generate random population of n chromosomes (suitable solutions

for the problem).

2. [Fitness] Evaluate the fitness f(x) of each chromosome x in the population.

3. [New population] Create a new population by repeating following steps

until the new population is complete:

A. [Selection] Select two parent chromosomes from a population accord-

ing to their fitness (the better fitness, the bigger chance to be selected).

B. [Crossover] With a crossover probability cross over the parents to form

a new offspring (children). If no crossover was performed, offspring is

an exact copy of parents.

C. [Mutation] With a mutation probability mutate new offspring at each

locus (position in chromosome).

14

2.3 Artificial intelligence techniques

D. [Accepting] Place new offspring in a new population.

4. [Replace] Use new generated population for a further run of algorithm.

5. [Test] If the end condition is satisfied, stop, and return the best solution in

current population.

6. [Loop] Go to step 2.

The three basic steps for Genetic Algorithm, as shown above, are:

1. Selection: In selection (also known as reproduction), chromosomes are se-

lected from the population to be parents to cross over and produce offspring.

The various methods of selecting chromosomes for parents to cross over are:

a) Roulette-wheel selection

b) Boltzmann selection

c) Tournament selection

d) Rank selection

e) Steady-state selection

2. Cross over: After the selection phase, the off-springs are enriched with

better individuals. Cross over process is applied to the mating pool, with

a hope that it would create a better string. It also has three steps, firstly,

the reproduction stage selects randomly a pair of two individual strings for

mating. Secondly, a cross-site is selected at random along the string length

and at last their position values are swapped between those two strings.

Different cross over types are:

a) Single-site cross over

b) Two-point cross over

c) Multi-point cross over

d) Uniform cross over

15

2.3 Artificial intelligence techniques

e) Matrix cross over

3. Mutation: After the cross over process, the strings are mutated. It involves

flipping of bits, changing 0 to 1 and vice versa with a small mutation prob-

ability Pm. A number between 0 to 1 is chosen randomly and if the number

is less than Pm then the bit is changed, otherwise it is kept unchanged.

2.3.2 Particle Swarm Optimization

In comparison with GA search, the PSO is a relatively recent optimization tech-

nique of the swarm intelligence paradigm. It was introduced in 1995 by Kennedy

et al [25]. Inspired by social metaphors of behavior and swarm theory, simple

methods were developed for efficiently optimizing non-linear mathematical func-

tions. Similar to GA search, the system is initialized with a population of random

solutions, called particles. Each particle maintains its own current position, its

present velocity and its personal best position explored so far. The swarm is also

aware of the global best position achieved by all its members.

The iterative appliance of updated rules leads to a stochastic manipulation of ve-

locities. During the process of optimization the particles explore the d-dimensional

space, whereas their trajectories depend both on their personal experiences, on

those of their neighbors, and the whole swarm respectively. This leads to further

explorations of regions that turned out to be profitable. The best previous po-

sition of particle i is denoted by pbesti , the best previous position of the entire

population is called gbest.

The termination criterion can be a specific fitness value, the achievement of a

maximum number of iterations or the general convergence of the swarm itself.

Since its first presentation, many improvements and extensions have been worked

out to improve the algorithm in various ways and have provided promising results

for the optimization of well-known test functions. A novel and auspicious approach

is the Comprehensive Learning Particle Swarm Optimizer [26]. It applies a new

learning strategy, where each particle learns from different neighbors for each

dimension separately dependent on its assigned learning rate Pci. This happens

16

2.3 Artificial intelligence techniques

until the particle does not achieve any further improvement in a specific number of

iterations called the refreshing gap ‘m’; finally yielding a re-assignment of particles.

The mentioned learning-rate Pci of particle ‘i’ is a probability lying between 0.05

and 0.5, determining whether particle ‘i’ learns from its own or another particle’s

pbest for the current dimension. This probability is assigned to each particle during

initialization and remains unchanged for assuring the particle’s diverse levels of

exploration and exploitation abilities [25]. If the considered dimension is to be

learned from another particle’s pbest, this particle will be appointed in a tournament

selection manner: two particles are randomly chosen and the better one is selected

among the two. This is done for each dimension d and the resulting list of particles

fi(d) is used in the following velocity update rule for time stamp ‘t’. In each time-

stamp, a particle has to move to a new position. It does this by adjusting its

velocity through this equation:

V k+1
i = w ∗ V k

i + c1 ∗ rand1() ∗ (pbesti − ski) + c2 ∗ rand2() ∗ (gbest − ski) (2.2)

and the position is updated through the equation:

sk+1
i = ski + V k+1

i (2.3)

where,

V k
i : velocity of agent ‘i’ at iteration k,

w: weighting function,

cj : weighting factor,

randj: uniformly distributed random number between 0 and 1,

ski : current position of agent ‘i’ at iteration k,

pbesti : personal best of agent ‘i’,

gbest: global best of the group.

