
MODELLING OF GEOTECHNICAL STRUCTURES USING MULTI-

VARIATE ADAPTIVE REGRESSION SPLINE (MARS) AND GENETIC 

PROGRAMMING (GP) 
 

A Thesis Submitted in Partial Fulfillment of the Requirements for the  
Degree of 

 

 

Master of Technology  

In 

Civil Engineering 

(Geotechnical engineering) 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

SWAGATIKA SENAPATI  

 

DEPARTMENT OF CIVIL ENGINEERING 

NATIONAL INSTITUTE OF TECHNOLOGY, ROURKELA 

2013 

 



MODELLING OF GEOTECHNICAL STRUCTURES USING MULTI-

VARIATE ADAPTIVE REGRESSION SPLINE (MARS) AND GENETIC 

PROGRAMMING (GP) 
 

 
 

A Thesis Submitted in Partial Fulfillment of the Requirements for the 
Degree of 

 
 

Master of Technology  
in 

Civil Engineering 
(Geotechnical engineering) 

 

 

 

Under the guidance and supervision of 

Prof S.K.Das 
 

 

Submitted By: 

  SWAGATIKA SENAPATI 

(ROLL NO. 211CE1017) 

 

 

 

 

 

 

 

DEPARTMENT OF CIVIL ENGINEERING 

NATIONAL INSTITUTE OF TECHNOLOGY, ROURKELA 

2013 



 

 

 

 

 

National Institute of Technology 

Rourkela 

 

 

CERTIFICATE 

 

This is to certify that the thesis entitled “Modeling of geotechnical structures using 

multi-variate adaptive regression spline (MARS) and genetic programming (GP)” 

being submitted by Swagatika Senapati in partial fulfillment of the requirements 

for the award of Master of Technology Degree in Civil Engineering with 

specialization in GEOTECHNICAL ENGINEERING at National Institute of 

Technology Rourkela, is an authentic work carried out by her under my guidance 

and supervision.  

To the best of my knowledge, the matter embodied in this report has not been 

submitted to any other university/institute for the award of any degree or diploma. 

  

 

 

 

                                                                            Dr. SARAT Ku. DAS 

Place: Rourkela                                                     Associate Professor 

Date: 28/05/2012                                        Department of Civil Engineering 

                                                                                  NIT Rourkela 



ACKNOWLEDGEMENT 

The pleasant point of presenting a report is the opportunity to thank those who 

have contributed to build my knowledge. This is only possible due to God’s grace, 

Co-operation of my guide, Parents support and their blessings. 

I have been very fortunate in having Dr. S.K. Das, Associate Professor of 

Department of Civil engineering, National Institute of Technology (NIT) Rourkela 

as my thesis supervisor. I express my deep sense of gratitude and indebtedness to 

my guide Prof. S.K. Das for his keen interest, immense help, inspiration, 

encouragement and patience throughout the research which helped me carrying out 

the work. 

I extend my sincere thanks to the Head of the civil engineering Department Prof. 

N. Roy for his support over the year. 

I would like to take this opportunity to thank my Parents and my sister for their 

unconditional love, moral support and encouragement for the completion of this 

project. 

I should express my sincere thanks to all my friends and seniors for their moral 

support and advices during my M-tech project. 

                                                                                           Swagatika Senapati 



ABSTRACT 

The evolution of computational geotechnical engineering analyses closely follows the 

development in computational methods. The soil is considered as a complex material produced 

by the weathering of solid rock. Due to its uncertain behavior, modeling the behavior of such 

materials is complex by using more traditional forms of mechanistic based engineering methods 

like analytical and finite element methods etc. Very often it is difficult to develop 

theoretical/statistical models due to the complex nature of the problem and uncertainty in soil 

parameters. These are situations where data driven approach has been found to more appropriate 

than model oriented approach. To take care of such problems in artificial intelligence (AI) 

techniques has been developed in the computational methods. Though AI techniques has proved 

to have the superior predictive ability than other traditional methods for modeling complex 

behavior of geotechnical engineering materials,  still it is facing some criticism due to the lack of 

transparency, knowledge extraction and model uncertainty. To overcome this problem there are 

developments of improvised AI techniques.  Different AI techniques as ‘black box’ i.e artificial 

neural network (ANN), ‘grey box’ i.e Genetic programming (GP) and ‘white box’ i.e 

multivariate adaptive regression spline (MARS) depending upon its transparency and knowledge 

extraction. Here, in this study of  GP and MARS ‘grey box’ and ‘white box’ AI techniques are 

applied to some geotechnical problems such as  prediction of lateral load capacity of piles in 

clay, pull-out capacity of ground anchor, factor of safety of slope stability analysis and ultimate 

bearing capacity  of shallow foundations.  Different statistical criteria are used to compare the 

developed GP and MARS models with other AI models like ANN and support vector machine 

(SVM) models. It was observed that for the problems considered in the present study, the MARS 

and GP model are found to be more efficient than ANN and SVM model and the model 



equations are also found to be more comprehensive. But as every numerical method has its own 

advantages and disadvantages and are also problem specific, there is a need to apply these 

techniques to other Geotechnical engineering problems to draw final conclusions regarding its 

efficacy.  
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CHAPTER 1 

INTRODUCTION 

1.1 INTRODUCTION 

Geotechnical engineering deals with the materials like soil and rock, which exhibit uncertain 

behavior due to the physical processes associated with the formation of these materials. The soil 

is considered as a complex material produced by the weathering of solid rock. Due to its 

uncertain behavior, modeling the behavior of such materials is complex by using more traditional 

forms of mechanistic based engineering methods like analytical and finite element methods 

etc..The evolution of computational Geotechnical engineering analyses closely follows the 

development in computational methods. At the early stage of geotechnical engineering, 

analytical methods and simple limit equilibrium method coupled with engineering judgment 

were used for development of physical models of geotechnical engineering problems. Over the 

years, analytical numerical and empirical methods are in use as shown in Figure 1.1. Though 

numerical methods like finite element methods, finite difference method and discrete element 

method are in use particularly for academic and sophisticated projects, experience based methods 

are useful for common and preliminary studies.  
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Unlike other engineering materials the success of the above methods to applications in 

Geotechnical engineering is hindered due to difficulty in obtaining an accurate constitutive 

model and spatial variability of soil particularly for complex problems like liquefaction and pile 

capacity problems. Hence, based on case histories/field tests, statistically derived empirical 

methods, and semi-empirical methods based on analytical methods are more popular in such 

cases. The success of these empirical and semi-empirical methods depend to a great extent on the 

chosen statistical/theoretical model for the system to be analyzed matching the input output data 

and statistical methods used to find out the model parameters (Das and Basudhar, 2006). Very 

often it is difficult to develop theoretical/statistical models due to the complex nature of the 

problem and uncertainty in soil parameters. These are situations where data driven approach has 

been found to more appropriate than model oriented approach. To take care of such problems in 

artificial intelligence (AI) techniques have been developed in the computational methods. Within 

a short period it found wide applicability cutting across various disciplines. This has given a 

spurt in the research activities in the art of applying such methods to solve real life problems 

highlighting the latent capabilities and drawbacks of such methods. So, the researchers are 

encouraged to apply different AI techniques such as ANN is applied to predict modeling the 

axial and lateral load capacities of pile foundation in compression and uplift including driven 

piles (Ahmad et al., 2007; Ardalan et al., 2009; Das and Basudhar, 2006; Pal and Deswal, 2008; 

Shahin, 2010), drilled shafts (Goh et al., 2005; Shahin, 2010), and ground anchor piles (Shahin 

and Jaksa, 2005, 2006). 

ANN is still considered as ‘black box’ system with poor generalization, though various attempts 

made for refinement and explanations. Recently support vector machine (SVM), based on 

statistical learning theory and structural risk minimization is being used as an alternate prediction 
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model (Das et al. 2010; Das et al. 2011). The SVM uses structural constrained minimization 

penalizing the error margin during training (Vapnik 1998).  The error function being a convex 

function better generalization used to observe in SVM (Das et al. 2010; Das et al. 2011) 

compared to ANN. 

Though AI techniques has proved to have the superior predictive ability than other traditional 

methods for modeling complex behavior of geotechnical engineering materials, still it is facing 

some criticism due to the lack of transparency, knowledge extraction and model uncertainty. To 

overcome this there are a development of improvised AI techniques.  

As shown in Figure 1.2, Giustolisi (2007) described different AI  techniques as ‘black box’, 

‘grey box’ and ‘white box’ depending upon its transparency and knowledge extraction. This 

figure shows the classification of modelling techniques based on colours which indicates that, 

with higher physical knowledge used during development, the physical interpretation of the 

phenomenon will be better that the model provides to the user.  

 

 

Fig-1.2: Graphical classification of modeling techniques 
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Other techniques, belonging to ‘gray box’ model (is genetic programming (GP) (Koza, 1992), 

mimics biological evolution of living organisms and makes use of principle of genetic algorithm 

(GA). Various attempts have been made in the recent past to use GP to some Geotechnical 

engineering problems (Gandomi and Alavi, 2011; 2012).  GP helps in achieving greatly 

simplified model formula compared to ANN model, but a tradeoff is made between the 

complexity of the formula and accuracy of the model.    Another class of model may be termed 

as ‘white box’ model is the multivariate adaptive regression spline (MARS) developed based on 

statistical model developed by Friedman (1991). MARS can adjust any functional form, hence 

suitable for exploratory data analysis. Samui et al. (2011) observed that the MARS model for 

uplift capacity of suction caisson has better statistical performance comparable to ANN and FEM 

model.  Hence, more research is required in ANN regarding the generalization, control on the 

model parameters, extrapolation and depicting simplified model equation.  

It may be mentioned here that , though above AI techniques are based on sound 

mathematical/numerical background, its application to different problems is an art. Hence, in this 

thesis an attempt has been made to apply two recent AI techniques, named GP and MARS to 

some foundation engineering problems to check its applicability and recommend guidelines for 

future application of these techniques to other Geotechnical engineering problems.  The basic 

outline of this thesis is presented in Figure 1.3 
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Fig- 1.3: Basic outline of thesis 
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1.2  Objective and scope 

The objective of the present work is to develop Geotechnical modeling of some foundations 

using AI techniques, GP and MARS.  

The scope of the present work includes : 

 Prediction of Lateral Load capacity of Piles in Clay using GP and MARS 

 Prediction of  the pullout capacity of ground anchor Using MARS and GP 

 Prediction of factor of safety of slope stability analysis using MARS and GP 

 Prediction of the Ultimate bearing capacity  of Shallow Foundations using  GP and 

MARS 

1.3 Thesis outline 

After the brief introduction (Chapter 1), the review and methodology of Genetic programming 

(GP) and Multivariate adaptive regression spline(MARS) is described in chapter 2. 

Chapter 3,4,5,6 describes the application of GP and MARS and comparison with ANN results in 

different geotechnical engineering problems such as Prediction of Lateral Load capacity of Piles 

in Clay, Prediction of  pullout capacity of ground anchor , Prediction of factor of safety of slope 

stability analysis ,Prediction of the Ultimate bearing capacity  of Shallow Foundations using  GP 

and MARS respectively.  

In chapter 6 conclusions drawn from various studies made in this thesis are presented. The general 

layout of the thesis work based on each chapter is shown in a flow diagram (Figure 1.3). 
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CHAPTER 2 

REVIEW OF LITERATURE AND METHODOLOGY 

2.1 INTRODUCTION  

The AI techniques ANN has been extensively used in geotechnical engineering with limited use 

of SVM. But the application of GP and MARS is very limited. In the present Chapter a brief 

review about ANN and SVM and their application to different geotechnical problems are 

presented. But as the use of GP and MARS is very limited in geotechnical engineering problems, 

the details of GP and MARS are discussed  

2.1.1 Artificial neural networks (ANN) 

In the present study, the ANN models are trained with differential evolution and Bayesian 

regularization method and are defined as DENN and BRNN respectively. The use of DENN and 

BRNN are limited in geotechnical engineering (Das and Basudhar 2006,Das and Basudhar 2008, 

Goh et al. 2005, Das et al. 2011b). A brief description about the Bayesian regularization and 

differential evolution neural network is presented here for completeness.  

 Bayesian regularization neural network (BRNN) 

In case of back propagation neural network (BPNN) the error function considered for 

minimization is the mean square error (MSE). This may lead to over-fitting due to unbounded 

values of the weights. The other method called as regularization, in which the performance 

function is changed by adding a term that consist of mean square error of weights and biases as 

given below 
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MSWγMSEγMSEREG )1(                                (2.1) 

Where MSE is the mean square error of the network,  is the regularization parameter and  




n

j
j

w
n

MSW
1

21
                              (2.2) 

This performance function will cause the network to have smaller weights and biases thereby 

forcing networks less likely to be over-fit. The optimal regularization parameter  is determined 

through the Bayesian framework (Demuth and Beale  2000) as the low value of will not 

adequately fit the training data and high value of it may result in over-fitting. The number of 

network parameters (weights and biases) are being effectively used by the network can be found 

out by the above algorithm. The effective number of parameters remains the same irrespective of 

the total number of parameters in the network.  

