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ABSTRACT 
 
 

A third order shear deformation theory is used to study the nonlinear static behavior of 

laminated smart composite plate with magnetostrictive layer. In this study, geometric 

nonlinearity is taken in Green-Lagrange sense and Terfenol-D is used as a magnetostrictive 

material. In addition to that, the stresses are obtained using coupled equation through the 

constitutive relation by considering the effect of magnetic field induction. A C
0
 finite element 

formulation is proposed to discretize the present model and the governing equations are obtained 

using the minimization of the total potential energy theorem. Non-dimensionalized displacements 

and in plane stresses are computed for the laminated plate with and without magnetostrictive 

layer. The results are compared with these available literatures. 

An ANSYS model has also been developed for the said problem and few results are 

obtained and compared with available exact/numerical results. 

 

Keywords:  Smart material; Magnetostrictive material; Third order shear deformation theory; 

Geometrical nonlinearity; Green-Lagrange; Finite element analysis; Nonlinear static analysis; 

Laminated plate; ANSYS 14.0; 
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BACKGROUND AND MOTIVATION                               Chapter 1 
 

1.1. Introduction 
 

A composite is a structural material that consists of two or more combined constituents are 

combined at a macroscopic level. One constituent is called the reinforcing phase and the other 

one is called the matrix. A general classification of different composite materials can be seen in 

Fig 1. A schematic presentation of all composites can be seen in Fig. 2 to have a clear 

visualization. Composites are utilized in a wide range of fields like mechanical, aerospace, 

marine, automotive, biomedical and MEMS due to their light weight, high specific strength, high 

specific stiffness, and excellent fatigue and corrosion resistance in comparison to their 

conventional counterpart. 

 As discussed in the above lines the composites have number of tailoring properties and 

due to that many structural components are fast replaced by composites. Even though composites 

have distinct features over conventional materials, they do have few limitations or drawbacks. In 

general, composites are flexible in nature as compared to conventional material and exposed to 

combined loading condition which in turn affects their structural behavior like vibration, bending 

and buckling responses considerably. They may suffer from large amplitude vibration and/or 

large deformation early than the other conventional material. To overcome the above short 

comings many functional (smart) materials (piezoelectric and electrostrictive materials, shape 

memory alloys, magnetostrictive materials, electro and magneto rheological fluids etc.) are 

developed in recent years. Each smart material has a unique advantage and disadvantage of its 

own in sensing, control, and actuation. In the present analysis, out of different functional 

materials magnetostrictive material is taken due to its unique property and wide applicability in 

different industries. A brief discussion on this material has been given in the following 

paragraph. 

1.2 Magnetostrictive materials and the working principle 

Magnetostrictive materials are probably the most popular active material used in both 

actuator and sensor applications because of its low cost, low power consumption, low weight, 

high frequency response and ease in embedding or bonding with the structure. According to 
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James P.Joule (1842) magntostrictive material is the smart material which changes its magnetic 

state in response to applied stresses when exposed to a magnetic field. 

There are different magnetostrictive (Terfenol-D, Galfenol etc.) materials are available 

based on the required application. In this present study, Terfenol-D is considered to be the 

magnetosrictive smart material due to its relatively low strains and moderate forces over a wide 

frequency range serves as best commercial magnetostrictive material available in the market. The 

Terfenol-D has some dominant advantages as actuators and sensors over other materials. The 

coupled mechanical and magnetic properties of magnetostrictive smart make them well suited for 

use as actuators and sensors in smart structures.  

The direct and converse magnetic effect governs the interaction between the mechanical 

and magnetic behavior of this type of material. The direct magnetic effect states that a strain 

applied to the material is applied converted to magnetic field intensity. On the other hand the 

converse of magnetic effect states that a magnetic intensity applied to the material is converted to 

strain. The design and fabrication of large complicated structures with integrated 

magnetostrictive materials requires the accurate modeling and analysis as beforehand by using 

available analytical and/or numerical method. Today design engineers/engineering firms show 

confidence on results of finite element modeling and analysis either by the commercial finite 

element package and/or analysis of structures using customize code using different computer 

language. Terfenol-D is an alloy of terbium, iron, and dysprosium and their application in today’s 

engineering is given in Fig 3 and 4. It can serve both as actuator and sensor and produce strains 

up to 2500μm, which is 10 times more than a piezoceramic material. It also has high energy 

density, negligible weight, and point excitation with a wide frequency bandwidth. 