The fitness of a particle often depends on all D parameters. Hence a particle

close to the optimum in some dimensions can probably be evaluated with a poor

fitness when processed by the original PSO version due to the poor solutions of the

remaining dimensions. This is counteracted by the learning strategy presented in,

which consequently enables higher quality solutions to be located. It was shown

17

2.3 Artificial intelligence techniques

that Comprehensive Learning Particle Swarm Optimization [26] in comparison

to some other PSO variants yields significantly better solutions for multi-modal

problems [25]. Figure-2.2 shows the working principle of PSO.

Figure 2.2: Working Principle of PSO

2.3.3 Clonal Selection Algorithm

The Clonal Selection Algorithm (CSA) [27] is an optimization algorithm based

on biological immune system, in which the antigen corresponds to the problem

under solved and the antibody corresponds to a solution to the problem. Clonal

algorithm (CLONALG) is one of the many branches of artificial immune system

algorithms with unique inherent properties that make it very efficient optimiza-

tion technique [28]. In basis path testing, the aim of the tester is to find suitable

test data that will satisfy the given target path. To achieve this, the random test

data (input values) has been encoded as antibodies and the antigens as the ones

satisfying the test data requirements. The CSA begins with a randomly generated

initial population (similar to that of GA). The test data are evaluated based on

affinity function (referred to as fitness function in GA). This affinity function is a

description of how best the individual test data perform in code coverage. The an-

tibody clone each population to produce their own clones based on affinity value.

In CSA the process of crossover is overcome by performing hyper-mutation opera-

tion. This step helps in achieving diversified test data. The process of cloning and

hyper-mutation continue till the stopping criterion is encountered. Each antibody

clones a clonal population according to the affinity where better members clone

18

2.3 Artificial intelligence techniques

more antibodies. Diversification of the antibodies is achieved through mutation

and selection process.

The process of cloning, hyper-mutation and selection continues until the termina-

tion condition is encountered. After that, the test data that satisfies the require-

ment would come out or the target path is determined to be an unreachable path.

Here the input parameters are referred as antibodies and the test data satisfying

the requirement as antigen.

19

Literature Survey

Chapter 3

Literature Review

This chapter discusses about the related work done in this field.

In this thesis, three soft computing based approaches have been used viz., GA,

PSO and CSA for automated generation of test data and in turn this test data is

used for code coverage analysis. The following tables give the details about the

various techniques used by different authors for generation of test data using GA,

PSO and CSA. Table 3.1 shows the literature review of various techniques used

by different researchers for test data generation using GA.

Table 3.1: Test Data Generation using GA

Author Criteria for Testing
L. Clarke [5] Path coverage: executed selected target paths, and

then generated test data such that the identified
constraints are satisfied.

Bogdan Korel [4] Dynamic path testing: generated test data by ex-
ecuting the program with different possible test
data values.

Srivastava P. R [29] Focused on path coverage, and generated test cases
using GA.

Lin J.C, Yeh P.L
[30]

Path testing: automated test data generation us-
ing GA.

Ahmed M.A, Her-
madi [32]

Path coverage criteria to generate test data using
genetic algorithm.

Similarly, Table 3.2 and Table 3.3 show the various issues addressed in generating

test data by using PSO and CSA respectively.

21

Table 3.2: Test Data Generation using PSO

Author Criteria for Testing
Chengying Mao et al. [33] Test data generation for structural program

using swarm intelligence.
Huanhuan Cui et al. [34] Efficient automated test data generation

method.
Sheng Zhang et al. [35]. Hybrid approach using GA and PSO for au-

tomatic test data generation.
Rui Ding et al. [36] Automatic test data generation based on hy-

brid particle swarm genetic algorithm.

Table 3.3: Test Data Generation using CSA

Author Criteria for Testing
Xiaofeng Xu et al. [37] Clonal selection algorithm for test data gen-

eration based on basis paths.
Ankur Pachauri et al.
[38]

Test data generation based on branch dis-
tance using clonal selection algorithm.

Table 3.4 gives the literature survey tabulation on code coverage.

Table 3.4: Literature Survey on Code Coverage

Author Issues Addressed

Williams [39] Code Coverage as a stopping criterion
for unit testing.

