
Real Time Event Management

And

Coordinating System

Thesis submitted in partial fulfillment of the requirements for the degree of

Master of Technology

in

Computer Science and Engineering
(Specialization: Computer Science)

by

Ipsita Minj

(Roll No 211CS1272)

Department of Computer Science and Engineering

National Institute of Technology Rourkela

Rourkela, Odisha, 769 008, India

June 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ethesis@nitr

https://core.ac.uk/display/53189841?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acknowledgment

I am grateful to numerous local and global peers who have contributed towards

shaping this thesis. At the outset, I would like to express my sincere thanks to

all the professors for giving me the opportunity to work on this thesis. They have

been a source of knowledge. I extend my thanks to our HOD, Prof. A.K Turuk

for his valuable contribution.

I am really thankful to my all friends specially Anand Tirkey, Anand Ekka,

Biren Oram and Ashish Tirkey for providing me with kind words, a welcome ear,

new ideas, useful criticism, or their invaluable time, I am truly indebted.

I must acknowledge the academic resources that I have got from NIT Rourkela.

I would like to thank administrative and technical staff members of the Department

who have been kind enough to advise and help in their respective roles.

Last, but not the least, I would like to dedicate this thesis to the Aspire to In-

spire Family Foundation, for their true inspiration for the motivation towards this

thesis. I am also thankful to my family for their love, patience, and understanding.

Ipsita Minj

Roll No: 211CS1272

Abstract

Analysis and prediction of real time event managing is very important and

interesting as this helps experts in managing events , making decisions and working

more efficiently . This thesis Event Managing And Coordinating system (RT-

EMaCS) model is initially considered for proper managing of time and task, and

resulted in funtioning in both system field as well as practical world.

A EMaCS model can fit into any Java based platform such as laptops, desktops

and any mobile device supporting Java, specially like android phones or tablets.

The link between them can be done via Wi-Fi. In this thesis, the event organizers

and the event coordinators communcate with better facilities in event manage-

ment. It provides an easy, simple and better means of communication among one

another. It prevents loss of time.

Contents

Acknowledgement i

Abstract ii

List of Figures v

1 Introduction 2

1.1 Introduction . 2

1.2 Dependability in RTS- a case study: 3

1.3 Literature Review: . 4

1.4 Motivation: . 6

1.5 Problem Statement: . 6

1.6 Thesis Outline: . 7

2 RTS: MODEL AND PERFORMANCE METRIC 9

2.1 Workload Model: . 9

2.2 Performance metric: . 9

3 Task Scheduling in RTS 13

3.1 Introduction . 13

3.2 Concepts and terms . 13

3.3 Timeliness Specification . 15

3.4 Hard Real Time . 16

3.5 Soft Real-time . 16

3.6 Type of Tasks . 17

iii

3.6.1 Periodic Tasks: . 17

3.6.2 Aperiodic Tasks: . 17

3.7 Taxonomy of RT scheduling Algorithms 18

3.8 Task assignment . 18

3.9 Task Scheduling . 19

3.9.1 Clock Driven Approach: . 19

3.9.2 Event Driven Approach: . 19

3.9.3 Hybrid Approach: . 20

3.10 Scheduling in Multiprocessors . 20

3.10.1 Allocation . 20

3.10.2 Priority . 21

3.10.3 Best-known heuristics for the allocation problem 21

3.11 Approaches to Real time Multiprocessor Scheduling: 22

4 Proposed Work on RT-EMaCS 24

4.1 Introduction : . 24

4.2 Proposed Work- Real Time Event Management and Coordinating

System (RT-EMaCS): . 24

4.3 RT-EMaCS Model : . 25

4.3.1 Features in RT-EMaCS : . 26

5 Conclusion and Future Work : 31

5.1 Conclusion . 31

5.2 Future Work . 31

Bibliography 33

List of Figures

2.1 Relative and absolute deadline of a Task. 10

3.1 Taxonomy of Real Time scheduling 18

3.2 Global and Partitioned Scheduler in Multiprocessors. 22

4.1 To Add A New Program And A Sub-Program. 27

4.2 Reschedule By Pausing. 28

4.3 Reschedule while Simulation. 28

4.4 Skip a Program , Pause Simulation , Resume Simulation. 29

v

Introduction

Chapter 1

Introduction

1.1 Introduction

In todays busy world, where even every micro second is considered as very

significant, almost all existing systems can be considered as real time systems

because time has become a very important factor for execution of any system. Or

precisely, it can be said that any system which needs time ranging from seconds

to fractions of milliseconds is a real time system.