As discussed aforementioned paragraph, many research works have been performed 

successfully to simulate the various linear/nonlinear responses of conventional and composite 

materials using ANSYS finite element software in recent years. These studies show that ANSYS 

can precisely simulate all sorts of material and geometrical (linear/nonlinear) modeling of 

laminated composite with and without functional material. All types of nonlinearities are allowed 

large deformations, plasticity, creep, stress stiffening, contact (gap) elements, hyper elastic 

elements, and so on. 
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Fig 1 Classification of composites 

 

Fig.2    Schematic presentation of composite materials (www.mechlook.com) 
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                                          Fig  3      Detailed view of Magnetostrictive Actuator (Google Image) 

  

 

Fig 4 Magnetostrictive actuator (iopscience.iop.org) 
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1.3. Scope of the work 
 

 

 Development of a general mathematical formulation of magnetostrictive smart 

composite plate by taking Green-Lagrange geometrical nonlinearity. 

 Development of nonlinear finite element model. 

 Development of an ANSYS model. 

 Development of MATLAB code and its comprehensive testing. 

 Nonlinear static response of smart composite plate with and without magnetostrictive 

material. 

 Applications to various problems. 

 

1.4. Thesis outline 
 

 

The present chapter discusses the introduction of the problem and a short discussion on the 

composite and magnetostrictive materials. Subsequently, the scope of the present research has 

been discussed point wise.  The remainder of this thesis is organized in five more chapters. 

Chapter 2 includes literature review to provide a summary of the base of knowledge already 

available involving the issues of interest. Chapter 3 discussed the general mathematical model 

development and their solution steps. Next to that Chapter 4 discusses various responses 

obtained using the present developed model. Finally, Chapter 5 presents the closure of the work 

based on the output and future scope of the work. 

 

1.5. Conclusions 
 

 

Present chapter highlights the importance of the present work and the next chapter 

discussed the literature review on the said problem through extensive study of recent and past 

available literatures. 
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LITERATURE SURVEY                                                            Chapter 2 
 

   2.1.   Introduction 
 

                  Mechanical, aerospace, civil engineering structures, sport equipment and medical 

prosthetics are the broad areas where smart composite components are being used. This is well 

known that the composite materials are very much flexible as compared to the conventional 

material and they suffer from large deformation under combined loading. Hence, for designing of 

high performance components, simulating the true material behavior and to have a better 

understanding of physical phenomena, nonlinear static analysis is very much essential. Many 

studies have already been completed on the smart composite structure by taking the 

magnetostrictive material as a smart material. In this regard some of the recent and earlier 

literatures are discussed in the following paragraph.  

           A considerable literature is available on the nonlinear static analysis of the smart 

laminated composite plates in Green-Lagrange sense with and without taking into account the 

transverse shear effects using various theories. A brief review of the available literature in this 

field is discussed for the sake of continuity. The responses like static, dynamic, stability and 

vibration of laminated structures for different geometry and materials are discussed in Reddy [1]. 

Wang [2] presented the finite element formulation of large-scale geometrically nonlinear 

laminated composite shell structures. Vuksanovic [3] obtained the numerical solution of static, 

dynamic, free vibration and buckling behavior using finite element method based on various 

plate theories (classical plate theory and first order shear deformation theory). A 3-D, 27-node 

hybrid-interface element is used to analyzed the thick laminated plate based on the minimum 

potential energy principle is presented by Desai and Bambole [4]. Nonlinear free vibration and 

transient behavior of laminated composite shells under hygrothermal loading are reported by   

Naidu and Sinha [5-6].  They have developed the nonlinear model using Green-Lagrange 

nonlinearity based on first order shear deformation theory (FSDT) in conjunction with nonlinear 

finite element method (FEM).  Kundu and Han [7] studied geometrical nonlinear bending 

behavior of laminated composite spherical, cylindrical and conical shell panels subjected to 

hygrothermal loading using FEM steps. Kant and Swaminathan [8] derived the equations of 

equilibrium using the principle of minimum potential energy (PMPE) and Navier’s technique to 
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solve the boundary value problem of composite plate. Swaminathan and Ragounadin [9] studied 

the static analysis of antisymmetric angle-ply laminated composite and sandwich plates using a 

higher-order refined theory. Ghugal and Shimpi [10] presented a comprehensive review of 

refined theories for shear deformable isotropic and anisotropic laminated plates based on the 

various plate theories such as classical plate theory, FSDT, second order shear deformation 

theory and higher order shear deformation theory (HSDT). Litewka and Sygulski [11] solved 

static problems for plates of intermediate thickness using a direct formulation of the boundary 

element method and modified Gauss integration method. Samanta and Mukhopadhyay [12] 

analyzed a stiffened shell element for the geometric nonlinear static analysis of shallow and deep 

shells. Baltacıoglu et al. [13] derived nonlinear static response of laminated rectangular plates 

using the FSDT.  Luiz et al. [14] studied the efficiency and the robustness of an one-point 

quadrature eight-node hexahedral element for the analysis of shells, plates and beams undergoing 

large displacements and rotations. Kumar et al. [15] explored the shape control and active 

vibration suppression of a laminated composite shell with integrated piezo-electric sensors and 

actuators. Bogdanovich and Pastore [16] investigated the structural behavior of textile reinforced 

composites by using smart material approach. Yuan et al. [17] studied the magnetostrictive static 

force sensor with a giant magnetostrictive material rod. Ueno and Higuchi [18] investigated the 

improvements of Terfenol and PZT actuator embedded composite against conventional material 

using the magnetic force control principle.  Linnemann et al. [19] studied the phenomenological 

behavior of magnetostrictive and piezoelectric materials using a thermodynamic constitutive 

model. Zheng et al. [20] developed a giant magnetostrictive device based on the Jiles–Atherton 

(JA) magnetomechanical hysteresis model using the theory of the magnetomechanical effect.  