 Differential evolution neural network (DENN) 

The differential evolution (DE) optimization is a population based heuristic global optimization 

method. Unlike other evolutionary optimization, in DE the vectors in current populations are 

randomly sampled and combined to create vectors for the next generation with real valued 

crossover factor and mutation factor. The detail of DENN is available in Ilonenet al. (2003). 

2.2 Genetic Programming 

Genetic Programming is a pattern recognition technique where the model is developed on the 

basis of adaptive learning over a number of cases of provided data, developed by Koza (1992). It 

mimics biological evolution of living organisms and makes use of principle of genetic algorithm 

(GA). In traditional regression analysis the user has to specify the structure of the model whereas 
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in GP both structure and the parameters of the mathematical model are evolved automatically. It 

provides a solution in the form of tree structure or in the form of compact equation using the 

given dataset. A brief description about GP is presented for the completeness, but the details can 

be found in Koza (1992).  

 GP model is composed of nodes, which resembles to a tree structure and thus, it is also 

known as   GP tree. Nodes are the elements either from a functional set or terminal set. A 

functional set may include arithmetic operators (+, ×, ÷, or -), mathematical functions (sin(.), 

cos(.), tanh(.) or ln(.)), Boolean operators (AND, OR, NOT etc), logical expressions (IF, or 

THEN) or any other  suitable  functions defined by the user. The terminal set includes variables 

(like x1, x2, x3, etc) or constants (like 3, 5, 6, 9 etc) or both. The functions and terminals are 

randomly chosen to form a GP tree with a root node and the branches extending from each 

function nodes to end in terminal nodes as shown in Figure 1.3. 

 

Fig 2.1. A GP tree expressing function:  (5X1+X2)
2 
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Initially a set of GP trees, as per user defined population size, is randomly generated using 

various functions and terminals assigned by the user. The fitness criterion is calculated by the 

objective function and it determines the quality of the each individual in the population 

competing with the rest. At each generation a new population is created by selecting individuals 

as per the merit of their fitness from the initial population and then, implementing various 

evolutionary mechanisms like reproduction, crossover and mutation to the functions and 

terminals of the selected GP trees. The new population then replaces the existing population. 

This process is iterated until the termination criterion, which can be either a threshold fitness 

value or maximum number of generations, is satisfied. The best GP model, based on its fitness 

value that appeared in any generation, is selected as the result of genetic programming. A brief 

description on various evolutionary mechanisms in GP are presented below. 

Initial Population 

In the first step of genetic programming a number of GP trees are generated by randomly 

selecting user defined functions and terminals. These GP trees form initial population. 

Reproduction 

In the second stage of the GP, a proportion of the initial population is selected and copied to the 

next generation and this procedure is called reproduction. Roulette wheel selection, tournament 

selection, ranking selection etc. are the methods generally followed for the selection procedure.  

Crossover 
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 In crossover operation, two trees are selected randomly from the population in the mating pool. 

One node from each tree is selected randomly, the sub-trees under the selected nodes are 

swapped and two offspring is generated as shown in Figure 2.2. 

 

 

 

Fig 2.2.A typical crossover mechanism in GP. 

 

Mutation  

A GP tree is first selected randomly from the population in the mating pool and any node of the 

tree is replaced by any other node from the same function or terminal set as shown in Figure 2.3. 

A function node can replace only a function node and the same principle is applicable for the 

terminal nodes.  

Parent 1 Offspring1 Parent 2 Offspring2 
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Figure 2.3. A typical mutation mechanism in GP
 

The general form of proposed GP model can be presented as: 

   0
1

∑ ,, bbXfXFQ
n

i
ip 



                                                         (2.3) 

where,  F= the function created by the GP  referred herein as pile load function,  X = vector of 

input variables = { D, L, e, Su} ,where  D = diameter of pile , L= depth of pile embedment, 

e = eccentricity of load, Su = un-drained shear strength of soil, bi is constant,  f is  the function 

defined by the user and n is the number of terms of target expression and b0= bias. The GP as per 

Searsonet al. (2010) is used and the present model is developed and implemented using Matlab 

(Math Work Inc. 2005). 

2.2.1Multi-gene genetic programming 

In traditional genetic programming where input output relationship is presented in terms of 

empirical mathematical model of data acquired from a system is referred as symbolic regression. 

MGGP based symbolic regression is a weighted linear combination of outputs of a number of GP 

trees. Here each tree is considered as a gene. Figure 1.6 shows an example of MGGP model 
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where the output is predicted using 4 input variables (x1, x2, x3, x4). This is a non linear model as 

it contains nonlinear terms (sin (.) and log(.)) but it is linear in the parameters with respect to 

weights  c1 and c2. The complexity of the generated model depends on two MGGP parameters: 

maximum allowable number of genes (Gmax) and maximum depth of GP tree (dmax). Thus, the 

user specifies the values of Gmax and dmax to have a control over the complexity of MGGP based  

Models. 

  Gene-1          Gene-2 

 

     
431232110

/6.05.0/sin xxxLogcxxxccy 
 

Fig 2.4. An example of typical multi-gene GP model 

 

 

 The Nash-Sutcliff coefficient of efficiency (E) of the model based on training data generally 

increases with increasing values Gmax and dmax, but it results in increasing the complexity of the 

evolved model. Thus, there are optimum values of Gmax and dmax, which produces a relatively 

compact model which is a linear combination of lower order non-linear transformations of input 
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variables (Searsonset al. 2010). The linear coefficients (c1 and c2) and the bias (c0) of the model 

are obtained from the training data using statistical regression analysis (ordinary least square 

method). In MGGP procedure the user defined initial population is generated by creating 

individuals that contain randomly evolved GP trees (genes) varying from 1 to Gmax (Searsonset 

al.2010). In addition to the standard GP evolution mechanisms as discussed earlier there are 

some special MGGP crossover mechanisms which allow the exchange of genes between 

individuals and brief descriptions of them arepresented below. 

 

Two point high level cross over 

Two point high level crossover operation allows swapping of genes between two parent 

individuals in the  mating pool and can be explained through an example where the first parent 

individual is having four genes [G1, G2, G3, G4] and the second contains three genes [G5, G6, G7] 

with  Gmax = 5. Two crossover points are selected randomly for each parent and genes enclosed 

by crossover points are denoted by {...}. 

[G1,{G2, G3, G4}], [G5, G6,{G7}] 

The genes enclosed by the cross over points are swapped and thus, two offspring individuals are 

created as shown below. 

[G1, {G7}], [G5, G6,{G2, G3, G4}] 

By this operation both parent individuals acquire new genes as well as genes are deleted from 

either individual. If swapping of genes results in an individual containing more genes than Gmax 

then genes are randomly selected and removed till the individual contain Gmax genes. 
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Two point low level crossover 

Standard GP sub-tree crossover is referred as two point low level crossover. In this operation 

first a gene is randomly selected from each of the parent individuals (any two) in the mating pool 

and then swapping of sub- trees under arbitrarily selected nodes of each gene is performed. The 

resulting trees replace the parent trees in otherwise unchanged parent individual producing 

offspring individuals for the next generation. 

 Similarly MGGP also provides six methods of mutation of GP trees (Gandomi and Alavi 

2012a). The probabilities of the various evolutionary mechanisms can be set by the user for 

achieving best MGGP model. These mechanisms are grouped into categories referred as events. 

Therefore, the probability of crossover event, mutation event and direct reproduction event are to 

be specified by the user in such a way that the sum of these probabilities is 1.  

The general form of MGGP model can be presented as: 

   0∑
1

,, b
n

i
ibXfXFpLI 



     (2.4) 

where,LIp= predicted value of LI, F= the function created by the MGGP  referred herein as 

liquefaction index function, for Model-I X = vector of input variables = {qc1N, Ic,  σv
’
,CSR7.5} 

(Juanget.al. 2003), qc1N= normalized cone tip resistance (Juanget al. 2003), Ic= soil type index 

(Juanget al. 2003),σ’v= vertical effective stress of soil at  the depth studied, CSR7.5is the cyclic 

stress ratio adjusted to the benchmark earthquake of  moment magnitude (Mw) of 7.5 as presented 

by Youdet al. (2001); for Model-II  X== {qc, Rf,  σv, σv’,amax/g, Mw} (Goh and Goh 2007),qc= 

measured cone tip resistance,  Rf = friction ratio,σv= vertical total stress of soil at  the depth 

studied, amax= peak horizontal ground surface acceleration, g = acceleration due to gravity, bi is a 

constant,  f  is the function defined by the user and n is the number of terms of target expression 
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and b0= bias. In the present study MGGP models are developed using GPTIPS toolbox (Searson  

2009)in combination with the functions coded in Matlab (Math Work Inc 2005). 

2.3 MULTIVARIATE ADAPTIVE REGRESSION SPLINE(MARS) 

MARS is basically a nonparametric regression procedure that does not assume any functional 

relationship between independent and dependent variables. Instead, MARS uses the regression 

data to construct this relation and forms some sets of coefficients and basis functions. In other 

words it can be said that this method is based on “divide and conquer” strategy, which divides 

the input parameters into groups or say regions, each having its own regression equation. So this 

makes MARS particularly suitable for problems with higher input dimensions (i.e., with more 

number of variables), whereas other techniques face problem of dimensionality with large 

number of input variables. 

2.3.1 ABOUT MARS MODELLING  

Multivariate  Adaptive  Regression  Spline  (MARS)  is  a  method  to  estimate  general  

functions of  high  dimensional  arguments  given  sparse  data  it  has  an  increasing  number  of 

applications  in  many  areas  of  science,  economy  and technology. At the same time it  is  a 

research challenge, to which this present project wishes to contribute, especially, by means of 

various geotechnical regression problems. We shall mostly refer to a regression formulation, but 

also classification will become addressed. The finitely many data underlying may base on 

different types of experiments, records or they may be obtained with different kinds of 

technologies.     

 

MARS  is  an  adaptive  procedure  because  the  selection  of  basis  functions  is  data-based  

and specific to the problem at hand. This algorithm is a nonparametric regression procedure that 

makes  no  specific  assumption  about  the  underlying  functional  relationship  between  the 
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dependent  and  independent  variables.  It  is  very  useful  for  high  dimensional  problems  and 

shows  a  great  promise  for  fitting  nonlinear  multivariate  functions.  A  special  advantage  of 

MARS  lies  in  its  ability  to  estimate  the  contributions  of  the  basis  functions  so  that  both  

the additive  and  the  interactive  effects  of  the  predictors  are  allowed  to  determine  the  

response variable.  

For this model an algorithm was proposed by Friedman (1991) [4] as a flexible approach to  

high  dimensional  nonparametric  regression,  based  on  a  modified  recursive  partitioning  

methodology. MARS uses expansions in piecewise linear basis functions of the form 



  )]([),(  xxc ,  )]([),(_  xxc  (2.5) 

where [q] +: = max{ 0, q} and τ is an univariate knot. Each function is piecewise linear, with a 

knot at the value τ, and it is called a reflected pair. For visualization see Figure 2.5: 

 

Fig 2.5: A basic element in regression with MARS 

The points in this figure illustrate the  data ( xi , yi ) ( i = 1, 2,...N ), composed  by  a  p-

dimensional  input  specification  of  the  variable x  and  the  corresponding  1-dimensional 

responses which specify the variable y.  The following general model is considered on the the 

relation between input and response: 
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 )(XfY   (2.6) 

Where, Y is  a  response  variable, X=(X1 ,X2,………….Xn )
T
 is a vector of predictors and ε is 

an additive stochastic component which is assumed to have zero mean and finite variance. 

The goal is to construct reflected pairs for each input xj (j=1,2………p) with p-dimensional knots 

τi = (τi,1, τi2,…. τi,p)
T
. Actually,  the knots τi,j  more far away from the input values xi,jcan even be 

chosen, if any such a position promises a better data fitting. 

After these preparations, the set of basis functions is: 

}},........,2,1{},,.......,,{|)(,){(: ,,2,1 pjxxxXX jNjjjj     (2.7) 

If all of the input values are distinct, there are 2Np basis functions altogether. Thus, f (X) can be 

represented by a linear combination which is successively built up by the set above and with the 

intercept θ0 , such that (2.6)  takes the form: 





M

m

mm XY
1

0 .)(   (2.8) 

The  MARS  algorithm  for  estimating  the  model  function f(x) consists  of  two  algorithms 

(Friedman 1991):   

 

(i) The forward stepwise algorithm:  Here, forward stepwise search for the basis function takes 

place with  the constant  basis function,  the only  one  present  initially. At  each  step, the split 

that  minimized  some “lack  of  fit”  criterion  from  all  the  possible  splits  on each  basis 

function is chosen. The process stops when a user-specified value max M is reached. At the end 

of this process we have a large expression. This model typically overfits the data and so a 

backward deletion procedure is applied.  