Examples of real time systems are, consumer products such as digital cameras,

camcorders, cell phones, microwave ovens, video game sets; office products such

as fax machines, laser printers and security machines; industrial production such

as chemical and nuclear plant control, industrial plant automation system, space

missions, immternet routers, flight control systems, and so on. Real time system

are those in which the time of production of result is as important as the correct-

ness of the result itself. Real-time systems have strict timing requirements that

must be met. Real-time systems guarantee that all the timing requirements can be

met by the theory of real-time scheduling and schedulability analysis. The compu-

tational demands of most applications require the use of multiple processors. The

use of the real-time systems in multiple processors has extended not only because

of the high computing requirements of these applications, but also because of the

faster response times and fault tolerant features of such type of systems. Also, a

2

1.2 Dependability in RTS- a case study:

reason for the popularity of multiprocessor systems is the drop in their prices. The

increasing availability of multi-core and other multiprocessor systems has resulted

in renewed interest in multiprocessor real-time scheduling. With the advent of

multi-core architectures in particular, multiprocessor platforms can be expected

in the future to be the standard computing platform in many settings, includ-

ing settings where real-time constraints must be supported. In order to support

such constraints on multiprocessor platforms, the development of useful real-time

scheduling approaches and associated analytical results is crucial.

1.2 Dependability in RTS- a case study:

Trade offs among system performance and with respect to reliability are becom-

ing increasingly important. Hence, reliability measurement in Real Time System

is of an important use.The list of reliable Real Time Systems is very vast. We have

therefore restricted our list to only a handful of applications where incapability to

deal with faulty components leads to hazardous results.

(1) Computer On-Board an Aircraft: In many modern air craft the pilot can

select an auto pilot option. As soon as the pilot switches to this mode, a non-board

computer takes overall control of the air craft including navigation, take-off, and

landing of the aircraft. In theautopilot,the computer periodically samples velocity

and acceleration of the aircraft. The on-board computer computes X, Y,and Z

co-ordinates of the current aircraft position from the sampled data, and compare

them with pre-specified track data.It computes the deviation from the specified

track values and take any corrective actions that may be necessary. In this case,

the sampling of various parameters, and their processing is required be completed

within a few microseconds.

(2) Missile Guidance System: A guided missile is one that is capable of sensing

the target and homes onto it.In a missile guidance system, missile guidance is

achieved by a computers mounted on the missile. The mounted computer com-

putes the deviation from the required trajectory and effects change in track of the

missile to guide it onto the target. The time constraint on the computer based

3

1.3 Literature Review:

guidance system is that sensing and the track correction tasks must be activated

frequently enough to keep the missile from straying from the target. Tasks are

typically required to be completed within few hundreds of microsecond or even

lesser time. If the computer on the missile goes faulty then means should inte-

grated by which this faulty systems can be compensated, which is clearly possible

by means of good fault tolerant technique.

(3) Internet and Multimedia Applications: Important uses of real-time sys-

tems in mul -timedia and Internet applications include : video conferencing and

multimedia multi- cast, Internet router and switches. In a video conferencing ap-

plication,video and audio signals are generated by cameras and microphones, re-

spectively. The data are sampled at certain pre-specified frame rate.These are then

compressed and sent as packets to the receiver over a network. At the receiver-

end, packets are ordered, decompressed and then played. The timeconstraint at

the receiver end is that the receiver must process and play the received frames at

pre-determined constant rate.

1.3 Literature Review:

Research has been done on various aspects of realtime systems such as real

time scheduling algorithms in uniprocessors and multiprocessors and its schedu-

lability analysis, real time simulators, real time operating systems and real time

communication system, etc. Most commonly used algorithms for real-time pro-

cessor scheduling in uniprocessors are (i) Earliest-deadline first (EDF), (ii) Rate

monotonic (RM), and (iii) Least Laxity First (LLF) with the objective to maxi-

mize the throughput [1] . In Earliest Deadline First scheduling, the task which has

the shortest deadline is taken up for scheduling. EDF has been proven to be an

optimal uniprocessor scheduling algorithm. This means that if a task set is schedu-

lable under EDF, then then no other scheduling algorithm can feasibly schedule

this task set [2]. EDF is a dynamic priority scheduling algorithm; however Rate

Monotonic algorithm is a static priority algorithm which assigns priority to tasks

based on the rate of occurrence [3]. In LLF the laxity value of every task in the

4

1.3 Literature Review:

system is computed at each scheduling point, and the task which has least laxity

is taken up for execution. However EDF and RMA scheduling are not optimal on

multiprocessor system [4]

Multiprocessor real-time scheduling theory also has its origins in the late 1960s

and early 1970s. Behera et al. [5] proposed the least switch and laxity first schedul-

ing algorithm, which improves the least laxity first algorithm for periodic task by

searching out an appropriate common divisor along with Modified Least Laxity

First (MLLF).Baruah et al. [6] [7] presented two Pfair (Proportionate Fairness)

scheduling algorithms called Pseudo Deadline (PD) and PF which differ in the

way in which ties are broken when two sub-tasks have the same deadline. Recent

research on proportionate fair (Pfair) scheduling has shown considerable promise

in that it has produced the only known optimal method for scheduling periodic

tasks on multiprocessors.

The EDZL (Earliest Dead-line first until Zero Laxity) [8] algorithm as proposed

by Lee combines the EDF and LLF algorithms. EDZL schedules jobs based on

their deadlines and laxities. When all jobs have positive laxities, EDZL schedules

jobs according to EDF. Whenever the laxity of a job becomes zero, EDZL schedules

the job with the highest priority. Kato and Yamasaki [9] presented an algorithm,

named Earliest Deadline Critical Laxity (EDCL), for scheduling sporadic task

systems on multiprocessors. EDCL reduces runtime overhead and implementation

cost as compared with EDZL, but still strictly dominates G-EDF in schedulability.