Dash and Singh [21] studied of the nonlinear free vibration of the laminated composite plate with 

embedded and/or surface bonded piezoelectric layers in the framework of the HSDT. They have 

derived the model using Green-Lagrange type nonlinearity and the model is consisting of all 

nonlinear higher order terms to have a general approach.  Panda and Singh [22] find out the 

nonlinear free vibration analysis of the laminated composite spherical shell panel using Green-

Lagrange nonlinear strains. Lacarbonara and Pasquali [23] derived a geometrically exact theory 

of thin multilayered composite plates with general stacking sequences which accounts for mid-

plane stretching, flexure, and transverse shear strains. Carrera [24] reformulated mixed theory 

originally proposed by Toledano and Murakami and extended to dynamic analyses of plates and 



10 
 

 

doubly curved shells. Lee and Kim [25] investigated the nonlinear vibration of hybrid laminated 

plates with aluminum, glass fibre reinforced plastic, carbon fibre reinforced plastic and boron 

fibre reinforced plastic by considering the extension-bending coupling effect in the laminated 

plates using the Lagrangian equation. Mechab et al. [26] explored the analytical solutions of 

cross-ply laminated plates under thermo-mechanical loading based on the HSDT. Detwiler et al. 

[27] derived a new finite element formulation to analyze the mechanical-electrical behavior of 

laminated composite structures containing distributed piezoelectric actuators and sensors. Dash 

and Singh [28] studied the nonlinear bending analysis of the laminated composite plates in the 

framework of the HSDT by taking the geometric nonlinearity in Green–Lagrange sense. Angulo 

et al. [29] analyzed the influence of resin load on magnetic properties of Terfenol-D material. 

Lim et al. [30] fabricated Terfenol-D composites with good magnetic (including 

magnetostrictive) and mechanical properties. Seung [31] presented analytical and finite element 

solutions of laminated composite plate and shell structures with smart material lamina based on 

the theoretical formulations. Carman [32] developed a nonlinear constitutive relation for 

magntostrictive materials that includes nonlinear coupling effects arising between 

temperature/preload and magnetic field strengths. Lee and Reddy [33] derived the governing 

equations of the third order shear deformation theory (TSDT) including thermal effects and von-

Karman non-linear strains. Kishore et al. [34] reported the nonlinear static responses of 

laminated composite plate embedded with magnetostrictive materials based on the TSDT by 

taking the geometric nonlinearity in von-Karman sense. Dapino et al. [35] determine the trends 

and inherent uncertainties in the functional dependence of fundamental elasto-magnetic 

properties of Terfenol-D on changes in operating conditions in a controlled transducer 

environment. Pratt et al. [36] presented active vibration control and saturated phenomenon of a 

cantilever beam embedded with Terfenol-D actuator. Civalek [37] derived an approximate 

numerical solution of doubly curved shallow shells resting on Winkler Pasternek elastic 

foundations using the von Karman–Donnel nonlinear kinematics. Ganapathi et al. [38] developed 

a C
0
 eight-nodded quadrilateral serendipity plate element with thirteen degrees of freedom to 

analyze nonlinear free and forced vibration.  

Swaminathan and Ragounadin [39] presented the analytical solutions static behavior of anti-

symmetric angle-ply composite and sandwich plates using a higher-order refined theory. Zhang 

and Kim [40] developed a displacement based flat triangular plate element (3 nodded and 18 
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degrees of freedom) to analyze linear and nonlinear behavior of thin to moderately thick 

laminated plates. Lakshminarayana and Murthy [41] developed a higher-order triangular plate 

element (3-node and 15 degrees of freedom per node) for linear analysis of laminated (isotropic 

and anisotropic) plates. Aagaah et al. [42] reported finite element based static behavior of a 

rectangular multi-layered composite plates by taking the mid plane kinematics in the framework 

of the TSDT. Setoodeh and Karami [43] analyzed static, free vibration and buckling behavior of 

anisotropic thick laminated composite plates under different supports (distributed and point 

elastic support) using a 3-D layer-wise FEM. Argyris and Tenek [44, 45] developed a 3-noded 

multilayered triangular facet element of 18-dof and analyzed linear/nonlinear bending behavior 

of isotropic, sandwich, laminated composite and hybrid plates. Vuksanovic [46] proposed a 