Qian Yang [1] Coverage-based testing tools.
Prasanna [40] Test case generation techniques

to satisfy test coverage criteria.
Audris Mockus [41] Test effectiveness.
Y. Wei [42] Coverage as Testing effectiveness.
Anna Derezinska [43] Test suits improvement.
Jun-Ru [44] MC/DC Coverage Criterion.
Stefan Berner [45] Impact on Testing.
Lloyd Malloy [46] Test coverage adequacy.
Joseph Lawarance [47] Code coverage visualization.

22

Proposed Work

Chapter 4

Proposed Work

This chapter discusses about the proposed work and the implementation done.

It describes the details of the approaches followed for generating optimal test

data and the results depicting the comparison of the three techniques used. This

chapter is divided into four section’s viz.; Section-4.1 gives a brief explanation

about how the Control flow graph is generated. Section-4.2 describes about how

the three Artificial Intelligence techniques have been used in generating optimal

test data. And the last Section-4.3 shows the comparison of the three techniques

on the basis of test data comparison and code coverage.

The following are the steps involved in generating test data using AI Techniques:

1. Using the program’s instrumented code, the CFG is constructed automati-

cally by parsing the source code in JAVA using applet and jgraphx library.

2. Determine the Cyclomatic complexity of the flow graph.

3. Determine the basis set of independent paths.

4. Prepare test data that will force the execution of each path in the basis set.

24

4.1 Generation of Control Flow Graph (CFG)

Figure-4.1 depicts the flow chart for the proposed work.

Figure 4.1: Flow Chart for Proposed Work

4.1 Generation of Control Flow Graph (CFG)

The control flow graph was constructed using source code. Source code is taken as

input and the instrumented code is generated in which all the blank lines, white-

spaces are omitted. After that, instrumented code is parsed and stored, line by

line in adjacency list. Stored data are parsed and then represented as an adjacency

graph with that line number. Now from the adjacency graph, CFG is generated

using applet and jgraphx (built-in library) in JAVA.

Example 1: A small example of bubble sort has been taken and the CFG is

generated. The bubble sort program has been parsed and the parsed adjacency

list is shown in Figure-4.2.

25

4.1 Generation of Control Flow Graph (CFG)

Figure 4.2: Snapshot of Parsed Adjacency List for Bubble Sort

Parsed adjacency list is converted to adjacency matrix from which the CFG is

generated which is shown in Figure-4.3.

Figure 4.3: CFG for Bubble Sort

26

4.1 Generation of Control Flow Graph (CFG)

Case Study: A case study has been taken, describing a customer’s activity of

withdrawing money from ATM [48]. The scenario considered here for design of

fitness function is that the customer tries to withdraw certain amount from the

ATM machine (this withdrawal amount is the initial test data generated randomly,

with an assumption that customer entering the withdrawal amount is random).

The Figure- 4.4 shows the sequence of operations performed in ATM withdrawal

task by the customer, drawn using IBM Rational Rose.

Figure 4.4: Sequence diagram for ATM withdrawal

27

4.1 Generation of Control Flow Graph (CFG)

The ATM system sends the amount and the account number to the bank system.

The bank system retrieves the current balance of the corresponding account and

compares it with the entered amount. If the balance amount is found to be greater

than the entered withdrawal amount then the amount can be withdrawn and the

bank system returns true, after which the customer can withdraw the money,

otherwise it checks for credit limit if the entered amount is less than the total

amount (current balance) then return false. Depending on the return value, the

ATM machine dispenses the cash and prints the receipt or displays the failure

message.

The following segment shows the source code for ATM withdrawal scenario:

1. net amt = 25000, min bal = 1000;

2. bal(1, i) = net amt− wd amt(1, i);

3. if wd amt(1, i) < net amt

4. if bal(1, i) < min bal

5. fail bal(1, k) = bal(1, i);

else

6. suc bal(1, p) = bal(1, i);

7. test data(1, p) = wd amt(1, i);

Taking the source code for ATM withdrawal scenario as an input, the CFG is gen-

erated as shown in Figure-4.5 and Table-4.1 shows the alphabetical representation

of nodes for Figure-4.5.

Figure 4.5: CFG for ATM withdrawal

28

4.2 Test Data Generation and Optimization

Table 4.1: Alphabetical representation of nodes in CFG for Figure-4.5

Nodes Alphabetical
Notation

wd amt A
net amt X
bal B

min bal C
fail bal D
suc bal E
test data F

4.2 Test Data Generation and Optimization

This section gives the details of the approaches followed for generating optimal test

data. This section is subdivided into three subsection’s viz., the first sub-section

describes about the application of the fitness function for GA, second sub-section

highlights the use of fitness function in PSO, and the last sub-section gives the

details about test data generation using CSA.

