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ABSTRACT 

Molecular dynamics simulations of three water models, namely, TIP3P, SPC/E, and TIP4P 

which are commonly used in biomolecular simulations were carried out at room 

temperature. Multinanosecond trajectories were generated to analyze the structural and 

dynamical properties of the three water models. It has found that depending on the water 

models the properties change significantly.The structural behavior of water was studied by 

calculating pair-correlation function between the oxygen atoms of water molecules. 

Interestingly, it has noticed that waters of TIP4P model are highly structured as compared 

to the other two models. Further translational motions of the water molecules were found to 

be highly restricted for the SPC/E model as compared to the other two models. The 

diffusion-coefficient of TIP3P water was found to be twice as compared to SPC/E water 

model. Our findings correlate well with the experimentally available data. 

 

 

 

 

 

                                                            

 

 

                                                

                                                

                                             



CONTENTS 

 

1. INTRODUCTION                                                                

 

2. OBJECTIVES                    

 

3. SIMULATION DETAILS                         

 

4. RESULTS AND DISCUSSIONS                

      4.1Temperature, Edge length and Energy         

      4.2 Water Structure                                           

      4.3 Translational Motion                  

        

5. CONCLUSIONS            

 

6. REFERENCES                     

 

 

 

 

 

 

 

 

 



1. INTRODUCTION                                                                                               

Water is the most abundant solvent in nature. It plays important role in several chemical 

and biological processes. Various physical properties of water such as density, dielectric 

constant, compressibility etc are well established. Beside this water have many unusual 

properties such as high dielectric constant, negative volume of melting, numerous 

crystalline polymorphs, anomalously high melting and high mobility transport for H
+
 

and OH
-
 ions, boiling and critical temperatures for a low-molecular-weight substance 

etc. Such properties can be explained in the light of the formation of three dimensional 

water-water hydrogen bonding networks. Further, it has found that the structural and 

dynamical properties of biomolecules are highly dependent on the solvent like water 

surrounding them. These waters are popularly known as “biological water”
1
.   

 Although the macroscopic properties of liquid water have been studied extensively 

but the related microscopic properties are still unclear
 
. In the last few decades a 

numerous experimental techniques such as microwave dielectric relaxation 
2 

, Raman 

spectroscopy 
3 

, light scattering spectroscopy 
4
, nuclear magnetic resonance  (NMR) 

5 
, 

small angle neutron scattering
 6

 etc. have been used to study the structural and 

dynamical properties of liquid water. A strong controversy on structure of liquid was 

raised by Wernet et al
 7 

when they used x-ray absorption (XAS) technique to study the 

structure of liquid water and suggested that majority of the liquid water experiences a 

distorted, asymmetric hydrogen (H) bonding environment.  This result was in 

confliction with the well established fact that the waters are generally distributed by 

tetrahedral network of H bonds 
8 , 9

. Soper 
10

 used empirical potential structure 

refinement (EPSR) technique and interpreted with existing neutron and x-ray diffraction 

data using an asymmetric water potential. The fitted data is  in good agreement  with the 

data obtained from x-ray and neutron diffraction in q space for all the models which has 

been tested 
11

.  Tokushima et al 
12

 used high resolution X-ray emission spectroscopy of 

liquid water and found  that two distinct narrow lone-pair derived peaks, which were 

due to tetrahedral and strongly distorted hydrogen-bonded water respectively. The 

intermolecular partial pair correlation functions for liquid water have been studied by 

Neutron diffraction with isotopic substitution (NDIS) techniques 
13

. Milles 
14

 used 

diaphragm-cell technique and Arata and co-workers 
15

 used NMR pulsed-gradient spin 

echo (PGSE) methods to study the self-diffusion co-efficient of pure bulk water at room 



temperature. Recently, Wilke and co-workers 
16

 reported the microscopic structure of 

water at sub- and supercritical conditions by using X-ray Raman spectroscopy as well as 

ab initio molecular dynamics simulations, and density functional theory study. They 

showed that the distortions of hydrogen-bond network increase drastically when  

temperature and pressure of system increase to the supercritical regime. Recent 

development of spectroscopic techniques such as terahertz (THz) spectroscopy 
17

, 

Raman echo 
18

, and Optical Kerr effect spectroscopy 
19

 further provide valuable 

information of water dynamics in the time domain. 

 Besides various sophisticated experimental techniques several theoretical and 

simulation methods have been developed to describe the properties of liquid water. In 

this regards, it should be mentioned that computer simulation is a powerful tool to study 

the microscopic properties of chemical systems. From simulated trajectories one can 

measure several properties which can be directly compared with suitable experiments. 

