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                                                 INTRODUCTION  

In  number   theory,  study of   number  sequences  with  interesting  properties  has 

been  a  source  of  attraction  since  ancient times.  The  most  beautiful  and  simplest of  all 

number  sequences  is  the  Fibonacci  sequence. This sequence was first  invented  by  

Leonardo of  Pisa (1180-1250),  who  was  known  as  Fibonacci,  to describe the growth of  a  

rabbit  population .  It  describes   the  number of  pairs  in  a  rabbit population  in  a rabbit  

population  after  n months if  it is  assumed  that 

 the  first month there is just one newly born pair, 

 newly born pairs becomes productive from their second month on, 

 there is no genetic problems whatsoever generated by inbreeding, 

 each month every productive pair bagets a new pair,  and  

 the rabbit never die 

Thus, if in the      month, we have a rabbits and in the          month, we have   rabbits, 

then in the         month we will necessarily have      rabbits. That’s because we 

know each rabbit basically gives birth to another each month (actually each pair gives birth to 

another pair, but it’s the same thing) and that all   rabbits give birth to another number of    

rabbits, become fertile after two months, which is exactly in the         month. That’s 

why we have the  population  at  moment   is     (which is  ) plus exactly  the population 

at time   (which is   ). 

 

  Perhaps the greatest investigator of the properties of the Fibonacci and related number 

sequences was Francois Edouard Anatole Lucas (1842-1891). A sequence related to the 

Fibonacci sequence bears his name, called the Lucas sequence, in that of Fibonacci numbers. 

The number of ways of picking a set (including the empty set) from the Cyclic set 

              without picking two consecutive numbers is given by the     Lucas Number.       

A Brief History of Cryptography and Data Security: 

For over 4,500 years, cryptography has existed as a means of secretly communicating 

information. Egyptian hieroglyphics are the first example of the use of cryptography to hide 

information from those not “in the know”. The use of cryptographic ciphers is central to 

events surrounding historical figures such as Julius Caesar, Queen Elizabeth I, Mata Hari, and 

Alfred Dreyfus, while playing a significant role in the Allies’ victory over the Axis powers 

during World War II, directly affecting the outcome of the Battle of Midway and other 

engagements[4,1]. For those interested in cryptographic history, books such as Brute Force: 

Cracking the Data Encryption Standard, by Matt Curtin, and The Codebreakers. The Story of 

Secret Writing, by David Kahn, provide interesting reading on how cryptography has affected 

world events. 



     Cryptography in its more contemporary form was fathered by Claude Shannon in 

1949.Widely known for his work in electronic communications and digital computing, 

Shannon established the basic mathematical theory for cryptography and its counterpart, 

cryptanalysis. Shannon’s methods relied on a unique shared secret, referred to as the key, that 

allowed two parties to communicate securely as long as this key was not compromised. This 

class of algorithms, known as private-key, secret-key, or symmetric-key, was the sole method 

of secure communication until 1976, when Whitfield Diffie and Martin Hellman proposed a 

revolutionary key distribution methodology. This methodology led to the development of a 

new class of algorithms, termed public-key or asymmetric-key, where a pair of 

mathematically related keys are used and one of these keys is made public, obviating the need 

for a secret shared specifically between two parties. Today, information system typically use 

a hybrid approach, combining the benefits of symmetric-key and public-key algorithms to 

form a system that is both fast and secure. 

Cryptography and Data Security in the Modern World: 

Cryptography currently plays a major role in many information technology applications. With 

more than 188 million Americans connected to the Internet, the use of cryptography to 

provide information security has become a top priority. Many applications- electronic mail, 

electronic banking, medical databases, and electronic commerce- require the exchange of 

private information. For example, when engaging in electronic commerce, customers provide 

credit card numbers when purchasing products. If the connection is not secure, an attacker 

can easily obtain this sensitive data. In order to implement a comprehensive security plan for 

a given network to guarantee the security of a connection, the following services must be 

provided. 

 Confidentiality: Information cannot be observed by an unauthorized party. This is 

accomplished via public-key and symmetric-key encryption. 

 Data Integrity: Transmitted data within a given communication session cannot be 

altered in transit due to error or an unauthorized party. This is accomplished via the 

use of Hash Functions and Message Authentication Codes (MACs). 

 Message Authentication: Parties within a given communication session must provide 

certifiable proof validating the authenticity of a message. This is accomplished via the 

use of Digital Signatures. The only communicating party that can generate a Digital 

Signatures that will successfully verify as belonging to the originator of the message 



is the originator of the message. This process validates the authenticity of the 

message, i.e. that the claimed originator of the message is the actual originator of the 

message. 

 Non-repudiation: Neither the sender nor the receiver of a message may deny 

transmission. This is accomplished via Digital Signatures and third-party notary 

services. 

 Entity Authentication: Establishing the identity of an entity, such as a person or 

device. 

 Access Control: Controlling access to data and resources. Access is determined based 

on the privilege assigned to the data and resources as well as the privilege of the entity 

attempting to access the data and resources. 

 

Chapter 1 gives the basic definitions and some theorems in number theory like Division 

algorithm, Fermat’s theorem, Euler’s theorem and Quadratic reciprocity. Also we discuss 

how to find large primes. Chapter 2 gives the basic definition of Cryptography, Aspects and 

application of Cryptography, objectives and component of cryptography, categories of 

cryptography, RSA algorithm and Diffie-Hellman algorithm and digital signatures. In  

Chapter 3 we have implemented the Lucas sequences in Public key system. 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

CHAPTER 1 

 

Preliminaries 

 

Mathematics is the queen of all sciences and number theory is the queen of mathematics. 

Carl Friedrich Gauss 

 

In this chapter we present some definitions and known results from basic number 

theory. This chapter serves as base and background for the study of remaining chapter.  

 

1.1 Definition. An integer   is divisible by an integer  , not zero, if there is an integer  

such that     , and we write    . In case   is not divisible by  , we write    . 

 

1.2 Theorem. The division algorithm. Given any integer   and  , with    , there exist 

integers  and   such that               If    , then   satisfies the stronger 

     . 

Proof: Consider the arithmetic progression  

                                  

extending indefinite in both directions. In this sequence, select the smallest non-negative 

member and denote it by  . Thus by definition   satisfies the inequalities of the theorem. 



But also  , being in the sequence, is of the form     , and thus   is defined in the 

terms of  . 

         To prove the uniqueness of  and  , suppose there is another pair    and    

satisfying the same conditions. First we prove that   =  . For if not, we may presume that 

    so that           , and then we see that                and so       

  , a contradiction to                    Hence     , and also     . 

   Theorem 1.1 is called the division algorithm. An algorithm is a mathematical procedure 

or method to obtain a result. We have stated theorem 1.1 in the form there exist integer 

 and  , and this wording suggests that we have a so-called existence theorem rather than 

an algorithm. However , it may be observed that the proof does not give a method for 

obtaining the integer   and   ,because the infinite arithmetic progression  

                                  

need be examined only in part to yield the smallest positive member  .  