4.2.1 Generating optimal test data using GA based on fit-
ness function

The principle of GA has been applied to generate test data automatically. The

developed system generates optimal test data automatically on the basis of ba-

sis paths in the CFG. The first generation is generated randomly and then by

performing the basic GA steps, fitness of individuals gets improved.

Fitness function derivability based on Korel’s Distance Func-

tion

A fitness function for test data generation for an ATM withdrawal

task is developed based on Bogdan Korel’s distance function [4]. A

path P is considered in the program execution. The goal of the test

data generation problem is to find a program input x on which P

will be traversed. Without loss of generality, Korel assumed that the

branch predicates are simple relational expressions (inequalities and

equalities). That is, all branch predicates are of the form: E1 op E2,

29

4.2 Test Data Generation and Optimization

where E1 and E2 are the arithmetic expressions and op is one of {<, ≤,

>, ≥, =, 6=}. In addition, he assumed that predicates do not contain

AND or OR or any other boolean operators. Each branch predicates

E1 op E2 can be transformed to the equivalent predicate of the form:

F rel O (Operator), where F and rel are given in Table-4.2.

Table 4.2: Relation between F and Operator

Branch Predicate Branch Function F rel
E1 > E2 E2 − E1 <
E1 ≥ E2 E2 − E1 ≤
E1 < E2 E1 − E2 <
E1 ≤ E2 E1 − E2 ≤
E1 = E2 abs(E1 − E2) =
E1 6= E2 abs(E1 − E2) ≤

F is a real valued function, referred to as branch function, which is:

i. Positive (or zero if rel is <) when a branch predicate is false or

ii. Negative (or zero if rel is = or ≤) when the branch predicate is

true [4].

It is obvious that F is actually a function program input. But this

process requires a very large and complex algebraic manipulation. For

this reason an alternative approach was used in which the branch func-

tion was evaluated. Basis path testing includes both statement testing

and branch testing. For example, to test “if a > b then”, it has a

branch function F, whose value can be computed for a given input by

executing the program and evaluating ‘a − b’ expression.

This concept was used in the approach to test the Automatic Teller

Machine (ATM) withdrawal task. Test data was generated for a single

feasible path in CFG with respect to ATM withdrawal task [48].

The fitness function for the ATM withdrawal scenario was based on

the traversal of predicate nodes. For instance, in Figure-4.6 when

node-1 is visited, the condition of the predicate node may be either

30

Figure 4.6: CFG for a sample code block

A > B or B > A or even A = B. So taking equality condition into

consideration, A = B ⇒ A−B = 0; as GA for test data generation is

minimization problem, the fitness function ‘f’ is given as 1/(A − B).

But this functional value will evaluate to infinity when A−B = 0, so

to avoid this condition a small delta value (δ = 0.05) is added to the

fitness function. Hence the fitness function in general is given as:

f = 1/((abs(A−B) + 0.05)2).

The set of test data generated randomly is the initial population input

for an AI technique to start.

The fitness values are calculated for each individual chromosome (test data) and

on the basis of these values it performs crossover and mutation. This process

continues until all individuals reach to the maximum fitness. The system performs

all operations from initial population to last generation automatically; it does

not require the user interference. Algorithm-1 shows the approach followed to

Algorithm 1 - Test Data Generation using GA

Input : Randomly generated numbers based on the target path to be covered.
Output : Test data for the target path.
Begin
Gen = 0.
while Gen < 500 do // <—Step 3

Evaluate the fitness value of each chromosome based on the objective function.
Fitness function : f = 1/((abs(suc bal(i) −min bal) + 0.05)2)
Use Elitism as selection operator, to select the individuals to enter into the mating pool.
Perform two-point cross over on the individuals in the mating pool, to generate the new population.
Perform bitwise Mutation on chromosomes of the new population.
Gen = Gen + 1;
go to Step 3.

end while
Select the chromosome having the best fitness value as the desired result (test data for target path).

4.2 Test Data Generation and Optimization

generate test data for the basis path derived from CFG using GA. Figure-4.7 shows

the basic flow of test data generation using GA.

START

Generate CFG

Random Test Data

Gen<500

GA Execution

Effective Test Data

STOP

YesNo

Figure 4.7: Basic flow of test data generation using GA

Test data was derived based on the set of basis paths, depends on the programs

structure with an aim to traverse every executable statement in the program. The

fitness function used was on the basis of branch distance [4]. The input variables

were represented in binary form. The main objective of using GA lies in the ability

to handle input data which may be complex in nature. Thus, the problem of test

data generation is treated entirely as an optimization problem. The benefit of

using GA is that through the search and optimization process, test data sets are

improved in a manner that they are at or close to the input domain.