C
0
 isoperimetric single layered finite element model based on higher-order theory and checked 

its applicability to static, dynamic, free vibration and buckling analysis of symmetric cross-ply 

and angle-ply laminated composite and sandwich plates. Yu [47] presented higher-order finite 

element analysis using a 6-nodded triangular layered shell element. Ibrahimbegovic [48] used 

Timoshenko’s beam function method to analyze thick and thin plates. Soh et al. [49] introduced a 

new nine degree of freedom triangular element for analysis of thick and thin plates using 

Timoshenko’s beam function method. Soh et al. [50] developed twelve degrees of freedom 

(DOF) quadrilateral element for thick and thin laminated plates. Two displacements based 

quadrilateral elements for the linear and nonlinear static analysis of laminated plates are 

developed by [51, 52]. Auricchio and Sacco [53] analyzed laminated composite plates using 

mixed-enhanced finite element. Wilt et al.  [54] presented a mixed elemental analysis for 

laminated plates and shells. Whitney [55, 56] studied the effect of bending-extensional coupling 

and support conditions on the responses of laminated plates under transverse load. Somashekar et 

al. [57] introduced a field consistent four-nodded (five degrees of freedom per node) anisotropic 

plate/shell element to analyze the degree of anisotropy and their effect on in-extensional bending 

of corresponding shapes. Zaghloul and Kennedy [58] studied linear and non-linear behavior of 

symmetrically laminated plates under different boundary conditions using finite difference 

method. Putcha and Reddy [59] presented a refined mixed shear flexible finite element analysis 

for non-linear analysis of laminated composite plates by taking eleven degrees of freedom per 

node (three displacements, two rotations and six moment resultants). Cheng et al. [60] performed 
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geometrically non-linear analysis of composite laminates using the perturbation finite element 

method (PFEM) by taking the discrete-layer shear deformation theory. 

This can be understood from the above survey that many studies related to nonlinear 

static behavior of laminated plates have been reported in the past but the study embedding smart 

magnetostrictive layer in composite plate are less in number. In this present study an effort has 

been made to model the laminated composite plates with and without magnetostrictive layer by 

considering geometrical nonlinearity in Green-Lagrange sense in the framework of the HSDT to 

investigate the nonlinear static behavior. A nonlinear finite element model is proposed to 

discretize using an isoperimetric eight nodded serendipity element. The sets of nonlinear 

equations are obtained through minimum potential energy.  In addition to that an ANSYS model 

also has been developed for laminated structure with the magnetostrictive material as the 

functional material. In present analysis, non-dimensionalized displacements and in plane stresses 

are computed for the laminated plate with and without magnetostrictive laminated composite 

plate. The responses are obtained using a computer code developed in MATLAB and ANSYS 

14.0 for different parameters such as loading, boundary conditions thickness ratio, aspect ratio 

and different angle lay-up effect.  

A detail discussion on finite element modeling, governing differential equation and 

ANSYS model are given in the subsequent chapter.  
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GENERAL FORMULATION                                                Chapter 3 

 

3.1. Assumptions 

1. The composite plate considered in the present investigation is orthotropic in nature. 

2. The laminated plates problems are taken in this study are of equal thickness. 

3. The  transverse shear strains vanishes on top and bottom surfaces of the plate: 

4. The number of layers with or without magnetostrictive layers is perfectly bonded. 

3.2. Displacement field 

The displacement field within the laminate is assumed to be based on the Reddy’s TSDT 

as discussed earlier. The in plane displacements are expanded as cubic functions of thickness 

coordinate to maintain parabolic shear stress and strain profile, while the transverse displacement 

varies linearly through the plate thickness. 

2 3

0

2 3

0

0 1

( , , ) ( , ) ( , ) ( , ) ( , )

( , , ) ( , ) ( , ) ( , ) ( , )

( , , ) ( , ) ( , )

x x x

y y y

u x y z u x y z x y z x y z x y

v x y z v x y z x y z x y z x y

w x y z w x y zw x y

  

  

   

   

 

                 … (1) 

where u, v and w denote the displacements of a point along the (x, y, z) coordinates. u0, v0 and w0 

are corresponding displacements of a point on the mid plane. Similarly, ,x yand  are the 

rotations of normal to the mid plane about the y-axis and x-axis, respectively. The functions 

, , ,x y x y    and w1 are the higher order terms in the Taylor series expansion defined in the mid 

plane of the plate to maintain cubic. 