1.3 Definition. The integer   is a common divisor of   and   in case     and    . Since 

there is only a finite number of divisors of any nonzero integer, there is only a finite 

number of common divisor of   and  , except in the case        If at least one of   

and   is not zero, the greatest among their common divisor is called the greatest common 

divisor of   and   and is denoted by        Similarly , we denote the greatest common 

divisor   of the integers             not zero, by             . 

 

1.4 Theorem.  The Euclidean algorithm.[2] Given integer   and      we make a 

repeated application of the division algorithm, theorem 1.1, to obtain a series of 

equations 

                        

                          

                          

                                            

                                 

             

the greatest common divisor       of   and   is     the last nonzero remainder in the 

division process. Values of    and    in               can be obtained by writing 

each    as a linear combination of  and  . 

Proof. The chain of equation is obtained by dividing   into     into  ,    into 

          into     . The process stops when the division is exact, that is , when the 

remainder is zero. Thus in application of theorem 1.1 we have written the inequalities for 



the remainder without an equality sign. Thus, for example,         in place of 

        because if    were equal to zero, the chain would stop at the first equation 

     , in which case the greatest common divisor of   and   would be  . 

We now prove that    is the greatest common divisor   of   and  .by the following result  

For any integer                                we observed that  

                                   

                                    

Continuing by mathematical induction, we get 

      (       )  (    )      

To see that   is a linear combination of   and    , we argue by induction that each     is a 

linear combination of  and   . Clearly,   is a linear combination, and likewise     In 

general,    is a linear combination of     and     . By the induction hypothesis we may 

suppose that these latter two numbers are a linear combination of  and   , and it follows 

that    is also a linear combination of   and   . 

1.5 Definition. An integer     is called a prime number, or a prime, in case there is no 

divisor   of   satisfying         If an integer     is not a prime, it is called a 

composite number. 

  Thus, for example, 2, 3, 5, and 7 are primes, whereas 4, 6, 8 and 9 are composite. 

1.6 Theorem. (Euclid). The number of primes is infinite. That is, there is no end to the 

sequence of primes  2 , 3 , 5 , 7 , 11 , 13 ,… 

Proof suppose that           are the first   primesand let 

             

Note that   is not divisible by any of   ,  , ,  . Hence any prime divisor   of   is a 

prime distinct from           . Since   is either a prime or has a prime factor  , this 

implies that there is a prime distinct from           . Thus we see that for any finite  , 

the number of primes is not exactly  . Hence the number of primes is infinite. 

CONGURENCE  

1.7 Definition. If an integer  , not zero, divides the difference    , we say that   is 

congruent to   modulo   and write             If     is not divisible by  , we 

say that   is not congruent to   modulo  , and in this case we write             

1.8 Definition. If            then   is called a residue of   modulo  . A set 

           is called a complete residue system modulo   if for every integer   there is 

one and only    such that              



1.9 Definition. A reduced residue system modulo   is a set of integers    such that 

                      if      and such that every   prime to   is congruent 

modulo    to some member    o the set. 

1.10 Definition.  The number ɸ    is the number of positive integer less than or equal 

to   that are relatively prime to  . This ɸ is called Euler’s function. 

1.11 Theorem. (Fermat’s theorem). Let   denotes a prime. If     then      

          For every integer                

1.12 Theorem.  (Euler’s theorem). If          then 

                

QUADRATIC RECIPROCITY  

1.13 Result. The Gaussian reciprocity law. If   and   are distinct odd primes, then 

                  (
 

 
) (
 

 
) = (-1) (

   

 
) (
   

 
). 

 

THE JACOBI SYMBOL 

 

1.14 Definition. Let   be positive and odd, so that           where the    

are odd primes, not necessary distinct. Then the Jacobi symbol  
 

 
) is defined by 

(
 

 
) =∏      

   j) 

Where (p/qj)   is the Legendre symbol. 

 

 

PRIMALITY TESTING AND FACTORING  

1.14 Pseudo primes and Carmichael Numbers 

Applications of number theory to cryptography require a supply of large primes. The method 

of trial division is only practical for finding primes with at most 12 to 14 digits. We need 

better techniques to find much larger primes. Moreover, the methods have to be fast, as it is 

necessary to produce a large number of primes. The methods discussed in this section and the 

next are very efficient, but they are probabilistic. If one of these techniques returns that a 

number is composite, then its certain that the number is composite.  But, if it returns that a 

number is prime then, there is a small probability that the number is actually composite. What 

this means that occasionally these algorithms report a composite number as prime. We will 

study the probability of failure of these algorithms, and it will be clear that the chance of 

failure of the strong pseudo prime test is negligible. The strong pseudo prime test is sufficient 

for all practical purposes. 



To test if   number is prime, one would like to have a simple criterion that its 

computationally feasible. Unfortunately, the known criteria for primality fail to meet this 

requirement. For example, Wilson’s Theorem states that                    if and only 

if n is prime. Unfortunately, there is no way to compute        In a reasonable amount of 

time. A lot of so-called “formulas for primes” are based on Wilson’s Theorem and are utterly 

useless. 

We appeal to Fermat’s Theorem for salvation. The theorem states that for primes,      

           for all  . We investigate the extent to which the simply converse of this theorem 

hold, i.e, does               for all   imply that   is prime? If it doesn’t for which n does 

it fail and how often?. Note that, this criterion would be computationally feasible, as    

           can be computed in          steps by the technique of squaring and 

multiplication. 

1.15 Definition. A composite number   is pseudo prime to base 2 [or 2-pseudoprime or, 

psp(2)], if                

1.16 Example. Lets verify that 341 is pseudo prime to base 2. 

Firstly, 341=11.31 is composite..! to compute                    , we compute 

           , and 2
341       . Notice that                  and                  

hence, 

2
341  

≡  2
10.34

2
1
≡ 2         implies 2

341  
≡  2

5.68
2

1
≡ 2        . It follows that  

2
341  

≡  2          , so 341 is a 2-pseudoprime. In fact, 341 is the smallest 2-pseudoprime 

and gives a counter example to the converse of Fermat’s theorem. It was discovered by 

Sarrus. 

 

1.17  Example. 

Show that 561=3.11.17 is a pseudo prime to base 2. 

   Note that                then   must be composite. This is an instance of 

compositeness test, where we know a number is composite without knowing any of the 

factors. If                 we must check the compositeness by a different method, for 

example, trial division, to conclude that   is a pseudo prime. 

We are interested in the number of 2-pseudoprimes and their distribution. If only a finite 

number of 2-pseudoprimes exist, then we could obtain a simple criterion for primality, at 

least for very large numbers. Unfortunately (but not unexpectedly), there are an infinite 

number of 2-pseudoprimes. 

If   is a 2-pseudoprime, then      is a 2-pseudoprime. Therefore, there are infinitely many 

2-pseudoprimes. 