4.2.2 Generating optimal test data using PSO based on
fitness function

The particle swarm optimization technique has been applied to generate test data

automatically. The same approach which was used in GA is used here to generate

32

4.2 Test Data Generation and Optimization

test data based on basis paths in the control flow graph, wherein each particle in

swarm updates its pbest and gbest values. The first generation is generated randomly

and then by performing the basic PSO steps the suitable test data is generated.

Each particle in the swarm has its personal best fitness value, which gets updated

with its neighbor in further iterations which is referred to as global best.

After each and every iteration, the particle updates its velocity and position; and

this process continues until the stopping criterion is met. The system performs

all operations from initial population to last generation automatically; it does not

require the user interference. Figure-4.8 shows the basic block diagram of PSO

execution.

START

Initialize Candidate Solution

Evaluate Fitness

Update Personal/GLobal Fitness

Stopping
Criteria
Met?

Resolve Global
best solution

Update Velocity

Update Position

STOP

Yes

No

Figure 4.8: Basic flow of test data generation using PSO

4.2.3 Generating optimal test data using CSA based on
affinity function

The CSA algorithm was modified according to our objective which was given by

Castro and Zuben [27]. The experimental settings used are given in the results

33

section. The affinity function was based Korel’s branch distance function [4]. The

test data was generated by using CSA for a target basis path. Algorithm-2 shows

approach to generate test data for the basis path (derived from CFG) using CSA.

Algorithm 2 - Test Data Generation using CSA

Begin
Initialize the number of generation(Gen) = 0;
Initialize the initial population randomly Ao

Evaluate Affinity Function: F = 1/(abs((net−bal − (wd−amt−min−bal)) + 0.05)) // <—Step 3
if Gen > 500 then

Print results (test data);
Exit

else
Clone: initial population(An) to An’;
Hyper-mutate An’to An”;
Evaluate and Select An”;
Destroy and renew (based on Nr = N/2, Ns = Nr/10)

to Construct a new population An;
Gen++;

end if
goto Step 3.

4.3 Experimental Settings and Results

In this section, the experimental settings and results obtained in generating op-

timal test data are shown. The test data were generated for a target path of

Figure-4.5 as explained in Section-4.2. Table-4.3 gives the details of the experi-

Table 4.3: Experimental Setup

Genetic Algorithm Particle Swarm Optimiza-
tion

Clonal Selection Algo-
rithm

Fitness Function =
1/((abs(suc−bal(i)
−min−bal) + 0.05)2)

Fitness Function =
1/(abs((net−bal − wd−amt) ∗
100−min−bal + 0.05)2)

Affinity Function =
1/(abs((net−bal − (wd−amt
−min−bal)) + 0.05))

Coding: Binary string,
Chromosome length:15 bits

c1 = c2 = 2.0,
w = 0.5

Coding: Binary string,
Antigen length: 8 bits

Population size (N): 100 Population size (N): 100 Population size (N): 100

Selection method: Elitism,
Two-point cross over(pc):
0.5,
Mutation probability(pm):
0.05

V k+1
i = w ∗ V k

i + c1 ∗ rand1() ∗
(pbesti − ski) + c2 ∗ rand2()∗
(gbest − ski) ...(1)

sk+1
i = ski + V k+1

i ...(2)

Selection method: Elitism,
Hyper Mutation (pm): 0.15,
Nr = N/2;Ns = Nr/10;
Ns-Worst antibodies;
Nr-Renewed antibodies.

Stopping criteria: # of gen-
erations = 500

Stopping criteria: # of genera-
tions = 500

Stopping criteria: # of gen-
erations = 500

4.3 Experimental Settings and Results

mental settings used in the generation of test data using GA, PSO and CSA.

Following sub-sections gives us the details of the range of fitness values of test

data and the achieved coverage values.

4.3.1 Test data comparison

Automated test data generation was performed for a withdrawal task of an Auto-

matic Teller Machine (ATM) by a customer. The implementation of code coverage

and test data generation for a target path using the three soft computing tech-

niques viz., GA, PSO and CSA were carried out in MATLAB.

Tables-4.4, 4.5, and 4.6 give us the tabulation of range of fitness/affinity values

obtained by applying the experimental settings shown in Table-4.3 for GA, PSO

and CSA respectively. These tables give us a clear indication that chromosomes

having higher fitness (affinity) value, lie in the range between 0.7 to 1.0. These

fitness values are an indication of optimal test data obtained.

Figure-4.9 gives the graphical representation of the fitness values shown in Table-

4.4, 4.5, and 4.6. It shows that CSA is giving better test data when compared to

GA and PSO.