  The above displacement field as given in Eq. (1) can be rewritten in the following form 

after incorporating the assumptions that the transverse shear strains vanishes on top and bottom 

surfaces of the plate: 
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   

 

                   … (2) 

3.3. Strain displacement relations  

The following equations define the nonlinear strain displacement relation by taking 

Green-Lagrange type nonlinearity in geometry for any general material continuum:  

 

 

 

                                  … (3) 

 

 

or,      L NL     

The linear strain   vector corresponding to the displacement field is written as 

 

                                                              … (4) 

The terms of the linear strain vector are expressed as thickness and in plane coordinate in 

following lines:  

 

 

                                                                                  … (5) 
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The linear strain vector as given in Eq.(5) can also be written in matrix form as 

   6 1 6 19 19 1

L

L LT 
  

                                                                                              … (6)  

where,    0 0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 3 3 3

1 2 3 4 5 6 1 2 4 5 6 1 2 4 5 6 1 2 6

T

L k k k k k k k k k k k k k       and  is the function of 

thickness coordinate. The terms in  L  having superscripts ‘0’,’1’,’2 and 3’ are membrane, 

curvature and higher order strain terms, respectively. The individual terms of linear strain vectors 

are provided in Appendix A. 

The vector  L  has been expressed in operator and field variable and conceded as 

     
10 119 10L L q


                                                                                                  … (7) 

where  L  is differential operator matrix and  q is the displacement field vector. 

   The nonlinear strain vector  N L  is obtained from Eq.(3) are obtained as following the same 

steps in linear case 
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The terms of the nonlinear strain vector as given in Eq. (8) can be expressed as  

 

 

 

0 1 2 2 3 3 4 4 5 5 6 6

1 1 1 1 1 1 1 1

0 1 2 2 3 3 4 4 5 5 6 6

2 2 2 2 2 2 2 2

0 1 2 2 3 3 4 4

3 3 3 3 3 3

0 1 2 2 3 3 4 4 5

4 4 4 4 4 4

1

2

1

2

1

2

NL NL NL NL NL NL NL NL

NL NL NL NL NL NL NL

NL NL NL NL NL

NL NL NL NL NL

zk z k z k z k z k z k

zk z k z k z k z k z k

zk z k z k z k

zk z k z k z k z k

 

 

 

 

      

      

    

      5

4

0 1 2 2 3 3 4 4 5 5

5 5 5 5 5 5 5

0 1 2 2 3 3 4 4 5 5 6 6

6 6 6 6 6 6 6 6

NL

NL NL NL NL NL NL

NL NL NL NL NL NL NL

zk z k z k z k z k

zk z k z k z k z k z k

 

 

     

      

                       … (9) 

The nonlinear strain vector  NL  as expressed in Eq. (9) can be written in terms of mid plane 

nonlinear strain as 

   6 1 6 38 38 1
    NL

NL NLT 
  

                                                                                      … (10) 

where,
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 and NLT    is the function of thickness co–ordinate. The terms in  NL  having 

superscripts’0’,’1’,’2-3’ are nonlinear membrane ,curvature and higher order strain terms, 

respectively. 

 

 

 

 

 

 

 Fig 5 Laminated composite plate 
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3.4. Lamina constitutive relation 

It is assumed that each lamina behaves as an orthotropic material with its material axes 

oriented arbitrarily with respect to the laminate coordinates. The coupled constitutive equations 

(composite and magnetostrictive) of each layer with respect to the laminate coordinates (x, y, z) 

are shown in (Fig.5) having dimensions (a×b×h). 

 

                                          … (11a) 

 

                     … (11b) 

where = stress vector, = magnetic induction, =strain vector, =magnetic field 

intensity, =transformed magnetostrictive stress coefficients, =strain permeability of 

magntostrictive coefficients, =transformed constitutive matrix with respect to fiber 

orientations (Fig 5). 
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3.5. Finite element model 

 
The displacement fields for different assumed displacement model are expressed in terms 

of desired field variables. In the present study the requirements of c
1
 continuity has been reduced 

to c
0 

by assuming the first derivatives of the transverse displacement as independent field 

variables. 

Model:                                                               … (12) 

For finite element approximation, the displacement field in the domain of the plate may be 

expressed in terms of nodal field variables with the help of shape functions as given below: 

 

where ,  and  denote nodal displacement, magnetic potential and shape function for nine 

nodded serendipity element, respectively. 

The mid-plane strain vector  and magnetic field vector  can further be expressed using 

finite element approximation as  

 

 

 

where, Eq.(14a)and (14b) represents mid-plane strain and magnetic field vectors for CFRP and 

Magnetostrictive layers respectively. 

 and  are the operator matrices for composite laminate and magnetostrictive 

laminate respectively,  and . 
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3.6. Governing equations 

 
 The equations of equilibrium for the static analysis are obtained using the principle of 

minimum potential energy which can be written in analytical form as  

                                                                                                   … (15)                                                                          

where, U is the total strain energy due to deformations is the potential of external loads, and Π is 

the total potential energy and δ denotes the variational symbol.    

 

The expression for strain energy is given by  

                                                                                          … (16) 

             and work done by external forces is given by 

                                                                         … (17) 

  The total potential energy (Π) is obtained by adding up the above two terms (Eqs. (16) and 

(17)). Total potential energy is expressed in terms of nodal degrees of freedom. 