1.18 Definition.[7] A composite number   is pseudo prime to base   [or a-pseudo prime or, 

psp(2)], if             .  

Note that if          , then the condition is equivalent to               .    

1.19 Example. 

Let’s verify that 91 is a 3- pseudo prime. 

A direct computation shows that 3
91

 ≡ 3          and, 91 is composite as 91=7. 13. 

Calculations can also be done using Fermat’s theorem and, computing 3
91

       and   

          . 

For any a, there are infinitely many a- pseudo primes. 

1.20 Definition. We say that a number   passes the pseudo prime test to base   if 

               .  

 The pseudo prime test does not require that   be composite. Prime numbers pass the pseudo 

prime test to any base  , and if   is composite and passes the pseudo prime test to base  , 

then it is an a pseudo prime. If   fails the pseudo prime test, then it must be composite. To 

use this test as a test for primality, we need to know the number of a-pseudo primes to 

determine the probability that a composite number is misidentified as prime. 

There are some 50,847,534 primes less than 10
9
, but only 5597 psp(2)’s. If a number n is less 

than 10
9
 satisfies                , then there is a very high probability [= 1- 

(5597)/(50847534)]  that it is a prime. Our chances are increased if we also test   with 

respect to other bases. For example, there are 685 numbers less than or, equal to 10
9
 that are 

pseudo primes to base 2, 3, and 5. We could construct a list of these and conduct a simple 

primality test. 

Pseudo primePrimailty Test.  This test applies to numbers less than 10
9
. Make a note of the 

685 pseudo primes to base 2, 3, and 5. 

1. Does   pass the pseudo primes to bases 2, 3, and 5?  If not,   is composite. 

2. Is   one of the      precomputedpseudo primes to bases 2, 3, &, 5? If so,   is composite: 

otherwise, it is a prime. 

While the range of numbers to which this test is applicable is not so large as we would like, 

the test is much faster than trial division. We have three pseudo prime tests, which can be 

performed in increasing time proportional to      . a search of 685 numbers can be done in 

less than 10 operations. 

We will not actually use this algorithm, as there are better methods discussed later. For large 

 , we might hope that if   is composite, its compositeness will be revealed in some pseudo 



prime test. Unfortunately, there are many composite numbers that are pseudo primes to all 

bases. Such numbers were first studied by R. D. Carmichael. 

1.21 Definition. A composite number   that satisfies                  for all   such that 

          is called a Carmichael number.  

1.22 Example.  561 is a Carmichael number. 

First notice that 561 is composite as 561= 3. 11. 17. To show                     for all 

           . So we will prove this using Chinese Remainder Theorem and Fermat’s 

Theorem. Since 

                                                                        

                                          
and  

                                          
 

we have 

                   for all            . 

Carmichael numbers are characterized by the following property. 

1.23 Result. A composite number   is a Carmichael number if and only if for every    , we 

have          

 

Strong Pseudo primes and Probabistic Primality Testing  

An improvement in the pseudo prime test for identifying probable primes comes from the 

following observation. Suppose   is prime; then the equation                has two 

solutions,                   The number of solutions to                is more than 

two for composite numbers. We want to exploit this fact to make the pseudo prime test reveal 

the compositeness of the number. Most of the results discussed here are due to Pomerance, 

Selfridge, and Wagstaff. 

Earlier we saw that,                  does not imply that   is prime. Suppose,   is odd: 

then we can write          , with       and,   is odd. If   is prime, 

 (      )
 
            implies that                      . If                   and, 

      , then,                      .  and, so until           becomes odd. In each 

step while solving               , we should get 1 or, -1 when   is prime. For composite 

 , we may obtain a number other than ±1. 

Since computing a square root is harder than computing a square, we start with    and, 

compute                instead of computing the sequence                              More 

precisely, computation of      is accompanied by the following sequence: 



             
              

               
                

                       
                              

Note that                 Each term of the sequence            is computed by squaring 

the previous term in the sequence and taking the remainder modulo    

For    primes,             means that        
                  that is,  

                   If               , then                   Continuing in this 

manner, we have two possibilities: either            or, there is an index   such that 

                 This means that for   prime,               can be of the form 

                                                

where   represents some number different from -1 or, 1, not important for our purposes.  

      If   is composite, the analysis fails, as              has more solutions than just ±1. 

The sequence                can be of the form 

                                                                     

     If we get a sequence of the type                                     then   must be 

composite. 

1.24 Example.  We compute the sequence              with     for      . (Recall 

that 341 is the smallest 2-pseudoprime.) 

First, 340=4.85=2
2
85, so     and,     . Next, 

       
                                  

        
                          

        
                            

The compositeness of 341 is revealed in (2) where   
                but,  

                      

  2.  Consider 561, a Carmichael number, for which all pseudo prime tests fail 

to reveal its compositeness. First, factor     560= 35. 2
4
, so       and,       . We compute 

the desired sequence with        

       
                               

        
                       

                  
                         

       
                                    



1.25 Definition.  Suppose   is an integer and,           Then,   is said to pass the 

strong pseudo prime test to base   if  

1                 or, 

2.                  for some           

1.26 Definition. An odd composite number that passes the strong pseudo prime test to base 

  is called a strong pseudo prime to base   [or,         ]. 

1.27 Proposition. If   is an odd pseudo prime to base 2 then,    –    is a strong pseudo 

primes to base 2. 

Simple Primality Test. Given     . 10
9
, this algorithm determines if   is prime. 

1. If   fails the strong pseudo prime test to base 2, then   is composite. 

2. If   fails the strong pseudo prime test to base 3, then   is composite. 

3. If   fails the strong pseudo prime test to base 5, then   is composite. 

4. If   is among the 13 numbers in the following table then,   is composite otherwise   is 

prime. 

 

 

Table: Strong pseudo primes to bases 2, 3 and 5 and, the results of tests to bases 7,11 and, 13. 

 Base 7 Base 11 Base 13 

25,326,001 No  No No 

161,304,001 No Spsp No 

960,946,321 No No No 

1,157,839,381 No No No 

3,215,031,751 Spsp Psp Psp 

3,697,278,427 No No No 

5,764,643,587 No  No Spsp 

6,770,862,367 No No No 

14,386,156,093 Psp Psp Psp 

15,579,919,981 Psp Spsp No 

18,459,366,157 No No No 

19,887,974,881 Psp No No 

21,276,028,621 No Psp Spsp 

 

1.28 Example. Let  =15790321; then     has the factorization 



   

 

        ⏞           

We compute the terms in the strong pseudo prime test with a=2. 

                       

                     

                         

This shows that   passes the strong pseudo prime test to base 2. Similarly, we verify that 

  passes the strong pseudo prime test to bases 3 and, 5. Since,   does not appear in the table, 

  is prime. This test requires approximately           multiplications as opposed to    

divisions for trial division. 