 



 
 

19 
 

(ii)  The backward stepwise algorithm: The purpose of this algorithm is to prevent from over-

fitting  by  decreasing  the  complexity  of  the  model  without  degrading  the  fit  to  the  data.  

Therefore,  the  backward  stepwise  algorithm  involves  removing  from  the  model  basis  

functions  that  contribute  to  the  smallest  increase in  the  residual  squared  error  at  each  

stage, producing an optimally estimated model f
α
 with respect to each number of terms, called α. 

We note that α expresses some complexity of our estimation. To estimate the optimal value of α,  

generalized  cross-validation  can  be  used  which  shows  the  lack  of  fit  when  using MARS. 

This criterion is defined by 

,
)/)(1(

))((

:
2

1

2

NM

xfy

GCV

N

i

ii











  (2.9) 

Where (M (α) := u + d M). Here, N is the number of sample observations, M is the number of 

linearly independent basis functions,  M (α) is the number of knots selected in the forward 

process, and d is a cost for basis-function optimization as well as a smoothing parameter for the 

procedure.  We  do  not  employ  the  backward  stepwise  algorithm  to  estimate  the  function f 

(x) . At its place, as an alternative we propose to use penalty terms in addition to the least-

squares estimation in order to control the lack of fit from the viewpoint of the complexity of the 

estimation. Because of this new treatment offered, we do not need to run the backward stepwise 

algorithm. 
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Flow chart explaining MARS. 

 

Fig 2.6: Flow chart showing MARS modelling. 

 

 

Y: Dependent variable matrix 

X: Independent variable matrix 

Full bx: Model matrix including all the basis functions 

Selected bx: Model matrix containing the selected functions after pruning pass. 

2.3.2 MARS APPLICATION USING EARTH 

Here in the present study ‘EARTH’ package of R to predict the model of some geotechnical 

problems. R is a system for statistical computation and graphics. Nowadays it is used in various 

statistical problems related to engineering, medical, economics etc. Moreover it can also be used 

for regression problems such as linear, nonlinear, and single or multivariate. The advantage of 

using R is that, it is very easy to work on R. We don’t have to write long syntax, each and every 
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function of R consists of small syntax. Also data from excel can be directly entered into R from 

clipboard.  

 

R is a system for statistical computation and graphics. It consists of a language plus a run-time 

environment with graphics, a debugger, access to certain system functions, and the ability to run 

programs stored in script files.  

The design of R has been heavily influenced by two existing languages: Becker, Chambers 

&Wilks' and Sussman's Scheme. Whereas the resulting language is very similar in appearance to 

S, the underlying implementation and semantics are derived from Scheme. 

The core of R is an interpreted computer language which allows branching and looping as well 

as modular programming using functions. Most of the user-visible functions in R are written in 

R. It is possible for the user to interface to procedures written in the C, C++, or FORTRAN 

languages for efficiency. The R distribution contains functionality for a large number of 

statistical procedures. Among these are: linear and generalized linear models, nonlinear 

regression models, time series analysis, classical parametric and nonparametric tests, clustering 

and smoothing. There is also a large set of functions which provide a flexible graphical 

environment for creating various kinds of data presentations. Additional modules (“add-on 

packages”) are available for a variety of specific purposes. 

R was initially written by Ross Ihaka and Robert Gentleman at the Department of Statistics of 

the University of Auckland in Auckland, New Zealand. In addition, a large group of individuals 

has contributed to R by sending code and bug reports.  

Since mid-1997 there has been a core group (the “R Core Team”) who can modify the R source 

code archive. The group currently consists of Doug Bates, John Chambers, Peter Dalgaard, Seth 

Falcon, Robert Gentleman, Kurt Hornik, Stefano Iacus, Ross Ihaka, Friedrich Leisch, 

mailto:Robert.Gentleman@R-project.org
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UweLigges, Thomas Lumley, Martin Maechler, Duncan Murdoch, Paul Murrell, Martyn 

Plummer, Brian Ripley, DeepayanSarkar, Duncan Temple Lang, Luke Tierney, and Simon 

Urbanek. 

We used R version 2.15.0 (2012-03-30) for our MARS modelling. We have used EARTH 

package for this purpose. This package is also free-ware and readily available. 

What is Earth? 

The earth package is an implementation of Jerome Friedman's Multivariate Adaptive Regression 

Splines, commonly known as "MARS". The earth source code is licensed under the GPL and 

runs in an R environment, or can be used as a stand-alone C library. Earth is derived from the 

mda:mars library written by Trevor Hastie and Rob Tibshirani. 

2.3.3 How to load EARTH on R? 

Open R and click on package tab. Then choose load package option. Load package window will 

open from there choose ‘earth’ option and click ‘ok’ button. 

 

Fig 2.7: How to load earth package in R. 
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Steps for MARS modelling in R 

Step 1: Read data from excel worksheet by copying the required data in clipboard and run the 

following command in R console: 

 <data<-read.table(“clipboard”) 

and press enter. Here data is name of data matrix (can be anything). 

To see the data stored type <data and press enter. 

Step 2: Now use the earth command to run MARS for model generation using the following 

command: 

<a<-earth(V5~.,data) 

Here ‘a’ is an object of earth and ‘V5’ is the dependent variable name as mentioned in the data 

matrix, ‘~.’ means that we want to predict V5 from all the independent variables present in the 

data matrix. 

If u want to predict V5 using any particular variable use the name of variable instead of ‘.’. 

Step 3: For getting the predicted data as per the generated model use following command: 

<summary(a) 

This command will show the general details of the model. It gives all the basis functions used in 

the model and its coefficient. It also shows the number of terms generated in the full ‘bx’ matrix 

after forward pass and how many are selected after pruning pass. The number of predictors 
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utilized in the model is also mentioned. Next information shown is the importance of variables 

(variables are arranged in decreasing order of importance). 

Step 4: Using plot( ) function we can get various plots. 

<plot(a) gives different types of graphs. 
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CHAPTER 3 

PREDICTION OF LATERAL LOAD CAPACITY OF PILES IN CLAY 

USING GENETIC PROGRAMMING AND MULTIVARIATE ADAPTIVE 

REGRESSION SPLINE 

3.1 INTRODUCTION 

 

The design of pile foundation has drawn more attention than other foundation structures. The 

axial loaded pile is more frequently used and can be designed using equations of static 

equilibrium and other dynamic equations (Poulos and Davis1980). However, the lateral loaded 

piles are used in more difficult conditions, particularly in tall and offshore structures.  The design 

of laterally loaded piles is more difficult and requires the solution of nonlinear differential 

equations.  The elastic analysis adopting Winkler soil model (Poulos and Davis 1980) is not 

suitable for the nonlinear soil behavior.  Matlock and Reese (1962) adopted an elastic analysis 

using a nonlinear lateral load capacity – deflection (p-y) curves. Portugal and Seco e Pinto 

(1993) used nonlinear p-y curves and finite element method for prediction of the behavior of 

laterally loaded piles. The above two methods are more accurate and widely used. But, spatial 

variability of soil is inevitable. Thus, developing a sufficiently accurate site model for FEM 

analysis requires extensive site characterization effort and desired constitutive modeling of 

clayey soil is also very difficult, even with considerable laboratory testing. So methods based on 

field data (Hansen 1961, Broms 1964, Meyerhof 1976) have become very much popular for the 

above study, particularly for the preliminary estimate of pile load capacity. These methods are 

based on pile load test case histories and involve statistically derived empirical equations for 

estimation of expected lateral load capacity.  



 
 

26 
 

 Artificial intelligence (AI) techniques such as artificial neural networks (ANNs) and 

support vector machine (SVM) are considered as alternate statistical methods and are found to be 

more efficient compared to statistical methods (Das and Basudhar, 2006, Das et al.,  2011a). 

ANN method has been found to be efficient in predicting the pile load capacity in both cohesion- 

less soil and clayey soil compared to traditional empirical methods (Goh 1995, Chan et al. 1995, 

Goh 1996,Lee and  Lee 1996, Teh et al. 1997,  Abu-Kiefa 1998). The performance of SVM 

model was found to be better than that of ANN model for prediction of frictional resistance of 

pile in clay (Samui 2008).  Similar studies have also been made for prediction of lateral load 

capacity of piles in clay using ANN (Das and Basudhar 2006). Based on various statistical 

performance criteria, Das and Basudhar (2006) observed that ANN model is better compared to 

Brom’s and Hansen’s method.  Using the same dataset, Pal and Deswal (2010) developed 

Gaussian process regression (GPR) and SVM models.  They observed that GPR model is better 

compared to SVM model.  However, they have compared the GPR model with the ANN model 

of Das and Basudhar (2006) only in terms of correlation coefficient (R) and root mean square 

error (RMSE).  R is a biased estimate (Das and Sivakugan, 2010) and it is difficult to assess the 

prediction of the model in terms of under prediction or over prediction on the basis of R value 

only. The RMSE explains the overall error of the dataset instead of the maximum deviation in the 

prediction of individual case.   

The most important problem associated with efficient implementation of ANN is generalization 

for some complex problems.  The developed model needs to be equally efficient for new data 

during testing or validation, which is called as generalization. There are different methods for 

generalization like early stopping and cross validation (Basheer 2001, Das and Basudhar 2006). 

The magnitude of weight is one of the reasons for poor generalization (Bartlett 1998). The 
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methods like Bayesian regularization neural network (BRNN) (Das and Basudhar  2008) have 

been used to consider the magnitude of weights as the part of the error function. Another reason 

for the poor generalization is due to the optimization of error function of ANN. The error 

function associated with weights and sigmoid function is a highly nonlinear optimization 

problem with many local minima (Das and Basudhar 2008). As the characteristic of traditional 

nonlinear programming based optimization method are the initial point dependent, the use of 

global optimization algorithms like genetic algorithm and simulated annealing are being widely 

used in training  the ANN model (Morshed and Kaluarachchi 1998, Goh et al. 2005). The 

training of the feed-forward neural network using differential evolution optimization is known as 

differential evolution neural network (DENN) (Ilonen et al. 2003, Das et al. 2011a). Das et al. 

(2011b) observed that the performance of DENN is better than BRNN and traditionally used 

Levenberg-Marquardt neural network (LMNN) for the slope stability analysis. The ANN is 

termed as a ‘black box’ system unable to explain the input output relationships and in SVM error 

parameter ‘C’ and sensitive function ‘e’ are to be found out by trial and error.  However, now it 

is possible to write down a model equation based on the trained ANN model (Gohet al. 2005, 

Das and Basudhar  2006, Das and Basudhar 2008) and SVM model (Das et al.  2010, Das et al.  

2011a), still the developed model particularly SVM model is not comprehensive. The modified 

artificial intelligence techniques in the class of ‘grey box’ and ‘white box’ are now a day being 

popular (Giustolisiet al. 2007). The genetic programming  (GP) is defined as next generation AI 

technique and also called as ‘grey box’ model (Giustolisi et al. 2007) in which the mathematical 

structure of the model can be derived, allowing further information of the system behaviour. GP 

models have been applied to few difficult geotechnical engineering problems (Yang et al.  2004,  

Javadiet al. 2006,  Rezania and Javadi 2007) with success.  A modified statistical technique 
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called multivariate adaptive regression spline (MARS) is popularized by Friedman(1991) for 

solving regression-type problems. MARS is also called as ‘white box’ system of predictive 

model, as it is based on physical laws and underlying physical relationships of the system can be 

explained. The MARS technique is very popular in the area of data mining because it does not 

assume or impose any particular type or class of relationship (e.g., linear, logistic, etc.) between 

the predictor variables and the dependent (outcome) variables of interest. This makes MARS 

particularly suitable for problems with a number of variables. It  has  an  increasing  number  of  

applications  in  many  areas  of  economy, science and technology.  However, its use in 

geotechnical engineering is very limited (Samui  2011).It needs to compare the efficacy of the 

present GP and MARS models vi's-à-via ANN, and other empirical models in terms of different 

statistical performance criteria.  