Thus the method acts as a bridge between models and theoretical predictions as well as 

between models and experimental results.  Researchers used these methods to provide a 

detail of microscopic properties of liquid water.These methods provide a detail of 

microscopic properties of liquid water. Over the last 30 years different potential models 

were used to reproduce the properties of water such as density, dielectric constant, 

diffusion coefficient, radial distribution functions, and many others, including their 

temperature or pressure dependency by using computer simulation techniques 
20-29 

. In 

these studies water monomer has been treated as rigid or as flexible, allowing all 

degrees of freedom for the OH bonds and HOH bond angle. Non-equilibrium classical 

molecular dynamic simulation is used by Ingrosso et al 
30

 for the theoretical study of the 

transfer of the water bend-to-liberation energy to liquid H2O. In a pioneer work Rahman 

and Stillinger 
31

 studied the molecular dynamics of liquid water and reported that the 

liquid water consists of large number of highly strained hydrogen network and the 

diffusion in the liquid is due to the cooperative interaction of the neighbouring 

molecules. Since the interaction potential models highly determine the results of 

computer simulations thus the properties of water depends upon the water model 

too.Therefore it will be interesting to compare the microscopic properties of liquid water 

depending upon the available potential models.  

 



2. OBJECTIVES 

 

 Classical molecular dynamics simulation involves the integrations of equations of 

motions   of many body systems of interacting particle.It can provide direct information 

on the structure and dynamics of molecules 
32 ,

 
33

. In this thesis we have performed 

molecules dynamics simulation of different water models and compared their calculated 

bulk properties. In specific we looked into the structure and the self-diffusion of the 

waters and the results are once again compared with experimentally available data. In 

this study we have used three different water models namely, TIP3P 
20, 34

 (transferable 

intermolecular potential 3P), SPC/E 
35

 (extended simple point charge) and TIP4P 
36 . The 

potential of these water models are composed of Lennard-Jones and Coulombic terms. 

Among the three models TIP3P and SPC/E have three site interactions whereas TIP4P 

has four sites of interactions. In Figure 1 we have presented a schematic diagram of the 

water models.  

 

                                     

 

 

 

 

 

 

(a)                                                                           (b) 

                                    

FIGURE 1: Schematic representation of (a) 3-sites and (b) 4-sites water models 

                               

In these models each atom is assigned a point charge and the oxygen atom gets Lennard 

Jones parameters. 3-sites water model is mostly used in simulation because of its 

simplicity and high computational efficiency. In 4-site water model negative charge is 

placed on a dummy atom (labelled as M in figure 1(b), along the bisector of HOH angle 

near oxygen atom.   

 

 

  



3. SIMULATION DETAILS 

 

Three separate simulations were carried out with TIP3P, SPC/E and TIP4P water 

models by using NAMD 
37

 code. In the rest of the thesis we will refer these simulations 

as S1, S2 and S3 respectively. The parameters of the three water models are given in 

Table 1.  

                   

TABLE 1: Parameters of TIP3P, SPC/E and TIP4P water models. 

 

Parameters TIP3P 
38 SPC/E 

39 
 TIP4P 

39
 

oo (Kcal/m) 0.152 0.155 0.155 

oo ( 0 ) 3.1506 3.1656 3.1540 

rOH( 0 ) 0.9572 1.000 0.9572 

rOM( 0 )    -   - 0.15 

HOH angle 104.52 109.47 104.52 

)(0 eq  -0.8340 -0.8472    - 

)(eqh  0.417 0.4238 0.52 

)(eqm     -    - -1.04 

 

The force field is the mathematical description of the potential which the atoms in the 

system experience. It consists of several terms and each of these describes either inter-

molecular or intra-molecular interaction exhibited by the atoms in the system. A typical 

potential (V) can be given as, 
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The first term in the above potential energy form accouts the stretching of bonds, kb is 

bond force constant. The second term of the equation accounts for the bond angle, kθ is 

the angle force constant. The third term account for the dihedrals (torsion angle), kΦ is 

the dihedral force constant, η is function multiplicity, Φ is the dihedral angle and δ is 

phase shift. The fourth term corresponds to the impropers (out of the plane bonding) 

where kω  is the force constant. The fifth term accounts for the angle bending of the 1,3 

interaction. Sixth term accounts for the non-bonded interaction between the pair of 

atom. Parameters with zero subscript represent the corresponding equilibrium values. 

The initial configurations of water models were prepared from Packmol 
40 

code.  