LLREF [10], is based on the fluid scheduling model, which executes all tasks at a

constant rate. This algorithm divides the schedule into Time and Local execution

time planes (TL-planes), which are determined by task deadlines. The algorithm

schedules tasks by creating smaller local” jobs within each TL-plane.

D-EDF [11] is a combination of both of EDF and DM algorithm. During

under-loaded condition, the algorithm uses EDF algorithm and priority of the

job is decided dynamically depending on its absolute deadline. During overloaded

condition, the algorithm uses DM algorithm and priority of the job will be decided

statically depending on its relative deadline. D-EDF scheduling algorithm over-

5

1.5 Problem Statement:

comes the limitations of dynamic algorithm during overloaded conditions. Kim

and Cho [12] proposed a scheduling algorithm, called PL ,a laxity based algorithm

which ensures execution of a task with approximate proportional fairness at period

of each task. Existing optimal algorithms on multiprocessors may cause excessive

scheduling decisions and preemptions or may not be applied in a discrete environ-

ment. The PL algorithm can be applied in a discrete environment and reduce the

number of scheduling decisions and preemptions compared with a Pfair algorithm.

1.4 Motivation:

Since time is the most important factor in todays generation, enhancement in

real time technologies will help mankind to utilize every fraction of time. Appli-

cation of real time systems has been found in simple devices around us such as

consumer products, telecommunication domain products and applications, office

products, medical equipments and imaging systems and industrial applications,

etc. One such application in our daily lives is the events or functions we are in-

vited to attend with family and friends or in schools and colleges. A yet to be

registered organisation named Aspire to Inspire Family Foundation which con-

ducts various programmes such as Christmas gathering, Family Day, and other

charitable events faced problems on handling their events on the run time. There

arose a need for such a system that would take care of the proper rescheduling

and management and coordination of events on the run time. Hence, this thesis

takes up the work of building a model that would ensure to provide the efficiency

of scheduling and rescheduling in real life event management through real time

computing.

1.5 Problem Statement:

Research and work has been done in various aspects of life using real time

systems. One such aspect is event management. Many softwares already exist to

manage the pre-event and post-event requirements. However there is a vital need

6

1.6 Thesis Outline:

of managing any event going onstage. If the actual event does not go as planned

then all pre-event arrangements go vain. This will, then, also affect the post-event

planning. Hence this thesis takes up the work of applying real time systems in

onstage event management so that the schedule of event may be satisfactorily

maintained even in unforeseen circumstances.

1.6 Thesis Outline:

The thesis has been divided into five chapters and has been arranged as follows.

Chapter 1 gives a brief description Real Time System and related works by various

researchers in the area of real time scheduling. Chapter 2 describes model and

performance metric in real time systems. Chapter 3 discusses the scheduling of

tasks along with the major concepts in real time systems. Chapter 4 describe the

proposed model for better event management on the run time. Chapter 5 finally

concludes the thesis. Future work has been mentioned in chapter 6.

7

RTS: MODEL AND

METRIC

Chapter 2

RTS: MODEL AND

PERFORMANCE METRIC

2.1 Workload Model:

Real time tasks get generated in response to some events that may either be

external or internal to the system. The model consists of a set of n periodic tasks

S = T1, T2, T3 Tn, each Ti is released periodically with a period pi and

has a deadline di. Each time a task recurs it is called an instance of the task. The

jth instance of task Tj would be denoted as Tj(j). Each task ti has the following

attributes [9, 13]:

Ti =< ai, ri, di, ci, pi > (2.1)

Where ai = arrival time, ri = ready time, di = deadline, ci = worst case, execution

time, pi = period

2.2 Performance metric:

The criterion mostly used to measure the performance of scheduling algorithms

for hard real-time applications is their ability to find feasible schedules of the given

application system whenever such schedules exist. An important parameter is the

9

2.2 Performance metric:

Figure 2.1: Relative and absolute deadline of a Task.

Success Ratio [9]

The number of task sets successfully scheduled

The number of totalscheduled task sets
(2.2)

Other commonly used performance measures include the maximum and aver-

age tardiness, lateness, and response time and the miss, loss, and invalid rates. The

right choice of performance measure depends on the objective of scheduling [1].

• The tardiness of a job measures how late it completes respective to its dead-

line. Its tardiness is zero if the job completes at or before its deadline;

otherwise, if the job is late, its tardiness is equal to the difference between

its completion time(i.e., the time instant at which it completes execution)

and its deadline.

• lateness of a job is the difference between its completion time and its dead-

line. Unlike the tardiness of a job which never has negative values, the

lateness of a job which completes early is negative, while the lateness of a

job which completes late is positive.

• Response time is the length of time from the release time of the job to the

instant when it completes.

• Miss rate is the percentage of jobs that are executed but completed too late

and loss rate give the percentage of jobs that are discarded, that is, not

executed at all.