The governing equations are derived from Eq. (12) and may be expressed as  

                                                                              … (18) 

where, , and  are the global stiffness matrices,  and are the global 

displacement vector and potential vector, respectively and  is the global load vector. The 

above equation may be written in the following decoupled form as   

                                                                                                              … (19) 

with . 
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3.7. Boundary conditions 

Boundary conditions are very much essential to minimize the number of constants in the 

governing equation and establish a relation between physical and mathematical model. 

To solve the above said governing equation following boundary conditions are taken in the 

present study: 

All edges simply supported edges (SSSS)  

1 0x x xu w w                                                   at y=0,b 

                        at x=0,a 

All edges clamped (CCCC). 

     at x=0,a and y=0,b 

 

3.8. Solution steps 

Nonlinear terms of the governing equation are represented in X of Eq. (19). The 

nonlinear solution is carried out by direct iterative and Newton Raphson iteration method for 

composite plate with and without magnetostrictive material and the steps are followed from Ref. 

[21] and [34].  

 

3.9. Conclusion 

This chapter provides the insight into the basic behavior of strain displacement relation, 

finite element modeling, and the governing equations for nonlinear static analysis of composite 

plate embedded with and without smart magnetostrictive layers considering geometrical 

nonlinearity in Green-Lagrange sense. The subsequent chapter deals extensively various 

responses obtained using the present developed model and solution steps described above.

1 0x y x y x yu v w w              

1 0y y yv w w       
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RESULT AND DISCUSSION                               Chapter 4 
 

4.1 Introduction 
 

A nonlinear finite element model has been developed by taking the Green-Lagrange type 

geometric nonlinearity based on the TSDT. A suitable nonlinear FEM model has been developed 

and the nonlinear stiffness matrices are obtained numerically using the Gauss quadrature 

integrations. The nonlinear static responses of laminated plates are obtained using direct iterative 

method and magnetostrictive embedded plate responses are obtained using the Newton-Raphson 

steps.  In order to demonstrate the accuracy of the present developed model several numerical 

examples have been solved. The results are compared with those published results. Based on 

convergence study, a (10×10) mesh has been used throughout the study for the computation of 

the responses. The material properties and geometrical properties are taken same as the references 

(Putcha and Reddy [59] and Lee & Reddy [33]) for nonlinear static responses of laminated 

composite. The composite and magnetostrictive material properties are given in Table 1. 

The deflection and the load are nondimensionized as below. 

                 /w w h    and    
4

0

4

22

q a
p

E h
 . 

Graphite/Epoxy Magnetostrictive (Terfenol-D) 

E11=138.6×10
9
 G12=4.96×10

9
 

υ12=0.26 

 
E11=26.5×10

9
 G12=13.25×10

9
 

υ12=0 

 

E22=8.3×10
9
 G23=4.12×10

9
 

υ23=0.26 

 
E22=26.5×10

9
 G23=13.25×10

9
 

υ23=0 

 

E33=8.3×10
9
 G13=4.96×10

9
 

υ13=0.26 

 
E33=26.5×10

9
 G13=13.25×10

9
 

υ13=0 

 

 

Table 1 Material properties of Graphite/Epoxy and magnetostrictive material 

 

 

 

 



24 
 

 

4.2 Convergence and validation study of laminated composite plate without 

magnetostrictive material 

As discussed in the above paragraph, here, in this section the nonlinear static responses of 

laminated composite plates with/without magnetostrictive materials are obtained using the 

developed mathematical model. The results are compared with the references and the ANSYS 

results.  

Fig 6 presents nondimensionalized central deflections of four different symmetric angle 

ply (±15°, ± 25°, ±35°, and ± 45°) composite plates. The responses are obtained using ANSYS 

parametric design language (APDL) code. The results are computed for a simple supported square 

laminated plate with the geometric properties are a=20 and h=0. 002. It can be seen from the 

figure that the results are converging well with the mesh refinement and a (10×10) is sufficient to 

compute the further results. The figure clearly shows that the performance of the present ANSYS 

model is very good compared to the TRIPLT [41].  
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 ±15°,ANSYS=0.7165,TRIPLT(41)=  0.7142

 ±25°,ANSYS=0.7894,TRIPLT(41)=  0.7870

 ±35°,ANSYS=0.7584,TRIPLT(41)=  0.7561

 ±45°,ANSYS=0.7346,TRIPLT(41)=  0.7322

 
 

Fig 6  Normalized central deflection of a simple supported 2-layer square plate under 

uniform transverse load 
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In this example the nondimensionalized nonlinear central deflections of a clamped symmetric 

cross-ply (0°/90°)s square plate with side length a = 12 in. and thickness h = 0.096 in. subjected 

to uniformly distributed load is analyzed and plotted in Fig 7 and compared with the Zhang and 

Kim[40] and Putcha and Reddy [59]. The material properties used for the computation of results 

are same as the Zhang and Kim [40]. (E1 = 1.8282 ×10
6
 psi, E2 = 1.8315 × 10

6
 psi, G12 = G13 = 

G23 = 3.125×10
5
 psi, µ12 = 0.23949). It is evident from the figure that the nonlinear central 

deflection of present model is good agreement with that of Putcha and Reddy [59] and Zhang 

and Kim [40]. It can also be noted that nonlinear central deflection increases as load increases. 