1.29 Theorem. A composite number   is a strong pseudo prime to at most     bases. 

Pollard’s       method  

The idea behind the       method is the following. Suppose   is the number to be 

factored, and say        prime. Now,               for any          . 

Suppose,     divides a number  ; then              , that is         . Since, 

    and,         ,   will divide            Instead of computing       we can 

compute             and,                   If the GCD is not equal to  , then 

we would have a non-trivial factor of    This factor need not be  . 

1.30 Example. Consider n= 1073 = 29. 37. If     ,         Let      then,      

             and,              . Similarly,                           

        , the second factor. 

 

Algorithm (Pollard    -method). Given   is composite, this factorization algorithm 

computes           successively for      , a pre-specified bound. The GCD  

 

                 is computed every 25 steps by accumulating products. 

1. [Initialize] Let                         

2. [Accumulate products] Let                                      

               , go to step 3; otherwise, repeat step 2. 

3. [Compute GCD] Let            if                , return   as a factor of  ; 

otherwise, go to step 4. 



4. [Necessity of back-tracking] If        then report that its necessary to backtrack and 

compute the GCD often. If     and              , and go to step 2; otherwise if 

 m ≥ B, terminate the algorithm, as   does not have a factor   with     consisting of small 

primes. 

 

1.31 Remarks. 

(1) before factoring a number, one should apply the probabilistic compositeness of the earlier 

section. 

(2) The algorithm should be tried only after removal of small factors of   by trial division. 

(3) This is not a general purpose algorithm and, will frequently fail to find any factor. But, 

when it works, its impressive and can find some very large factors. 

(4) It seems reasonable to take         in the algorithm. The algorithm can be made more 

efficient by computing            instead of    . 

(5) It may happen in some rare cases that all the factors are discovered at once, i.e, the GCD 

jumps from 1 to   in one step. Then, a different value of a might reveal the factor. Examples 

of such numbers include 2047 and, 536870911.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

                                                             CHAPTER 2 

 

                                                       CRYPTOGRAPHY 

 

 

Why are numbers beautiful? It's like asking why is Beethoven's Ninth Symphony 

beautiful? If you don't see why, someone can't tell you. I know numbers are beautiful. If  

they aren't beautiful, nothing is. 

Paul Erdős 

Cryptography means writing secret code. 

2.1 Definition.  

Cryptography is science of converting a stream of text into coded form in such a way that 

only the originator and/or receiver of the coded text can decode the text. In other words, 

Cryptography is the science of Information security. That means, it is used to protect 

confidentiality of the information. 

 

Objectives of Cryptography 

Confidentiality - The information cannot be understood by anyone for whom it was 

unintended. 

Data Integrity - The information cannot be altered in storage or transit between sender 

and intended receiver without the alteration being detected. 

Authentication - The sender and receiver can confirm each other’s identity and the 

origin/destination of the information.  

 

Aspects and Applications of Cryptography 

Modern Cryptography heavily depends on Mathematics and the usage of digital systems. 

People need privacy and security while communicating. Cryptography provides methods 

and techniques for a secure communication. Cryptography is widely used for military 

applications to keep sensitive information secret from the enemies (adversaries). 



Nowadays with the technologic progress and our dependency on electronic system, we 

need more sophisticated techniques for a secure communication. 

 

Components of Cryptography 

The following are the terminology commonly used in Cryptography: 

Plaintext -  Human Language or Normal Text. 

Encryption - It is the process of converting normal text or data information into 

gibberish text. 

Cipher Text - The Encrypted text is called Cipher text. 

Decryption - It is the process of converting gibberish text into normal text or data and 

hence obtaining plaintext back.  

 

Overview - (Cryptography)[7]  

In the basic communication scenario, there are two parties, Alice and Bob, who want to 

communicate with each other.  A third party, Eve, is a potential eavesdropper. Alice 

wants to send a message to Bob, called “Plaintext”.  She encrypts it using a method pre-

arranged with Bob. The encrypted message is known as “Cipher text”. Usually, the 

encryption method is assumed to be known to Eve.  Bob receives the Cipher text and 

changes it to the plaintext by using a decryption key. The message is kept secret to Eve 

because of the key. 

 

 

History of Cryptography  

Cryptography has roots that began around 2000 B.C. in Egypt when hieroglyphics were 

used to decorate tombs to tell the story of the life of the deceased. The practice was not as 

much to hide the messages themselves, but to make them seem more noble, ceremonial, 

and majestic. A Hebrew cryptographic method required the alphabet to be flipped so that 

each letter in the original alphabet is mapped to a different letter in the flipped alphabet. 

The encryption method was called atbash. Atbash encryption scheme is illustrated as 

follows: 

                                                    

                                                    

Example: The word            is encrypted into             



This method is called substitution cipher, because a character is replaced with another 

character. It is referred to as a monoalphabetic substitution as it uses only one alphabet. 

 

 

Permutation Cipher.  

Another way of encryption was by rearranging letters instead of substituting them. 

For Example: 

Plaintext -                

    

    

    

    

    

Cipher text -               

 

Around 400 B.C., the Spartans used a system of encrypting information by writing a 

message on a sheet of papyrus, which was wrapped around a staff. The message was only 

readable if it was around the correct staff, which allowed the letters to properly match up. 

This is referred to as the scytale cipher. When the papyrus was removed from the staff, 

the writing appeared as just a bunch of random characters. 

Encryption using alphabetical transpositions  

Earliest documented military use of Cryptography by J. Caesar (60 BC) Julius Caesar 

replaced each letter by another one in the same order (i.e., by shifting) Each letter was 

replaced by one, n positions away modulo alphabet size. 

                                                                      = shift value = key 

Similar Scheme used in India Early Indians also used substitution based on phonetics 

similar to Latin. 

 

Ceaser Cipher  

The encryption done by shifting of alphabets. 



                          

                          

Shifting alphabet by n = 3 gives   

                          

                          

                          

                           

             

becomes 

              

Today this technique seems too simplistic to be effective, but in that day not many people 

could read in the first place. More Sophisticated Examples: Use any permutation (that 

does not preserve any order) this is not much secure as only 26 possibilities are there. 

Cryptography was also used during World War 2. As computers came to be, the 

possibilities for encryption methods and devices advanced, and cryptography efforts 

expanded exponentially.  

 

Categories of Cryptography  

The Encryption/Decryption method falls into two categories: 

 Symmetric key (Private key) 

 Asymmetric key (Public key)  

 

In Symmetric Key algorithms, the encryption and decryption key areknown to both Bob 

and Alice. Usually, the encryption key is shared and the decryption key can be easily 

calculated from it. In many cases, both encryption and decryption key are same.  All of 

the (pre-1970) classical cryptosystems are symmetric, as are the more recent DES (Data 

Encryption Standard) and AES (Advanced Encryption Standard). 