10

2.2 Performance metric:

• Invalid rate is the sum of the miss rates and loss rates and gives the per-

centage of all jobs that do not produce a useful result.

Other performance metric as mentioned in [14] are utilization bounds, approxi-

mation ratios, resource augmentation or speedup factors, and empirical measures.

The worst-case utilization bound U for a scheduling algorithm A is defined as the

minimum utilization of any implicit-deadline task set that is only just schedulable

according to algorithm A. The resource augmentation or speed up factor for a

scheduling algorithm A is defined as the minimum factor by which the speed of all

m processors would need to be increased such that all task sets that are feasible

(i.e., schedulable according to an optimal scheduling algorithm) on m processors

of speed 1 become schedulable under algorithm A.

11

TASK SCHEDULING IN RTS

Chapter 3

Task Scheduling in RTS

3.1 Introduction

Real time systems comprises of one or more real-time tasks. These tasks get

generated when some specific event, may be external or internal to the system,

occurs. Hence a task is said to have arrived or got released when it gets generated.

Real time tasks need quantitative expressions of time to describe its behaviour [1].

As real time systems need both logical correctness as well as timeliness in the

execution of tasks, proper scheduling of these tasks becomes an important crite-

rion. The scheduling problem in real time distributed systems can be conceptually

separated into two parts. As there are many nodes where a task can be executed,

the first question to be answered is how to assign the tasks to them. This is

known as task allocation or global scheduling. Once the tasks are allocated, the

problem is minimized to that of local scheduling for each node which is equivalent

to scheduling problem in uniprocessor systems.

3.2 Concepts and terms

• Job: Each unit of work that is scheduled and executed by the system is

called a job.

13

3.2 Concepts and terms

• Task : A set of related jobs which jointly provide some system function a

task.

• Processors : Every job executes on some resources such as disk, CPU, net-

work etc. These resources are called Processors in terms of real time systems

literature.

• Release Time: The release time of a job is the instant of time at which the job

becomes available for execution. The job can be scheduled and executed at

any time at or after its release time whenever its data and control dependency

conditions are met.

• Response Time: It is the time interval between the time of release of the job

and the time at which the job completes.

• Deadline: Deadline is the instant of time by which the execution of a job

needs to be completed.Relative daedline is the maximum response time that

is allowed for a job, i.e. the time interval between the start of the task and

the occurrence of deadline. Absolute deadline is the sum of release time and

relative deadline, i.e. time interval between time 0 and the occurrence of

deadline.Deadlines consist of run-ability constraints only,i.e, each task must

be completed before the next request for it occurs [15].

• Scheduling : Scheduling is determining the sequence in which various tasks

are to be assigned to the operating system. This is done by a scheduler.

A scheduler is a module that allocates processors and resources to jobs and

tasks [1]. Each task scheduler is characterised by the scheduling algorithm

it employs [2]. The result produced by the scheduler is called a schedule.

A schedule is intended to be optimal with respect to some criteria (such as

timeliness).

• Valid Schedule: A valid schedule of a set of tasks is a schedule which satis-

fying the following properties

Each process can only start execution after its release time.

14

3.3 Timeliness Specification

All the precedence and resource usage constraints are satisfied.

The total amount of processor time assigned to each task is equal to its

maximum or actual execution time.

• Feasible Schedule: A valid schedule is a feasible schedule if all the tasks

complete without missing their timing constraints.

• Optimal Scheduler : A scheduler is called optimal scheduler if it always pro-

duces a feasible schedule on a set of tasks for which a feasible schedule exists.

If an optimal scheduler cannot produce a feasible schedule for any task set

then no other scheduler can.

3.3 Timeliness Specification

In real time systems the time is qualified which determines the type of real

time system. The timeliness specification can be of the following type.

1. Deadline: A deadline is a completion time constraint which specifies that

the timeliness of the tasks transit through the deadline scope depends on whether

the tasks execution point reaches the end of the scope before the deadline time

has occurred, in which case the deadline is satisfied. In other words, the instant

of time by which the execution of a job needs to be completed.

2. Hard Deadline: A timing constraint or deadline is hard if the consequences

of its failure(i.e. not meeting its deadline) is a fatal fault. A hard deadline is

imposed on a job because a late result produced by the job after the deadline may

have disastrous consequences.

3. Soft Deadline: Soft deadline is a completion time constraint where although

the late completion is not desirable, yet a few misses of soft deadlines are tolerable

as they do no serious harm. But the systems overall performance becomes poorer

if more and more jobs with soft deadlines complete late.

15

3.5 Soft Real-time

3.4 Hard Real Time

Hard real-time is the case where: for the schedulable entities, some time con-

straints are hard deadlines, and the timeliness component of the scheduling op-

timization criterion is to always meet all hard deadlines (additional components

may apply to any soft time constraints); for the non-schedulable entities, some

upper bounds are hard, and the system has been designed and implemented so

that all hard upper bounds are always satisfied (other non-schedulable entities

may have soft upper bounds). Thus, the feasible schedules (with respect to those

schedulable entity time constraints) are always optimal, and the predictability of

that optimality is maximum (deterministic).