Further one more example has been solved to prove the efficacy of the developed model. 

Linear and nonlinear normalized central deflections of a clamped square plate is obtained using 

the same material properties of Putcha & Reddy [59] in both ANSYS APDL and MATLAB code 

and plotted in Fig 8. It can be seen that the linear and nonlinear results obtained using the present 

developed model is showing higher value as compared to the responses obtained in ANSYS and 

Agyris and Tenek [44]. It is because of the fact that the present model has been developed using 

Green-Lagrange nonlinearity based on the TSDT which makes the model more flexible to 

achieve a general case. This is also visualized that linear and nonlinear central deflections 

increases with increase in load values.  
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        Fig 7             Normalized central deflection of a clamped symmetric cross-ply [0°/90°]s 

square plate subjected to a uniformly distributed load 
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       Fig 8   Normalized central deflection of a clamped symmetric cross-ply [0°/90°]s square 

plate subjected to a uniformly distributed load 
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              Fig 9            Variation of nondimensionalized central deflections with different load 

parameter of simply supported symmetric cross-ply laminate under distributed 

load with magnetostrictive layer 
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4.3 Comparison study of magnetostrictive embedded laminated composite 

plate  

 

The comparison of nondimensionalized central deflection and load parameter of simply 

supported symmetric cross-ply laminate under distributed load with magnetostrictive layer is 

presented in Fig 9. In the present problem, a graphite epoxy laminated composite plate made of 

10-layer (m, 90
0
/0

0
/90

0
/0

0
)s of plate size 1m length & equal thickness of each layer is considered 

and the central transverse deflections are non-dimensionalized as discussed earlier. 

The convergence and comparison illustrated in the Fig. 9 states that the variation in the 

nondimensionalized central deflections of present model show flexibility in comparison to 

ANSYS and Lee & Reddy results due to introduction of higher order shear deformation theory. It 

can also be conceded that the ANSYS result is showing good converging rate with the Lee & 

Reddy and the error is within one percent.  

4.4 Parametric Study 

In this section, some numerical examples are presented by considering different 

parameters to bring out complete quantitative understanding of the nonlinear bending behavior of 

laminated plates for symmetric/un-symmetric lamination, cross/angle-ply layup and two different 

supports (simply supported and clamped). In addition to that, the effects of number of layers, 

thickness ratios and aspect ratios on the central deflections are computed and discussed in the 

following section. 

Normalized central deflections for a clamped symmetric cross ply [0
0
/90

0
]s square plate 

subjected to a uniformly distributed load in taking account of TSDT (MATLAB code) and FSDT 

(ANSYS APDL code) have been tabulated in Table 2. The result obtained in present analysis is 

found to be more in compared to ANSYS APDL code which shows the efficacy of considering 

higher order shear deformation instead of first order shear deformation one. 
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Load TSDT 

Linear 

 

TSDT 

Nonlinear 

 

ANSYS 

linear 

ANSYS 

nonlinear 

0.4 0.297 0.2435 0.2734 0.2269 

0.8 0.5939 0.4869 0.5464 0.4426 

1.6 1.1878 0.9734 1.0808 0.8646 

2 1.14848 1.2175 1.3214 1.0571 
 
 
    Table 2  Normalized central deflections of a clamped symmetric cross ply square plate 

[0
0
/90

0
]s subjected to a uniformly distributed load 

 

 

4.4.1 Effect of boundary condition 

The effect of two support conditions (simply supported and clamped) on the 

nondimensionalized nonlinear central deflections are examined for symmetric cross ply laminate 

under uniformly distributed load and the responses are shown in Table 3 & 4. It is observed that, 

the nondimensionalized central deflections (linear and nonlinear) increases with increase in load 

parameter and it is comparatively less for the clamped support. 

a/h Load Parameter SSSS CCCC 

10 10 0.1359 0.0286 

 30 0.1525 0.0857 

 100 1.3597 0.2855 
 
 

 Table 3  Nondimensionalized central deflections (w/h) for symmetric cross- ply laminate 

under different load and boundary conditions (linear) 

 

a/h Load Parameter SSSS CCCC 

100 10 0.1159 0.0418 

 30 0.3478 0.1174 

 100 1.1593 0.4018 

  

 Table 4  Nondimensionalized central deflections (w/h) for symmetric cross- ply laminate 

under different load and boundary conditions (nonlinear) 

 

 

 



29 
 

 

 

 
         Fig 10.  The comparison between linear and nonlinear central deflection for simply 

supported 8-layer unidirectional [0°]8 square plate subjected to uniformly 

distributed load 

4.4.2 Effect of number of layers 

The effect of number of layers on the center deflection is examined for 8-layer 

unidirectional [0°]8 square plate subjected to uniformly distributed load with clamped boundary 

condition is presented in Fig 10. It can be seen that difference of linear and nonlinear results for 

8 layer unidirectional laminate of layers increases as the load increases and is prominent.  