 In the present study prediction models for lateral load capacity of piles in clay under un-

drained condition have been developed using GP, MARS and ANN (BRNN, DENN). Different 

statistical criteria like correlation coefficient (R), Nash-Sutcliff coefficient of efficiency (E) (Das 

and Basudhar 2008) and root mean square error (RMSE) are used to compare the GP and MARS 

models with ANN (DENN, BRNN) models and existing empirical models (Broms and Hansen’s 

). A ranking system (Abu-Farsakh and Titi 2004) using rank index (RI) has also been followed to 

compare the different models basing on four criteria: (i) the best fit calculations (R and E) for 

predicted lateral load capacity (Qp) and measured lateral load capacity (Qm),  (ii) arithmetic 

calculations (mean, µ and  standard deviation, σ) of the ratio, Qp/Qm (iii) 50% and 90% 

cumulative probabilities (P50 and P90) of the ratio, Qp/Qm.and (iv) the probability of  pile load 

capacity within  20% accuracy level in percentage using histogram  and lognormal probability 

distribution of Qp/Qm. 
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3.2 Database and Preprocessing  

In the present study the experimental database of Rao and Suresh Kumar (1996) has been 

considered. Das and Basudhar (2006) have developed ANN model and Pal and Deswal (2010) 

have developed GPR and SVM models using the above database. The data consist of D, L, e, Su  

as the inputs and Qmas output. Out of the mentioned 38 data, 29 data are selected for training and 

remaining 09 data are used for testing the developed model as per Das and Basudhar (2006).  

The data were normalized in the range 0 to 1 to avoid the dimensional effect of input parameters. 

The data are normalized in the range [0, 1] and [-1, 1] for MARS and ANN (DENN, BRNN) 

models respectively to avoid the dimensional effect of input parameters.In the GP modeling 

normalization or scaling of the data is not required. 

Table 3.1: Data table of prediction of lateral load pile.(Training data) 

Training data 

D L e Cu Qm Qp(Predicted using MARS) 

6.35 146.1 19.1 38.8 69.5 82.98 

13 260 0 24 225 225.92 

12.5 130 0 24 106 100.21 

13.5 300 50 3.4 30 25.7 

13.5 300 50 4 36 32.6 

13.5 300 50 5.5 50 49.82 

13.5 300 50 7.2 64 69.35 

18 300 50 10 89 93.23 

18 300 50 3.4 39 41.19 

20.4 300 50 4 46 53.42 

12.3 300 50 5.5 44 45.69 

18.4 300 50 4 51 48.97 
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18 300 50 10 116.5 93.23 

33.3 300 50 3.4 78.5 75.21 

33.3 300 50 5.5 110.5 99.33 

12.3 300 50 3.4 29.5 21.58 

6.35 139.7 25.4 38.8 65.5 58.47 

12.3 300 50 7.2 58 65.22 

12.3 300 50 10 81 73.61 

18.4 300 50 5.5 65.5 66.2 

18.4 300 50 7.2 86.5 85.72 

18.4 300 50 10 114 94.12 

20.4 300 50 5.5 59.5 70.64 

20.4 300 50 7.2 76.5 90.17 

20.4 300 50 10 87 98.56 

25.4 300 50 7.2 90 101.29 

25.4 300 50 10 118.5 109.68 

25.4 300 50 3.4 50 57.65 

25.4 300 50 5.5 75 81.76 

 

 

 

Correlation coefficient 0.970 

 

 

Table 3.2: Data table of prediction of lateral load pile.(testing data). 

Testing data 

D L e Cu Qm Qp 

13.5 190 0 24 128 160.88 

20.4 300 50 3.4 38 46.53 

18.4 300 50 3.4 42.5 42.08 

25.4 300 50 4 58 64.54 

13 132.1 33.8 38.8 53 49.57 
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18 300 50 4 49 48.08 

18 300 50 5.5 65 65.31 

18 300 50 7.2 87 84.83 

12.3 300 50 4 35 28.47 

   

Correlation coefficient 0.980 

Commond used for preparing MARS model of above data: 

a<-earth(V5~.,data) 

Dependent variable was predicted using all the independent variables. 

Table 3.3: Basis functions and their coefficients for predicting Qm. 

  coefficients 

(Intercept) 
68.76 

h(D-18) 
2.22 

h(18-D) 
-3.44 

h(L-130) 
0.95 

h(e-0) 
-2.92 

h(Cu-7.2) 
3 

h(7.2-Cu) 
-11.48 
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<plot(a) gives following types of graphs 

 

 

Fig 3.1: Model selection graphs Qm 

 

 

 

 

 

 

 

 

0 1 2 3 4 5 6 7

Model Selection

Number of terms

0
.4

0
.6

0
.8

G
R

S
q
  

 R
S

q

0
1

2
3

4
N

u
m

b
e
r 

o
f 

u
s
e
d
 p

re
d
ic

to
rs

GRSq

selected model

RSq

nbr preds

0 5 10 15 20

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Cumulative Distribution

abs(Residuals)

P
ro

p
o
rt

io
n

0% 25% 50% 90% 95% 100%

50 100 150 200

-1
0

0
1
0

2
0

Residuals vs Fitted

Fitted

R
e
s
id

u
a
ls

13

22

24

-2 -1 0 1 2

-1
0

0
1
0

2
0

Normal Q-Q

Theoretical Quantiles

R
e
s
id

u
a
l 
Q

u
a
n
ti
le

s

13

22

24

Qm: earth(formula=Qm~.,data=data)



 
 

33 
 

<plotmo(a) 

It gives the variation of the dependent variable with each independent variable 

 

 

Fig 3.2: Variation graphs of Qm ~ D, L, e and Cu respectively. 

 

Table 3.4:Variables and their importance in the MARS model. 
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Cu 5 100 100 

L 5 94.7 91.4 

e 5 94.7 91.4 
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Fig 3.3: Comparisons of predicted and measured load capacity of piles by MARS for training 

data. 

 

The coefficients of different basis functions produced for the developed MARS model, and the 

coefficient of intercept generated is presented in Table 3.3.Hence, model equations can be 

written using the obtained coefficients and basis functions as presented in Equation (3.1) as 

follows: 

Qp = 68.758707 + 2.223738 h(D - 18) – 3.441136 h(18 - D) + 0.953778 h(L - 130) - 2.921405 

h(e - 0) + 2.998536 h(Cu – 7.2) -11.484484 h(7.2 – Cu)                               (3.1) 

 

Where, 

h(D - 18) = max(0,D - 18)                 (3.1.1) 
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h(18 – D) = max(0,18 – D)                 (3.1.2) 

h(L – 130) = max(0, L – 130)                            (3.1.3) 

h(e – 0) = max(0, e – 0)                 (3.1.4) 

h(Cu – 7.2) = max(0,Cu – 7.2)                 (3.1.5) 

h(7.2 – Cu) = max(0,7.2 – Cu)                  (3.1.6) 

In the present study each individual in the population consists of more than one gene and each 

gene is a traditional GP tree. Here, function set used include: +, ×, ÷, -, sin(.), cos(.), tanh(.) and  

exp(.). As discussed earlier in GP procedure first a number of potential models are evolved at 

random. Each model is trained and tested using the training and testing cases respectively. The 

fitness of each model is determined by minimizing RMSE between the predicted (Qp) and actual 

(Qm) value of the output variable as the objective function, 

RMSE =

 
n

QQ

f

n

i
pm

 

 1

2

                               (3.2) 

wheren = number of cases in the fitness group. If the errors calculated by using Equation (3.2) 

for all the models in the existing population do not satisfy the termination criteria, the generation 

of new population continues till ‘best’ model is developed as per the earlier discussion. The 

‘best’ Qpmodel was obtained with population size of 2000 individuals and 150 generations with 

reproduction probability of 0.05, crossover probability of 0.85, mutation probability of 0.1 and 

with tournament selection. In GP model development it is important to make a tradeoff between 

accuracy in prediction of Qp and complexity of the model equation which is achieved by proper 

selection of number of genes and depth of GP tree. In this study optimum result was obtained 
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with maximum number of genes as two and maximum depth of GP tree as four.  The developed 

GP model can be described as Equation (3.3) and shown below. 

    
    

307.81

02.035.6037.0625.302.0259.19

)4.3(028.0sin)130(000035.0

)4.3)(130(032.0

)35.6(037.0exp 2 

























eDe

CL

CL

DQ u

u

p        (3.3) 

Based on the DENN and BRNN analysis best models were developed with 3 and 2 

hidden layer neurons respectively. Model equations for above two models can be written using 

the obtained weights and biases following Das and Basudhar (2006, 2008).  

As it is important that the efficiency of model should be compared in terms of testing data 

than that with training data (Das and Basudhar  2008), in this study the comparison of the 

methods are done on the basis of testing data only. Figure 3.4   shows the performance of 

predicted and observed values of lateral load capacity of piles for GP, MARS and ANN (DENN, 

BRNN) models. 

 

Fig-3.4:Comparisons of predicted and measured load capacity of piles by methods. 
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 There is less scatter of data for the GP and MARS models compared to the other models.   

Table 3.5 shows the statistical performance in terms of R, E, AAE, MAE and RMSE for the GP 

and MARS model along with the results of ANN (DENN and BRNN), Broms and Hansen’s 

models for both training and testing data set.  The developed GP, MARS and DENN models 

shows good generalization in terms of close values of R and E for training and testing data.  It 

also indicates that GP model is better than other models as it outperforms all other models in 

terms of the most of the statistical parameters under consideration. 

Table 3.5.Comparison of statistical performances of different models. 

 

While describing prediction of pile load capacity based on cone penetration test (CPT) Briaud 

and Tucker (1988) have emphasized that other statistical criteria should be used along with the 

correlation coefficient. Abu-Farsakh and Titi (2004) and Das and Basudhar (2006) have used the 

Models Statistical  Performances 

R E AAE MAE RMSE 

GP Training 0.980 0.961 5.337 24.378 7.831 

Testing 0.972 0.913 6.702 15.070 8.194 

MARS Training 0.970 0.940 7.258 23.273 9.108 

Testing 0.98 0.900 6.858 32.875 11.815 

DENN Training 0.980 0.959 5.647 18.705 7.667 

Testing 0.967 0.905 7.170 18.110 8.549 

BRNN Training 0.975 0.949 6.609 20.680 8.582 

Testing 0.899 0.734 10.800 33.169 14.312 

Hansen Training 0.950 0.209 30.712 65.360 33.825 

Testing 0.919 0.119 23.650 49.480 26.066 

Broms Training 0.967 0.807 12.391 48.660 16.703 

Testing 0.985 0.574 12.082 46.380 18.127 
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mean () and standard deviation ( ) of  ratio of predicted pile load capacity (Qp ) to the 

measured pile load capacity (Qm) as important parameters in evaluating different models. The 

mean ( and standard deviation ( of   Qp/Qmare important indicators of the accuracy and 

precision of the prediction method. Under ideal condition an accurate and precise method gives 

the mean value as 1.0 and the standard deviation to be 0. The  value greater than 1.0 indicates 

over prediction and under prediction otherwise. In present study the (1.006, 1.032) and  

(0.125, 0.141) of Qp/Qmfor the MARS model is very close to those of GP [(1.007,0.94), (0.090, 

0.107)] and DENN [ (1.018,0.948),(0.106,0.125)] for training and testing data. The values 

for BRNN ( (1.042, 0.942), ) and other models as also presented in Table 3.6. 
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Table 3.6. Evaluation of performance of different prediction models considered in this study. 

 

Pile 

Capacity 

methods 

Best fit calculations Arithmetic 

calculations of Qp/Qm 

Cumulative probability ± 20% 

Accuracy 

(%) 

 

Overall 

rank 

 

 

R E R1 µ σ R2 
Qp/Qm 

 at P50 

Qp/Qm 

 at P90 
R3 

Log- 

norma

l 

Histo-

gram 
R4 RI 

Final 

rank 

GP Training 0.980 0.961 
1 

1.007 0.090 
1 

1.020 1.096 
2 

94 96 
1 5 1 

Testing 0.972 0.913 0.940 0.107 0.890 1.092 80 100 
MARS Training 0.970 0.940 

3 
1.006 0.125 

2 
1.004 1.178 

1 
92 90 

2 
8

  
2 

Testing 0.980 0.900 1.032 0.141 0.990 1.256 84 100 
DENN Training 0.980 0.959 

2 
1.018 0.106 

3 
1.012 1.156 

3 
90 92 

3 11 3 
Testing 0.967 0.905 0.948 0.125 0.945 1.161 84 88 

BRNN Training 0.975 0.949 
4 

1.042 0.143 
4 

1.005 1.238 
4 

86 86 
4 16 4 

Testing 0.899 0.734 0.942 0.196 0.896 1.226 62 66 
Hansen Training 0.950 0.209 

6 
0.580 0.111 

6 
0.542 0.741 

6 
0 0 

6 24 6 
Testing 0.919 0.119 0.590 0.149 0.523 0.838 8 22 

Broms Training 0.967 0.807 
5 

1.143 0.144 
5 

1.112 1.382 
5 

64 72 
5 20 5 

Testing 0.985 0.574 1.166 0.136 1.140 1.392 50 66 
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The other criterion like cumulative probability of Qp/Qm (Das and Basudhar  2006, Abu-Farsakh 

and Titi 2004) should also be considered for the evaluation of performance of different models. 