Hard real time systems can be hence defined as. systems that are based on

deadline schemes, usually using priority as well. Such systems typically have a

worst case requirement. Failure to meet timing requirement leads to fatal fault

and failure to meet a deadline, in such systems, requires automated handling,

3.5 Soft Real-time

Soft real-time represents all cases which are not hard real-time (soft real-time

is the general case, of which hard real-time is a special case). Time constraints

are soft (which may include the hard deadline special case), such as the classical

lateness function.

Any scheduling optimization criteria may be used (including the hard real-time

special case), such as minimizing the number of missed deadlines, or minimizing

mean tardiness, or maximizing the accrued utility. Predictability of schedule op-

timality (and thus thread timeliness) is generally sub-optimal, but may be deter-

ministic (including but not limited to the special hard real-time case).

Upper bounds are soft, and predictability of non-schedulable entity timeliness

is generally sub-optimal. Soft real time systems can be hence defined. systems that

16

3.6 Type of Tasks

have an average case timing requirement. Failure to meet the timing requirement

is not critical in such systems. Such systems are often based on priority schemes

Unlike in hard real time systems where it becomes important to ensure all tasks are

completed by their deadline in soft real-time systems where meeting the deadlines

of all the tasks is not essential. Critical Task, Efficient scheduling.

3.6 Type of Tasks

The three main categories of real time tasks based on recurrence of tasks are:

3.6.1 Periodic Tasks:

Periodic tasks are those that are repeated after certain fixed interval of time [1].

They are also called clock driven tasks because the fixed interval is generally

notified by clock interrupts. Such fixed interval of time is called the period of the

task. A formal way of representing a periodic task Ti is as (i ,pi , ei , di) where i

is the occurrence of the instance of Ti, pi is the period of task, ei is the worst case

execution time of task, and di is the relative deadline of the task. Sporadic Tasks:

Sporadic tasks are those that are repeated at random instant of time. However

there is a minimum separation between two consecutive instances of task. A

sporadic task Ti can be represented by three tuple (ci, gi, di) where ci is the worst

case execution time of an instance of the task, gi denotes the minimum separation

between two consecutive instances of the task, di is the relative deadline.

3.6.2 Aperiodic Tasks:

An aperiodic task is similar to a sporadic task except that the minimum separation

gi between two consecutive instances can be 0.

The basic task model, considered in this thesis work is which is modeled by a

set of N periodic tasks Ti:

Ti = (pi, di, ci) | 1 <= i <= N |

17

3.8 Task assignment

3.7 Taxonomy of RT scheduling Algorithms

The vast majority of scheduling problems on systems with more than two

processors are NP omplete [16]. The problem of sheduling in multiprocessor and

distributed systems is reduced to that of uniprocessor scheduling [1]. In general,

tasks may have data and ontrol dependencies and may share resources on different

processors.

At the highest level, a distinction is drawn between hard and soft scheduling,

depending on the timing constraint defined as hard and soft real time systems.

Figure 3.1: Taxonomy of Real Time scheduling

3.8 Task assignment

The optimal assignment of tasks to processors is, in almost practical cases, an

NP complete problem. Hence applying heuristic techniques. These heuristic can-

not guarantee that an allocation will be found that permits all tasks to be feasibly

18

3.9 Task Scheduling

scheduled. All that can be done is to make an allocation, check its feasibility, if

the allocation is not feasible, modify the allocation to render that the allocation

is feasible. Sometimes the allocation uses the communication cost as the part of

the allocation scheme.

3.9 Task Scheduling

Classification of real time task scheduling algorithms can be done using vari-

ous schemes. There are three main types of scheduling algorithms based on the

scheduling points defined:(i) Clock Driven, (ii) Event Driven and (iii) Hybrid. [2]

3.9.1 Clock Driven Approach:

In this approach the decision of scheduling the tasks is done only at clock

interrupts. It is also known as offline scheduler or static scheduler as the schedule

is fixed before the execution in the system starts. Hence the run time overhead

remains low. However these are not suitable for aperiodic and sporadic tasks

since their arrival time cannot be predicted. Clock driven schedulers are simple

and efficient. Table driven and cyclic schedulers are important examples of Clock

driven schedulers.

3.9.2 Event Driven Approach:

In this approach, the scheduling decisions are taken at events such as task ar-

rival or task completion. They are also called priority driven schedulers because of

the pre-emptive property. The higher priority tasks can pre-empt the lower prior-

ity tasks. Event driven schedulers are more flexible than Clock driven schedulers

because they can handle both aperiodic and sporadic tasks along with periodic

task whereas clock driven schedulers can handle only periodic tasks.

19

3.10 Scheduling in Multiprocessors

3.9.3 Hybrid Approach:

As predictable by the name, the hybrid approach is a combination of the clock

driven approach and event driven approach, i.e. the scheduling point are at clock

interrupts as well as occurrence of event. Weighted Round-Robin Scheduler is

a popular hybrid scheduler. Here every ready task is put in a First-in-First-out

queue and gets a chance to execute for a time-slice. If it does not complete in that

time slice it is put back in the queue. Such schedulers are not suitable for critical

tasks.