 

 

 

 



 

 

 

Disadvantages of Symmetric Key Cryptography  

 Need for secure channel for secret key exchange: Sharing the secret key in the 

beginning is a problem in symmetric key encryption. It has to be exchanged in a 

way that ensures it remains secret.  

 Too many keys: A new shared key has to be generated for communication with 

every different party. This creates a problem with managing and ensuring the 

security of all these keys.  

 Origin and authenticity of message cannot be guaranteed since both sender 

and receiver use the same key, messages cannot be verified to have come from a 

particular user. This may be a problem if there is a dispute. 

 

Symmetric Key vs. Public Key  

Consider the following situation. Suppose Alice wants to send a message to Bob in a 

situation such that: They did not have any prior contact. They haven’t agreed on a key. 

Alice doesn’t want to send key through a courier. Otherwise all the information that Alice 

sends to Bob will potentially be obtained by evil observer Eve. This problem has a 

solution, a scheme called ‘PKC’ (Public Key Cryptosystem)  

 

Public Key Cryptography  

Public Key algorithms were introduced in 1970s which revolutionized cryptography. The 

encryption key is public, but it is computationally infeasible to compute the decryption 

key without the information which is known to Bob only. It was first publicly suggested 

by Diffie and Hellman (at Stanford University in 1976), without practical 

implementation. The most popular implementation of this scheme is ‘RSA’. Other 

versions are due to ElGamal, etc. 

 

Symmetric vs. Asymmetric key  

In Symmetric key cryptography there is only one key which is shared between both 

parties who are communicating. In Public key cryptography there are two different keys 

among which one is public key. So any one can send message. There is no need for using 

different key while communicating with different parties.  

 



 

 

 

One-Way Functions  

One-way functions are widely used in cryptography, especially public-key cryptography. 

A one-way function is a function that is easy to compute and difficult to reverse. How 

might we express this notion of a one way function informally in complexity theoretic 

terms? Let’s see some examples of one-way functions and how they are used in the 

cryptosystems. 

One-Way Functions - Modular exponentiation  

The process of exponentiation just means raising numbers to a power. Raising   to the 

power  , normally denoted   just means multiplying   by itself   times. In other words: 

                                                                       

Modular exponentiation means computing   modulo some other number  . We write 

this as: 

        

Modular exponentiation is easy, but its inversion is difficult. 

 

One-Way Functions - Discrete Log Problem  

However, given      and         (when   is prime), calculating   is regarded by 

mathematicians as a hard problem. This difficult problem is often referred to as the 

discrete logarithm problem. In other words, given a number   and a prime number    the 

function 

     =          is believed to be a one-way function. 

 

 

One-way Functions – Examples  

Modular Square Roots is also a one-way funcion. Finding square root of a number 

modulo some other number is difficult. For example: What is the square root of 56 

module 101? 



Multiplication of two prime numbers is believed to be a one-way function.  A popular 

example of public key cryptosystem based on the above one-way function is RSA. 

 

 

2.1 Definition. 

Suppose       and       are integers. If gcd          then we say 

that   and   are relatively prime. 

2.1 Example. 3 and 8 are relatively prime as gcd         . 

 

RSA (Rivest Shamir Adleman)  

The most successful implementation of PKC was proposed by Rivest, Shamir and 

Adleman in 1977, popularly known as RSA. It is based on the idea that factorization of 

large integers into their prime factors is difficult.  

 

Before RSA 

In 1997, documents released by CESG, a British Cryptographic agency showed that in 

1970, James Ellis discovered ‘PKC’. In 1973, Clifford Cocks had written an internal 

document describing a version of RSA algorithm.  

RSA ALGORITHM 

 

Key Generation 
 

Select   and         both large primes 

Calculate   and               
                   

Select integer                      
             

Calculate                     

Public key  P UK =       

Private key   P RK =         

 
Encryption 

Plaintext:     



 

 

 

 

 

 

 

 

Primitive Root[2]  

2.2 Definition. 

A primitive root modulo   is any number   with the property that any number co-prime 

to   is congruent to a power of   modulo    

In other words,   is a generator of the multiplicative group of integers modulo    That is, 

for every integer   co-prime to  , there is an integer   such that               

Such   is called the index or discrete logarithm of   to the base   modulo    

 

2.2 Example. 3  is a primitive root  modulo 7, because 

            

           

           

           

           

           

 

 

 

Diffie-Hellman Key Exchange  

Public Key Cryptography[7] 

 Whit Diffie and Marti E. Hellman first publicly introduced Public Key 

Cryptography at Stanford University in the year 1976. 

 Although they did not had a practical implementation of the same but it opened 

new directions in Public Key Cryptography. 

Ciphertext:                

Decryption 

Ciphertext:     
Plaintext:               



Diffe-Hellman Key Exchange 

Let p be a prime and   be a primitive root modulo  . 

 User A key generation: 

                 Select private         

     Calculate public        
          

 

 

 User B key generation: 

                 Select private        

                            Calculate public       
          

 

 

 
 Generation of Secret Key by A

 

       
X

A       

 
 Generation of secret Key by B

 

                         
X

B       

 

 

 

A METHOD FOR OBTAINING DIGITAL SIGNATURE AND PUBLIC-KEY    

CRYPTOGRAPHY  

 

An encryption method is presented with the novel property that publicly revealing an 

encryption key does not thereby reveal the corresponding decryption key. This has two 

important consequences[5]: 

    1. Couriers or other secure means are not needed to transmit keys. Since a message can 

be enciphered using an encryption key publicly revealed by the intended recipient. Only 

he can decipher the message, since only he knows the corresponding decryption key. 

    2. A message can be signed using a privately held decryption key. Anyone can verify 

this signature using the corresponding publicly revealed encryption key. Signatures 

cannot be forged, and a signer cannot later deny the validity of his signature. This has 

obvious application in ``electronics mail ‘’ and ``electronic funds transfer’’ system. 

A message is encrypted by representing it as a number  . Raising   to a publicly 

specified power  . and then taking the remainder when the result is divided by publicly 



specified product,    of two large secret prime numbers   and   . Decryption is similar; 

only the different, secret, power   is used, where                           The 

security of the system rests in part on the difficulty of factoring the published divisor,    

 

The era of electronic mail may soon be upon us; we must ensure that two important 

properties of current paper mail system are preserved: 

(a) Messages are private, and  

(b) Message can be signed. 

We demonstrate in this paper how to build these capabilities into an electronic 

mail system. 

At the heart of the proposal is a new encryption method. This method provides an 

implementation of a`` public-key cryptosystem’’, an elegant concept invented by Diffie 

and Hellman. They presented the concept but not any practical implementation of such a 

system. 

  



PUBLIC-KEY CRYPTOSYSTEM 

In a ``public –key cryptosystem ‘’ each user places in a public file an encryption 

procedure  . that is, the public file is a directory giving the encryption procedure of each 

user. The user keeps the secret the details of his corresponding procedure  . These 

procedure have the following four properties: 

(a) Deciphering the enciphered form of a message   yields  . formally, 

                                        

(b) Both    and   are easy to compute. 