 

 All the simulations were performed at 300K with periodic boundary conditions in 

a cubic box with side length 40.0 Å. Each box contained 2106 water molecules. The 

systems were first minimized using the conjugate gradient energy minimization method 

as implemented in the NAMD 
37

 code. Then gradually the temperature of each system 

was increased to the room temperature of 300 K within a short MD run. This was 

carried out at a constant pressure (P=1 atm) under the isothermal-isoberic ensemble 

(NPT) conditions. It was then followed by an NPT equilibration run at 300 K for 4.6 ns 

duration for each of the systems. The temperature and pressure of the systems was 

controlled by Langevin dynamics and Nose–Hoover Langevin piston methods 
41

. The 

cell volumes were allowed to fluctuate isotropically during this period. At the end of 

these NPT runs, the volumes of the three systems attained steady values with cell edge 

lengths 39.68 , 39.48 and 39.65 Å for S1, S2 and S3 simulations. The dimensions of the 

simulation cells were then fixed and the conditions were changed to constant 

temperature (300 K) and volume (NVT ensemble). After 4.6 ns, a production run of 5.4 

ns was carried out for each of the three systems.MD time step of 1 fs was employed for 

each of the simulations and the trajectories were stored every 500 fs for subsequent 

analysis.  

 The minimum image convention 
32  

was employed to calculate the short range 

Lennard-Jones interactions using a spherical cut-off distance of 12 with a switch 

distance of 10 . The long-range electrostatic interactions were calculated by using the 

particle-mesh Ewald sum (PME) method 
42

. 

 



4. RESULTS AND DISCUSSIONS  

 

In Figure 2, 3 and 4 we have shown the snapshots of the simulated water box at different 

time steps as obtained from S1, S2 and S3 simulations. The initial boxes for the three 

systems are also displayed in the corresponding figures. In rest of the section we will 

discuss various microscopic properties of the waters as obtained from three different 

simulations. 
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                                                                      (c) 

FIGURE 2. Snapshots of  TIP3P water-box taken at different timesteps at (a) t=0 (b) 

t=5 and (c) t=10 ns 
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(b) 

 

 



 

 

 

 

 

 

 

 

 

       (c) 

FIGURE 3. Snapshots of  SPC/E water-box taken at different timesteps at (a) t=0 (b)  

t=5 and (c) t=10 ns 

                  

 

 

 

 

 

 

 

 

(a) 

 

 

 



 

 

 

 

 

 

 

 

 

(b) 

 

                                                     

 

 

 

 

   

                                  

   

(c) 

FIGURE 4. Snapshots of  TIP4P water-box  taken at different timesteps at (a) t=0 (b) 

t=5 and (c) t=10 ns  

 

 



                

4.2. Temperature and Energy 

 

The temperature and the energy of the S1, S2 and S3 simulations are shown in Figure 5 

and 6 respectively. 

 

 

 

   

 

            

            

            

      

 

 

 

 

 

 

 

 

 

 

 

FIGURE 5.Temperature plot of TIP3P, SPC/E and TIP4P water models as a function     

of time. 

                                                       

 

 



                                                                                                                             

 

 

                                                                                  

 

 

 

 

 

 

 

 

 

 

 

FIGURE 6. Total energy Plot of TIP3P , SPC/E and TIP4P water model as a function of 

time. 

  

It is clear from the figures that during equilibration period there is fluctuations in 

temperature and energy values which is expected. Further it can be seen that during the 

production run the temperature  of the three systems remain constant. The energy of the 

systems were also attains almost steady value. This indicates that the systems are well 

equilibrated. 

 



4.2 Water Structure 

 

It is well known that the structure of liquid water can be studied by calculating pairwise 

correlation function, popularly known as radial distribution function, g(r). X-ray 
43-46

 

and neutron scattering 
47-50 

experiments provide direct information regarding the 

structure of water. Computer simulation plays an important role to characterize the 

structure of water and make a direct correlation with the experiments. In this work we 

have calculated g(r) between the oxygen atoms of the water molecules. The calculations 

were carried out for all the three water models, TIP3P, SPC/E and TIP4P and the results 

are compared with experimental data. The calculations were carried out by taking the 

average of all oxygen atoms of water molecules and the result is displayed in Figure 7. 

 

    

 

 

 

FIGURE 7. Pairwise correlation function, g(r), of water molecules for the all three water 

models. 

 

 



For all the three water models there is a distinct sharp first peak. The first peak for 

TIP3P , SPC/E and TIP4P appears at around 2.8 Å, 2.7 Å and 2.6 Å respectively.  The 

first peak in followed by a second peak at around 4.6 Å for the TIP4P and SPC/E water 

models. Beyond that the structure of water almost disappears except for TIP4P model. 