3.10 Scheduling in Multiprocessors

Scheduling in multiprocessor can be viewed as attempting to solve two prob-

lems [14] :

1. The allocation problem: on which processor a task should execute.

2. The priority problem: when, and in what order with respect to jobs of other

tasks, should each job execute.

Scheduling algorithms for multiprocessor systems can be classified according

to when changes to priority and allocation can be made (referred to as migration-

based and priority-based classifications [17]).

3.10.1 Allocation

1. No migration: Each task is assigned to a processor and no migration of task

to any other processor is permitted.

2. Task-level migration: The jobs of a task are permitted to execute on different

processors; but each job can only execute on a single processor.

3. Job-level migration: A single job is allowed to migrate to and execute on

different processors; but parallel execution of a job is not permitted. [18]

20

3.10 Scheduling in Multiprocessors

3.10.2 Priority

1. Fixed task priority: A single fixed priority is applied to all the jobs of each

task.

2. Fixed job priority: Different priorities may be applied to the jobs of a task,

but each job has a single fixed priority. An example of this is Earliest Deadline

First (EDF) scheduling.

3. Dynamic priority: Different priorities may be applied to a single job at

different times, for example Least Laxity First (LLF) scheduling.

3.10.3 Best-known heuristics for the allocation problem

The best-known heuristics found in the literature that solve the allocation

problem are [19]

1. First-Fit (FF): FF allocates a new object to a non-empty bin with the

lowest index, such that the weight of the new object along with the weights of the

objects already allocated to that bin, do not exceed the capacity of the bin. If

the new object exceeds the capacity of the bin, then FF allocates the object to an

empty bin.

2. Best-Fit (BF): If an object cannot be allocated to a non-empty bin then

BF puts the object into an empty bin. Otherwise, BF will allocate the object

to the non-empty bin with smallest capacity available, in which the object can

be allocated. If there is more than one bin with the same capacity, then BF will

choose the bin with smallest index.

3. Next-Fit (NF): After allocating the first object to the current bin, NF

allocates the next object to the same bin, only if it fits into this bin. Otherwise,

NF allocates the object to the next empty bin. Note that NF does not check if

the object can be allocated in previous bins.

4. Worst-Fit (WF): This algorithm is similar than BF, with the difference that

WF allocate objects into the bins with the greatest capacity available, in which

they can be feasibly allocated.

21

3.11 Approaches to Real time Multiprocessor Scheduling:

3.11 Approaches to Real time Multiprocessor Schedul-

ing:

Two basic approaches for scheduling real-time tasks on multiprocessor plat-

forms are:

Partitioned Approach: In the partitioned approach, each task is assigned to

a single processor statically and migration is not allowed. The set of tasks is

partitioned into m subsets; each set is then assigned to a unique processor. As

the tasks are not allowed to migrate, the multiprocessor scheduling is transformed

into many uniprocessor scheduling problems.

Global Approach: In the global approach, tasks are allowed to freely migrate

and execute on any processor. Store the tasks ready in one queue which is shared

among all the processors. At every moment, the m highest priority tasks of the

queue are selected for the m processors.

Figure 3.2: Global and Partitioned Scheduler in Multiprocessors.

22

Proposed Work on RT-EMaCS :

Chapter 4

Proposed Work on RT-EMaCS

4.1 Introduction :

The goal of Event management and Coordinating system is to maximize the

efficiency and reliability of the events scheduled even in cases when some changes

in schedule are required. Static resource allocation is performed when applications

are mapped in an offline planning phase i.e. mapping is used when a system is

first started to ensure that all real time constraints will be met for a given initial

system workload. Static mapping or resource allocation ensures that all real time

constraints will be met for a given system workload before the system is put in

operation . However real time systems operate in an environment that undergoes

unexpected changes. Hence there is a need for a system that takes care of such

unexpected changes.

4.2 Proposed Work- Real Time Event Manage-

ment and Coordinating System (RT-EMaCS):

The objective of this system is to take care of the unexpected changes that

occur in the real time environment. RT-EMaCS is an application that checks the

schedulability of real time events in any real life onstage function or programme.

It checks the feasibility of the events/programmes (i.e. real time tasks) even af-

24

4.3 RT-EMaCS Model :

ter the static scheduling is done once, i.e. it goes for a dynamic schedulability

check during the run time after the initial static scheduling is done. RT-EMaCS

is basically developed for the proper execution of the plans in any onstage func-

tion. Often it is seen that real life programmes do not execute as the way it is

planned. Usually some or the other unexpected and unforeseen situations occur

hampering the normal schedule of the programme. These may cause delay or need

skipping of some events of the programme which might look chaotic or haphazard

to the audience. RT-EMaCS is the appropriate assistance that helps avoiding such

unforeseen situations.There systems that are often referred to as hard real-time

systems, where real-time reflects the fact that they must directly interact with a

changing physical environment and hard refers to the fact that at least some sys-

tem functions must be performed within specific timing constraints [20]. However

here, managing events in such real time occasions will be a soft real time system.