Table 4.4: Class of test data having maximum fitness value in GA

Fitness Value Range % of Test Data

0 ≤ f(x) < 0.3 60.82

0.3 ≤ f(x) < 0.7 1.03

0.7 ≤ f(x) < 1.0 38.14

Table 4.5: Class of test data having maximum fitness value in PSO

Fitness Value Range % of Test Data

0 ≤ f(x) < 0.3 50

0.3 ≤ f(x) < 0.7 6.67

0.7 ≤ f(x) < 1.0 43.33

35

4.3 Experimental Settings and Results

Table 4.6: Class of test data having maximum fitness value in CSA

Fitness Value Range % of Test Data

0 ≤ f(x) < 0.3 13

0.3 ≤ f(x) < 0.7 17

0.7 ≤ f(x) < 1.0 70

Figure 4.9: Comparison of fitness values vs % of Test Data

4.3.2 Code coverage analysis

Table-4.7 gives the analysis result of the obtained code coverage, by covering the

nodes traversed in the CFG. The test data of the respective fitness function values

(of GA, PSO and CSA) were used separately to achieve code coverage.

Table 4.7: Code coverage analysis

AI Technique # of Nodes Covered Out of 7 Code Coverage (%)

Genetic Algorithm 4 57.14

Particle Swarm Optimization 4 57.14

Clonal Selection Algorithm 6 85.71

36

4.3 Experimental Settings and Results

Results shown in Table-4.7 indicates that the CSA obtained better coverage of

nodes in the basis path when compared to GA and PSO. Figure-4.10 gives the

comparison of fitness values of unique test data for GA, PSO and CSA.

Figure 4.10: Comparison of fitness values of unique test data generated using GA,
PSO and CSA

37

Conclusion

and

Future Work

Chapter 5

Conclusion and Future Work

Software testing is one of the critical phases in software development process.

Testing is helpful in delivering a quality software product to the customer. This

objective can be achieved through thorough testing and choosing suitable test data

for testing.

In this thesis, an attempt has been made to generate test data automatically for

traditional methodology based on the automated generated control flow graph

using three Artificial Intelligence Techniques. To generate suitable data, meth-

ods were traversed to cover each node. Test data values were selected based on

fitness/affinity values of antibodies which satisfy the predicate node.

Since manual generation of test data consumes much of the computational time,

the process of test data generation has been automated. Based on the predicate

node condition, test data was generated and these algorithms were applied. CSA

was able to generate more suitable test data when compared to Genetic algorithm

and Particle swarm optimization on the basis of test data comparison and code

coverage.

Future perspective of this work is to achieve better code coverage using hybrid

approaches of AI techniques. Another prospective would be to generate optimal

test data for large and complex programs.

39

Bibliography

[1] Q. Yang, J. J. Li, and D. M. Weiss, “A survey of coverage-based testing

tools,” The Computer Journal, vol. 52, no. 5, pp. 589–597, 2009.

[2] F. P. Brooks, The mythical man month: Essays on software engineering.

Addison-Wesley Professional, 1995.

[3] W. Xibo and S. Na, “Automatic test data generation for path testing using

genetic algorithms,” in Measuring Technology and Mechatronics Automation

(ICMTMA), 2011 Third International Conference on, vol. 1, pp. 596–599,

IEEE, 2011.

[4] B. Korel, “Automated software test data generation,” Software Engineering,

IEEE Transactions on, vol. 16, no. 8, pp. 870–879, 1990.

[5] L. A. Clarke, “A system to generate test data and symbolically execute pro-

grams,” Software Engineering, IEEE Transactions on, no. 3, pp. 215–222,

1976.

[6] C. V. Ramamoorthy, S.-B. Ho, and W. Chen, “On the automated generation

of program test data,” Software Engineering, IEEE Transactions on, no. 4,

pp. 293–300, 1976.

[7] N. R. Lyons, “An automatic data generating system for data base simulation

and testing,” ACM SIGSIM Simulation Digest, vol. 8, no. 4, pp. 8–11, 1977.

[8] E. Miller Jr and R. Melton, “Automated generation of testcase datasets,” in

ACM SIGPLAN Notices, vol. 10, pp. 51–58, ACM, 1975.

40

Bibliography

[9] D. L. Bird and C. U. Munoz, “Automatic generation of random self-checking

test cases,” IBM systems journal, vol. 22, no. 3, pp. 229–245, 1983.

[10] H. Zhu, P. A. Hall, and J. H. May, “Software unit test coverage and adequacy,”

ACM Computing Surveys (CSUR), vol. 29, no. 4, pp. 366–427, 1997.