Further among the three water models TIP4P water shows a high intense first peak 

which is followed by second and third peaks of low intensity, indicating highest 

structuring of TIP4P water model as compared to the other two models. The highest 

structuring of TIP4P model may be due to formation of large number of intermolecular 

hydrogen bonds than the other two models. However further studies are needed in its 

evidence. 

 

       

 

 

                                         (a)                                                                         (b) 

 

FIGURE 8. Snapshots of intermolecular hydrogen bonding in TIP3P water model at  (a) 

t = 0 ns and (b) t = 10 ns 

 

 



   (a)       (b)  

FIGURE 9. Snapshots of intermolecular hydrogen bonding in SPC/E water model at  

(a) t = 0 ns and (b) t = 10 ns 

     

 

                                                                                                                                                

 

 

                                       (a)                                                                   (b) 

FIGURE 10. Snapshots of intermolecular hydrogen bonding in TIP4P water model at  

(a) t = 0 ns and (b) t = 10 ns 



In Figure 8 , 9 and 10 we have shown the snapshots of few representative hydrogen 

bonds that form among the water molecules. Further, we have compared the results 

obtained from our simulations with experimental data and it has found that the pair 

distribution function for SPC/E water correlates well with experimentally available 

data.
52 

The differential water structure for the three models will affect the dynamics of water 

in differential manner. Therefore, it would be interesting to look into the dynamics of 

three different water models. In next sub-section we have studied the translational 

motions of the water molecules.
 

 

4.3 Translational Motion 

 

The translational motion of water molecules were studied from the simulated trajectories 

by calculating the mean-square-displacements (MSD), <Δr
2
> of water molecules. The 

MSD can be defined as,  

                                   <Δr
2
> = <|ri(t) – ri(0)|

2
> 

where the ri(t) and ri(0) are the position vectors of the oxygen atom of the i th water 

molecule at time t and at t = 0, respectively.  

 

                      

    

 

 

 

 

 

 

 

 

 

 

FIGURE 11: Mean-square-displacement vs time plot for the water molecules of all 

three water models. 

 



The averaging is carried out over all water molecules at different time origins. The 

calculations are carried out for the three models and the results are displayed Figure 11. 

It can be seen that the translational motion of water molecules are highly restricted for  

SPC/E and TIP4P water models as compared to the TIP3P model. This is particularly 

true for the SPC/E model. We have calculated the self-diffusion coefficient of the water 

molecules. It was estimated from the slope of the linear part of the figure 11. The values 

for the three models are shown in Table 2. 

 

TABLE 2. Self-Diffusion co-efficient, D (10
-9 

m
2
 s

-1
)  values of TIP3P , SPC/E and 

TIP4P water models. The experimental D value for liquid water has also included in the 

table for comparison. 

 

 

       

Systems 

Self diffusion co-efficients   

(D) 

         TIP3P                  5.8 

         SPC/E                  2.8 

         TIP4P                  3.8 

   Water (experiment )
52,53 

                 2.3 

 

                 

For comparison we have included the experimentally available self-diffusion coefficient 

value of water in Table 2. It has found that the diffusion co-efficient of TIP3P water is 

almost twice than that of SPC/E water which indicates TIP3P waters diffuse fast as 

compared to other two models. TIP4P waters show intermediate result. Further, we have 

compared the values with experimentally available data and found that among the three 

water models the self diffusion coefficient value for SPC/E waters correlate well with 

experimental value.  

 

 

 

 

 



 

5. CONCLUSIONS 

 

In this thesis we have shown the results obtained from the MD simulations of two 3-

sites, TIP3P, and SPC/E and one 4-sites, TIP4P water models that are commonly used in 

biomolecular simulations. It has been seen that the energy of the three water models 

fluctuates significantly for the first 4.5 ns of the trajectories but after that they attained 

almost steady values.The temperature was maintained all over the simulations. These 

indicate that the trajectories were well equilibrated. In this study we have shown that 

depending upon the water models, the structure as well as dynamical properties of liquid 

water differ significantly.  Our calculations showed that up to around 3.5 Ǻ distance  the 

water of all three models is highly structured.  The high intense first peak followed by 

two low intense second and third peaks for TIP4P model confirms the highest water 

structure for this model as compared to TIP3P, and SPC/E. The translational motion of 

water molecules has been studied by calculating their mean-square-displacement. It has 

noticed that TIP3P water diffuses fast as compared to other two water models. The 

motion of SPC/E water is found to be highly restricted. Further, the experimental self-

diffusion co-efficient value of liquid water correlates well with the value obtained from 

the linear fitting of MSD curves of the SPC/E water model as compared to the other 

two.   
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