4.3 RT-EMaCS Model :

RT-ESaCS Model provides a platform to simulate the scheduled events of the

programme, inquire whether the next event is ready to be executed or not and

make the necessary changes in any case when the schedule cannot be met as

planned. Since real time time tasks are those where both correct result and the

time at which it is produced are important, programs that are decided in any real

life function or programme are also real time tasks because the time by which

the programs need to be complete is also important. Faults need to be identified

before being tolerated [13].This model is an attempt to avoid any occurrence of

fault by checking the details of upcoming programs rather than allowing a fault

to occur and then going for fault tolerance. Again, this model can even help in

fault tolerance if any fault occurs, by immediatedly resheduling.

RT-EMaCS is a Java based application which can run on any Java based plat-

form such as laptops, desktops and any mobile device supporting Java, specially

like android phones or tablets. The link between them can be done via Wi-Fi. In

every programme different event responsibilities are been given to separate event

25

4.3 RT-EMaCS Model :

coordinators. During the running of the programme, there is need for the event

coordinators to coordinate among themselves and adapt to various circumstances,

usually unexpected ones. Hence if all event coordinators are provided with RT-

EMaCS enabled devices, they get the advantage of the following features during

their event coordination.

RT-EMaCS involves both static scheduling and dynamic scheduling. In the the

beginning of programme,complete knowledge of the task set and its constraints,

such as deadlines, computation times, precedence constraints, and future release

times are known. As in dynamic scheduling, algorithm has complete knowledge

of currently active tasks,but new task activations, not known to the algorithm

when it is scheduling the current set, may arrive. Similarly, dynamic scheduling

is required once the programme starts [21].

4.3.1 Features in RT-EMaCS :

Add new program:

The event coordinator has the option to add any new program to the schedule as

and when required. Hence this makes it very user friendly and flexible.

Add sub-program:

The event coordinator can also make any changes or addition in the sub-programs.

Arranging Feature (Up and Down)

: Before the actual execution starts, the event coordinators have the facility to

move the programs up or down in the schedule.

Postponeprogram

: If the event coordinator finds that if there is be some sort of delay, i.e. program

execution is not ready, then the event coordinator can use the postpone feature

26

4.3 RT-EMaCS Model :

Figure 4.1: To Add A New Program And A Sub-Program.

the postpone that event.

Reschedule program:

The postponed programs can be rescheduled at the befitting time slot. The event

coordination has options to reschedule them using real time mode (i.e. postponed

program is scheduled immediately after the current running program.), End of

List mode(i.e. the postponed program is scheduled as the last program), Default

mode (i.e. there is no change in the schedule, program is added to the same slot

as before.)

Skip program:

whenever there is need of completion of programme on time, the less priority

events can be skipped.

27

4.3 RT-EMaCS Model :

Figure 4.2: Reschedule By Pausing.

Figure 4.3: Reschedule while Simulation.

Pause simulation :

User can also pause the simulation in case any alteration of scheduling of pro-

gramme is needed . Hence, it facilitates re-scheduling which prevents chaos.

28

4.3 RT-EMaCS Model :

Figure 4.4: Skip a Program , Pause Simulation , Resume Simulation.

29

Chapter 5

Conclusion and Future Work :

5.1 Conclusion

Use of RT-EMaCS will provide the event organizers and the event coordina-

tors with better facilities in event management. It provides an easy, simple and

better means of communication among one another. It prevents loss of time that

would otherwise occur if any update had to be conveyed from one coordinator to

another by means of physical movement. It also prevents from chaotic situations

due to sudden changes in schedule. Use of RT-EMaCS does not require any com-

plicated devices or instruments. Commonly available devices that support Java

are suitable for running RT-EMaCS. Hence, it is cost efficient as compared to other

methods. The features such as adding programs, removing programs, postponing

and rescheduling are simple and easy to operate because of the friendly GUI.

5.2 Future Work

Our RT-EMaS has been modeled as distributed system, i.e. any event coordi-

nator can made the changes or updates and a new schedule will then be circulator

to all coordinators. This model can also be converted to a centralized system

where all necessary updates are sent to a main coordinator and only he makes the

31

5.2 Future Work

changes in the schedule and circulates to all other coordinators. Future work can

be done in the field of automating the rescheduling of the programs. If a prior-

ity rule set is already fed in the application regarding the basic responses to any

expected circumstances during the programme, then the application might need

manual assistance only in cases when the interrupt(i.e. request for change) does

match any rule provided in the rule set.

32

Bibliography

[1] J. W. Liu, “Real-time systems. 2000.”

[2] R. Mall, Real-Time Systems: Theory and Practice. Prentice Hall, 2007.

[3] G. C. Buttazzo, “Rate monotonic vs. edf: judgment day,” Real-Time Systems,

vol. 29, no. 1, pp. 5–26, 2005.

[4] M. L. Dertouzos and A. K. Mok, “Multiprocessor online scheduling of hard-

real-time tasks,” Software Engineering, IEEE Transactions on, vol. 15, no. 12,

pp. 1497–1506, 1989.