The ratio Qp/Qmis arranged as per their values in an ascending order and the cumulative 

probability is calculated from the following equation(3.4): 

1


n

i
P                     (3.4) 

wherei= order number given to the Qp/Qmratio; n is the number of data points.  If the computed 

value of 50% cumulative probability (P50) is less than unity, under prediction is implied; values 

greater than unity means over prediction. The ‘best’ model is corresponding to the P50 value 

close to unity. The 90% cumulative probability (P90) reflects the variation in the ratio of Qp /Qm 

for the total observations. The model with P90 for Qp/Qmclose to 1.0 is a better model.  

 Figure 3.5 shows the cumulative probability plots of Qp /Qm for different methods for 

both training and testing data. 

 

Figure 3.5. Cumulative probability plots of Qp/Qmfor different methods. 
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Based on the figure(3.5) it can be seen that GP, MARS, DENN and BRNN models are very 

closely following each other. It can also  be seen from Table 3.6 that P50 values of MARS 

(1.004,0.990),  DENN (1.012,0.945) , BRNN(1.005, 0.896) and GP(1.020, 0.885) models for 

training and testing data are comparable whereas the Hansen method (P50 =0.542,0.523) under 

predicts the pile load capacity and Broms method (P50=1.112, 1.140) over-predicts the same. 

However based on the P90value GP (1.096, 1.092) model is found to be close to MARS (1.178, 

1.256) and DENN (1.156, 1.161) models and better than other models. The lognormal 

distributions of the Qp/Qmfor different models are shown in Figure 3.6.  

 

Figure 3.6. Log normal distribution of Qp/Qm for different methods 
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Based on the figure(3.6) it can be seen that GP model is predicting the lateral load capacity of the 

pile within 20% accuracy level (i.e. Qp /Qm = 0.8 to 1.2) better than MARS, DENN, BRNN and 

other statistical models as the shaded area under the lognormal distribution plot of GP model is 

more than those of the other models within the above limit. 

As per the best fit calculations (R, E) (R1), arithmetic calculations of Qp/Qm) (R2), 

cumulative probability of Qp/Qm (P50, P90) (R3)and prediction of pile load capacity within 20% 

accuracy level (R4), a ranking system is made among different models and presented in Table 

3.7. The overall performance of the various models under present study is evaluated using RI as 

per Abu-Farsakh and Titi (2004). The RI is the sum of the ranks of different models as per the 

above four criteria (RI=R1+R2+R3+R4). Lower the value of RI indicates better performance of 

the particular method. It can be seen from the Table 3.7 that GP model (RI=5) is ‘best’ among 

various models used in the present study and is closely followed by MARS model (RI=8) and 

other models [DENN (RI=11), BRNN(RI=16) ,Broom’s (RI=20) and Hansen’s (RI=24)].  

The results of present developed models are also compared with the results of SVM and 

GPR models as given by Pal and Deswal (2010). However, the SVM and the GPR results are 

available for the testing data in terms of R and RMSE only. The R values of SVM and GPR 

models are 0.920 and 0.980 respectively.  Similarly, the values of RMSE are 11.47 and 6.32 for 

SVM and GPR models respectively. Hence, the present GP (0.972, 8.194) and DENN (0.967, 

8.549) models are found to be better than the SVM model as per R and RMSE values. The R 

value of GP (0.972) and MARS (0.980) models are comparable to GPR model, though GPR 

model is better than above two models in terms of RMSE value. However, due to absence of 

other data, performance of these two models based on other criteria as discussed in the above 

paragraph could not be made to make an elaborate comparison using RI. 
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CHAPTER 4 

PREDICTION OF THE PULLOUT CAPACITY OF GROUND ANCHOR 

USING MULTIVARIATE ADAPTIVE REGRESSION SPLINE AND GP 

4.1 INTRODUCTION 

Small anchors, which are often installed vertically, are used to connect the marquees and other 

temporary light structures to the ground. The anchors resist uplift imposed by wind and other 

forces acting on the structures and also resist the tensile forces from the structure by means of 

shear resistance of the surrounding soil, which provide the structural stability. These anchors 

consist of steel rod of length less than 1m, that are driven into the ground. Due to the short term 

nature of temporary light structures , Geotechnical investigations examining the pullout capacity 

of the anchors used to secure these structures. According to Lau and Simons(1986) , very little 

published information exists regarding the uplift capacity of small ground anchors. Das(1990) 

also stated that the studies available to estimate the uplift capacity of anchor piles are limited. 

A series of  119insitu anchor pull out tests were conducted at six different locations within 

Adelaide, South Australia, and to compare the results with the predictions from two different 

methods of pile pull out capacity that use direct cone penetration test(CPT) data. The capacities 

obtained from these CPT based methods are compared with predictions from an artificial neural 

network(ANN) model that was recently developed by Shahin and Jaksa(2005). To determine the 

influence of factors such as soil type, anchor diameter, embedment depth, installation technique 

and natural variability on the pull out capacity of anchors, a number of comparative tests are 

carried out. Statistical analysis , which compare the measured pullout loads with those obtained 

using the CPT methods and the ANN model , is carried out and these are used to evaluate and 

rank the performance of the pullout capacity prediction methods used.  
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 Samui et al. (2011) observed that the MARS model for uplift capacity of suction caisson has 

better statistical performance compared to ANN and FEM model.  Hence, more research is 

required in ANN regarding the generalization, control on the model parameters, extrapolation 

and depicting simplified model equation. Here the prediction of pull out capacity of ground 

anchor is done by using MARS and GP model. 

Table 4.1: Data table of prediction of field pull capacity.(Training data) 

 

training data     

Deq(mm) L(mm) qc fc Installation technique Qu(KN) 

25 600 1.65 52.1 1 2.47 

25 600 1.89 46.83 1 2.01 

33.5 600 1.89 46.83 1 2.08 

25 400 1.05 55.68 1 1.16 

25 600 1.28 64.64 1 3.2 

44.6 600 1.89 46.83 1 1.9 

25 600 1.89 46.83 1 1.76 

25 800 2.02 53.73 1 2.3 

25 600 1.74 35.93 1 2.03 

44.6 600 1.28 64.64 1 2.49 

25 600 1.28 64.64 1 2.15 

25 600 2.76 20.82 1 0.92 

25 800 1.27 70.91 1 1.69 

25 600 2.76 20.82 1 1.19 

44.6 400 1.05 55.68 1 1.34 

44.6 600 1.89 46.83 1 2.23 

25 400 1.05 55.68 1 1.06 

44.6 600 1.89 46.83 1 1.85 

33.5 600 1.89 46.83 1 2.3 

25 600 1.89 46.83 1 1.87 

25 800 1.27 70.91 1 2.48 

33.5 600 1.28 64.64 1 2.79 

33.5 400 1.14 32.52 1 1.18 

25 600 2.02 53.73 1 3.02 

44.6 400 1.14 32.52 1 1.45 

25 600 3.03 178.26 1 2.09 

25 600 2.67 13.99 1 0.9 

25 600 2.67 13.99 1 0.87 

33.5 600 1.89 46.83 1 2.39 
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25 400 1.14 32.52 1 1.24 

44.6 600 1.28 64.64 1 2.29 

33.5 600 1.28 64.64 1 3.11 

33.5 400 1.05 55.68 1 1.44 

25 600 1.89 46.83 1 1.99 

25 600 1.65 52.1 1 1.7 

25 600 1.89 46.83 1 2.16 

25 600 2.2 87.93 1 2.99 

33.5 600 1.89 46.83 1 1.9 

44.6 600 1.89 46.83 1 1.95 

25 600 1.89 46.83 1 2.39 

44.6 800 1.27 70.91 1 3.47 

33.5 600 1.89 46.83 1 2.24 

25 600 1.28 64.64 1 1.29 

25 600 1.28 64.64 1 2.09 

44.6 800 2.02 53.73 1 2.45 

25 600 1.28 64.64 1 2.25 

25 600 1.65 52.1 1 0.9 

25 800 1.27 70.91 1 3.06 

25 600 1.89 46.83 1 2 

25 800 3.55 26.01 2 1.11 

25 800 1.68 54.35 2 2.19 

33 400 2.28 179.71 2 1.76 

33 800 2.24 105.1 2 2.95 

33 800 3.55 26.01 2 1.71 

44.6 400 1.66 40.94 2 1.96 

25 600 2.67 13.99 2 0.35 

33 600 1.65 52.1 2 0.63 

25 600 1.65 52.1 2 1.52 

25 600 2.67 13.99 2 0.53 

25 600 1.65 52.1 2 0.94 

44.6 600 1.65 52.1 2 1.73 

25 600 1.65 52.1 2 1.63 

25 600 2.2 87.93 2 2.18 

25 600 2.67 13.99 2 0.6 

25 600 2.2 87.93 2 2.09 

44.6 600 1.74 35.93 2 2.95 

44.6 400 2.28 179.71 2 2.55 

33 400 0.95 12.22 2 0.29 

33 600 2.2 87.93 2 2.39 

33 400 2.21 70.33 2 1.81 

33 600 1.65 52.1 2 1.7 

25 600 2.76 20.82 2 0.73 

25 800 1.68 54.35 2 1.33 

33 800 1.49 41.23 2 2.63 



 
 

46 
 

25 600 1.74 35.93 2 1.73 

25 400 1.63 44.46 2 1.36 

44.6 600 3.03 178.26 2 3.44 

25 600 2.67 13.99 2 0.48 

25 600 1.65 52.1 2 1.76 

25 400 1.66 40.94 2 1.25 

25 400 2.21 70.33 2 1.37 

25 600 2.2 87.93 2 1.79 

25 600 2.76 20.82 2 0.94 

44.6 400 2.21 70.33 2 1.65 

    Correlation coefficient 0.887 

Table 4.2: Data table of prediction of pullout capacity.(testing data). 

Testing      

Deq(mm) L(mm) qc fc Installation technique Qu(KN) 

44.6 600 2.2 87.93 2 2.31 

44.6 600 2.67 13.99 2 1.1 

33 600 1.65 52.1 2 1.57 

25 600 3.03 178.26 2 2.19 

33 800 2.92 166.57 2 3.8 

25 800 1.49 41.23 2 3.11 

25 600 2.76 20.82 2 0.61 

25 600 2.2 87.93 2 1.88 

25 400 1.63 44.46 2 1.05 

44.6 400 2.28 179.71 2 2.39 

33 600 2.67 13.99 2 0.89 

25 400 2.12 17.21 2 0.43 

25 600 2.2 87.93 2 1.98 

33 800 1.68 54.35 2 2.22 

44.6 400 1.63 44.46 2 0.78 

33 400 2.12 17.21 2 0.56 

25 600 1.65 52.1 2 2.42 

25 400 2.28 179.71 2 1.52 

25 600 2.2 87.93 2 2 

33 400 1.63 44.46 2 1.44 

25 400 1.66 40.94 2 1.35 

25 600 3.03 178.26 2 1.96 

44.6 600 1.65 52.1 2 1.9 

44.6 400 0.95 13.99 2 0.63 

33 600 2.76 20.82 2 0.96 

33 600 1.74 35.93 2 1.51 
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44.6 600 2.76 20.82 2 1.1 

25 600 1.65 52.1 2 2 

25 600 1.74 35.93 2 1.66 

25 600 1.74 35.93 2 1.54 

44.6 400 2.12 17.21 2 0.66 

25 800 2.24 105.1 2 3.17 

33 400 1.66 40.94 2 1.19 

25 400 0.95 12.22 2 0.35 

25 600 2.67 13.99 2 0.44 

      

    Correlation coefficient 0.899 

 

Command used for preparing MARS model : 

a<-earth(V5~.,data) 

The dependent variable was predicted using all the independent variables. 

 

Table 4.3: Basis functions and their coefficients for predicting Qm. 

 Coefficients  

(Intercept) 2.405447   

h(V1-33.5) 0.009157   

h(33.5-V1) 0.047694   

h(V2-600) 0.001429   

h(600-V2) -0.0033   

h(V4-40.94) -0.05805   

h(40.94-V4) -0.04546   

h(V4-52.1) 0.144774   

h(V4-64.64) -0.06606   

h(33.5-V1) * h(V3-2.2) -0.06918 

h(33.5-V1) * h(2.2-V3) -0.06768 

h(33.5-V1) * h(V4-54.35) -0.00311 

h(33.5-V1) * h(54.35-V4) -0.00169 

h(33.5-V1) * h(V5-1) -0.02345 

h(V3-2.21) * h(V4-40.94) 0.003048 

h(2.21-V3) * h(V4-40.94) -0.00856 

h(V4-40.94) * h(V5-1) -0.01672 

Where, V1- Deq, V2- L, V3- qc, V4- fc, V5- Installation technique 
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<plot(a) gives following types of graphs 

 

 

Fig 4.1: Type of model selection graph by ‘EARTH’. 
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<plotmo(a) 

It gives the variation of dependent variable with each independent variable 

 

Fig 4.2: Variation graphs of Qm ~ D, L, e and Cu respectively. 