4.4.3 Effect of thickness ratio  

Fig 11 shows the effect of thickness (a/h) ratio on central deflection. In this part of study 

a [0°/90°]s square plate (a/b=1) is taken. The results portray that as the thickness ratio increases 

the central deflection decreases. 

4.4.4 Effect of aspect ratio 

The effect of aspect ratio on central deflection under different boundary and loading 

conditions for a (0°/90°)s lamina having a/h ratio 10 are shown in Fig 12. It can be seen that 

central deflection shows decreasing trend as aspect ratio increases and difference is less after 

aspect ratio 5. 

 

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

C
e

n
tr

a
l 
d

e
fl
e

c
ti
o

n
 (

in
c
h

)

Load(psi)

 Linear solution

 Nonlinear solution



30 
 

 

4.4.5 Effect of angle lay up 

The influence of angle lay up on central deflections are represented in Fig 13. For this 

analysis a composite plate with a/b=1 & a/h=10 is taken. It is concluded from Fig 13 that central 

deflections decrease for cross ply to angle ply laminate. 

4.4.6 Effect of variation of in plane normal stress 

The variation of the nondimensionalized in plane normal stress σx with load parameter of 

a symmetric cross-ply (m, 90
0
, 0

0
, 90

0
, 0

0
)s simply supported square plate is plotted in Fig 14.It is 

observed that the in-plane normal stress σx varies linearly in FSDT and parabolically with TSDT 

and within the expected region. 

Finally some contour plots i.e., lamina lay up, boundary , load distribution, deflection  

and stress in ANSYS APDL code are given  in Fig 15, 16,17 and 18. 

 

Fig 11.             Effect of thickness ratio on central deflection under different boundary 

and loading condition 
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 Fig 13.                 Effect of angle lay-up ratio on central deflection under different boundary and 

loading condition 
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      Fig 12.   Effect of aspect ratio on central deflection under different boundary and 

loading condition 
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Fig 14     Variation of nondimensionalized in-plane normal stress σx with load parameter of a 

symmetric cross-ply (m, 90
0
, 0

0
, 90

0
, 0

0
)s simply supported square plate 

 

 

 
 

Fig 15 Lay-up of Laminate 
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  Fig 16 Boundary and Load distribution plot 

 

 
 

Fig 17 Contour plot with load parameter 1(with magneto) 
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Fig 18 Stress contour plot with load parameter 1(with magneto) 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



35 
 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Chapter - 5 
 

 

 

 

 

 

 

  

 

 
 
 
 
 



36 
 

 

CONCLUSIONS         Chapter 5 
 

 
 
5.1. Introduction 
 
 In the present analysis a C

0
 finite element formulation based on higher order shear 

deformation theory is developed for the nonlinear static analysis of laminated composite with 

and without magnetostrictive layer. The geometric nonlinearity is considered in Green-Lagrange 

sense. Non-dimensionlized displacements and in plane stresses are computed with and without 

magnetostrictive layers using the assumed displacement model. The following findings are 

concluded from the present parametric study: 

1. The nondimensionalized central deflection is less for nonlinear cases as compared to linear.  

2. The nondimensionalized central deflections (linear and nonlinear) increases as load 

parameter increases and deflections are showing relatively smaller value for clamped 

support. 

3. It can be seen that the differences of linear and nonlinear results increases as the load 

increases and it is noticeable when number of layer increases.  

4. It is observed that the in-plane normal stress σx varies linearly and parabolically when 

evaluated using the FSDT and the TSDT, respectively.  

5. Finally, the angle layups, the boundary conditions, the thickness ratios, and the aspect ratios 

have significant effect on the nonlinear static responses of the laminated composite plate. 
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5.2. Limitation of the study 

In spite of several advantages obtained through proposed study, the following few points 

mays be treated as limitations of the present study. 

1. In this study the nonlinear higher order terms are considered up to third order. 

2. In this analysis, the geometrical nonlinearity is only taken into account. 

3. The laminated plates problems are taken in this study are of equal thickness. 

 

5.3. Future scope 
 

1.  The present study can be extended for the dynamic analysis of composite plate with 

and without magnetostrictive layer. 

2. Effect of magnetic field can be considered to analyze the linear and nonlinear 

responses of the composite plate. 

3. Material and boundary nonlinearities can be considered for the better understanding 

of the real life situation. 
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Appendix A. Linear Terms of HSDT 
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