[5] H. Behera, S. Khuntia, and S. Nayak, “An improved least-laxity-first schedul-

ing algorithm for real-time tasks,” International Journal of Engineering Sci-

ence, vol. 4, 2012.

[6] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel, “Proportionate

progress: A notion of fairness in resource allocation,” Algorithmica, vol. 15,

no. 6, pp. 600–625, 1996.

[7] S. K. Baruah, J. E. Gehrke, and C. G. Plaxton, “Fast scheduling of peri-

odic tasks on multiple resources,” in Parallel Processing Symposium, 1995.

Proceedings., 9th International, pp. 280–288, IEEE, 1995.

[8] S. K. Lee, “On-line multiprocessor scheduling algorithms for real-time tasks,”

in TENCON’94. IEEE Region 10’s Ninth Annual International Conference.

Theme: Frontiers of Computer Technology. Proceedings of 1994, pp. 607–611,

IEEE, 1994.

33

Bibliography

[9] S. Kato and N. Yamasaki, “Global edf-based scheduling with laxity-driven

priority promotion,” Journal of Systems Architecture, vol. 57, no. 5, pp. 498–

517, 2011.

[10] H. Cho, B. Ravindran, and E. D. Jensen, “An optimal real-time schedul-

ing algorithm for multiprocessors,” in Real-Time Systems Symposium, 2006.

RTSS’06. 27th IEEE International, pp. 101–110, IEEE, 2006.

[11] D. Thakor and A. Shah, “D edf: An efficient scheduling algorithm for real-

time multiprocessor system,” in Information and Communication Technolo-

gies (WICT), 2011 World Congress on, pp. 1044–1049, IEEE, 2011.

[12] H. Kim and Y. Cho, “A new fair scheduling algorithm for periodic tasks on

multiprocessors,” Information Processing Letters, vol. 111, no. 7, pp. 301–309,

2011.

[13] S. Ghosh, R. Melhem, and D. Mossé, “Fault-tolerance through scheduling

of aperiodic tasks in hard real-time multiprocessor systems,” Parallel and

Distributed Systems, IEEE Transactions on, vol. 8, no. 3, pp. 272–284, 1997.

[14] R. I. Davis and A. Burns, “A survey of hard real-time scheduling for multi-

processor systems,” ACM Computing Surveys (CSUR), vol. 43, no. 4, p. 35,

2011.

[15] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogramming

in a hard-real-time environment,” Journal of the ACM (JACM), vol. 20, no. 1,

pp. 46–61, 1973.

[16] M. T. C. S. JIS, “Computers and intractability a guide to the theory of np-

completeness,” 1979.

[17] J. Carpenter, S. Funk, P. Holman, A. Srinivasan, J. Anderson, and S. Baruah,

“A categorization of real-time multiprocessor scheduling problems and algo-

rithms,” Handbook on Scheduling Algorithms, Methods, and Models, pages,

pp. 30–1, 2004.

34

Bibliography

[18] A. Hangan and G. Sebestyen, “Rtmultisim: A versatile simulator for multi-

processor real-time systems,” in Proceedings of The 3rd International Work-

shop on Analysis Tools and Methodologies for Embedded and Real-time Sys-

tems, Pisa, Italy, p. 15, 2012.

[19] O. U. P. Zapata and P. M. Alvarez, “Edf and rm multiprocessor scheduling

algorithms: Survey and performance evaluation,” Seccion de Computacion

Av. IPN, vol. 2508, 2005.

[20] N. C. Audsley, A. Burns, M. F. Richardson, and A. J. Wellings, “Stress: A

simulator for hard real-time systems,” Software: Practice and Experience,

vol. 24, no. 6, pp. 543–564, 1994.

[21] J. A. Stankovic, M. Spuri, M. Di Natale, and G. C. Buttazzo, “Implications

of classical scheduling results for real-time systems,” Computer, vol. 28, no. 6,

pp. 16–25, 1995.

35

	Acknowledgement
	Abstract
	List of Figures
	Introduction
	Introduction
	Dependability in RTS- a case study:
	Literature Review:
	Motivation:
	Problem Statement:
	Thesis Outline:

	RTS: MODEL AND PERFORMANCE METRIC
	Workload Model:
	Performance metric:

	Task Scheduling in RTS
	Introduction
	Concepts and terms
	Timeliness Specification
	Hard Real Time
	Soft Real-time
	Type of Tasks
	Periodic Tasks:
	Aperiodic Tasks:

	Taxonomy of RT scheduling Algorithms
	Task assignment
	Task Scheduling
	Clock Driven Approach:
	Event Driven Approach:
	Hybrid Approach:

	Scheduling in Multiprocessors
	Allocation
	Priority
	Best-known heuristics for the allocation problem

	Approaches to Real time Multiprocessor Scheduling:

	Proposed Work on RT-EMaCS
	Introduction :
	Proposed Work- Real Time Event Management and Coordinating System (RT-EMaCS):
	RT-EMaCS Model :
	Features in RT-EMaCS :

	Conclusion and Future Work :
	Conclusion
	Future Work

	Bibliography