Table 4.4: Variables and their importance in the MARS model. 

 nsubsets gcv rss 

V4 16 78.9 100 

V2 15 -69.3 69.8 

V1 11 -95.7 42.1 

V5 10 -97.8 36.8 

V3 9 -100 30.7 
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Fig4.3: Comparisons of predicted and measured load capacity of piles by MARS for training 

data. 

As discussed in the methodology, the performance of GP model depends upon the population 

size, number of generation, reproduction, crossover and mutation probability, tree depth (dmax) 

and the number of genes (Gmax). In the present study, the best Qpmodel was obtained with 

population size of 1000 individuals at 100 generations with reproduction probability of 0.05, 

crossover probability of 0.85, mutation probability of 0.1 and with tournament selection 

(tournament size of 2). The optimum result was obtained with Gmax as 4 and dmax as 4. 

The developed model is presented below as Equation(4.1) 

 

              
         

  
 
          

 

   
 

          
 

   

   
 
            

   
 

        

 

                              

(4.1) 
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I=Installation technique 

Figure 4.4 shows the variation of predicted with that of measured pull out capacity value . It can 

be seen that data points are close to line of equality for both training and testing data. This shows 

the performance of the GP model for the prediction of pull out capacity. Table 4.5 shows 

different statistical criteria for training and testing data of the GP model and the results have been 

compared with the ANN and MARS model. Fig. 4.5 and 4.6 shows the comparison of errors of 

MGGP, MARS and ANN models for prediction of pull out capacity for training and testing data. 
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Fig- 4.4: Comparisons of predicted and measured load capacity of pile by GP for training and 

testing data. 
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Table-4.5: Statistical performance 

R- Correlation coefficient 

E-Coefficient of efficiency 

AAE-Average absolute error 

MAE-Maximum absolute error 

RMSE-Root mean square error

 

Fig-4.5: Comparison of errors of MGGP, MARS and ANN models for prediction of pull out 

capacity for training data 

MARS ANN GP

MAE 0.94 1.39 1.32

AAE 0.11 0.19 0.28

RMSE 0.34 0.44 0.4

0.00

0.50

1.00

1.50
MAE

AAE

RMSE

Models Statistical  Performances 

R E AAE MAE RMSE 

MARS Training 0.887 0.787 0.113 0.942 0.336 

Testing 0.899 0.808 0.129 0.761 0.36 

ANN Training 0.805 0.642 0.189 1.392 0.435 

Testing 0.866 0.738 0.177 1.537 0.42 

 

GP 

Training 0.832 0.693 0.280 1.316 0.403 

Testing 0.864 0.735 0.299 1.578 0.423 



 
 

53 
 

 

Fig-4.6: Comparison of errors of MGGP, MARS and ANN models for prediction of pull out 

capacity for testing data 

The rank index (RI) proposed by Abu-Farsakh and Titi (2004) is used to evaluate and rank the 

CPT –based methods and the ANN model ,used in this study . 

                               RI=R1+R2 +R3+R4 

 R1, R2 ,R3 ,the rank criterion, is described as follows and are given in table 4.6 for each pullout 

prediction method used in the present work. A low value of RI indicates the optimal performance 

of a pullout prediction method. 

Regression analysis  is carried out to obtain the best fit-line of Qp/Qu of the available 119 anchor 

tests for each pullout capacity prediction method. The relationship of the best fit line of 

Qfit/Quand the corresponding coefficient of correlation, R, are calculated.The first criterion(R1) 

depends on the better performance that is indicated by the prediction method that has both the 

ratio  Qfit/QuandR closer to unity.The results are shown in table 4.6 and from this it is found that 

MARS ANN GP

MAE 0.761 1.537 1.316

AAE 0.129 0.177 0.299

RMSE 0.36 0.42 0.423

0.00

0.50

1.00

1.50

2.00
MAE

AAE

RMSE
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R1 of the GP model is 2 and hence, it ranks second , ANN model ranks third and for MARS 

model it is 1. 

For the second criterion (R2)  arithmetic mean value,µ, and the corresponding standard 

deviation,σ, of  Qp/Qu is calculated. Based on this criterion, optimal performance is obtained 

when µ (Qp/Qu) approaches unity with σ(Qp/Qu) approaching zero. The results in the table shows 

that MARS model ranks first, GP model ranks second and ANN model ranks third. 

For, the third criterion (R3)  , the ratios of  Qp/Qu is sorted in ascending order and the cumulative  

probability is calculated as follows.(Long and Wysockey 1999): 

                  P=i/(n+1) 

Where i is the order number given for the considered ratio, and  n is the number of anchors. Then 

the 50% and 90% cumulative probabilities (i.e P50 and P90) of Qp/Quare then obtained. Based on 

this criterion , optimal performance is indicated by values of P50 and P90 approaching unity. From 

the results shown in the table it is found that MARS model ranks first, GP model ranks second 

and ANN model ranks last. 

For, the fourth criterion (R4);  the histogram and logarithm normal distributions of the ratio of  

Qp/Qu are plotted. The probability of predicting the pullout capacity within ±20%  accuracy is 

obtained by calculating the difference of CDF value at 1.2Qu  and  0.8Qu. Based on this criterion 

the higher the probability of  ±20% accuracy , the better the performance of the prediction 

method. The histogram and logarithm- normal distributions of the methods used are shown in 

fig. 4.8 and 4.7 and the corresponding probabilities and the rank of the   ±20% accuracy are 

given in table. Results in the table shows that the MARS  model ranks first. 
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The results of the overall rank , RI is calculated by the above mentioned formula and shown in table 3.6 . According to the evaluation 

criteria it is found  that the MARS model performs best than the GP and ANN model. 

Table 4.6: Evaluation of performance of different prediction models considered in this study

Pile 

Capacity 

methods 

Best fit calculations Arithmetic 

calculations of 

Qp/Qm 

Cumulative 

probability 

± 20% 

Accuracy 

(%) 

 

Overall 

rank 

 

 

R E R1 µ σ R2 
Qp/Qm 

 at P50 

Qp/Qm 

 at P90 
R3 

Log- 

norm

al 

Histo-

gram 
R4 RI 

Final 

rank 

MARS 

Training 
0.887 0.787 

1 

1.043 

 
0.258 

1 

1.0034 1.2898 

1 0.66 0.79 1 4 1 

Testing 
0.899 0.808 1.048 

 
0.236 1.0352 1.2984 

0.64 0.67 
ANN 

Training 
0.805 0.642 

3 
1.130 0.387 

3 
1.0428 1.597 

3 
0.51 0.68 

3 12 3 

Testing 
0.866 0.738 

1.121 0.343 1.0857 1.8636 0.49 0.5 

GP 

 

Training 
0.832 0.693 

2 
1.065 0.338 

2 
0.987 1.4 

2 
0.58 0.6 

2 8 2 

Testing 
0.864 0.735 

1.065 0.288 1.023 1.5 0.56 0.6 
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Fig-4.7a: Log normal graph for training dataset(MGGP) 

 

Fig-4.7b: Log normal graph for testing dataset(MGGP) 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1

0 0.20.40.60.8 1 1.21.41.61.8 2 2.22.42.62.8 3 3.23.4

Series1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Series1



 
 

57 
 

 

Fig-4.7c:Log normal graph for training dataset(MARS) 

 

Fig-4.7d: Log normal graph for testing dataset(MARS) 

 

Fig-4.7e: Log normal graph for training dataset(ANN) 
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Fig-4.7.f: Log normal graph for testing dataset(ANN) 

 

Fig-4.8.a: Histogram graph for training dataset(GP) 

 

Fig-4.8.b: Histogram graph for testing dataset(GP) 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

Series1

0.00%

50.00%

100.00%

150.00%

0
7

14
21
28
35
42

0

0
.4

0
.8

1
.2

1
.6 2

2
.4

2
.8

3
.2

Fr
e

q
u

e
n

cy
 

Bin 

Histogram 

Frequency

Cumulative %

0.00%

50.00%

100.00%

150.00%

0

5

10

15

0 0.4 0.8 1.2 1.6 2

Fr
e

q
u

e
n

cy
 

Bin 

Histogram 

Frequency

Cumulative %



 
 

59 
 

 

Fig-4.8.c: Histogram graph for training dataset(MARS) 

 

Fig-4.8.d: Histogram graph for testing dataset(MARS) 

 

Fig-4.8.e: Histogram graph for training dataset(ANN) 
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Fig-4.8.f: Histogram graph for testing dataset(ANN) 
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CHAPTER 5 

PREDICTION OF FACTOR OF SAFETY OF SLOPE STABILITY 

ANALYSIS USING GP AND MARS 

5.1 INTRODUCTION 

The stability analysis of natural and man-made slopes is one of the most important 

studies of Geotechnical engineering. The limit equilibrium method (LEM) is the most 

common method of slope stability analysis due to ease of calculation with accuracy 

comparable to rigorous methods like finite element, finite difference and variational 

approach. Though, the limit equilibrium method is the most widely used methods for the slope 

stability analysis, statistical methods also have been investigated for the slope stability analysis. 

Sha et al. (1994) initiated the application of statistical method in the prediction of factor of 

safety in slope stability analysis considering some case studies. They proposed separate 

regression equations for circular and wedge failure surface of considering 46 case studies (29 

failed and 17 stable) for circular slope failure and 14 cases (8 failed and 6 stable) of wedge 

failure slopes using maximum likelihood method.  It was observed that the results of regression 

model and FOS obtained using LEM have strong correlation value with a correlation coefficient 

(R) varying from 0.911 (circular slip surface) to 0.954 (wedge failure surface). However, the 

results have not been verified using a new set of data (testing data set).   Sakellariou and 

Ferentinou (2005) used back propagation neural network (ANN) to predict the FOS and 

compared the results in terms of MSE with different number of training data set. Samui and 

Kumar (2006) used ANN as an alternate statistical method to upper bound limit analysis to 

predict the stability number of layered slopes. Wang et al. (2005) used BPNN to predict the 

factor of safety of Yudonghe landslide (China) and found that the FOS is close to 1.1 using a 
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four-layer BPNN model with five input nodes, two hidden layers, and two output nodes. With 

26 data points as the input data it is quite possible of overfitting (Das and Basudhar 2006). 

Samui (2008) used support vector machine (SVM) to classify the soil as stable (1) and failed (0) 

and to predict the FOS for the data set used by Sahet al. (1994) and to new data set (Sakellariou 

and Ferentinou 2005). The SVM is based on statistical learning theory unlike the ANN, which is 

biological inspired. The SVM is found to 100% efficient in classifying the slope as stable or 

failed for the training set, but for testing data set the efficiency varies from 75.57 to 85.71% for 

different kernel function.  Similarly for prediction problem, the correlation coefficient(R) value 

found to vary from from0.884 to 0.922 for different kernel function.  Das et al. (2011) used 

different types of ANN models like Bayesian regularization neural network (BRNN), 

Levenberg-Marquardt neural net work (LMNN) and differential evolution neural network 

(DENN). They observed that DENN is better compared to other ANN and SVM models.  

Yang et al. (2004) proposed a two stepped algorithm of genetic programming(GP) and 

GA  to propose a statistical equation for the FOS based on parameters unit weight    , cohesion 

(C) and friction angle     of soil,  height of slope (H), slope angle ( ) and pore pressure 

parameter (ru). Yang et al. (2004) divide the data set as training (40 data) and testing (6 data) set 

and proposed a model equation to present an equation for the FOS. The results of GP found to 

be better than that of maximum likelihood estimation of Sahet al. (1994). However, the number 

of data set used for testing set is less and results for testing data are found to be not that efficient 

like training data set.The most important problem associated with efficient implementation of 

data driven approach is generalization.  The model needs to be equally efficient for new data 

during testing or validation, which is called as generalization. Recently Gondami and Alavi 
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(2011, 2012) proposed a variant of GP called multi gene genetic programming (MGGP) and 

found to efficient to some test problems in structural geotechnical engineering.  

However, engineering application of numerical methods is a science as well as an art. 

Though the developed algorithms are based on scientific logic and belong to the special branch 

of applied mathematics, their successful application to new problems is problem oriented and is 

an art.  As no method can be the panacea to solve all problems to the last details, their 

application to new areas needs critical evaluation. With above in view, in the present study two 

recent modeling techniques, MGGP and MARS are used to develop model equations for the 

FOS of slope stability problems. Different statistical criteria like correlation coefficient (R), 

Nash-Sutcliff coefficient of efficiency (E) (Das and Basudhar, 2008),maximum absolute error 

(MAE), average absolute error (AAE) and root mean square error (RMSE) are used to compare 

the developed MGGP and MARS models with available ANN and SVMmodels.  