[11] G. J. Myers, C. Sandler, and T. Badgett, The art of software testing. Wiley,

2011.

[12] S. Kuppuraj and S. Priya, “Search based optimization for test data generation

using genetic algorithms,” pp. 201–205, 2012.

[13] M. Grindal, J. Offutt, and J. Mellin, “On the testing maturity of software

producing organizations,” in Testing: Academic and Industrial Conference-

Practice And Research Techniques, 2006. TAIC PART 2006. Proceedings,

pp. 171–180, IEEE, 2006.

[14] O.-J. Dahl, E. W. Dijkstra, and C. A. R. Hoare, Structured programming.

Academic Press Ltd., 1972.

[15] C. Kaner, “Exploratory testing,” in Quality Assurance Institute Worldwide

Annual Software Testing Conference, Orlando, FL, 2006.

[16] N. Chauhan, Software Testing - Principles and Practices. Oxford University

Press, 2011.

[17] J. C. Miller and C. J. Maloney, “Systematic mistake analysis of digital com-

puter programs,” Communications of the ACM, vol. 6, no. 2, pp. 58–63, 1963.

[18] C. Indumathi, B. Galeebathullah, and O. Pandithurai, “Analysis of test

case coverage using data mining technique,” in Communication Control and

Computing Technologies (ICCCCT), 2010 IEEE International Conference on,

pp. 806–809, IEEE, 2010.

[19] M. C. Yang and A. Chao, “Reliability-estimation and stopping-rules for soft-

ware testing, based on repeated appearances of bugs,” Reliability, IEEE

Transactions on, vol. 44, no. 2, pp. 315–321, 1995.

41

Bibliography

[20] J. A. Jones and M. J. Harrold, “Test-suite reduction and prioritization for

modified condition/decision coverage,” Software Engineering, IEEE Transac-

tions on, vol. 29, no. 3, pp. 195–209, 2003.

[21] T. J. McCabe, “A complexity measure,” Software Engineering, IEEE Trans-

actions on, no. 4, pp. 308–320, 1976.

[22] R. Mall, Fundamentals Of Software Engineering 3Rd Ed. PHI Learning Pvt.

Ltd., 2009.

[23] S. Parnami, K. Sharma, and S. V. Chande, “A survey on generation of test

cases and test data using artificial intelligence techniques,” 2008.

[24] J. Holand, “Adaptation in nature and artificial systems,” 1992.

[25] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Neural

Networks, 1995. Proceedings., IEEE International Conference on, vol. 4,

pp. 1942–1948, IEEE, 1995.

[26] J. J. Liang, A. Qin, P. N. Suganthan, and S. Baskar, “Comprehensive learning

particle swarm optimizer for global optimization of multimodal functions,”

Evolutionary Computation, IEEE Transactions on, vol. 10, no. 3, pp. 281–

295, 2006.

[27] L. N. De Castro and F. J. Von Zuben, “Learning and optimization using the

clonal selection principle,” Evolutionary Computation, IEEE Transactions

on, vol. 6, no. 3, pp. 239–251, 2002.

[28] Z. Bayraktar, J. A. Bossard, X. Wang, and D. H. Werner, “A real-valued

parallel clonal selection algorithm and its application to the design optimiza-

tion of multi-layered frequency selective surfaces,” Antennas and Propagation,

IEEE Transactions on, vol. 60, no. 4, pp. 1831–1843, 2012.

[29] P. R. Srivastava and T.-h. Kim, “Application of genetic algorithm in software

testing,” International Journal of software Engineering and its Applications,

vol. 3, no. 4, pp. 87–96, 2009.

42

Bibliography

[30] J.-C. Lin and P.-L. Yeh, “Automatic test data generation for path testing

using gas,” Information Sciences, vol. 131, no. 1, pp. 47–64, 2001.

[31] P. McMinn, “Search-based software test data generation: a survey,” Software

Testing, Verification and Reliability, vol. 14, no. 2, pp. 105–156, 2004.

[32] M. A. Ahmed and I. Hermadi, “Ga-based multiple paths test data generator,”

Computers & Operations Research, vol. 35, no. 10, pp. 3107–3124, 2008.

[33] C. Mao, X. Yu, and J. Chen, “Swarm intelligence-based test data generation

for structural testing,” in Computer and Information Science (ICIS), 2012

IEEE/ACIS 11th International Conference on, pp. 623–628, IEEE, 2012.

[34] C. Huanhuan, C. Li, Z. Bian, and K. Halei, “An efficient automated test data

generation method,” in Measuring Technology and Mechatronics Automation

(ICMTMA), 2010 International Conference on, vol. 1, pp. 453–456, IEEE,

2010.