(c) By publicly revealing   the user does not reveal an easy way to compute  . This 

means that in practice only he can decrypt messages encrypted with  , or compute 

  efficiently. 

(d) If a message   is first deciphered and then enciphered,   is the result. Formally,  

                                      

An encryption (or decryption) procedure typically consist of a general method and an 

encryption key. The general method, under control or the key, enciphers a message   to 

obtain the enciphered form of the message, called the cipher text  . Everyone  can use 

the same general method; the security of a given procedure will rest on the security of the 

key. Revealing an encryption algorithm then means revealing the key. 

      When the user reveals   he reveals a very inefficient method of computing 

     testing all possible message   until one such that        is found. If property 

(c) is satisfied the number of such message to test will be so large that this approach is 

impractical. 

    A function   satisfying (a)-(c) is a`` trap-door one way function’’,. If it also satisfies 

(d) it is a`` trap-door one way permutation.” Diffie and Hellman introduced the concept 

of trap-door one-way function but did not present any examples. These function are 

called ``one-way’’ because they are easy to compute in one direction but very difficult to 

compute in the other direction. They are called ``trap-door’’ functions since the inverse 

function are in fact easy to compute once certain private ``trap-door’’ information is 

known. A trap-door one way function which also satisfies (d) must be a permutation: 

every message is the ciphertext for some other message and every ciphertext is itself a 

permissible message. ( the mapping is ``one-to-one’’ and ``onto’’). Property (d) is needed 

only to implement ``signatures.’’ 

    Suppose that   and   (also known as Alice and Bob) are two users of a public-key 

cryptosystem. We will distinguish their encryption and decryption procedure with 

subscript:              

 



 

 

PRIVACY: 

Encryption is the standard means of rendering a communication private. The sender 

enciphers each message before transmitting it to the receiver. The receiver (but no 

unauthorized person) knows the appropriate deciphering function to apply to the received 

message to obtain the original message. An eavesdropper who hears the transmitter 

message hears only ``garbage’’(the ciphertext ) which makes no sense  to him since he 

does not know how to decrypt it. 

    The large volume of personal and sensitive information currently held in computerized 

data banks and transmitted over telephone lines makes encryption increasingly important.  

In recognition of the fact that efficiently, high –quality encryption techniques are very 

much needed but are in short supply, the NATIONAL BUREAU has recently adopted a 

``Data Encryption Standard’’, developed at IBM. The new standard does not have 

property (c). needed to implement a public-key cryptosystem. 

  All classical encryption methods (including the NBS standard) suffer from the ``key 

distribution problem’’. The problem is that before a private communication can begin. 

Another private transaction is necessary to distribute corresponding encryption and 

decryption keys to the sender and receiver, respectively. Typically a private courier is 

used to carry a key from the sender to the receiver. Such a practice is not feasible if an 

electronic mail system is to be rapid and inexpensive. A public-key cryptosystem needs 

no private courier; the keys can be distributed over the insecure communication channel. 

How can Bob send a private message   to Alice in a public –key cryptosystem? First, he 

retrieves    from the public file. Then he sends her the enciphered message        Alice  

decipher the message by computing             By property (c) of the public-key 

cryptosystem only she can decipher      . She can encipher a private response with     

also available in the public file. 

     Observe that no private transaction between Alice and Bob are needed to establish 

private communication. The only ``step up’’ required is that each user who wishes to 

receive private communication must place his enciphering algorithm in the public file. 

     Two users can also establish communication private over an insecure communications 

channel without consulting a public file. Each user sends his encryption key to the other. 

Afterwards all messages are enciphered with the encryption key of the recipient, as in 

public-key system. An intruder listening in on the channel cannot decipher any messages. 

Since, it is not possible to derive the decryption keys from the encryption keys. (we 

assume that the intruder cannot modify or insert messages into the channel.) 



    A public-key cryptosystem can be used to ``bootstrap’’ into a standard encryption 

scheme such as the NBS method. Once secure communication have been established the 

first message transmitted can be a key to use in the NBS scheme to encode all messages. 

 

   SIGNATURES:  

   If electronic mail system are to be replace the exciting paper mail system for business 

transaction ``signing’’ an electronic message must be possible. The recipient of a signed 

message has proof that the message originated from the sender. This quality is stronger 

than mere authentication (where the recipient can verify that the message came from the 

sender); the recipient can convince a ``judge’’ that the signer sent the message. To do so, 

he must convince the judge that he did not forge the signed message himself! In an 

authentication problem the recipient does not worry about this possibility, since he only 

wants to satisfy himself that the message came from the sender. 

  An electronic signature must be message-dependent, as well as signer-dependent. 

Otherwise the recipient could modify the message before showing the message-signature 

pair to a judge. Or he could attach the signature to any message whatsoever, since it is 

impossible to detect electronic ``cutting and pasting’’. 

   To implement signature the public-key cryptosystem must be implemented with trap-

door one-way permutation (i.e. have property (d)), since the decryption algorithm will be 

applied to unenciphered messages. 

    How can user Bob send Alice a`` signed’’ message   in a public-key cryptosystem? 

He first compute his ``signature’’ S for message   using   : 

                                               

(Deciphering an unenciphered message ``make sense’’ by property (d) of a public-key 

cryptosystem: each message is the ciphertext for some other message.) He then encrypt 

  using    (FOR PRIVACY), and sends the result       to Alice. He need not send   as 

well: it can be computed from    

Alice first decrypts the ciphertext with     to obtain    she knows who is the presumed 

sender of the signature(in this case, Bob); this can be given if necessary in plain text 

attached to  . she then extracts the message with the encryption procedure of the sender, 

in this case    (available on the public file): 

                                                 

She now possesses a message-signature pair       with properties similar to those of 

signed paper document. 



     Bob cannot later deny having sent Alice this message, since no one else could have 

created          Alice can convince a ``judge’’ that        , so she proof that 

Bob signed the document. 

   Clearly Alice cannot modify   to a different version      since then she would have to 

create the corresponding signature           as well. 

  Therefore Alice has received a message ``signed’’ by Bob, which she can `` prove’’ that 

he sent. But which she cannot modify.( nor can she forge his signature for any other 

message.) 

    An electronic checking system could be based on a signature system such as the above. 

It is easy to imagine an encryption device in your home terminal allowing you to sign 

checks that get sent by electronic mail to payee. It would only be necessary to include a 

unique check number so that even if the payee copies the check the bank will only honor 

the first version it sees. 

   Another possibility arises if encryption device can be made fast enough: it will be 

possible to have a telephone conversation in which every word spoken is signed by the 

encryption device before transmission. 

     When encryption is used for signatures as above, it is important that the encryption 

device not be ``wired in’’ between the terminal ( or computer) and the communication 

channel, since a message may have to be successively enciphered with several keys. It is 

perhaps more natural to view the encryption device as a ``hardware subroutine” that can 

be executed as needed.  