In the present study data base available in Shah et al. (1994) have been considered.The data base 

consist of case studies of 23 dry and 23 wet slopes with 29 failed and 17 stable slopes. The input 

data consist of parameters like height of slope H(m), unit weight( kN/m3), cohesion C (kPa), 

internal friction angle(slope angleand pore pressure parameters  .The output data 

baseconsists of quantitative information (factor of safety as per limit equilibrium method). Samui 

(2008) and Das et al. (2011) have used the above database for development of SVM and ANN 

model, respectively. Following Das et al. (2011), out of 46 data points, 32 were used for training 

and 14 data points were used for testing. In the MGGP and MARS modelling the data points are 

not normalized unlike ANN and SVM model. This is an added advantage of MGGP and MARS 

techniques over ANN and SVM.  
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Table 5.1: Data table of prediction ofFoS.(Training data) 

(kN/m3) C (kPa) 

 

0
 H(m) ru FOS 

18.68 26.34 15.00 35.00 8.23 0.00 1.11 

18.84 14.36 25.00 20.00 30.50 0.00 1.875 

18.00 5.00 30.00 20.00 8.00 0.30 2.05 

20.00 20.00 36.00 45.00 50.00 0.50 0.83 

28.44 39.23 38.00 35.00 100.00 0.00 1.99 

20.60 16.28 26.50 30.00 40.00 0.00 1.25 

14.80 0.00 17.00 20.00 50.00 0.00 1.13 

26.00 150.05 45.00 50.00 200.00 0.00 1.2 

25.00 120.00 45.00 53.00 120.00 0.00 1.3 

18.50 25.00 0.00 30.00 6.00 0.00 1.09 

18.50 12.00 0.00 30.00 6.00 0.00 0.78 

22.40 10.00 35.00 30.00 10.00 0.00 2 

21.40 10.00 30.34 30.00 20.00 0.00 1.7 

22.00 0.00 36.00 45.00 50.00 0.00 0.89 

12.00 0.00 30.00 35.00 4.00 0.00 1.46 

12.00 0.00 30.00 45.00 8.00 0.00 0.8 

12.00 0.00 30.00 35.00 4.00 0.00 1.44 

12.00 0.00 30.00 45.00 8.00 0.00 0.86 

23.47 0.00 32.00 37.00 214.00 0.00 1.08 

16.00 70.00 20.00 40.00 115.00 0.00 1.11 

20.41 24.90 13.00 22.00 10.67 0.35 1.4 

21.82 8.62 32.00 28.00 12.80 0.49 1.03 

20.41 33.52 11.00 16.00 45.72 0.20 1.28 

18.84 15.32 30.00 25.00 10.67 0.38 1.63 

21.43 0.00 20.00 20.00 61.00 0.50 1.03 

19.06 11.71 28.00 35.00 21.00 0.11 1.09 

18.84 14.36 25.00 20.00 30.50 0.45 1.11 

21.51 6.94 30.00 31.00 76.81 0.38 1.01 

14.00 11.97 26.00 30.00 88.00 0.45 0.625 

18.00 24.00 30.15 45.00 20.00 0.12 1.12 

23.00 0.00 20.00 20.00 100.00 0.30 1.2 

22.40 100.00 45.00 45.00 15.00 0.25 1.8 

 

 

 



 
 

65 
 

Table 5.2: Data table of prediction of FoS.(testing data). 

(kN/m3) C (kPa) 

 


 H(m) ru FOS 

22.40 10.00 35.00 45.00 10.00 0.40 0.9 

20.00 20.00 36.00 45.00 50.00 0.25 0.96 

28.44 29.42 35.00 35.00 100.00 0.00 1.78 

20.00 0.00 36.00 45.00 50.00 0.25 0.79 

20.00 0.00 36.00 45.00 50.00 0.50 0.67 

22.00 0.00 40.00 33.00 8.00 0.35 1.45 

20.00 0.00 24.50 20.00 8.00 0.35 1.37 

18.84 57.46 20.00 20.00 30.50 0.00 2.045 

16.50 11.49 0.00 30.00 3.66 0.00 1 

14.00 11.97 26.00 30.00 88.00 0.00 1.02 

22.00 20.00 36.00 45.00 50.00 0.00 1.02 

19.63 11.97 20.00 22.00 12.19 0.41 1.35 

18.84 0.00 20.00 20.00 7.62 0.45 1.05 

24.00 0.00 40.00 33.00 8.00 0.30 1.58 

 

MGGP modelling results 

As discussed in the methodology, the performance of the GP model depends upon the population 

size, number of generations, reproduction, crossover and mutation probability, tree depth (dmax) 

and the number of genes (Gmax). In the present study, the best FOSpmodel was obtained with 

population size of 1000 individuals at 100 generations with reproduction probability of 0.05, 

crossover probability of 0.85, mutation probability of 0.1 and with tournament selection 

(tournament size of 2). The optimum result was obtained with Gmax as 3 and dmax as 4. 

The developed model is presented below as Equation (5.1) 
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The variation of predicted FOS as per MGGP model with at obtaining using LEM is present in 

Figure 5.1 along with results of different ANN models as per Das et al. (2011|).  It can be seen 

that the results are comparable in terms of scatterness in data. In terms of correlation coefficient 

(|R) value for a new set of data (testing data), MGGP model is found to better than SVM and 

LMNN and BRNN models. The model equation as per MGGP is also very compact in 

comparison to that ANN model given by Das et al. (2011). It is also well known that R is a 

biased estimate (Das and Sivakugan 2010), hence the results are also compared in terms of Nash-

Sutcliff coefficient of efficiency (E) (Das and Basudhar, 2008) and shown in Table 5.3.It can be 

seen that MGGP model has a better generalization in terms of close E values for training and 

testing data. The E value for MGGP model is also found to be better than BRNN and DENN 

models. The MGGP model is also compared in terms of other statistical criteria like maximum 

absolute error (MAE), average absolute error (AAE) and root mean square error (RMSE) and the 

results are presented in Figure 5.2 and Figure 5.3 for training and testing data, respectively. It can 

be seen that the results of MGGP are better or comparable to that of ANN models.   
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Fig-5.1: Performance of different models for prediction of FOS as per (a) BRNN (b) LMNN, (c) 

DENN, (d) MGGP and (e) MARS 
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Fig-5.2: Comparison of errors of MGGP, MARS and ANN models for prediction of FOS for 

training data 

 

 

Fig- 5.3: Comparison of errors of MGGP, MARS and ANN models for prediction of FOS for 

testing data 
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MARS modelling results 

The best MARS model has been developed with a six basis functions after several trials with 

different number of basis functions. Each set of basis functions was used to predict the factor of 

safety (Fp) and their correlation coefficient (R) was calculated. The performance of MARS 

model depends upon the number of basis function used. As the number of basis function 

increased, performances increases but at the same time complexity of model also increased. 

Hence, tradeoff is to be made, keeping this in mind in the present study best MARS model was 

obtained with six basis function.  

The coefficients of different basis functions produced for the developed MARS model can be 

written using the obtained coefficients and basis functions as presented in Eq.5.2 as follows: 

                                                                  
                                                      
                                                    
                                                                                                    

 

Similar to MGGP model, the performance of MARS model was also compared with 

ANN, SVM and MGGP model. As shown in Figure 5.1, the close values of R for training 

and testing data show good generalization of the model. However, the R value is less 

compared to that of SVM models but less efficient compared to ANN and MGGP model.  

As per Table 5.3, in terms of Nash-Sutcliff coefficient of efficiency (E) the MARS model is 

found to less efficient compared to that of MGGP model. Similarly in terms of MAE, AAE and 

RMSE,  MGGP model is also found to efficient in comparison to MARS model.    

The developed MGGP and MARS models are also compared in terms of cumulative 

probabilities of Fp/Fu at 50% and 90% (i.e P50 and P90) as per Das and Basudhar (2006).  The 
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ratios of predicted FOS (Fp) as per developed model (MGGP and MARS) and FOS (Fu) as per 

Limit equilibrium method is sorted in ascending order and the cumulative probability is 

calculated as following Equation- 5.3(Das and Basudhar 2006): 

                  P=i/(n+1)            (5.3) 

Where,iis the order number given for the considered ratio, and n is the number of anchors. Then 

the 50% and 90% cumulative probabilities (i.e P50 and P90) of Fp/Fu are then obtained which is 

shown in the Table 5.4.  

Based on this criterion, optimal performance is indicated by values of P50 and P90 approaching 

unity. From the below table it is found that MGGP model outperforms both ANN and MARS 

model. It can be seen that based on P50 and P90values for both training and testing data MGGP 

model is found to more efficient compared to ANN and MARS models. 

Table 5.3: Statistical performance of ANN, SVM, MGGP and MARS model 

Reference 
Models 

Coefficient of Correlation (R) Coefficient of efficiency (E) 

Training Testing Training Testing 

ANN 

(Das et al. 

2011) 

BRNN 0.937 0.920 0.871 0.885 

LMNN 0.902 0.923 0.807 0.846 

DENN 0.922 0.950 0.848 0.842 

SVM 

(Samui 

2008) 

SVM-G 0.992 0.922 - - 

SVM-P 0.983 0.844 - - 

SVM-S 0.995 0.918 - - 

MGGP 

Model  

Present 

study 
0.924 0.929 0.852 0.851 

MARS 

Model 

Present 

study 
0.917 0.915 0.842 0.825 
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Table 5.4: Cumulative probabilities depending on sorted Fp/Fu for ANN, SVM, MGGP and 

MARS models 

 
                                     P50                                   P90 

 Training Testing Training Testing 

LMNN 0.970 1.016 1.220 1.250 

BRNN 0.990 0.991 1.160 1.202 

DENN 0.957 0.979 1.230 1.129 

MGGP 1.020 1.040 1.200 1.220 

MARS 0.976 1.055 1.220 1.179 
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CHAPTER 6 

PREDICTION OF THE ULTIMATE BEARING CAPACITY  OF 

SHALLOW FOUNDATIONS USING  GP AND MARS 

6.1 INTRODUCTION  

The lowest part of a structure that transmits its weight to the underlying soil or rockis the 

foundation. Foundations can be classified into two major types—shallow foundations and deep 

foundations. Individual footings, square or rectangular in plan, that support columns and strip 

footings that support walls and other similar structures are generally referred to as shallow 

foundations. Shallow foundations have become an cost-effective (and sometimes the only 

practical)alternative to deep pile foundations (Barari and Ibsen, 2012).For determining the 

bearing capacity of shallow foundations, analytical methods  has drawn a great deal of 

consideration following initial work by Terzaghi. There has also been considerable recent 

interest in the development of innovative solutions for shallow foundations based on 

experimental, numerical, and soft computing techniques. Because of the uncertain nature of soils 

and the difficulties inherent in laboratory and in situ testing, there has been an increasing trend 

toward development of bearing capacity prediction methods using nontraditional computing 

techniques to develop accuracy. The great complexity encountered in geotechnical engineering 

such as slope stability, liquefaction, and shallow foundation and pile capacity prediction have 

inspired researchers to employ powerful new optimization algorithms and methods.Here GP and 

MARS method  was employed to develop modified expressions for predicting the bearing 

capacity of shallow foundations founded on granular material. 
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Terzaghi (1943) was the first to present a theory for evaluating the ultimate bearing capacity of 

rough shallow foundations. He expressed the ultimate bearing capacity of a strip footing using a 

semi-empirical equation 6.1 

           
 

 
                                      (6.1) 

However, in this equation, the shearing resistance along the failure surface in the soil above the 

bottom of the foundation was not taken into account, and he did not consider rectangular or 

inclined footings.  

The data sets used in this study were obtained from previously published experimental studies 

(Muhs and Weiß, 1973; Briaud and Gibbens, 1999; Gandhi, 2003) (Table 6.1 and 6.2). The data 

used for calibrating and validating the model included load tests on full scale models to 

determine the uniaxial limit states. A series of  data sets comprising geometries such as square, 

rectangular, and strip footings and installed on sands of various densities were separately 

tested.To enhance the performance of the model 90 datasets are taken as training data and 16 

data are taken as testing data. 