[35] S. Zhang, Y. Zhang, H. Zhou, and Q. He, “Automatic path test data gen-

eration based on ga-pso,” in Intelligent Computing and Intelligent Systems

(ICIS), 2010 IEEE International Conference on, vol. 1, pp. 142–146, IEEE,

2010.

[36] R. Ding, X. Feng, S. Li, and H. Dong, “Automatic generation of software

test data based on hybrid particle swarm genetic algorithm,” in Electrical &

Electronics Engineering (EEESYM), 2012 IEEE Symposium on, pp. 670–673,

IEEE, 2012.

[37] X. Xu, Y. Chen, X. Li, and D. Guo, “A path-oriented test data generation

approach for automatic software testing,” in Anti-counterfeiting, Security and

Identification, 2008. ASID 2008. 2nd International Conference on, pp. 63–66,

IEEE, 2008.

[38] A. Pachauri et al., “Use of clonal selection algorithm as software test data gen-

eration technique,” in Advanced Computing & Communication Technologies

(ACCT), 2012 Second International Conference on, pp. 1–5, IEEE, 2012.

43

Bibliography

[39] B. Smith and L. A. Williams, “A survey on code coverage as a stopping

criterion for unit testing,” 2008.

[40] M. Prasanna, S. Sivanandam, R. Venkatesan, and R. Sundarrajan, “A survey

on automatic test case generation,” Academic Open Internet Journal, vol. 15,

pp. 1–5, 2005.

[41] A. Mockus, N. Nagappan, and T. T. Dinh-Trong, “Test coverage and post-

verification defects: A multiple case study,” in Empirical Software Engineer-

ing and Measurement, 2009. ESEM 2009. 3rd International Symposium on,

pp. 291–301, IEEE, 2009.

[42] Y. Wei, M. Oriol, and B. Meyer, “Is coverage a good measure of testing

effectiveness,” month, vol. 6, no. 674, p. 10, 2010.

[43] A. Derezińska, “Experiences from an empirical study of programs code cov-

erage,” in Advances in computer and information sciences and engineering,

pp. 57–62, Springer, 2008.

[44] J.-R. Chang and C.-Y. Huang, “A study of enhanced mc/dc coverage criterion

for software testing,” in Computer Software and Applications Conference,

2007. COMPSAC 2007. 31st Annual International, vol. 1, pp. 457–464, IEEE,

2007.

[45] S. Berner, R. Weber, and R. K. Keller, “Enhancing software testing by judi-

cious use of code coverage information,” in Software Engineering, 2007. ICSE

2007. 29th International Conference on, pp. 612–620, IEEE, 2007.

[46] E. L. Lloyd and B. A. Malloy, “A study of test coverage adequacy in the

presence of stubs,” Journal of Object Technology, vol. 4, no. 5, pp. 117–137,

2005.

[47] J. Lawrence, S. Clarke, M. Burnett, and G. Rothermel, “How well do profes-

sional developers test with code coverage visualizations? an empirical study,”

in Visual Languages and Human-Centric Computing, 2005 IEEE Symposium

on, pp. 53–60, IEEE, 2005.

44

Bibliography

[48] M. Blaha and J. Rumbaugh, Object-oriented modeling and design with UML.

Pearson Education Upper Saddle River, 2005.

45

Dissemination of Work

Accepted

1. Code Coverage Analysis for Basis Paths using Soft Computing Techniques, In

International Journal of Bioinformatics & Intelligent Control, Volume 2,

Issue No. 1, March 2013 (In Press: To be published).

46

	Certificate
	Acknowledgment
	Abstract
	List of Figures
	List of Tables
	Introduction
	Introduction
	Test Data Generation and Optimization
	Need for test data generation
	Why to optimize

	Motivation
	Organization of thesis

	Basic Concepts
	Testing
	Types of testing
	Test data generation
	Code coverage

	Basis Path Testing
	Control flow graph
	Cyclomatic complexity
	Steps for basis path testing

	Artificial intelligence techniques
	Genetic Algorithm
	Particle Swarm Optimization
	Clonal Selection Algorithm

	Literature Review
	Proposed Work
	Generation of Control Flow Graph (CFG)
	Test Data Generation and Optimization
	Generating optimal test data using GA based on fitness function
	Generating optimal test data using PSO based on fitness function
	Generating optimal test data using CSA based on affinity function

	Experimental Settings and Results
	Test data comparison
	Code coverage analysis

	Conclusion and Future Work
	Bibliography
	Dissemination of Work