     We have assume above that each user can always access the public file reliably. In a 

``computer network” this might be difficult; an ``intruder” might forge messages 

purporting to be from the public file. The user would like to be sure that he actually 

obtains the encryption procedure of his desired correspondent and not, say. The 

encryption procedure of the intruder. This danger disappears if the public file ``signs” 

each message it sends to a user. The user can check the signature with the public file’s 

encryption algorithm      The problem of ``looking up”     itself in the public file is 

avoided by giving each user a description of     when he first shows up (in person) to 

join the public-key cryptosystem and to deposit his public encryption procedure. He then 

stores this description rather than ever looking it up again. The need for a courier between 

every pair of user has thus been replaced by the requirement for a single secure meeting 

between each user and the public file manager when the user joins the system. Another 

solution is to give each user, when he signs up, a book (like a telephone directory) 

containing all the encryption keys of users in the system. 

 

 

 



        OUR ENCRYPTION AND DECRYPTION METHODS. 

To encrypt a message   with our method, using a public encryption key        proceed 

as follows. (here   and   are pair of positive integers.) 

  First, represent the message as an integer between 0 and    . (Breaking a long 

message into a series of blocks, and represent each block as such an integer.) Use any 

standard representation. The purpose here is not to encrypt the message but only to get it 

into the numeric form necessary for encryption. 

    Then, encrypt the message by raising it to the     power modulo    that is, the result 

(the ciphertext  ) is the remainder when    is divided by    

      To decrypt the ciphertext, raise it to another power    again modulo  . The 

encryption and decryption algorithms   and   are thus: 

                                                      for a message    

                                                  for a ciphertext    

Note that encryption does not increase the size of a message; both the message and the 

cipher text are integer in the range 0 to    . 

    The encryption key is thus the pair of positive integers        similarly, the decryption 

key is the pair of positive integers        Each user makes his encryption key public, and 

keeps the corresponding decryption key private. (these integers should properly be 

subscribed as in       and     since each user has his own set. However, we will only 

consider a typical set, and will omit the subscripts.) 

 How should you choose your encryption and decryption keys, if you want to use this 

method? 

   You first compute   as the product of two primes   and    

                                                               

       These primes are very large, ``random” primes. Although you will make   public, 

the factor   and   will be effectively hidden from everyone else due to the enormous 

difficulty of factoring    This also hides the way   can be derived from    

                You then pick the integer   to be a large, random integer which is relatively 

prime to              That is, check that   satisfies: 

                     

     (``gcd” means “greatest common divisor”). 

     The integer   is finally computed from      and   to be the “multiplicative inverse” of 

   modulo              Thus we have  



                          

 

 THE UNDERLYING MATHEMATICS: 

  We demonstrate the correctness of the deciphering algorithm using an identity due to 

Euler and Fermat for any integer (message)   which is relatively prime to    

                                        

  Here      is the Euler totient function giving number of positive integer less than 

  which are relatively prime to    For prime numbers    

          

    In our case, we have by elementary properties of the totient function  

                                          

             

                                                                                    

Since   is relatively prime to       it had a multiplicative inverse   in the ring of integers 

modulo       

                                             

  We now prove that equation (1) and (2) holds ( that is, that deciphering works correctly 

if   and   are chosen as above). Now 

                                                    

                                                    

And 

                       ( for some integer   . 

From (3) we see that for all   such that   does not divide   

                                              

And since       divides      

                                                                      

This is trivially true when              , so that this equality actually holds for all    

Arguing similarly for   yields 



                      

Together these last two equation imply that for all    

                          . 

This implies (1) and (2) for all              Therefore   and    are inverse 

permutations. 

 

A  How to Encrypt and Decrypt Efficiently[3] 

Computing           requires at most           multiplications and,            

divisions using the following procedure (decryption can be performed similarly using 

  instead of  ): 

Step 1: Let               be the binary representation of    

Step 2: Set the variable   to 1. 

Step 3: Repeat steps 3a and, 3b for                

 Step 3a. Set   to the remainder of    when divided by  . 

 Step 3b. If     , the set   the the remainder of  .   when divided by    

Step 4: Halt. Now   is the encrypted form of  . 

This procedure id called “exponentiation by repeated squaring and multiplication”. This 

procedure is half as good as the best; more efficient procedures are known. Knuth studies 

this problem in detail. 

The fact that the enciphering and deciphering are identical leads to a simple 

implementation. (The whole operation can be implemented on a few special-purpose 

integrated circuit chips.) 

A high-speed computer can encrypt a 200-digit message M in a few seconds: special 

purpose hardware would be much faster. The encryption time per block increases no 

faster than the cube of the number of digits in n. 

B  How to Find Large Prime Numbers 

Each user (privately) choose two large random numbers   and,   to create his own 

encryption and decryption keys. These numbers must be large so that it is not 

computationally feasible for anyone to factor 

         (Remember that  , but not   or,  , will be in the public file). 



We recommend using 100-digit ( decimal) prime numbers   and,  , so that   has 200 

digits. 

To find a 100-digit “random” prime number generate (odd) 100-digit random numbers 

until a prime number is found. By the prime number theorem, about                  

numbers will be tested before a prime is found.  

To test a large number   for primality we recommend the elegant “probabilistic” 

algorithm due to Solovay and, Strassen. It picks a random number   from a uniform 

distribution on              and tests whether 

                            
   

          

where        is the Jacobi symbol. If   is prime, the above eq
n
. is always true. If   is 

composite, the above eq
n
. will be false with probability at least ½. If the above eq

n
. holds 

for 100 randomly choosen values of a then,   is almost certainly prime: there is a 

(negligible) chance of one in 2
100

 that   is composite. Even if a composite were 

accidentally used in our system, the receiver would probably detect this by noticing that 

decryption didn’t work correctly. When   is odd,        and,               the Jacobi 

symbol        has a value in        and can be efficiently computed by the program: 

  J                then 1 else 

        If   is even, then                
       

        Else,                                   

(The computations of        and          can be nicely combined too.) Note that this 

algorithm doesn’t test a number for primality by trying to factor it. Other efficient 

procedures for testing a large number for primality are given. 

To gain additional protection against sophisticated factoring algorithms,   and,   should 

differ in length by a few digits, both       and,       should contain a large number 

of prime factors, and              should be small. The latter condition is easily 

checked. 

To find a prime factor   such that       has a large prime factor, generate a large 

random prime factor  , then let   be the first prime in the sequence         for  

              (This shouldn’t take too long.) Additional security is provided by ensuring 

that       also has a large prime factor. 

A high-speed computer can determine in several seconds whether a 100-digit number is 

prime, and can find the first prime after a given point in a minute or, two. 

Another approach to finding large prime factors is to take a number of known 

factorization, add one to it, and test the result for primality. If a prime   is found its 

possible to prove that it really is prime by using the factorization of      We omit a 

discussion of this since the probabilistic method is adequate. 