Table 6.1: Data table of prediction of ultimate bearing capacity.(Training data) 

Training      

φ(◦) γ(kN/m^3) L/B D(m) B(m) qu(kPa) 

32 15.8 1 0.711 0.991 1773.7 

32 15.8 1 0.762 3.004 1019.4 

32 15.8 1 0.762 2.489 1158 

32 15.8 1 0.889 3.016 1161.2 

32 13.2 1 0 0.06 14 

34 15.7 5.95 0.029 0.0585 58.5 

34 15.7 5.95 0.058 0.0585 70.91 

34 15.7 6 0.047 0.094 74.7 

34 15.7 6 0.094 0.094 91.5 

34 15.7 5.95 0.075 0.152 98.2 

34 15.7 1 0.047 0.094 67.7 

34 15.7 1 0.094 0.094 90.5 

34 15.7 1 0.075 0.152 91.2 
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34 15.7 1 0.15 0.152 124.4 

34.9 9.85 2 0.3 0.6 270 

37 11.7 1 0 0.5 111 

37 11.7 2 0 0.5 143 

37 11.7 4 0.029 0.5 109 

37 11.7 4 0.127 0.5 187 

37 11.7 1 0.3 0.5 446 

37 11.7 4 0.3 0.5 322 

37 11.7 2 0.5 0.5 565 

37 11.7 4 0.5 0.5 425 

37 11.77 2 0 0.5 134 

37 11.77 1 0.3 0.5 370 

37 11.77 2 0.5 0.5 464 

37 16.1 5.95 0.029 0.0585 82.5 

37 16.1 5.95 0.058 0.0585 98.93 

37 16.1 6 0.094 0.094 127.5 

37 16.1 5.95 0.075 0.152 143.3 

37 16.1 5.95 0.15 0.152 176.4 

37 16.1 1 0.094 0.094 131.5 

37 16.1 1 0.075 0.152 135.2 

37 16.1 1 0.15 0.152 182.4 

37.7 10.2 2 0 0.6 200 

37.7 10.2 2 0.3 0.6 570 

37.7 10.2 1 0 0.5 165 

37.7 10.2 3 0 0.5 214 

37.7 10.2 3.85 0 0.52 186 

37.7 10.2 1 0.3 0.5 681 

37.7 10.2 2 0.3 0.5 542 

37.7 10.2 3.85 0.3 0.52 413 

39 11.97 3 0.2 1 710 

39.5 16.5 5.95 0.029 0.0585 121.5 

39.5 16.5 5.95 0.058 0.0585 142.9 

39.5 16.5 6 0.047 0.094 155.8 

39.5 16.5 6 0.094 0.094 185.6 

39.5 16.5 5.95 0.075 0.152 211.2 

39.5 16.5 5.95 0.15 0.152 254.5 

39.5 16.5 1 0.094 0.094 191.6 

39.5 16.5 1 0.075 0.152 201.2 

39.5 16.5 1 0.15 0.152 264.5 

40 12 4 0 0.5 461 

40 11.93 3 0 1 630 

41.5 16.8 5.95 0.029 0.0585 157.5 

41.5 16.8 5.95 0.058 0.0585 184.9 

41.5 16.8 6 0.047 0.094 206.8 

41.5 16.8 6 0.094 0.094 244.6 

41.5 16.8 5.95 0.15 0.152 342.5 

41.5 16.8 1 0.047 0.094 196.8 
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41.5 16.8 1 0.094 0.094 253.6 

41.5 16.8 1 0.075 0.152 276.3 

41.5 16.8 1 0.15 0.152 361.5 

42 12.27 4 0.49 0.5 1492 

42 15.89 1 0 0.03 52 

42 15.89 1 0 0.04 92 

42 14.8 1 0 0.06 72 

42 15.4 1 0 0.06 106 

42.5 17.1 5.95 0.029 0.0585 180.5 

42.5 17.1 5.95 0.058 0.0585 211 

42.5 17.1 6 0.047 0.094 235.6 

42.5 17.1 5.95 0.075 0.152 335.3 

42.5 17.1 5.95 0.15 0.152 400.6 

42.5 17.1 1 0.047 0.094 228.8 

42.5 17.1 1 0.094 0.094 295.6 

42.5 17.1 1 0.15 0.152 423.6 

42.8 17.2 1 0 0.08 133 

42.8 17.2 1 0 0.15 246 

42.8 17.2 1 0 0.05 109 

42.8 17.1 1 0 0.08 130 

42.8 17.1 1 0 0.15 214 

42.8 17.1 1 0 0.2 266 

42.8 17.1 1 0 0.25 333 

42.8 17.1 1 0 0.3 404 

44 12.41 1 0 0.5 782 

44 12.41 1 0.3 0.5 2266 

44 12.41 2 0.5 0.5 2847 

44 12.41 4 0.5 0.5 2033 

44.8 10.85 2 0 0.6 860 

44.8 10.85 2 0.3 0.6 1760 

Table 6.2: Data table of prediction of ultimate bearing capacity.(Testing data) 

Testing      

φ(◦) γ(kN/m^3) L/B D(m) B(m) qu(kPa) 

32 15.8 1 0.762 1.492 1540 

34 15.7 5.95 0.15 0.152 122.3 

37 11.7 1 0.013 0.5 137 

37 11.77 1 0 0.5 123 

37.7 10.2 2 0 0.5 203 

37.7 10.2 3 0.3 0.5 402 

39.5 16.5 1 0.047 0.094 147.8 

40 12 4 0.5 0.5 1140 

41.5 16.8 5.95 0.075 0.152 285.3 

42 15.89 1 0 0.05 95 
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42.5 17.1 6 0.094 0.094 279.6 

42.8 17.1 1 0 0.1 152 

44 12.41 4 0 0.5 797 

42.5 17.1 1 0.075 0.152 325.3 

37 16.1 6 0.047 0.094 104.8 

37 16.1 1 0.047 0.094 98.8 

MGGP modelling results 

The ‘best’ Qpmodel was obtained with population size of 1000 individuals and 100 generations 

with reproduction probability of 0.05, crossover probability of 0.85, mutation probability of 0.1 

and with tournament selection seven. In GP model development it is important to make a 

tradeoff between accuracy in prediction of Qp and complexity of the model equation which is 

achieved by proper selection of number of genes and depth of GP tree. In this study optimum 

result was obtained with maximum number of genes as four and maximum depth of GP tree as 

three.  The developed GP model can be described as Equation (6.2) and shown below. 

GP eqn. 

 

                           
       

 
 
           

       
        

               

            (6.2) 
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Fig-6.1: Comparisons of predicted and measured load capacity of piles by GP  

MARS modelling result 

The best MARS model has been developed with a fourteen basis functions after several trials 

with different number of basis functions. Each set of basis functions were used to predict the 

factor of safety (Fp) and their correlation coefficient (R) was calculated. The performance of 

MARS model depends upon the number of basis function used. As the number of basis function 

increased, performances increases but at the same time complexity of model also increased. 

 

Command used for preparing MARS model : 

a<-earth(V5~.,data) 

Dependent variable was predicted using all the independent variables 
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Table 6.3: Basis functions and their coefficients for predicting Qu. 

 coefficients  

(Intercept) 1100.601   

h(42.8-V1) -155.731   

h(V4-0.058) 916.9641   

h(0.058-V4) -1510.74   

h(0.6-V5) -1669.41   

h(V1-42.8) * h(V3-2) -329.347 

h(V1-42.8) * h(2-V3) -457.131 

h(V1-37) * h(V4-0.058) 242.765 

h(37-V1) * h(V4-0.058) 404.1557 

h(V1-42.5) * h(0.058-V4) -2160.26 

h(V1-42.8) * h(0.6-V5) 7548.099 

h(42.8-V1) * h(0.6-V5) 270.7011 

h(2-V3) * h(V4-0.058) 792.5457 

h(V4-0) * h(V5-0.6) -605.941 

h(V4-0.047) * h(0.6-V5) -3285.75 

<plot(a) gives following types of graphs 

 

Fig 6.2: Type of model selection graph by ‘EARTH’. 
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<plotmo(a) 

It gives the variation of dependent variable with each independent variable 

 

 

 

 

  

 

Fig 6.3: Variation graphs of Qm ~ D, L, e and Cu respectively. 
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Table 6.4: Variables and their importance in the MARS model. 

 nsubsets gcv rss 

V1 14 100 100 

V4 14 100 100 

V5 12 41.3 40.7 

V3 9 27 25.4 

 

MARS equn 

                                                        

                                              

  (
 

 
  )                     (  

 

 
)                 
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Fig-6.4:Comparisons of predicted and measuredultimate bearing capacity  by GP for training  

and testing data 
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Fig-6.5: Comparisons of predicted and measured ultimate bearing capacity  by ANN for training  

and testing data 

Table-6.5: Statistical performance 

 

Models Statistical  Performances 

R E AAE MAE RMSE 

MARS Training 0.994 0.988 36.05 233.3 55.87 

Testing 0.994 0.985 25.84 70.56 30.54 

GP Training 0.954 0.91 98.93 648.2 151.64 

Testing 0.939 0.88      96.71 432.5 141.28 

ANN Training 0.998 0.996 23.33 90.6 30.74 

Testing 0.888 0.69 102.99 862.1 227.4 



 
 

82 
 

The rank index (RI) proposed by Abu-Farsakh and Titi (2004) is used to evaluate and rank the 

CPT –based methods and the ANN model ,used in this study . 

                               RI=R1+R2 +R3+R4 

 R1, R2 ,R3 ,R4 ,the rank criterion, are described in previous chapter and are given in table for each 

ultimate bearing capacity  prediction method used in present work. A low value of RI indicates 

the optimal performance of a pullout prediction method. So, in this study MARS method 

performs best of ANN and GP model for prediction of ultimate bearing capacity of shallow 

foundation as MARS model is having low RI 
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Table-6.6:   Evaluation of performance of different prediction models considered in this study 

Bearing 

Capacity 

methods 

Best fit calculations Arithmetic 

calculations of 

Qp/Qm 

Cumulative 

probability 

± 20% 

Accuracy 

(%) 

 

Overall 

rank 

 

 

R E R1 µ σ R2 
Qp/Qm 

 at P50 

Qp/Qm 

 at P90 
R3 

Log- 

norm

al 

Histo-

gram 
R4 RI 

Final 

rank 

MARS 

Training 
0.994 0.988 

1 

0.998 

 
0.186 

1 

1.002 1.236 

1 0.68 0.76 1 4 1 

Testing 
0.994 0.985 1.037 

 
0.16 1.033 1.27 

0.78 0.72 

GP 
Training 

0.954 0.91 

2 
1.185 0.674 

3 
1.073 1.81 

3 
0.36 0.42 

3 11 3 

Testing 
0.939 0.88 

1.209 0.435 1.106 1.902 
0.37 0.52 

ANN 

 

 

Training 
0.998 0.996 

3 
1.034 0.379 

2 
0.997 1.193 

2 
0.82 0.8 

2 9 2 

Testing 
0.888 0.69 

1.125 0.332 1.08 1.64 
0.44 0.48 
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CHAPTER 7 

GENERAL OBSERVATIONS, CONCLUSIONS, AND SCOPE OF FUTURE 

STUDIES 

7.1 SUMMARY 

The application of AI techniques like GP and MARS in different branches of science and 

engineering discipline is phenomenal. However, the applications of the above techniques in 

geotechnical engineering are very limited. The primary focus of this research was to explore 

some applications of the artificial intelligence techniques, GP and MARS in geotechnical 

engineering. 

Based on above study for different geotechnical engineering problems following conclusions can 

be made   

(1) Chapter 3, discussed about lateral load pile capacity penetrating clay. The proposed GP 

model is found to be effective and efficient than available MARS, ANN (DENN, 

BRNN), SVM  and other statistical models in predicting the lateral load capacity of piles 

in clay.  Using a ranking method based on different statistical criteria (statistical 

performances for predicted load capacity (Qp) and measured capacity (Qm), the mean 

and standard deviation of the ratio Qp/Qm , the cumulative probability for Qp/Qm. and 

prediction of load capacity within 20% accuracy level) it has also been  found that the 

developed GP model is more efficient compared to other AI and statistical models. 

The developed model equation is found to more compact compared to the MARS and 

other AI models and can easily be used by the professionals with the help of a 

spreadsheet without going into the complexity of model development. 



 
 

85 
 

(2) In Chapter 4, for the prediction capacity of ground anchors, the MARS model performs 

best than the ANN  and GP model based on evaluation criteria. 

(3) The application of MGGP and MARS for prediction of factor of safety of slopes based 

on available field data bases of slopes is discussed in Chapter 5. The results have been 

compared with available ANN and SVM model. The model equations as per MGGP and 

MARS are found to more compact and compressive compared to that of ANN model 

equation.  Based on different statistical criteria like, correlation coefficient, coefficient 

of efficiency, maximum absolute error, average absolute error, root mean square error 

and cumulative probability P50 and P 90 values, MGGP model is found to be the best 

model in comparison to ANN, SVM and MARS models. 

(4) Based on different statistical criteria MARS model found to be ‘best’ model in 

comparison to GP and ANN model for the prediction of ultimate bearing capacity for 

shallow foundation which is discussed in Chapter 6. 

7.2 SCOPE OF FUTURE STUDIES 

Scope of application of GP and MARS to geotechnical engineering problems is very promising 

and can be applied to a variety of problems related to decision making. Some of the following 

problems are recognized for further studies. 

1. Application of the methods to other geotechnical engineering problems like liquefaction 

analysis, land slides etc. with real time monitoring using GIS and other data.  

2. Application of the above parameter estimation technique to develop limit state function 

for reliability analysis.  

3. Development of sophisticated Geotechnical instruments calibrated using GP / MARS 

correlations .  
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