C How to Choose   

Its very easy to choose a number   which is relatively prime to       for example, any 

prime number greater than          will do. Its important that   should be chosen from 

a large enough set so that a cryptanalyst can’t find it by direct search. 

D  How to Compute   from   and      

To compute    use the following variation of Euclid’s algorithm for computing the 

greatest common divisor of      and  . Calculate             by computing a series 

                                    

and,                     until an    equal to zero is found. Then             

     . Compute for each    numbers    and    such that                   . 

 if         , then      is the multiplicative inverse of             Since   will be less 

than           this computation is very rapid. 

If   turns out to be less than         start over by choosing another value of     This 

guarantees that every encrypted message (except      or,    ) undergoes some 

“wrap-around” (reduction modulo  ). 

 

 

 

 

 

  



 

                                              CHAPTER 3 

 

                  SOME REMARKS ON LUCAS-BASED CRYPTOSYSTEMS 

 

 

FIBONACCI NUMBER 

In mathematics the Fibonacci numbers or Fibonacci series or Fibonacci sequence are the 

numbers in the following integer sequence: 

0,1,1,2,3,5,8,13,21,34,55,89,144… 

Or alternatively  

1,1,2,3,5,8,13,21,34,55,89,144… 

By definition, the first two numbers in the Fibonacci sequence are 0 and 1(alternatively 1 

and 1) and each subsequent number is the sum of the previous two. 

In mathematical terms, the sequence    of Fibonacci number is defined by the recurrence 

relation  

             

With seed values  

     

     

In the first term form or  

     

     

 

In the second form. 

LUCAS NUMBER  

The Lucas number or Lucas series are an integer sequence named after the mathematician 

Francois Eduardo Anatole Lucas (1842-1891), who studied both that sequence and the 



closely related Fibonacci number. Lucas number and Fibonacci number form 

complementary instances of Lucas sequence. 

 

 

 

3.1 Definition. 

Similarly to the Fibonacci numbers, each Lucas number is defined to be the sum of its 

two immediate previous terms that is it is a Fibonacci integer sequence.  However, the 

first two Lucas numbers are L0=2 and L1=1 instead of 0 and 1, and the properties of 

Lucas number are therefore somewhat different from those of Fibonacci numbers. 

The Lucas numbers may thus be defined as follows: 

 

  =     2                if  =0 

           1                if  =1 

                         if  >0. 

The sequence of Lucas number begins: 

2,1,3,4,7,11,18,29,47,76,123… 

 

EXTENSION TO NEGATIVE INTEGERS  

Using              , one can extend the Lucas numbers to negative integers to 

obtain a doubly infinite sequence: 

…-11,7,-4,3,-1,2,1,3,4,7,11…(terms    for -5≤n≤5 are shown) 

The formula for terms with negative indices in this sequence is         
    

 

LIST OF FIBONACCI NUMBERS  

The first 21 Fibonacci numbers Fn for n=0,1,2…20 are  

 

     

     



     

     

     

     

     

      

      

      

       

       

        

        

        

        

        

         

         

         

        

 

The sequence can also be extended to negative index `n’ using the rearrangement relation   

             

Which yields the sequence of negafibonacci number satisfying         
      

Thus the bidirected sequence is  

        

       

       



      

       

      

       

      

     

     

     

     

     

     

     

      

      

 

 

LUCAS PRIME  

A Lucas prime is a Lucas number that is prime. The first few Lucas prime are: 

2,3,7,11,29,47,199,521,2207,3571,9349,… 

If   is prime then` n’ is either 0, prime or a power of 2.     is prime for m=1,2,3 and 4 

and no other known value of m. 

 

INTEGER SEQUENCE  

In mathematics, an integer sequence is a sequence of integers. An integer sequence may 

be specified explicitly by giving a formula for its     term or implicitly by giving a 

relationship between its terms. For example 0,1,1,2,3,5,8,13… (the Fibonacci sequence) 

is formed by starting with `0’ and `1 ‘ and then adding any two consecutive term to 

obtain the next one; an implicit description. The sequence 0,3,8,15,… is formed 

according to the formula      for the    term;an explicit definition. 



 

LUCAS SEQUENCE[6] 

Let   and   be integers and let   be a root of           in the field          

                

Where           is assumed to be a non-square (but not necessary square free). Then 

  is an element of the ring of    of the quadratic field    , and there exists        and 

       such that    
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So,  
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Infact, for every     it holds that      [  ]  and we can write    
       

 
, for certain 

integers  

      
          and          

         

Choosing   
    

 
 and its conjugate    ̅  

    

 
 

We find that              

                                  

And     
    

 
   

         

 
 

         
   

    

 
,          

     

and by induction, we see that    and    are given by the recurrence relation  

                                    

                                     

 

 

 



 

3.1 REMARKS.  

Thus the       may be seen as the `co-efficient of the powers of   that may   computed 

by the above recurrence relation. Knowing    and    implies knowledge of    , which 

immediately ties the problems of determining   from     and    to the discrete logarithm 

of    with respect to the base  . 

Depending on which view we like to stress we will write       or         and these are 

related via               

Of  the many relation between the    ,    we derive a few that are relevant for what is to 

follow. The first lemma deals with the     and     of the conjugate, traces and norms of 

powers.  

1 LEMMA. For every   and every      

(i)                                 

(ii)                       

(iii)            
  
        

    

 
 

Proof.(i)     
    

 
 

From these we have  

                           

So ,                                                          
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From (1) and (2)  we have 
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Thus  
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(ii)  
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(iii)             . 
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2 LEMMA. :- for all                 

           
      

Proof.                  
        (from lemma 1) 
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3 LEMMA.  for     

(i)           and         
     . 

(ii)                                and                              . 

 

Proof:- (i)         
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Comparing the co-efficient we have 
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(ii)               
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Comparing the co-efficient of       and       we have  
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        4 LEMMA.               For every   and    

                        
         

                                                                         
           

Proof:-  Let                                         
          

 
  

 
       

 
   

 
 

                                                              
       

 
    

 
 

By lemma (1) we have     
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               Comparing the co-efficient we have   

                        
   

                                                                        
           

                    

 

 



 

 

LUC 

PUBLIC KEY SYSTEM (LUC). Each user publishes the product   of two large primes 

    and    and an index   with gcd(              )    The corresponding   such 

that                    is kept secret. 

A message   is an integer satisfying         with gcd       . To encrypt a 

message  meant for some user, one looks up the user’s   and  , and computes the 

encrypted message                that is ,  is equal to the message, and      

This computation can be carried out using the recurrence given in lemma 2 in         

elementary operations on integers modulo  . To decrypt the message, the user calculates  

                                       

(By lemma 4). The final identity holds because       modulo both  and  . 

   Alternatively, to use LUC as a signature scheme, the user’s signature on a message   

equals               which can be verified by checking that               
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